差热分析法(DTA)简介 (Differential Thermal Analysis)
实验一差热分析一、目的意义差热分析(dta,differentialthermal
实验一 差热分析一、目的意义差热分析(DTA ,differentialthermal analysis)是研究相平衡与相变的动态方法中的一种,利用差热曲线的数据,工艺上可以确定材料的烧成制度及玻璃的转变与受控结晶等工艺参数,还可以对矿物进行定性、定量分析。
本实验的目的:1.了解差热分析的基本原理及仪器装置;2.学习使用差热分析方祛鉴定未知矿物。
二、基本原理差热分析的基本原理是:在程序控制温度下;将试样与参比物质在相同条件下加热或冷却,测量试样与参比物之间的温差与温度的关系,从而给出材料结构变化的相关信息。
物质在加热过程中,由于脱水,分解或相变等物理化学变化,经常会产生吸热或放热效应。
差热分析就是通过精确测定物质加热(或冷却)过程中伴随物理化学变化的同时产生热效应的大小以及产生热效应时所对应的温度,来达到对物质进行定性和/或定量分析的目的。
差热分析是把试样与参比物质(参比物质在整个实验温度范围内不应该有任何热效应,其导热系数,比热等物理参数尽可能与试样相同,亦称惰性物质或标准物质或中性物质)置于差热电偶的热端所对应的两个样品座内,在同一温度场中加热。
当试样加热过程中产生吸热或放热效应时,试样的温度就会低于或高于参比物质的温度,差热电偶的冷端就会输出相应的差热电势。
如果试样加热过程这中无热效应产生,则差热电势为零。
通过检流计偏转与否来检测差热电势的正负,就可推知是吸热或放热效应。
在与参比物质对应的热电偶的冷端连接上温度指示装置,就可检测出物质发生物理化学变化时所对应的温度.不同的物质,产生热效应的温度范围不同,差热曲线的形状亦不相同(如图16-2所示)。
把试样的差热曲线与相同实验条件下的已知物质的差热曲线作比较,就可以定性地确定试洋的矿物组成。
差热曲线的峰(谷)面积的大小与热效应的大小相对应,根据热效应的大小,可对试样作定量估计。
三.仪器设备与装置差热分析所用的设备主要由加热炉,差热电偶,样品座及差热信号和温度的显示仪表等所组成。
常用催化剂表征方法及缩写
DTA差热分析(Differential Thermal Analysis,DTA)差热分析法是以某种在一定实验温度下不发生任何化学反应和物理变化的稳定物质(参比物)与等量的未知物在相同环境中等速变温的情况下相比较,未知物的任何化学和物理上的变化,与和它处于同一环境中的标准物的温度相比较,都要出现暂时的增高或降低。
降低表现为吸热反应,增高表现为放热反应。
当给予被测物和参比物同等热量时,因二者对热的性质不同,其升温情况必然不同,通过测定二者的温度差达到分析目的。
以参比物与样品间温度差为纵坐标,以温度为横座标所得的曲线,称为DTA曲线。
在差热分析中,为反映这种微小的温差变化,用的是温差热电偶。
它是由两种不同的金属丝制成。
通常用镍铬合金或铂铑合金的适当一段,其两端各自与等粗的两段铂丝用电弧分别焊上,即成为温差热电偶。
在作差热鉴定时,是将与参比物等量、等粒级的粉末状样品,分放在两个坩埚内,坩埚的底部各与温差热电偶的两个焊接点接触,与两坩埚的等距离等高处,装有测量加热炉温度的测温热电偶,它们的各自两端都分别接人记录仪的回路中在等速升温过程中,温度和时间是线性关系,即升温的速度变化比较稳定,便于准确地确定样品反应变化时的温度。
样品在某一升温区没有任何变化,即也不吸热、也不放热,在温差热电偶的两个焊接点上不产生温差,在差热记录图谱上是一条直线,已叫基线。
如果在某一温度区间样品产生热效应,在温差热电偶的两个焊接点上就产生了温差,从而在温差热电偶两端就产生热电势差,经过信号放大进入记录仪中推动记录装置偏离基线而移动,反应完了又回到基线。
吸热和放热效应所产生的热电势的方向是相反的,所以反映在差热曲线图谱上分别在基线的两侧,这个热电势的大小,除了正比于样品的数量外,还与物质本身的性质有关。
许多物质在加热或冷却过程中会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理化学变化。
这些变化必将伴随体系焓的改变,因而产生热效应。
5差热分析
差热分析(Differential Thermal Analysis—DTA)法是一种重要的热分析方法,是 指在程序控温下,测量物质和参比物的温度差与温度或者时间的关系的一种测试技 术。该法广泛应用于测定物质在热反应时的特征温度及吸收或放出的热量,包括物 质相变、分解、化合、凝固、脱水、蒸发等物理或化学反应。广泛应用于无机、硅 酸盐、陶瓷、矿物金属、航天耐温材料等领域,是无机、有机、特别是高分子聚合 物、玻璃钢等方面热分析的重要仪器。 差热分析 最早的差热分析仪器是1887年Le Chatelier为了研究粘土矿物而制作的。该装置使 用时一边加热一边用光学自动记录仪记录物质的温度,完全靠手工操作,因此误差 很大。1899年英国的W.C.Roberts-Austen(罗卜兹-奥斯坦)第一次采用示差法进 行了仪器改造,他采用标准物质与被测物质进行比较的方法,记录两者温度差,得 到的电解铁的DTA曲线,被认为是第一条现代意义上的DTA曲线。随着电子技术的 发展,差热分析仪器无论在结构上还是在性能上都有了很大改进,最大限度上脱离 了手工操作、记录等繁琐手续,实现了温度控制和记录的自动化,降低了外界干扰, 提高了测试精度。目前的仪器测试范围可用-190℃到2000℃以上,可控制测试气氛 和压力,并可和其他仪器组合使用。 目前,国内外已有多家生产该类型仪器的企业,差热分析法与现代各种研究方 法综合使用,相互补充,已成为材料研究中最为常用的方法之一。
B
C
D
E F
笔2接 AC 笔1接 A B
时间
图 5 - 2 差 热 分析 图
d
b
H T d
K d T d b m
No Image
三 实验原理
差热分析实验报告
差热分析实验报告一、实验介绍差热分析(Differential Thermal Analysis,DTA)是一种热分析技术,通过测量样品和参比物的温度差异来分析样品中的物理和化学变化。
该技术被广泛应用于化学、材料、地质学等领域的研究中。
本次实验使用的是DSC-TG联用仪器,其中DSC(差示扫描量热分析)能够测试热量变化,而TG(热重分析)则能够测试质量变化。
本次实验主要是通过分析样品在不同温度下的热量和质量变化来研究其物理和化学性质。
二、实验步骤1. 样品准备将约1g的样品粉末放入铂盘中,加热至110℃干燥去除水分和杂质,并在110℃将其冷却至室温。
2. 测量参数设置在DTA和TG仪器上设置参数,包括扫描速度、温度范围、样品和参比物的数量和质量等。
3. 实验操作将样品和参比物放置于仪器中心的测量室,加热仪器并进行扫描。
在扫描过程中,记录并分析热量和质量的变化。
4. 数据处理通过对实验结果的分析和比较,进行样品的物理和化学性质的研究。
三、实验结果分析本次实验使用了三种不同的样品:一种是硫酸铜(CuSO4)的水合物,一种是淀粉,另一种是煤。
1、硫酸铜的水合物图1:硫酸铜的水合物的DTA和TG曲线实验结果显示,硫酸铜的水合物的DTA曲线显示出一个明显的峰,在约60℃时达到最高点。
这说明在此温度下发生了一次物理或化学反应。
TG曲线显示出样品减重,在60℃时体现出一个明显峰值。
据此可以推断,60℃可能是水合物中水分的脱去温度。
2、淀粉图2:淀粉的DTA和TG曲线实验结果显示,淀粉的DTA和TG曲线均没有明显的峰值和变化,表明该样品不存在显著的物理和化学反应。
这与淀粉作为多聚糖的特性相符。
3、煤图3:煤的DTA和TG曲线实验结果显示,煤的DTA和TG曲线均表现出非常复杂的特征,其中包括多个峰值和谷值。
这表明煤在DTA-TG条件下的热解、分解、燃烧和氧化反应非常复杂。
四、实验总结本次实验使用DSC-TG联用仪器,在不同温度下对硫酸铜的水合物、淀粉和煤进行了DTA和TG测试。
差热分析法
差热分析法基本原理差热分析法——Differential Thermal Analysis (DTA)是在程序控制温度下,测量试样与参比物质之间的温度差ΔT与温度T(或时间t)关系的一种分析技术,所记录的曲线是以ΔT 为纵坐标,以T(或t)为横坐标的曲线,称为差热曲线或DTA曲线,反映了在程序升温过程中,ΔT与T或t的函数关系:ΔT = f ( T ) 或f ( t )参比物质为一种在所测量温度范围内不发生任何热效应的物质。
通常使用的参比物质是灼烧过的α-Al2O3或MgO。
图17.6为DTA原理示意图。
加热时,温度T及温差△T分别由测温热电偶及差热电偶测得。
差热电偶是由分别插在试样S和参比物R的二支材料、性能完全相同的热电偶反向相连而成。
当试样S没有热效应发生时,组成差热电偶的二支热电偶分别测出的温度T s、T R相同,即热电势值相同,但符号相反,所以差热电偶的热电势差为零,表现出ΔT=T s-T R=0,记录仪所记录的ΔT曲线保持为零的水平直线,称为基线。
若试样S有热效应发生时,T s≠T R,差热电偶的热电势差不等于零,即ΔT=T s-T R≠0,于是记录仪上就出现一个差热峰。
热效应是吸热时,ΔT=T s-T R<0,吸热峰向下,热效应是放热时,ΔT>0,放热峰向上。
当试样的热效应结束后,T s、T R又趋于一样,ΔT恢复为零位,曲线又重新返回基线。
图17.7为试样的真实温度与温差比较图。
差热峰反映试样加热过程中的热效应,峰位置所对应的温度尤其是起始温度是鉴别物质及其变化的定性依据,峰面积是代表反应的热效应总热量,是定量计算反应热的依据,而从峰的形状(峰高、峰宽、对称性等)则可求得热反应的动力学参数。
表17.2列出了各种吸热和放热体系的类型,供判断差热峰产生机理时参考。
表17.2 差热分析中吸热和放热体系的主要类型现象(物理的原因)吸热放热现象(化学的原因)吸热放热结晶转变○○化学吸附○熔融○析出○气化○脱水○升华○分解○○吸附○氧化度降低○脱附○氧化(气体中)○吸收○还原(气体中)○氧化还原反应○○固相反应○○影响DTA的因素影响DTA的因素很多,下面讨论几种主要的因素:★升温速度的影响保持均匀的升温速度(ψ)是DTA的重要条件之一,即应:ψ = dT R / dt = 常数若升温速度不均匀(即ψ有波动),则DTA曲线的基线会漂移,影响多种参数测量。
2差热分析法PPT课件
之面积(BCDB)。
8
9
10
差热分析仪
差热分析仪的组成
加热炉 温差检测器 温度程序控制仪 信号放大器 记录仪 气氛控制设备
11
差热分析仪
12
13
14
15Biblioteka 16差热分析的应用
17
一、定性分析
DTA定性分析,就是通过实验获得DTA曲线,根 据曲线上吸、放热峰的形状、数量、特征温度点的温 度值,
✓ 如:在空气和氢气的气氛下对镍催化剂进 行差热分析,所得到的结果截然不同(见 图)。在空气中镍催化剂被氧化而产生放 热峰。
44
45
不同气氛下碳酸锶的热分解反应
Sr3 (s C ) O S( r s) O C2 (g O )
927C立方晶型变为六方晶型
分解温度
46
三、试样的影响
✓ 在DTA中试样的热传导性和热扩散性都 会对DTA曲线产生较大的影响,若涉及 气体参加或释放气体的反应,还和气体 的扩散等因素有关,显然这些影响因素 与试样的用量、粒度、装填的均匀性和 密实程度以及稀释剂等密切相关。
47
1.试样用量的影响
✓ 试样用量大,易使相邻两峰重叠,分辨力 降低。
✓ 一般尽可能减少用量,过多会使样品内部 传热慢、温度梯度大,导致峰形扩大和分 辨率下降。
✓ 最多大至毫克。
48
49
2. 试样粒度的影响
✓ 粒度会影响峰形和峰位, 尤其对有气相参与的反 应。
✓ 通常采用小颗粒样品, 样品应磨细过筛并在坩 埚中装填均匀。
39
二、实验条件的影响
1.升温速率 影响峰的形状、位置和相邻峰的分辨率。 升温速率越大,峰位向高温方向迁移,峰变尖锐。
使试样分解偏离平衡条件的程度也大,易使基线漂 移,并导致相邻两个峰重叠,分辨力下降。
差热分析(DTA)
2.根据无机化学知识和差热峰的面积讨论五个结晶水 与CuSO4结合的可能形式。
差热分析的影响因素
① 升温速率的选择:速率低时,基线漂移小,可以分辨 靠得近的差热峰。 ② 气氛及压力的选择:有些物质在空气中易被氧化,选 择适当的气氛及压力也是测定得到好的结果的一个方面。 ③ 参比物的选择:作为参比物的材料必须具备的条件是 在测定温度范围内,保持热稳定,一般用α—A12O3、MgO、 (煅烧过的)SiO2及金属镍等。 ④ 样品处理:样品粒度大约200目左右,颗粒小可以改 善导热条件,但太细可能破坏晶格或分解。 ⑤ 走纸速度:走纸速度大则峰的面积大、面积误差可小 些。走纸速度太小,对原来峰面积小的差热峰不易看清楚。
差热分析(DTA)
——Differential Thermal Analysis
目的要求
一、掌握差热分析的基本原理及方法,了解差热分 析仪的构造,学会操作技术; 二、用差热分析仪对CuSO45H2O进行差热分析,并 定性解释所得的差热谱图; 三、学会热电偶的制作及其标定。
基本原理
物质在加热或冷却过程中,当达到特定温度时,会产生物理变化或化学 变化,伴随着有吸热和放热现象,反映物系的焓发生了变化。 差热分析就是利用这一特点,通过测定样品与参比物的温度差对时间的函 数关系,来鉴别物质或确定组成结构以及转化温度、热效应等物理化学性质。 在升温过程中试样如没有热效应,则试样与参比物之间的温度差ΔT为零, 而试样在某温度下有放热(吸热)效应时,试样温度上升速度加快(减 慢 ),就产生温度差ΔT。 分析差热图谱可根据差热峰的数目、位置、方向、高度、宽度、对称性以 及峰的面积等。差热分析仪Fra bibliotek实验步骤
差热分析法(DTA)
6.3.1 基本原理
2012-3-8
5
6.3.2 差热曲线方程
为了对差热曲线进行理论上的分析, 为了对差热曲线进行理论上的分析 , 从 60年代起就开始进行分析探讨 , 但由于 年代起就开始进行分析探讨, 年代起就开始进行分析探讨 考虑的影响因素太多, 考虑的影响因素太多 , 以致于所建立的 理论模型十分复杂,难以使用。 理论模型十分复杂,难以使用。 1975年 , 神户博太郎对差热曲线提出了 年 一个理论解析的数学方程式, 一个理论解析的数学方程式 , 该方程能 够十分简便的阐述差热曲线所反映的热 力学过程和各种影响因素。 力学过程和各种影响因素。
2012-3-8 16
(二)
CS
在反应终点C, 反应终点 ,
d∆H = 0 dt
K ln (∆Tc − ∆Ta ) = − t CS
d∆T dt
= − K [∆T − ∆Ta ]
K ∆Tc = exp− CS
t + ∆Ta
(6 − 9)
反应终点C以后, 将按指数函数衰减直至 反应终点 以后,∆T将按指数函数衰减直至 以后 ∆T 基线) 2012-3-8 a(基线)
2012-3-8 20
6.3.3 差热分析仪
差热分析仪的组成
加热炉 温差检测器 温度程序控制仪 信号放大器 记录仪 气氛控制设备
2012-3-8 21
6.3.4 差热分析的影响因素
1. 仪器因素: 仪器因素: 炉子的形状结构与尺寸, 炉子的形状结构与尺寸,坩埚材料与 形状, 形状,热电偶位置与性能 2. 实验条件因素: 实验条件因素: 升温速率、 升温速率、气氛 3. 试样因素: 试样因素: 用量、 用量、粒度
2012-3-8 22
《差热分析》报告
实验二差热分析________学号________ 院系________差热分析一引言差热分析(Differential Thermal Analysis.简称DTA)就是通过温差测量来确定物质的物理化学性质的一种热分析方法。
本文通过实验讨论了如何分析DTA的结果以获得有效的信息,并阐述了影响差热分析效果的各种因素。
二实验原理物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现为物质与环境(样品与参比物)之间有温度差。
差热分析(DTA)是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。
DTA曲线是描述试样与参比物之间的温差(ΔT)随温度或时间的变化关系。
在DTA实验中,试样温度的变化是由于相转变或反应的吸热或放热效应引起的。
如:相转变、熔化、结晶结构的转变、升华、蒸发、脱氢反应、断裂或分解反应、氧化或还原反应、晶格结构的破坏和其它化学反应。
一般说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化等反应产生放热效应。
图1差热分析的原理图(1-参比物; 2-试样; 3-炉体; 4-热电偶)图2 试样和参比物的升温曲线DTA的原理如图1所示。
将试样和参比物分别放入坩埚,置于炉中以一定速率ν=d T/d t 进行程序升温,以T s、T r表示各自的温度,设试样和参比物(包括容器、温差电偶等)的热容量C s、C r不随温度而变。
则它们的升温曲线如图2所示。
若以ΔT=T s-T r对t作图,所得DTA曲线如图3所示,在0-a区间,ΔT大体上是一致的,形成DTA曲线的基线。
随着温度的增加,试样产生了热效应(例如相转变),则与参比物间的温差变大,在DTA曲线中表现为峰。
显然,温差越大,峰也越大,试样发生变化的次数多,峰的数目也多,所以各种吸热和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的物质,而峰面积与热量的变化有关。
差热分析(Differencial Thermal Analysis, DTA)
差热分析的应用
提供的信息:
峰的位置 峰的形状 峰的个数
凝胶材料的烧结进程研究
DTA数据的记录方式
6)用时间或温度作为横坐标,从左到右为增加。 7)说明鉴定中间生成物和最后产物的方法。8)全部 原始记录的如实重复。 9)标明试样重量和试样稀释程度。 11)标明所用仪器的型号、商品名称及热电偶的几何 形状、材料和位置。
影响曲线形状的因素
• 影响差热分析的主要因素有三个方面:仪
DTA曲线及理论分析
DTA曲线
DTA曲线是指试样与参比物间的温差(ΔT) 曲线和温度(T)曲线的总称。
DTA曲线分析
① 零线:理想状态ΔT=0的线; ② 基线:实际条件下试样无热效应时的曲线部份; ③ 吸热峰:TS<TR ,ΔT<0时的曲线部份; ④ 放热峰:TS>TR , ΔT>0时的曲线部份; ⑤ 起始温度(Ti):热效应发生时曲线开始偏离基线的 温度; ⑥ 终止温度(Tf):曲线开始回到基线的温度;
稀释 剂的 加入 往往 会降 低差 热分 析的 灵敏
度!
差热曲线分析
差热曲线分析就是解释曲线上每个峰谷产生的原因,从 而分析被测物质是有那些物相组成的。峰谷产生的原因 有:
✓矿物质脱水 ✓相变 ✓物质的化合或分解 ✓氧化还原
差热分析的峰只表示试样的热效应,本身不反应更多 的物理化学本质。为此,单靠差热曲线很难做正确的解 释。现在普遍采用的联用技术。
✓ 如:在空气和氢气的气氛下
对镍催化剂进行差热分析, 所得到的结果截然不同(见 图)。在空气中镍催化剂被 氧化而产生放热峰。
稀释剂的影响
稀释剂是指在试样 中加入一种与试样不 发生任何反应的惰性 物质,常常是参比物 质。稀释剂的加入使 样品与参比物的热容 相近,能有助于改善 基线的稳定性,提高 检出灵敏度,但同时 也会降低峰的面积。
差热分析dta实验报告
差热分析dta实验报告引言差热分析(Differential Thermal Analysis, DTA)是一种常用的热分析技术,用于研究物质的热性质和相变行为。
本实验旨在通过DTA技术,对样品进行加热或冷却过程中的温度变化进行监测,并观察样品中可能存在的热性质和相变点。
实验方法实验仪器和试剂本次实验所使用的仪器为差热分析仪(DTA),试剂为待测试样品。
实验步骤1. 准备样品:将待测试样品准备成适当的形状和大小,确保样品的质量在仪器所能接受的范围之内。
2. 样品装填:将样品置于DTA仪器的样品台上,并确保样品与台面接触良好,以保证传热效果。
3. 设定实验条件:根据样品的性质和研究目的,设置合适的加热速率、升温范围和冷却速率。
4. 开始实验:启动DTA仪器,开始进行样品的加热或冷却处理。
5. 数据记录:在实验过程中,实时记录样品的温度变化情况。
6. 数据分析:利用DTA仪器的数据处理软件,对实验数据进行分析,获取样品的热性质和相变点。
实验结果与分析我们选择了一种未知样品进行差热分析实验,结果如下图所示:![DTA实验结果图](dta_result.png)从实验结果图中可以看出,在样品加热过程中,出现了两个峰值,分别对应着两个不同的相变点。
根据峰值的温度和形状,可以初步判断样品可能存在的相变类型。
对于第一个峰值,其温度在600C左右,呈现出一个尖峰状,说明样品可能发生了固态相变。
根据不同物质的热性质,可以进一步判断该固态相变可能是晶体结构的变化或者晶格缺陷的形成等。
第二个峰值出现在800C左右,温度范围较宽,且峰值相对较平,表明该相变可能为液固相变或者化学反应等。
进一步的分析还需要结合实际的样品性质和反应条件,进行详细的比较和判断。
结论通过差热分析(DTA)实验,我们得到了待测试样品的热性质和相变点的初步信息。
根据实验结果分析,样品可能存在两个不同的相变类型,其中一个为固态相变,另一个为液固相变或者化学反应。
聚合物的差示描量热分析
聚合物的差示扫描量热分析聚合物的差示扫描量热分析差热分析(Differential Thermal Analysis—DTA)法是一种重要的热分析方法,是指在程序控温下,测量物质和参比物的温度差与温度或者时间的关系的一种测试技术。
该法广泛应用于测定物质在热反应时的特征温度及吸收或放出的热量,包括物质相变、分解、化合、凝固、脱水、蒸发等物理或化学反应。
广泛应用于无机、有机、特别是高分子聚合物、玻璃钢等领域。
差热分析操作简单,但在实际工作中往往发现同一试样在不同仪器上测量,或不同的人在同一仪器上测量,所得到的差热曲线结果有差异。
峰的最高温度、形状、面积和峰值大小都会发生一定变化。
其主要原因是因为热量与许多因素有关,传热情况比较复杂所造成的。
虽然过去许多人在利用DTA进行量热定量研究方面做过许多努力,但均需借助复杂的热传导模型进行繁杂的计算,而且由于引入的假设条件往往与实际存在差别而使得精度不高,差示扫描热法(简称DSC)就是为克服DTA在定量测量方面的不足而发展起来的一种新技术。
20世纪60年代,差示扫描量热法(Differential Scanning Calorimetry,DSC)被提出,其特点是使用温度范围比较宽,分辨能力和灵敏度高,根据测量方法的不同,可分为功率补偿型DSC和热流型DSC,主要用于定量测量各种热力学参数和动力学参数。
差示扫描量热法是在程序升温的条件下,测量试样与参比物之间的能量差随温度变化的一种分析方法。
差示扫描量热法有补偿式和热流式两种。
在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。
曲线的纵轴为单位时间所加热量,横轴为温度或时间。
曲线的面积正比于热焓的变化。
DSC与DTA原理相同,但性能优于DTA,测定热量比DTA准确,而且分辨率和重现性也比DTA好。
由于具有以上优点,DSC在聚合物领域获得了广泛应用,大部分DAT应用领域都可以采用DSC进行测量,灵敏度和精确度更高,试样用量更少。
dta差示热分析法
DTA差示热分析法(Differential Thermal Analysis)是一种常用的物理分析方法,用于测定物质在加热过程中发生的热反应。
它通过比较样品与标准物质在相同加热条件下所产生的热量差来测定样品的热性质。
DTA差示热分析仪由加热装置、热量计、控温装置和计算机等组成。
在测定时,样品与标准物质分别放在不同的热量计内,并在加热装置的控制下加热。
根据样品与标准物质的热量差的变化,可以推断出样品在加热过程中发生的热反应。
DTA差示热分析法具有许多优点,例如测定精度高、结果可靠、操作简单等。
它常用于研究物质的热稳定性、热解、热氧化、热转化和热再结晶等方面。
在化工、冶金、材料、环境等领域都有广泛的应用。
DTA差示热分析法的原理是基于热力学第二定律,即在物质发生热反应时,会产生热量。
通过测定样品与标准物质的热量差的变化,可以推断出样品在加热过程中发生的热反应。
DTA差示热分析法的测定结果可以用温度-热量曲线表示。
在温度-热量曲线上,当样品发生热反应时,会出现热量差的陡峭变化,这就是所谓的热峰。
热峰的高度、宽度和位置可以反映样品的热性质。
DTA差示热分析法的操作过程也比较简单。
首先,将样品与标准物质分别放入不同的热量计内。
然后,设定加热温度和加热速率,并启动加热装置。
根据样品与标准物质的热量差的变化,计算机会自动记录温度-热量曲线。
DTA差示热分析法在研究物质的热性质方面有着广泛的应用。
例如,可以用它来测定物质的热稳定性,即物质在加热过程中是否会产生不稳定的热反应。
差示扫描量热仪(DSCDTA)简介
差示扫描量热仪(DSC/DTA)简介1. 简介差示扫描量热仪(Differential Scanning Calorimetry,DSC)和差示热分析仪(Differential Thermal Analysis,DTA)是常用的热分析仪器。
它们广泛应用于材料科学、化学、生物学等领域,在研究样品的热性质、热变化以及相变等方面起到关键作用。
2. 差示扫描量热仪(DSC)的原理差示扫描量热仪通过比较待测样品与参比样品之间的热量差异,来分析样品的热性质。
其主要原理是利用两个温度探测器来测量样品和参比样品之间的温度差异,并通过控制和调整样品和参比样品的温度,以获取相应的热量数据。
3. 差示扫描量热仪(DSC)的仪器组成差示扫描量热仪主要由以下几个部分组成:3.1 采样系统采样系统用于装载和固定待测样品和参比样品,并提供温度控制和调整的环境。
样品采用常见的形式,如粉末、片状、颗粒状等。
3.2 温度控制系统温度控制系统用于精确控制样品和参比样品的温度,并能够按照特定的温度程序进行加热或冷却。
3.3 热量测量系统热量测量系统由两个温度探测器组成,分别测量样品和参比样品的温度变化。
常用的温度探测器包括热电偶和铂电阻温度计等。
3.4 数据记录和分析系统数据记录和分析系统负责采集、记录和分析差示扫描量热仪所产生的数据。
它可以提供实时数据显示和曲线分析功能,以便进一步研究样品的热性质和热变化规律。
4. 差示扫描量热仪(DSC)的应用领域差示扫描量热仪广泛应用于材料科学、化学、生物学等领域。
它可以用于测量和研究固体、液体和气体等样品的热性质,包括热容、热导率、热膨胀系数、熔点、熔融焓、晶型转变等。
在材料科学领域,差示扫描量热仪可以用于材料的热稳定性研究,新材料的开发和性能评价,以及相变、晶型转变等研究。
在化学领域,差示扫描量热仪可以用于测量和研究化学反应的热效应,包括吸热反应、放热反应、放热反应的速率等。
在生物学领域,差示扫描量热仪可以用于生物分子的稳定性研究,生物催化反应的研究,以及生物样品的热变化和相变等研究。
差热分析(DTA)
第 二 节差热分析(DTA )Differential Thermal Analysis 差热分析的基本概念差热分析:是指在程序控制温度下测量物质和参比物的温度差与温度关系的技术。
差热曲线:描述样品与参比物之间的温度差(ΔT )随温度(T )或时间(t )变化的曲线。
程序控制温度:指按一定的速率升温(或降温)。
参比物:指在分析温度范围内不产生热效应(既不吸热,也不放热)的物质。
差热分析仪的结构及工作原理差热分析仪的工作原理把试样(S )和参比物(R )分别装入两个坩埚,放在电炉中按一定的速率加热。
在此过程中,如果试样发生物理变化或化学变化,并伴随有热效应,即发生吸热或放热现象,试样的温度(TS )将低于或高于参比物的温度(TR ),从而产生一定的温度差(ΔT= TS - TR )。
用同极串联的一对相同的热电偶构成的差热电偶可将试样与参比物的温度差转变为温差电动势U △T 。
将这个温差电动势放大,并用来调节记录仪的记录笔或显象管亮点的纵坐标,就可以将试样与参比物的温度差随温度(T )或时间(t )的变化曲线( ΔT - T 曲线)记录下来。
差热曲线提供的信息峰的个数:吸热和放热过程的个数。
峰的位置:吸热和放热过程发生的温度。
峰的性质:向上,放热;向下,吸热。
峰的形状:热反应的速率。
峰的面积:吸收或释放的热量的多少。
基线的位置:样品与参比物的比热关系。
基线的长度:物质稳定存在的温度区间。
峰的面积与吸收或释放的热量的关系 峰的面积与吸收或释放的热量成正比。
式中, A 是吸热峰或放热峰的面积;ma 是试样中反应物的质量;ΔH 是单位反应物吸收或释放的热量,即单位反应物的焓变;g 是与仪器有关的系数; λs 是试样热导率。
利用Speil 公式,可以根据峰的面积求得反应过程中的焓变和反应物质的量。
S a t t a g H m dt T T A λ∆=∆-∆=⎰21])([ΔH= gλs A/ ma ma= A gλs / ΔH基线的位置与样品和参比物的比热关系CR—参比物的比热CS—试样的比热V —升温速率k —比例常数加热过程中会产生吸热或放热效应的各种物理化学过程脱水作用—吸热•自由水:存在于物质颗粒表面或微型裂隙中的水,110℃以下脱出。
差热分析(DTA)
差热分析(DTA)
差热分析(DTA)是一种热分析技术,可以通过比较样品和参考样品之间的温度差异来揭示样品的热性能信息。
DTA通常被用于材料的热稳定性、相变温度、焓变化、重量变化等方面的研究。
DTA技术的基本原理是利用热电偶,将样品和参考样品置于同一热环境下,在恒定加热速率下,通过比较两个样品表面的温度差异来监测样品和参考样品之间的热流量差异。
当样品和参考样品中的物质发生热反应或相变时,会引起温度差异,从而在DTA曲线上观察到一个突变点或峰值,可以通过对曲线的分析来确定相变温度、焓变化等信息。
DTA技术在材料学、矿物学、化学、生物学等领域都有广泛的应用。
例如,可以通过DTA技术研究陶瓷的烧结温度、合金的相变温度、聚合物的热稳定性和分解温度、药物的热性质、生化反应中的热效应等等。
此外,DTA技术还可以与其他热分析技术如热重分析(TGA)和差热扫描量热分析(DSC)等相结合,进一步深入研究物质的热性能和物化性质。
在进行DTA分析时,需要注意以下几个方面:首先,样品和参考样品的配比应合适,以确保在热分析过程中二者之间的温度差异是合理的。
其次,选取合适的热分析条件如加热速率、加热温度范围等,以使观测到的热反应信号清晰明确。
最后,分析DTA曲线时,需要结合其他测试方法和材料性质了解样品的具体属性,避免出现误判。
总之,差热分析是一种重要的热分析技术,广泛应用于物质性质的研究和测试中。
在今后的研究中,DTA技术还将进一步发展和完善,支持更广泛、更具有实际意义的应用。
差热分析法(DTA)简介(DifferentialThermalAnalysis)
差热分析法(DTA )简介(Differential Thermal Analysis1. DTA 的基本原理差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系 的一种技术。
差热分析曲线是描述样品与参比物之间的温差 (△ T )随温度或时间的变化关系。
在DAT 试验中,样品温度的变化是由于相转变或反应的吸热或放热 效应引起的。
女口 :相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反 应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其它化学反应。
一般 说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分 解反应产生放热效应。
差热分析的原理如图U -3-1所示。
将试样和参比物分别放入坩埚,置于炉中以一定速率丁 — 进行程序升温,以二表示各自的温度,设试样和参比 di物(包括容器、温差电偶等)的热容量Cs 、Cr 不随温度而变。
贝U 它们的升温曲线 如图H -3-2所示。
若以 订:乙 对t 作图,所得DTA 曲线如图U -3-3所示,在0-a 区间,△ T 大体上是一致的,形成DTA 曲线的基线。
随着温度的增加,试 样产生了热效应(例如相转变),则与参比物间的温差变大,在DTA 曲线中表现为 峰。
显然,温差越大,峰也越大,试样发生变化的次数多,峰的数目也多,所以 各种吸热和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的 物质,而峰面积与热量的变化有关。
11-3-1 差热分析的原理图 图11-3-2试样和参比物的升温曲线1.参比物;2•试样;3.炉体;4.热电偶 热转变)图n -3-3 DTA 吸热转变曲线 TA 曲线所包围的面积S 可用下式表示式中m 是反应物的质量,△ H 是反应热,g 是仪器的几何形态常数,C 是样品的 热传导率△ T 是温差,「是DTA 曲线的积分限。
这是一种最简单的表达式,它是 通过运用比例或近似常数g 和C 来说明样品反应热与峰面积的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
差热分析法(DTA)简介(Differential Thermal Analysis)
1.DTA的基本原理
差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。
差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。
在DAT试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。
如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其它化学反应。
一般说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。
差热分析的原理如图Ⅱ-3-1所示。
将试样和参比物分别放入坩埚,置于炉中以一定速率进行程序升温,以表示各自的温度,设试样和参比物(包括容器、温差电偶等)的热容量Cs、Cr不随温度而变。
则它们的升温曲线如图Ⅱ-3-2所示。
若以对t作图,所得DTA曲线如图Ⅱ-3-3所示,
在0-a区间,ΔT大体上是一致的,形成DTA曲线的基线。
随着温度的增加,试样产生了热效应(例如相转变),则与参比物间的温差变大,在DTA曲线中表现为峰。
显然,温差越大,峰也越大,试样发生变化的次数多,峰的数目也多,所以各种吸热和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的物质,而峰面积与热量的变化有关。
图Ⅱ-3-1差热分析的原理图 II-3-1 差热分析的原理图图
II-3-2试样和参
比物的升温曲线
1.参比物;
2.试样;
3.炉体;
4.热电偶(包括吸热转变)
图Ⅱ-3-3 DTA吸热转变曲线
TA曲线所包围的面积S可用下式表示
式中m是反应物的质量,ΔH是反应热,g是仪器的几何形态常数,C是样品的热传导率ΔT是温差,t1是DTA曲线的积分限。
这是一种最简单的表达式,它是通过运用比例或近似常数g和C来说明样品反应热与峰面积的关系。
这里忽略了微分项和样品的温度梯度,并假设峰面积与样品的比热无关,所以它是一个近似关系式。
2.DTA曲线起止点温度和面积的测量
(1)DTA曲线起止点温度的确定
如图Ⅱ-3-3所示,DTA曲线的起始温度可取下列任一点温度:曲线偏离基线之点T a;曲线的峰值温度T p;曲线陡峭部分切线和基线延长线这两条线交点T p (外推始点,extrapolatedonset)。
其中T a与仪器的灵敏度有关,灵敏度越高则出现得越早,即T a值越低,故一般重复性较差,T p和T e的重复性较好,其中T e 最为接近热力学的平衡温度。
从外观上看,曲线回复到基线的温度是T f(终止温度)。
而反应的真正终点温度是T’f,由于整个体系的热惰性,即使反应终了,热量仍有一个散失过程,使曲线不能立即回到基线。
T f’可以通过作图的方法来确定,T f’之后,ΔT即以指数函数降低,因而如以ΔT-(ΔT)a的对数对时间作图,可得一直线。
当从峰的高温侧的底沿逆查这张图时,则偏离直线的那点,即表示终点T’f。
(2)DTA峰面积的确定
DTA的峰面积为反应前后基线所包围的面积,其测量方法有以下几种:(1)使用积分仪,可以直接读数或自动记录下差热峰的面积。
(2)如果差热峰的对称性好,可作等腰三角形处理,用峰高乘以半峰宽峰高12处的宽度的方法求面积。
(3)剪纸称重法,若记录纸厚薄均匀,可将差热峰剪下来,在分析天平上称其质量,其数值可以代表峰面积。
对于反应前后基线没有偏移的情况,只要联结基线就可求得峰面积,这是不言而喻的。
对于基线有偏移的情况,下面两种方法是经常采用的。
1)分别作反应开始前和反应终止后的基线延长线,它们离开基线的点分别是T a和T f,
联结T a,T p,Tf各点,便得峰面积,这就是ICTA(国际热分析协会)所规定的方法(见图II-3-4(1))。
图Ⅱ-3-4峰面积求法
2)由基线延长线和通过峰顶Tp作垂线,与DTA曲线的两个半侧所构成的两个近似三角形面积S1,S2(图II-3-4(2)中以阴影表示)之和
S=S1+S2
表示峰面积,这种求面积的方法是认为在S1中丢掉的部分与S2中多余的部分可
以得到一定程度的抵消。
3.影响差热分析的主要因素
差热分析操作简单,但在实际工作中往往发现同一试样在不同仪器上测量,或不同的人在同一仪器上测量,所得到的差热曲线结果有差异。
峰的最高温度、形状、面积和峰值大小都会发生一定变化。
其主要原因是因为热量与许多因素有关,传热情况比较复杂所造成的。
一般说来,一是仪器,二是样品。
虽然影响因素很多,但只要严格控制某种条件,仍可获得较好的重现性。
(1)气氛和压力的选择
气氛和压力可以影响样品化学反应和物理变化的平衡温度、峰形。
因此,必须根据样品的性质选择适当的气氛和压力,有的样品易氧化,可以通入N2、Ne 等惰性气体。
(2)升温速率的影响和选择
升温速率不仅影响峰温的位置,而且影响峰面积的大小,一般来说,在较快的升温速率下峰面积变大,峰变尖锐。
但是快的升温速率使试样分解偏离平衡条件的程度也大,因而易使基线漂移。
更主要的可能导致相邻两个峰重叠,分辨力下降。
较慢的升温速率,基线漂移小,使体系接近平衡条件,得到宽而浅的峰,也能使相邻两峰更好地分离,因而分辨力高。
但测定时间长,需要仪器的灵敏度高。
一般情况下选择8度·min-1~12度·min-1为宜。
(3)试样的预处理及用量
试样用量大,易使相邻两峰重叠,降低了分辨力。
一般尽可能减少用量,最多大至毫克。
样品的颗粒度在100目~200目左右,颗粒小可以改善导热条件,但太细可能会破坏样品的结晶度。
对易分解产生气体的样品,颗粒应大一些。
参比物的颗粒、装填情况及紧密程度应与试样一致,以减少基线的漂移。
(4)参比物的选择
要获得平稳的基线,参比物的选择很重要。
要求参比物在加热或冷却过程中不发生任何变化,在整个升温过程中参比物的比热、导热系数、粒度尽可能与试样一致或相近。
常用α-三氧化二铝Al2O3)或煅烧过的氧化镁(MgO)或石英砂作参比物。
如分析试样为金属,也可以用金属镍粉作参比物。
如果试样与参比物的热性质相差很远,则可用稀释试样的方法解决,主要是减少反应剧烈程度;如果试样加热过程中有气体产生时,可以减少气体大量出现,以免使试样冲出。
选择的稀释剂不能与试样有任何化学反应或催化反应,常用的稀释剂有SiC、铁粉、Fe2O3、玻璃珠Al2O等。
(5)纸速的选择
在相同的实验条件下,同一试样如走纸速度快,峰的面积大,但峰的形状平坦,误差小;走纸速率小,峰面积小。
因此,要根据不同样品选择适当的走纸速度。
不同条件的选择都会影响差热曲线,除上述外还有许多因素,诸如样品管的材料、大小和形状、热电偶的材质以及热电偶插在试样和参比物中的位置等。
市售的差热仪,以上因素都已固定,但自己装配的差热仪就要考虑这些因素。
4.DTA的仪器结构
典型的DTA装置如图II-3-5所示。
(1)温度程序控制单元
使炉温按给定的程序方式(升温、降温、恒温、循环)以一定速度上升、下降或恒定。
(2)差热放大单元
用以放大温差电势,由于记录仪量程为毫伏级,而差热分析中温差信号很小,一般只有几微伏到几十微伏,因此差热信号须经放大后再送入记录仪中记录。
(3)记录单元
由双笔自动记录仪将测温信号和温差信号同时记录下来。
例如锡在加热熔化时的差热图如图Ⅱ-3-6所示。
图II-3-5典型DTA装置的框块图
1.气氛控制;
2.炉子;
3.温度敏感器;
4.样品;
5.参比物;
6.炉腔程序控温;
7.记录仪;8.微伏放大器。
图Ⅱ-3-6锡加热时的差热图
在进行差热分析过程中,如果升温时试样没有热效应,则温差电势应为常数,差热曲线为一直线,称为基线。
但是由于两个热电偶的热电势和热容量以及坩埚形态、位置等不可能完全对称,在温度变化时仍有不对称电势产生。
此电势随温度升高而变化,造成基线不直,这时可以用斜率调整线路加以调整。
方法是,坩埚内不放参比物和样品,将差热放大量程置于100μV,升温速度置于10度·min-1,用移位旋钮使温差记录笔处于记录纸中部,这时记录笔应画出一条直线。
在升温过程中如果基线偏离原来的位置,则主要是由于热电偶不对称电势引起基线漂移。
待炉温升到750度时,通过斜率调整旋钮校正到原来位置即可。
此外,基线漂移还和样品杆的位置、坩埚位置、坩埚的几何尺寸等因素有关。