有机化学第四章二烯烃-共轭效应PPT课件
第四章 二烯烃和共轭体系共13页文档
第四章二烯烃共轭体系共振论分子中含有两个碳—碳双键的碳氢化合物称为二烯烃。
通式:C n H2n-2可见,二烯烃与炔烃互为官能团异构。
4.1 二烯烃的分类和命名4.1.1 二烯烃的分类根据分子中两个C=C的相对位置,二烯烃可分为三类。
(1) 孤立二烯烃两双键之间相隔两个或两个以上单键的二烯烃。
例:CH2=CH-CH2-CH=CH2CH2=CH-CH2- CH2-CH=CH21,4-戊二烯1,5-己二烯单双键交替的体系,为共轭体系!由于两个双键共轭,相互影响,其性质特殊,是本章的重点之一。
4.1.2 二烯烃的命名与烯烃相似。
用阿拉伯数字标明两个双键的位次,用“Z/E”或“顺/反”表明双键的构型。
例:4.2 二烯烃的结构4.2.1 丙二烯的结构丙二烯是典型的累积二烯。
仪器测得,丙二烯是线型非平面分子:由于中心碳为sp杂化,两个双键相互⊥(动画),所以丙二烯及累积二烯烃不稳定。
4.2.2 1,3-丁二烯的结构仪器测得,1,3-丁二烯分子中的10个原子共平面:1,3-丁二烯分子中存在着明显的键长平均化趋向!⑴价键理论的解释1,3-丁二烯中的碳原子是sp2杂化态(因为只有sp2杂化才能是平面构型,轨道夹角约120°):四个sp2杂化碳搭起平面构型的1,3-丁二烯的σ骨架:四个P轨道肩并肩地重叠形成大π键:(动画,π-π共轭)除了C1-C2和C3-C4间的P轨道可肩并肩地重叠外,C2-C3间也能肩并肩重叠。
但由键长数据表明,C2-C3间的重叠比C1-C2或C3-C4间的重叠要小。
⑵分子轨道理论的解释(主要用来处理p电子或π电子)丁二烯分子中四个碳原子上的未参加sp2杂化的p轨道,通过线性组合形成四个分子轨道:4.3 电子离域与共轭体系电子离域——共轭体系中,成键原子的电子云运动范围扩大的现象。
电子离域亦称为键的离域。
电子离域使共轭体系能量降低。
共轭体系——三个或三个以上互相平行的p轨道形成的大π键。
有机化学第四章共轭二烯烃
键角和键长变形较大的,贡献小:
§4. 3
共轭二烯烃的化学性质
CH2= CH CH=CH2
一、 1,4 – 加成反应(共轭加成) CH2= CH CH CH2 Br H HBr
CH2 CH= CH CH2 Br H
(1) 为什么共轭二烯烃会有两种加成方式?
2) 影响加成方式的因素
因 素 温 溶 试 度 剂 以1,2 - 加成为主 。 低温( - 40 ~ - 80 C ) 非极性 ( 如 : Br2 ) 以1,4 - 加成为主 。 高温( 40 ~ 60 C ) 极性溶剂 ( 如:氯仿 ) 极性试剂 ( 如:HCl ) CH2 = C CH= CH2 CH3
CH2 CH CH CH2
CH2 CH CH CH2 CH2 CH CH CH2
(III)
(I)
(II)
极限结构
极限结构
二、说明: •1、任何一个极限结构都不能代表真实的分子 •2、一个分子所具有的结构式越多,分子越稳 定
三、不同极限结构对稳定性的贡献: 共价键数目相等的,贡献相同:
CH 2CH=CH 2 CH 2=CHCH 2
1,2–加成与1,4–加成势能图
结论:
1、温度升高有利于1,4加成 2、极性增加有利于1,4加成 二、双烯合成反应(Diels – Alder)
+
双烯体
。 165 C, 90 MPa 17 h
亲双烯体
O CH2 HC HC CH2 + HC HC C
苯 O 100 ° C
O C CH O CH C O
1,2–加成
H2C
CH2 Br
CH CH
CH2
H2C
δ
+
第四章-二烯烃-共轭体系-共振论PPT课件
2021
22
碳正离子的稳定性:
C
C H 3C HC HC H C H 3>CC>H 2CC HC H 2 C
C
H
> C C >C C >CH2 CH
H
H
烯丙型 > 3°> 烯丙基 > 2°> 1°> 乙烯型
2021
23
4.4 共振论(Resonance theory)
共振论是美国化学家鲍林(Pauling L.)在二十世纪三十年代初 提出来的,它的提出是为了解决当时经典化学结构理论所不
2021
8
4.2 二烯烃的结构
4.2.1 丙二烯的结构
sp2
H
118.4° C C CH2
H
sp
0.131 nm
H C C CH2 H
图4.1 丙二烯的结构示意图
2021
9
4.2.2 1,3-丁二烯的结构
2021
10
(2) 共价键理论的解释
4个 C 原子都是 sp2杂化, C-Cσ键: sp2-sp2 交盖, C-Hσ键: sp2-1s 交盖,
烯丙基型正离子的生成 (II)
(I): 仲碳正离子; (II): 伯碳正离子
稳定性: (I) > (II)
2021
39
第二步: 正负离子的结合
1,2-加成 H2C CHCH CH2
δ+
δ+
H 2 CC HC HC H 3+B r
1,4-加成
2021
24
例:醋酸根通常表示为:
O CH3 C O
电子衍射光谱法测定醋酸根中两个C-O键长相等,负电荷均匀 分布在两个氧上,所以上述表示法不能准确反映醋酸根的真 实结构。
有机化学 第四章 二烯烃
1,4- 加 成 反 应 和 双 烯 合 成 反 应 (Diels-Alder
reaction) 。
4.8.1 1,2-加成和1,4-加成反应
共轭双烯的加成比单烯容易,与X2、HX等试剂反 应时可生成两种不同产物。
一分子的试剂加到C1、C2上时,该加成反应称1,2-加成,此反应与单烯时情况相同。
阿拉伯数字表示,写在母体名前,数字间用 但当一分子试剂加到C1、C4上时,同时在C2~C3间形成一个新的双键,这种加成反应称1,4-加成反应。
(3) “交替极性”: 3,4-二溴-1-丁烯 即在丁二烯中,单(长)键变短,双(短)键增长,其键长发生了平均化。
逗号隔开。 由于共轭双烯上 电子较多,故亲双烯体应是亲电试剂,所以当双键上连有强吸电子基(-COOH、 -CHO、-CN、-NO2等)时,由于有更
强的亲电性,更有利于双烯合成反应。 在1,4-加成反应中,共轭双烯是作为一个整体参加反应的,因此, 1,4-加成也称共轭加成,共轭加成是共轭双烯的特征反应。
1,2-加成 B r
HBr
3-溴-1-丁烯
1,4-加成
Br 1-溴-2-丁烯
在1,4-加成反应中,共轭双烯是作为一个整体参加
反应的,因此, 1,4-加成也称共轭加成,共轭加成
是共轭双烯的特征反应。
1,4-加成反应机理
❖ 共轭双烯进行1,4-加成虽然仍是亲电加成反应,
但由于受到亲电试剂的影响,共轭体系中发生交 替极性,产生了多个反应位点。
轭叫p-共轭。
4.7超共轭效应
➢ 共轭效应及超共轭效应是烯烃极化的主要原因。 ➢ -超共轭(丙烯中存在) 的实质是键电子离域现
共轭效应PPT课件
电子效应
• 电子效应,理论有机化学基本概念之一。细分为两大类:一类是涉及π键的共轭效应;一类是涉及σ键的诱 导效应和超共轭效应。 电子效应本质上来讲就是由于不同原子之间存在电负性的差别,这个差别导致了化 学键的极化。这种极化的结果可以沿着化学键传导,从而对分子本身的物理性质和化学性质产生了影响。
共轭效应的产生 共轭效应的类型
第1页/共16页
共轭效应的产生
•共轭效应(conjugative effect ): 由于电子离域而产生的分子中原子间相互影 响的电子效应。 •特点:是沿共轭体系传递不受距离的限制。 • 结果:使分子能量降低,稳定性增加,缩短 键长。
第2页/共16页
电子离域
• 如1,3-丁二烯,四个∏ 电子不是两两分别固定 在两个双键碳原子之间, 而是扩展到了四个碳原 子之间,象这种现象称 为电子离域。它体现了 分子内原子之间的相互 影响。
0.133
0.154
H
H
? ? : nm
双键与乙烯相比,变长了;单键与乙烷相比,变短了。总的说 来,是键长趋于平均化了。
第9页/共16页
氢化热
孤立和共轭体系的氢化热:
CH2 CH CH2 CH CH2 + 2 H2 CH3CH CH CH CH2 + 2 H2 所以1,3-戊二烯的共轭能是28KJ/mol
第4页/共16页
共轭效应大致分为三类:
• ∏-∏共轭 • P-∏共轭 • 超共轭
第5页/共16页
∏-∏共轭( ∏-∏ conjugative )
• 非饱和键(双键或三键)与单键交
替分布,形成∏键的P轨道在同一
平面上相互重叠而成共轭体系,称
之为∏-∏共轭( ∏-∏
烯烃共轭体系PPT课件
(2) 产生原因:双键的电子云和相邻的α位C-H键的σ电子云相 互交盖而引起的离域效应。
1.50 Å
CH3
1.54 Å normal
p
p
C C
H
σ电子云
C
σ-超共轭效应:轨道和碳氢轨道的交盖,使原本定域的电
子云发生离域而扩展到更多原子的周围,从而降低了分子的能量
H C C CH2
H 0.108nm0.131nm
H
H
CCC
H
H
4.2 二烯烃的结构
4.2.2 1, 3-丁二烯的结构
电子是“离域”的
4.3 电子离域与共轭体系
4.3.1 - 共轭
- 共轭体系共轭体系的特性
1、几何特性:共平面性(参与共轭的原子处于同一平面) 键长的平均化 2、电子特性:影响分子偶极矩----------极化度高 3、能量特性:体系能量减低 4、化学特性:会发生共轭加成
共振论主要内容
1. 许多分子的实际状态往往不是一个单独的经典价键结构式所能 正确表示的,它介于几个不同的价键结构之间,分子的真实结 构是一系列共振结构式的杂化体;
2. 当共振结构式有差不多相同稳定性时共振式是重要的,每个共 振结构对杂化体的参与的程度取决于共振结构式的相对稳定性 ,结构越稳定参与程度越大;
2
+ 2 H2
+ 2 H2
28 kJ
+ 2 H2
△ Ho
250 kJ
254 kJ
226 kJ
离域能——共轭体系分子中电子的离域而导致分子更 稳定的能量。
4.3 电子离域与共轭体系
4.3.2 p- 共轭
4.3.2 p- 共轭
4、有机化学:二烯烃和共轭体系(4H).
前线轨道理论是由[日]福井谦一提出的。该理论将分 子轨道中最高占有分子轨道(简称HOMO)和最低空分子 轨道(简称LUMO)统称为称为前线分子轨道(FMO), 将分布在前线分子轨道中的电子称为前线电子。认为化学 键的形成主要是由FMO的相互作用所决定的。
键迁移反应等几种类型。
1、电环化反应
1.1 含“4n”个π电子共轭多烯烃体系
CH3
H
H
顺旋
CH3
(2E,4E)-2,4-己二烯
CH3 H
H CH3
反-3,4-二甲基环丁烯
CH3 H H
CH3
hv 对旋
CH3 H3C
H H
顺-3,4-二甲基环丁烯
1.2 含“4n+2”个π电子共轭多烯烃体系
CH3 H CH3 H
CO2CH3
2、
CCO2Et +
CCO2Et
CH3 CO2CH3
CH3
?
+
CO2CH3
(61%)
(39%)
CO2Et
?
CO2Et
3、 2
?
or
4、完成反应(表明产物的立体构型)
H H
4.1
CH3
CH3
CH3 H CH3
H
(苏大06年)
O
4.2
+
O
O
O O
O
(湘大06年)
3、周环反应的理论解释
1965年,[美]伍德沃德和霍夫曼提出了“分子轨道对 称守恒原理”,从而揭开了周环反应的奥秘。
1、顺丁橡胶
第四章 二烯烃 共轭体系------有机化学
x CH2=CH Cl + NaOH
CH2=CH OH + NaCl
原因:p-π共轭 C—X键难断裂
而下列反应很容易发生:
CH2=CH-CH3 + Cl2
500
。
C
CH2=CH-CH2Cl + HCl
- 氯丙烯
原因:p-π共轭的烯丙基自由基稳定或 烯丙基氯
NaOH/H2O
CH2=CHCH2Cl
CH2=CHCH2OH
C6H5CH=CH2 共聚
丁腈橡胶 CH2=CHCN
共聚
ABS树脂 CH2=CHCN,C6H5CH=CH2
有机化学第四章二烯烃共轭体系
➢动力学控制或速度控制—— E1﹤ E2,反应速度快,(或活性中间体更稳定)。
➢热力学控制或平衡控制—— 1,4加成产物的能量低(产物稳定),一但在 所需较高温度生成,不易逆转(E2,﹥E1,),故在高温时以1,4加成为主。
4.5.4 双烯合成
➢Diels-Alder反应: • 反应物:共轭二烯 烃、、烯或炔
CH2=CH-CH=O
CH2=CH-CH2
H CCH
H
CH2=CH-CH2 CH2=CH-CH2
共轭效应强到弱:
π-π p-π σ-π σ-p
1.试比较下列分子或离子的超共轭效应大小。
CH3CH=CH2, CH3CH2CH=CH2, (CH3)2CHCH=CH2
A
B
C
ABC
H3C C CH3
H3C C H
H
C H
H
H
HH
C
C
H
H
+
H
C
H
➢上图中碳的空的P轨道与甲基上C-Hσ键的电子云可
部分重叠,
➢使电子离域并扩展到空p轨道上。使正电荷有所分
散,使孤电子得以稳定,
➢这种作用称为 -p超共轭效应
➢ 参与超共轭的C-Hσ键越多, 自由基越稳定:
稳定性依次减弱
30C·﹥ 20C·﹥ 10C·﹥ H3C·
C H 3 C+ H C H 3
H
4.3 共轭体系与电子效应
➢ 参与超共轭的C-Hσ键越多,超共轭效应越强 :
H
H
H
< < δ
δ
R C CH CH2
δ
δ
H C CH CH2
δ
δ
H C CH CH2
第四章_二烯烃和共轭体系
在1,3-丁二烯分子中,两个双键还可以在碳碳(C2和 C3 之 间 ) 单 键 的 同 侧 和 异 侧 存 在 两 种 不 同 的 空 间 排 布 , 但 由 于 C2 和 C3 之 间 的 单 键 在 室 温 仍 可 以 自 由 旋 转 。 因此,这两种不同的空间排布,只是两种不同的构象,而
不 是 构 型 的 不 同 , 分 别 称 为 s- 顺 式 和 s- 反 式 [ s 指 单 键 (singlebond)],或以s-(Z)和s-(E)表示。
极性溶剂有利于1,4-加成
反应温度的影响也是明显的,一般低温有
利于1,2-加成,温度升高有利于1,4-加成。 例如:
4.4.2 共轭二烯烃1,4-加成的理论解释
共轭二烯烃能够进行1,4-加成可利用共轭效应进行 解释。例如,1,3-丁二烯与极性试剂溴化氢的亲电加成 反应,当溴化氢进攻1,3-丁二烯的一端时,1,3-丁二 烯不仅一个双键发生极化,而且整个共轭体系的电子云 发生变形,形成交替偶极。
第四章 二烯烃 共轭体系
主要内容
4.1 二烯烃的分类与命名 4.2 二烯烃的结构 4.3 电子离域与共轭体系 4.4 共轭二烯烃的化学性质
本章重点
共轭二烯烃 共轭体系与共轭效应
电子离域 1,4加成 电环化反应 周环反应 Diels-Alder反应 (双烯加成)
本章难点
1,3丁二烯分子轨道 共轭体系与共轭效应
H2C=CH CH=CH2
在共轭分子中,任何一个原子受到外界的影 响,由于π电子在整个体系中的离域,均会影响 到分子的其余部分,这种电子通过共轭体系传递 的现象,称为共轭效应。 由π电子离域所体现的共轭效应,称为π,π-共轭效应。
4个π电子扩展到四个碳原子之间:电子的离域
有机化学第四章二烯烃-共轭效应PPT课件
唯一一个两次单独获得诺贝尔奖的人。
-
23
4.4.2 书写极限结构式的基本原则 (1)
(1) 极限结构式要符合价键理论和Lewis结构理论。
H 2 CC HC H 2
1 4
H 2 CC HC H 2
1 4
提示:
➢极限结构之间只是 电子排列不同
➢共振杂化体不是极 限结构混合物
➢共振杂化体也不是 互变平衡体系
-
22
美国化学家莱纳斯·鲍林
Linus Pauling,1901.2.28-1994.8.19. 1925 年获物理化学博士学位
荣获1954年诺贝尔化学奖:贡献是阐释化学键 的本质,并将其应用于解释复杂物质的结构。 1962年诺贝尔和平奖。
RCC CH2 CH CH2
CH3 CH CH
CH3
稳
定
性
CH3 CH2
降
低
CH3 CH CH3
CH3
CH3 C
CH3
-
19
中间体稳定性小结
碳正离子:缺电子,含空p轨道。供电取代基的+C 效 应即p-p和p-π共轭效应以及σ-p超共轭效 应作用较明显。
自由基: 电中性。p-π 共轭效应作用较明显,受取 代基电负性影响很小。
➢极限结构之间只是 电子排列不同
一个分子所具有的极限结构式越多,分子越稳定。➢共振杂化体不是极
不同极限结构对共振杂化体的贡献不同
限结构的混合物
➢共振杂化体也不是
-
互变平衡体系 21
共振论的基本思想
当一个分子、离子或自由基的结构可用一个以上不同电子排列的经典 结构式(共振式)表达时,就存在着共振。这些共振式均不是这一分子、 离子或自由基的真实结构,其真实结构为所有共振式的杂化体。
《有机化学》第4章_炔烃和二烯烃ppt课件
总目录
π键的形成:
• 两个相互垂直的p轨道 分别与两个相邻碳原子 的p轨道互相重叠,形
成相互垂直的两个π键
总目录
2. 共轭二烯烃
(1)键长、键角和氢化热 键角: 约 120°(平面分子) 键长:
0.1337nm
0.1340nm
CH2 CH CH CH2 CH2 CH CH2 CH CH2
0.1483nm
R’X = 伯卤代烃 仲、叔卤代烃反应,副产物多,乙烯式卤代 烃活性太低
总目录
第二节 二烯烃
一、分类
• 累积二烯烃 cumulative diene
CC C
• 共轭二烯烃 conjugated diene
CCC C
• 孤立二烯烃 isolated diene
n≥1
总目录
二、共轭二烯烃的命名
1. 命名原则与烯烃一致 位次
CH CH
CH3 C C CH3
2)找出前体分子,考虑连接方式
CH3 C C CH3
Na+-C C-Na+ CH3Cl
3)写出合成反应式 CH CH
总目录
CH CH NaNH2 Na+-C 液氨
C-Na+ CH3Cl CH3 C C CH3
思考
(1)由乙炔为原料,合成 1-丁炔 (2)由乙炔为原料,合成 3-己炔
子效应+ C (碳正离子除外)
同主族 (从上到下):原子半径增大 ,外层p轨道
也变大,与碳原子的π 轨道重叠困难,+C效应减小
>
>
>
>>Βιβλιοθήκη >>>>
总目录
同周期 (从左到右) :原子半径减小 +C效 应减弱
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s-顺式 构象 s-cis Conformation
s-反式 构象 s-trans conformation
2021/3/9
授课:XXX
9
4.3 电子离域与共轭体系
4.3.1 π,π─共轭
在共轭分子中,由于π 电子在整个体系中的 离域,任何一个原子受到外界的影响,均会影 响到分子的其余部分。这种电子通过共轭 体系传递的现象,称为共轭效应
H C
H
H C
C H
H C
H
H C
H
H C
C H
H C
H定域ຫໍສະໝຸດ 离域单双键交替排列的体系称为π,π-共轭体系。 由π电子离域所体现的共轭效应,称为π,π-共轭效应。
2021/3/9
授课:XXX
10
离域能
这个能量差值是共轭效 应的具体表现,通称离 域能或共轭能。
+ 15 kJ mol-1
254 kJ mol-1
Organic Chemistry 有机化学
第四章 二烯烃 共轭效应
2021/3/9
授课:XXX
1
内容
二烯烃的分类、命名与结构
电子离域与共轭体系
共振论
共轭二烯烃的化学性质
加成反应 电环化反应 环加成反应 聚合反应
重要的二烯烃
2021/3/9
授课:XXX
2
4.1 二烯烃的分类和命名
共振论的基本思想
当一个分子、离子或自由基的结构可用一个以上不同电子排列的经典 结构式(共振式)表达时,就存在着共振。这些共振式均不是这一分子、 离子或自由基的真实结构,其真实结构为所有共振式的杂化体。
CH2 CH CH2
δ+
δ+
CH2 CH CH2
CH2 CH CH CH2
H
H
C
C
H
C
H
H
π
p
2021/3/9
H C
H
H C
C H
H C
H
π
π
授课:XXX
15
烯丙基自由基
氯乙烯
2021/3/9
授课:XXX
16
共轭效应与超共轭效应的轨道方向的比较
H C
H
H C
C H
H C
H
π
π
H
HC H
σ
H C+ H
二烯
CH3 CH CH CH2 CH CH2 标明双键的位次
1,4−己二烯
6
5 43
21
CH3 CH CH CH2 CH CH2
2021/3/9
授课:XXX
4
顺反与Z, E 命名法
顺,顺–2,4–己二烯 (2Z,4Z )–2,4–己二烯
顺,反–2,4–己二烯 反,反–2,4–己二烯 (2Z,4E )–2,4–己二烯 (2E,4E )–2,4‒己二烯
自由基: 电中性。p-π 共轭效应作用较明显,受取 代基电负性影响很小。
碳负离子:富电子。 s成分、强吸电基的诱导效应、 p-π 共轭效应等作用较明显。
2021/3/9
授课:XXX
20
4.4 共振论(Resonance theory)
4.4.1 共振论的基本概念
Pauling L. 1931-1933年提出。
共轭效应与诱导效应的区别:
(1)共轭效应只存在与共轭体系内。 (2)共轭效应在共轭链上产生电荷正负交替现象。
δδ- O
CH2 CH C H
δ+
δ+
(3)共轭效应的传递不因共轭链的增长而明显减弱。
2021/3/9
授课:XXX
14
4.3.2 p-π共轭体系
+
烯丙基正离子 (Allylic Carbocation):
H3C CH CH3
H3C CH2
CH3
p-π 共轭, σ-p超共轭
超共轭效应 贡献较小
18
碳负离子的稳定性
RCC CH2 CH CH2
CH3 CH CH
2021/3/9
CH3
稳
定
性
CH3 CH2
降
低
CH3 CH CH3
CH3
CH3 C
CH3
授课:XXX
19
中间体稳定性小结
碳正离子:缺电子,含空p轨道。供电取代基的+C 效 应即p-p和p-π共轭效应以及σ-p超共轭效 应作用较明显。
共振论:即离域体系可以用几个经典结构的叠加来描述。
提示:
任何一个极限结构都不能代表真实的分子。
➢极限结构之间只是 电子排列不同
一个分子所具有的极限结构式越多,分子越稳定。➢共振杂化体不是极
不同极限结构对共振杂化体的贡献不同
限结构的混合物
2021/3/9
授课:XXX
➢共振杂化体也不是 互变平衡体系 21
2021/3/9
授课:XXX
5
4.2 二烯烃的结构
4.2.1 丙二烯的结构
sp H
118.4° C C
H 0.108nm
sp2 H
C H
0.131nm
H CC
H
H C
H
2021/3/9
授课:XXX
6
丙二烯中的π 轨道
H CC
H
H C
H
H H
乙烯中的π 键 sp杂化碳原子
H
R
C
C
R
H
乙炔中的π键
2021/3/9
授课:XXX
7
(2) 1,3-丁二烯的结构
H
H
~120o C C
H
H
CC
H
H
H
0.147 nm
H
CH
CC
HC
H
H
2021/3/9
键角均约为120°。 碳原子 sp2杂化。
HH 0.154 nm
HCCH
HH
单键变短,双键变长 键长平均化。
0.134 nm
H
H
CC
H
H
授课:XXX
8
1,3-丁二烯两种可能的平面构象
241kJ mol-1
115 kJ mol-1
127 kJ mol-1
226 kJ mol-1
2021/3/9
授课:XXX
11
1,3‒丁二烯的离域能
+
15 kJ mol-1
2021/3/9
254 kJ mol-1 127 kJ mol-1
授课:XXX
239 kJ mol-1
12
π, π共轭体系结构特征
H C
C H
p
π
2021/3/9
H
H
HC
H
σ
授课:XXX
H
C
C
H
H
π 丙烯中的 超共轭
+
H
C H 碳正离子 的超共轭
p
17
碳正离子与自由基的稳定性
碳正离子
自由基
(+I, +C, σ-p超共轭
超共轭效应 贡献明显
2021/3/9
稳 定 性 降 低
授课:XXX
CH2 CH CH2
H3C
CH3 C CH3
共轭效应产生的条件 (1)构成共轭体系的原子必须在同一平面内。 (2)p轨道的对称轴垂直于该平面。
结构特征:重键、单键交替出现。
CH2 CH C CH
乙烯基乙炔 or 1-丁烯-3-炔
1,3,5-己三 烯
O
CH2 CH C H
CH2 CH C N
丙烯醛
丙烯腈
2021/3/9
授课:XXX
13
共轭效应与诱导效应
4.1.1 二烯烃的分类
隔离双键二烯烃
共轭双键二烯烃
累积双键二烯烃
2021/3/9
CH2 C CH2
授课:XXX
1,4−戊二烯 1,5−己二烯
1,3−二烯 2-甲基-1,3-丁二烯
丙二烯 1,2-丁二烯
3
4.1.2 二烯烃的命名
二烯烃的命名与烯烃相似; 不同之处:分子中含有两个双键称为二烯,主链必须包含两个双 键,同时应标明两个双键的位次。