北师大版八年级上期期末数学易错题和典型试题经典

合集下载

北师大版数学八年级上册全册复习典型例题

北师大版数学八年级上册全册复习典型例题

考点二 直角三角形的判别
例 2 如图 1-1,在正方形 ABCD 中,F 为 DC 的中点,E 为 BC 上一点,且 EC=14BC,请说明:AF⊥EF.
图 1-1
[解析] 要说明 AF⊥EF,可说明△AEF 是直角三角形,只要根 据勾股定理的逆定理说明 AF2+EF2=AE2 就可以了.
解:连接 AE,设正方形边长为 a,则 DF=FC=a2,EC=a4.
找出格点C,使△ABC是面积为1个平方单位的直角三角形,这样
的点有____6____个.
图1-8 图1-9
[解析] 如图1-9,当∠A为直角时,满足面积为1的点是A1、 A2;当∠B为直角时,满足面积为1的点是B1、B2;当∠C为直角 时,满足面积为1的点是C、C1,所以满足条件的点共有6个.
3.已知三角形的三边为 a=34,b=54,c=1,这个三角形是 直角三角形吗?
图1-17
13.如图1-18,在直线l上依次摆放着三个正方形,已知中间 斜放置的正方形的面积是6,则正放置的两个正方形的面积之和 为( A )
图1-18
A.6 B.5 C. 6 D.36
14.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点 沿纸箱爬到B点,那么它所行的最短路线的长是__1_0_____.
6.B、C 是河岸边两点,A 为对岸岸上一点,测得∠ABC=45°, ∠ACB=45°,BC=50 m,则河宽 AD 为( )
B
A.25 2 m B.25 m
50 C. 3 3 m
D.25 3 m
图 1-10
7.如图1-11,已知△ABC中,∠C=90°,BA=15,AC=12,
以直角边BC为直径作半圆,则这个半圆的面积是__8_81_π____.

2023—2024学年北师大版数学八年级上册期末复习易错题

2023—2024学年北师大版数学八年级上册期末复习易错题

北师大版八上数学期末复习易错题1、下列说法正确的个数( )①②③的倒数是()3316251625451273333-=---=--=--ππ④⑤的平方根是23544+=--2()A. 0个B. 1个C. 2个D. 3个2、现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是______.3.如图,长方形纸片ABCD 中,AB=3cm ,BC=4cm ,现将A 、C 重合,使纸片折叠压平,设折痕为EF, 则AEF S ∆= .4.如图,在长方形ABCD 中,AB=5cm ,在边CD 上适当选定一点E ,沿直线AE 把△ADE 折叠,使点D 恰好落在边BC 上一点F 处,且△ABF 的面积是30cm 2。

则BC = _______cm5. 如图,将左边的矩形绕点B 旋转一定角度后,位置如右边的矩形,则∠ABC=___ ___ . 6、如图,△ACB 是边长为6的等边三角形,则A 点的坐标是 ,7、如图,直线L 过正方形ABCD 的顶点B,点A 、点B 、点C 到直线l 的距离分别是3和4,则该正方形的边长是 。

8、如图,已知函数b ax y +=和kx y =的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组⎩⎨⎧=-=+-00y kx b y ax 的解是 .BCAy=ax+by=kx-2PO X-4Y9.一次函数(0)y ax a a =-≠的大致图像是( )10.将长为30cm ,宽为10cm 的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm .设x 张白纸粘合后的纸条总长度为ycm ,则y 与x 的函数关系式为11、配餐公司为某学校提供A 、B 、C 三类午餐供师生选择,三类午餐每份的价格分别是:A 餐5元,B 餐6元,C 餐8元.为做好下阶段的营销工作,配餐公司根据该校上周A 、B 、C 三类午餐购买情况,将所得的数据处理后,制成统计表(如下左图);根据以往销售量与平均每份利润之间的关系,制成统计图(如下右图).请根据以上信息,解答下列问题: (1)该校师生上周购买午餐费用的众数是 元;(2)配餐公司上周在该校销售B 餐每份的利润大约是 元; (3)请你计算配餐公司上周在该校销售午餐约盈利多少元?12、A 、B 两辆汽车同时从相距330千米的甲、乙两地相向而行,s (千米)表示汽车与甲地的距离,t (分钟)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s 与t 的关系. (1) L1表示哪辆汽车到甲地的距离与行驶时间的关系? (2) 汽车B 的速度是多少?(3)求L1,L2分别表示的两辆汽车的s 与t 的关系式 .(4)2小时后,两车相距多少千米?3 10 30以往销售量与平均每份利润之间的关系统计图一周销售量(份)300~800 (不含800) 平均每份的利润(元)0.5 1 1.5 2 02.5 33.5 4 800~1200 (不含1200)1200及 1200以上AB C种类 数量(份) A 1000 B 1700 C400该校上周购买情况统计表x y x O y x O y O O yxD ECFA (5)行驶多长时间后,A 、B 两车相遇?13、甲乙两人同时登山,甲、乙两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图所示,请根据图象提供的信息解答下列问题:(1)甲登山的速度是每分钟 米,乙在A 处提速时距地面的高度a 为 米.(2) 若乙提速后,乙的速度是甲登山速度的3倍,请分别写出甲登山过程及乙在AB 段登山时距地面的高度y (米)与登山时间x (分)之间的函数关系式. (3)登山多长时间时,乙追上了甲?14、如图,△ABC 中,D 、E 分别是AB 、AC 边上的中点,连DE 并延长使EF=DE,连DC 、CF 、AF 。

北师大版八年级数学上册易错题 附答案

北师大版八年级数学上册易错题 附答案

S(千米)1 2340.5 1 乙 甲 O t (时) 北师大版八年级数学上册易错题整理1、一支蜡烛长20厘米,.点燃后每小时燃烧5厘米,燃烧时剩下的高度n (厘米)与燃烧时间t(时)的函数关系的图象是( )A B C D2、已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是( )A B CD3、甲、乙两人同时沿着一条笔直的公路朝同一方向前行,开始时,乙在甲前2千米处,甲、乙两人行走的路程S (千米)与时间t (时)的函数图象(如图所示),下列说法正确的是( )A 、乙的速度为4千米/时B 、经过1小时,甲追上乙C 、经过0.5小时,乙行走的路程约为2千米D 、经过1.5小时,乙在甲的前面4、当14+a 的值为最小值时,a 的取值为( )A 、-1B 、0C 、41- D 、15、若错误!未找到引用源。

是169的算术平方根,错误!未找到引用源。

是121的负的平方根,则(错误!未找到引用源。

+错误!未找到引用源。

)2的平方根为( )A. 2B. 4C.±2D. ±4 6、满足-3<x <5的整数x 是( )A 、-2,-1,0,1,2,3B 、-1,0,1,2,3C 、-2,-1,0,1,2D 、-1,0,1,27、如图,有一圆柱,它的高等于8cm ,底面直径等于4cm (π=3).在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面与A 相对的B 点处的食物,需要爬行的最短路程大约等于 ( ) A .10cm B .12 cm C .19cm D .20cm 8、直线y kx b =+经过点(1,)A m -,(,1)B m (1)m >,则必有( )A. 0,0k b >> .0,0B k b>< .0,0C k b <> .0,0D k b << 9、如果0ab >,0ac <,则直线a c y x b b=-+不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10、如图,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )x yxyx y x y O O OO11、某航空公司规定,旅客乘机所携带行李的质量x (kg)与其运费y (元)由如图所示一次函数图象确定,那么旅客可携带的免费行李的最大质量为( )A. 20kgB. 25kgC. 28kgD. 30kg12、.如图,在t R ABC ∆中,90C ∠=,∠A =30°,DE =2,且DE 是线段AB 的垂直平分线,交AB 于D ,交AC 于E ,则CE 的长是( )A 1B 2C 3D 413、某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是 .14、在直线l 上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=( ). A. 4 B. 6 C. 5 D. 6二、填空15、正方形边长为3,若边长增加x 则面积增加 y ,求y 随x 变化的函数关系式为 。

北师大版八年级数学上册期末知识点及常见题目类型解法易错题归类整理

北师大版八年级数学上册期末知识点及常见题目类型解法易错题归类整理

1981-8-1期末知识点及常见题目类型解法复习一.勾股定理1.定义:直角三角形--222c b a =+;锐角三角形--222c b a +;钝角三角形--222c b a +2.验证方法:拼图法 面积法3.逆定理及勾股数 勾股数的整数倍还是勾股数4.直角三角形中的等积式:ab=ch5.应用:(1)最短线路问题(立体图形→平面图形) (2)四边形问题→三角形问题(求面积)(3)已知三角形两边和第三边上的高求三角形面积或周长,分类讨论(锐角三角形或钝角三角形)(4)利用勾股定理列方程(常用于折叠问题)(5)方位角 (6)勾股树 (7)长方体中的最长线段222c b a ++ 二.实数 1.实数的两种分类2.实数与数轴上的点一一对应3.在数轴上表示无理数,在网格中画出长为无理数的线段的方法4.相关概念:有理数,无理数,零指数,负指数,平方根,算术平方根,立方根,实数大小比较。

5.二次根式的双重非负性,各种性质二次根式的性质: =⋅b a ( )=ba( ) (√a)2= (a ≥0) √a 2= 6.最简二次根式7.同类二次根式 8.分母有理化9.估算:平方根估算;立方根估算;整数部分;小数部分10.二次根式的计算:二次根式的系数写成假分数;运算结果为最简根式或整式。

11.规律题三.平面直角坐标系1.各象限内点的坐标特征;坐标轴上点的坐标特征;2.对称点的坐标特征3.点到x 轴,y 轴,原点的距离4.平行于x 轴的直线上点的坐标特征;5.平行于y 轴的直线上点的坐标特征;6.坐标轴上两点间的距离7.中点坐标公式8.建立适当的坐标系:怎样才算适当?9.求点的坐标的方法:(1)已知函数关系式和一个坐标,求另一个坐标,用代入法。

(2)已知点的位置,过这个点向坐标轴作垂线,找出表示坐标的线段,求线段长。

点的坐标线段的长度(3)两个一次函数的关系式组成的方程组的解就是两直线交点坐标。

四.一次函数1.一次函数关系式,图象,性质,k,b在图象中的意义,k,b在实际问题中的意义;|k|越大,直线越陡.2.求一次函数关系式的方法:待定系数法;列方程法;找规律。

北师大版八年级数学数学上期期末复习专题易错题和典型试题练习(PDF版无答案)

北师大版八年级数学数学上期期末复习专题易错题和典型试题练习(PDF版无答案)

北师大版八年级上期期末复习易错题和典型试题64.已知数据X1,X2,X3,……,Xn的平均数为1,方差是2,则一组新数据3X1+5,3X2+5,……,3Xn+5的平均数是,方差是。

65.如果四个正整数数据中的三个分别是2,4,6,且它们的中位数也是整数,那么它们的中位数是。

1.某班举办元旦联欢会,班长对全班同学最爱吃哪几种水果作调查,确定购买哪一种水果时,最值得关注的统计量是()(A)中位数(B)平均数(C)众数(D)加权平均数2.点P(m,1)在第二象限内,则点Q(-m,0)在()A、x轴正半轴上B、x轴负半轴上C、y轴正半轴上D、y轴负半轴上3.连接A(1,2),B(-2,-1),C(1,-1)三点所组成的三角形是()A、锐角三角形B、钝角三角形C、直角三角形D、等边三角形5.如图,正三角形的边长为4,则点C的坐标是()(A)(4,-2) (B)(4,2) (C)(32,-2) (D)(-2,32)7.如图、三角形ABC是正三角形,AB=3,A(-1,0),AB在X轴上,边AC交Y轴的正半轴于D,则B点坐标为, C点坐标为,D点纵坐标为。

8.如图判断三角形的形状9.如图,在直角坐标系中,将长方形OABC沿OB对折,使点A落在A1处,已知OA=3,AB=1(1)求∠AOB的大小,并说明理由;(2)求线段CD的长度,并说明理由;(3)写出点A1和点D的坐标,并说明理由。

10.以下四条直线中,与直线y=3x+2相交于第三象限的是()A、y=4x-1B、y=2x-3C、 y=3x-1D、 y=1-x11.函数y=k(x-k)(k<0 )的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限12.如果直线y=2x+m与两坐标轴围成的三角形面积等于m,则m的值是()A、±3B、3C、±4D、413.已知直线y=(k–2)x+k不经过第三象限,则k的取值范围是()A、k≠2 B.k>2 C.0<k<2 D.0≤k<214.若函数28(3)my m x-=-是正比例函数,则常数m的值是。

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列实数中,是无理数的是()A B .3-C .0.101001D .132.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b 的是()A .∠2=∠5B .∠1=∠3C .∠5=∠4D .∠1+∠5=180°3.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则()A .2k <B .2k >C .0k >D .0k <4.快要到新年了,某鞋店老板要进一批新年鞋,他一定会参考下面的调查数据,他最关注的是()A .中位数B .平均数C .加权平均数D .众数5.下列各命题中,属于假命题的是()A .若a -b =0,则a =b =0B .若a -b >0,则a >bC .若a -b <0,则a <bD .若a -b≠0,则a≠b6.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是()A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .20x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩7.已知正比例函数y =kx 的函数值y 随x 的增大而减小,则一次函数y =kx -k 的图象大致是()A .B .C .D .8.如图,已知函数y =ax+b 和y =kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组y ax by kx=+⎧⎨=⎩的解是()A.24xy=-⎧⎨=-⎩B.42xy=-⎧⎨=-⎩C.24xy=⎧⎨=-⎩D.42xy=-⎧⎨=⎩9.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A.95°B.120°C.135°D.无法确定10.如图,∠AFD=65°,CD∥EB,则BÐ的度数为()A.115°B.110°C.105°D.65°二、填空题11.甲、乙两地7月上旬的日平均气温如图所示,则甲,乙两地这10天中日平均气温的方差S2甲与S2乙的大小关系是S2甲_______S2乙.(填“>”或“<”)12.小明某学期数学平时成绩为70分,期中考试成绩为80分,期末考试成绩为90分,计算学期总评成绩的方法:平时占30%,期中占30%,期末占40%,则小明这学期的总评成绩是________分.13.若|3x﹣0,则xy的算术平方根是_____.14.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是_____.15.如图,已知∠1=100°,∠2=140°,那么∠3=________度.16.如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于1AB2的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.17.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是____________.18.如图,在△ABC 中,∠A=40°,点D 是∠ABC 和∠ACB 角平分线的交点,则∠BDC 为________三、解答题1901323(21)2-+20.解下列方程组:569745x y x y -=⎧⎨-=-⎩21.某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A ,B ,C ,D ,E 表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)这30名职工捐书本数的众数是本,中位数是本;(3)求这30名职工捐书本数的平均数是多少本?并估计该单位750名职工共捐书多少本?22.如图,已知12l l //,且3l 与1l ,2l 分别交于A ,B 两点,点P 在直线AB 上.(1)当点P 在A ,B 两点之间运动时,求1∠,2∠,3∠之间的数量关系,并说明理由.(2)如果点P 在A ,B 两点外侧运动,试探究1∠,2∠,3∠之间的数量关系(点P 与A ,B 不重合),并说明理由.23.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)若小李11月份上网20小时,他应付多少元的上网费用?(2)当x≥30,求y 与x 之间的函数关系式;(3)若小李12月份上网费用为135元,则他在该月份的上网时间是多少?24.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,将△ACB 沿CD 折叠,使点A 恰好落在BC 边上的点E 处.(1)求△BDE 的周长;(2)若∠B =37°,求∠CDE 的度数.25.某水果店11月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.12月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款300元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到120千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过90千克,则12月份该店需要支付这两种水果的货款最少应是多少元?26.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟________米,乙在A地时距地面的高度b为________米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式(写出自变量范围);(3)登山多长时间时,甲、乙两人距地面的高度差为70米?参考答案1.A2.B3.B4.D 5.A 6.B 7.C 8.B 9.C 10.A 11.> 12.81 1314.x=2 15.6016.8 517.(0,3)18.110°【详解】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∵∠A=40°,∴∠ABC+∠ACB=180°−40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°−70°=110°,故答案为:110°.191.1)1=+1=.20.34xy=-⎧⎨=-⎩.【详解】解:569745x y x y -=⎧⎨-=-⎩①②,①×2-②×3,得-11x=33,解得x=-3,把x=-3代入①,得-15-6y=9,解得y=-4,故方程组的解为34x y =-⎧⎨=-⎩.21.(1)补全图形见解析;(2)6,6;(3)6本;4500本.【详解】解:(1)D 组人数=30﹣4﹣6﹣9﹣3=8.(2)众数是6本中位数是6本.故答案为6,6.(3)平均数=6(本),该单位750名职工共捐书约4500本.22.(1)123∠+∠=∠,见解析;(2)123∠-∠=∠或213∠-∠=∠,见解析.【详解】(1)123∠+∠=∠.理由如下:如图所示,过点P 作1//PQ l .12//l l ,12////l l PQ ∴,14∴∠=∠,25∠=∠.453∠+∠=∠ ,123∴∠+∠=∠.(2)123∠-∠=∠或213∠-∠=∠.理由如下:当点P 在下侧时,过点P 作1l 的平行线PQ ,如图所示,12//l l ,12////l l PQ ∴,24∴∠=∠,134∠=∠+∠,123∴∠-∠=∠.当点P 在上侧时,如图所示,12//l l ,24∴∠=∠,又413∠=∠+∠,213∴∠-∠=∠.23.(1)60元;(2)y =3x ﹣30;(3)55个小时.【详解】解:(1)根据题意,从图象上看,30小时以内的上网费用都是60元;(2)当x≥30时,设函数关系式为y =kx+b ,则30604090k b k b +=⎧⎨+=⎩,解得k 3b 30=⎧⎨=-⎩,故函数关系式为y =3x ﹣30;(3)由135=3x ﹣30解得x =55,故12月份上网55个小时.24.(1)△BDE 的周长为12;(2)∠CDE 的度数为82°.【分析】(1)由折叠的性质可知,DE=AD ,CE=AC ,则△BDE 的周长=BD+DE+BE=BD+BE+AD=AB+BE ,先求出BE 的长,再利用勾股定理求出AB 的长即可;(2)由折叠的性质可知:∠ACD=∠BCD ,∠A=∠CED ,再利用三角形内角和定理求解即可.【详解】解:(1)由折叠的性质可知,DE=AD ,CE=AC ,∴△BDE 的周长=BD+DE+BE=BD+BE+AD=AB+BE ,∵∠ACB=90°,AC=6,BC=8,∴BE=BC-CE=BC-AC=2,10AB =,∴△BDE 的周长=AB+BE=10+2=12;(2)由折叠的性质可知:∠ACD=∠BCD ,∠A=∠CED ,∵∠ACB=90°,∠B=37°,∴∠A=∠CED=53°,1452ECD ACB ==o ∠,∴=180=82CDE BCD CED --o o ∠∠∠.25.(1)该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)w =﹣10a+2400;(3)12月份该店需要支付这两种水果的货款最少应是1500元.【分析】(1)设该店5月份进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数星,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式;(3)根据甲种水果不超过90千克,可得出a的取值范固,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设该店11月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:8181700 10201700300 x yx y+=⎧⎨+=+⎩,解得10050xy=⎧⎨=⎩,答:该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400;(3)根据题意得,a≤90,由(2)得,w=﹣10a+2400,∵﹣10<0,w随a的增大而减小,∴a=90时,w有最小值w最小=﹣10×90+2400=1500(元).答:12月份该店需要支付这两种水果的货款最少应是1500元.【点睛】本题考查了二元一次方程组的应用、以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组:(2)根据各数之间的关系,找出w关于a的函数关系式. 26.(1)10;30;(2)15(02)3030(211)x xyx x≤<⎧=⎨-≤≤⎩;(3)登山3分钟或10分钟或13分钟时,甲、乙两人距地面的高度差为70米.【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x<2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者作差等于70得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y 关于x 的函数关系式=70,得出关于x 的一元一次方程,解之可求出x 值.综上即可得出结论.(1)解:甲登山上升的速度是:(300-100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)解:当0≤x <2时,y=15x ;当x≥2时,y=30+10×3(x-2)=30x-30.当y=30x-30=300时,x=11.∴乙登山全程中,距地面的高度y 与登山时间x 之间的函数关系式为:15(02)3030(211)x x y x x ≤<⎧=⎨-≤≤⎩;(3)解:甲登山全程中,距地面的高度y 与登山时间之间的函数关系式为y=kx+b (k≠0),把(0,100)和(20,300)代入解析式得:10020300b k b =⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩,∴甲登山全程中,距地面的高度y 与登山时间之间的函数关系式为y=10x+100(0≤x≤20),当10x+100-(30x-30)=70时,解得:x=3;当30x-30-(10x+100)=70时,解得:x=10;当300-(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.。

2021-2022学年北师大版八年级数学上册《第6章数据的分析》期末复习易错题型专题测试(附答案)

2021-2022学年北师大版八年级数学上册《第6章数据的分析》期末复习易错题型专题测试(附答案)

2021-2022学年北师大版八年级数学上册《第6章数据的分析》期末复习易错题型专题测试(附答案)一.选择题(共10小题,满分40分)1.某校四个绿化小组一天植树的棵数如下:9,9,m,7,已知这组数据的众数和平均数相等,那么这组数据的中位数是()A.8B.9C.10D.122.在一次体检中,甲、乙、丙、丁四位同学的平均体重为52.5kg,而甲、乙、丙三位同学的平均体重为52.3kg.下列说法正确的是()A.四位同学体重的中位数一定是其中一位同学的体重B.丁同学的体重一定高于其他三位同学的体重C.丁同学的体重为53.1kgD.四位同学体重的众数一定是52.5kg3.若一组数据x1+1,x2+1,x3+1…x n+1的平均数为18,方差为2,则数据x1+2,x2+2,x3+2……,x n+2的平均数和方差分别是()A.18,2B.19,3C.19,2D.20,44.x1,x2,...,x10的平均数为a,x11,x12,...,x50的平均数为b,则x1,x2, (x50)平均数为()A.a+b B.C.D.5.若一组数据a1,a2,……,a n的平均数为10,方差为4,那么数据2a1+3,2a2+3,…,2a n+3的平均数和方差分别是()A.13,4B.23,8C.23,16D.23,196.某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处错误:将最低成绩写得更低了,则计算结果不受影响的是()A.平均数B.中位数C.方差D.极差7.一家鞋店在一段时间内销售某种女鞋50双,各种尺码的销售量如表所示:尺码(厘米)2222.52323.52424.525销售量(双)12315731如果你是店长,为了增加销售量,你最关注哪个统计量()A.平均数B.众数C.中位数D.方差8.小明对居住在某小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图,这组数据的众数和中位数分别是()A.6,4B.6,6C.4,4D.4,69.某人上山的平均速度为3km/h,沿原路下山的平均速度为5km/h,上山用1h,则此人上下山的平均速度为()A.4km/h B.3.75km/h C.3.5km/h D.4.5km/h10.10个人围成一圈每人想一个自然数,并告诉在他两边的人,然后每人将他两边的人告诉他的数的平均数报出来,报的结果如图,则报13的人心想的数是()A.12B.14C.16D.18二.填空题(共9小题,满分36分)11.学校足球队5名队员的年龄分别是15,13,15,14,13,其方差为.12.已知一个样本0,﹣1,x,1,3它们的平均数是2,则这个样本的中位数是.13.有11个正整数,平均数是10,中位数是9,众数只有一个8,问最大的正整数最大为.14.某班学生在希望工程献爱心的捐献活动中,将省下的零用钱为贫困山区失学儿童捐款,有15位同学捐了20元,20位同学捐了10元,3位同学捐了8元,10位同学间了5元捐了,2位同学捐了3元,则该班学生共捐款元,平均捐款元,其中众数是元.15.一个样本为1、3、2、2、a,b,c.已知这个样本的众数为3,平均数为2,那么这个样本的方差为.16.已知数据x1,x2,x3,x4,x5的标准差为4,平均数为,则各数据与的差的平方和是.17.小明去商场买作业本,第一次买了4本不同类型的作业本,平均价格是0.85元,第二次买了6本,平均价格是0.95元,则他两次所买练习本的平均价格为.18.小明家去年的饮食、教育和其他支出分别为3600元,1200元,7200元,小亮家去年的饮食、教育和其他支出分别为3600元,1200元,7200元.小明家今年的这三项支出依次比去年增长了10%,20%,30%,小亮家今年的这三项支出依次比去年增长了20%,30%,10%.小明和小亮家今年的总支出比去年增长的百分数分别为和.19.已知数据x1,x2,x3,…,x n,的平均数是m,中位数是n,那么数据3x1+7,3x2+7,3x3+7,…,3x n+7的平均数等于,中位数是.三.解答题(共5小题,满分44分)20.为了发展学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩记录如表:射击次序(次)12345678910甲的成绩(环)8979867a108乙的成绩(环)679791087710(1)经计算甲和乙的平均成绩是8(环),请求出表中的a=;(2)甲成绩的中位数是环,乙成绩的众数是环;(3)若甲成绩的方差是1.2,请求出乙成绩的方差,判断甲、乙两人谁的成绩更为稳定?21.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m).绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图①中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定10人能进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.22.图1是某城市三月份1至8日的日最高气温随时间变化的折线统计图,小刚根据图1将数据统计整理后制成了图2.根据图中信息,解答下列问题:(1)将图2补充完整;(2)这8天的日最高气温的平均气温是℃;(3)计算这8天的日最高气温的方差.23.某市为了解学生数学学业水平,对八年级学生进行质量监测.甲、乙两个学校八年级各有300名学生参加了质量监测,分别从这两所学校个随机抽取了20名学生的本次测试成绩如下(满分100分)甲:75 86 74 81 76 75 70 95 70 79 81 74 70 80 86 69 83 75 86 75乙:73 93 88 81 40 72 81 94 83 77 83 80 70 81 73 78 82 80 70 81将收集的数据进行整理,制成如下条形统计图:注:60分以下为不及格,60~69分为及格,70~79分为良好,80分及以上为优秀.通过对两组数据的分析制成上面的统计表,请根据以上信息回答下列问题:(1)补全条形统计图,并估计本次监测乙校达到优秀的学生总共约有多少人?(2)求出统计表中的a,b的值;(3)请判断哪个学校的数学学业水平较好,说说你的理由.24.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表:平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.友情提示:一组数据的方差计算公式是S2=,其中为n个数据x1,x2,…,x n的平均数.参考答案一.选择题(共10小题,满分40分)1.解:∵众数为9,平均数等于众数,∴(9+9+m+7)=9,解得m=11,∴数据按从小到大排列为:7,9,9,11,∴这组数据的中位数=(9+9)÷2=9.故选:B.2.解:A、四位同学体重的中位数一定是其中两位同学的体重的平均数,本选项说法错误;B、丁同学的体重一定高于其他三位同学的体重的平均数,但不一定高于其他三位同学的体重,本选项说法错误;C、设丁同学的体重为xkg,由题意得,=52.5,解得,x=53.1,∴丁同学的体重为53.1kg,本选项说法正确;D、四位同学体重的众数不一定是52.5kg,本选项说法错误;故选:C.3.解:∵数据x1+1,x2+1,x3+1…x n+1的平均数为18,∴数据x1+2,x2+2,x3+2……,x n+2的平均数为18+1=19;∵数据x1+1,x2+1,x3+1…x n+1的方差是2,∴数据x1+2,x2+2,x3+2……,x n+2的方差是2;故选:C.4.解:前10个数的和为10a,后40个数的和为40b,50个数的平均数为.故选:D.5.解:数据a1,a2,……,a n的平均数为10,那么数据2a1+3,2a2+3,…,2a n+3的平均数为2×10+3=23,数据a1,a2,……,a n,方差为4,那么数据2a1+3,2a2+3,…,2a n+3的方差为4×22=16,故选:C.6.解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最低成绩写得更低了,计算结果不受影响的是中位数,故选:B.7.解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:B.8.解:6小时出现了20次,出现的次数最多,则众数为6;因为共有50个人,按大小顺序排列在中间的两个人的锻炼时间都为6小时,则中位数为6.故选:B.9.解:根据题意得,路程s=上山的平均速度v1×上山时间t1=3km/h×1h=3km,∴下山时间t2===0.6h,∴平均速度v==3.75km/h,故选:B.10.解:设报13的人心想的数是x,报5的人心想的数是28﹣x,报7的人心想的数是x﹣16,报9的人心想的数是32﹣x,报11的人心想的数是x﹣12,所以有x﹣12+x=2×12,解得x=18.故选:D.二.填空题(共9小题,满分36分)11.解:5名队员的平均年龄为(15+13+15+14+13)=14,所以数据的方差为S2=[(15﹣14)2+(13﹣14)2+(15﹣14)2+(14﹣14)2+(13﹣14)2]=0.8.故答案为0.8.12.解:∵0,﹣1,x,1,3的平均数是2,∴x=7,把0,﹣1,7,1,3按大小顺序排列为﹣1,0,1,3,7,∴个样本的中位数是1,故答案为1.13.解:∵11个正整数,平均数是10,∴和为110,∵中位数是9,众数只有一个8,∴当11个正整数为1,1,8,8,8,9,9,10,10,11,35时,最大的正整数最大为35,故答案为:35.14.解:该班学生共15+20+3+10+2=50人,共捐款20×15+10×20+3×8+10×5+2×3=580元,平均捐款=11.6;10出现的次数最多,所以众数是10.故填580;11.6;10.15.解:因为众数为3,可设a=3,b=3,c未知平均数=(1+3+2+2+3+3+c)=2,解得c=0根据方差公式S2=[(1﹣2)2+(3﹣2)2+(2﹣2)2+(2﹣2)2+(3﹣2)2+(3﹣2)2+(0﹣2)2]=故填.16.解:由题意知,方差S2=[(x1﹣)2+(x2﹣)2+(x3﹣)2+(x4﹣)2+(x5﹣)2]=42=16∴(x1﹣)2+(x2﹣)2+(x3﹣)2+(x4﹣)2+(x5﹣)2=16×5=80.故填80.17.解:两次所买练习本的平均价格=(0.85×4+0.95×6)÷10=0.91元.故填0.91元.18.解:去年的支出总数=3600+1200+7200=12000元,小明家今年的增加的支出=3600×10%+1200×20%+7200×30%=2760元,∴小明家今年的总支出比去年增长的百分数=2760÷12000=23%.小亮家今年的增加的支出=3600×20%+1200×30%+7200×10%=1800元,∴小亮家今年的总支出比去年增长的百分数=1800÷12000=15%.故填23%,15%.19.解:已知数据x1,x2,x3,…,x n的平均数是m,中位数是n,即n为最中间的那个数,那么数据3x1+7,3x2+7,3x3+7,…,3x n+7的中位数为3n+7;其平均数为3[(x1+x2+x3,…+x n)]+7=3m+7.三.解答题(共5小题,满分44分)20.解:(1)∵甲的平均成绩是8(环),∴(8+9+7+9+8+6+7+a+10+8)=8,解得a=8,故答案为:8;(2)甲成绩排序后最中间的两个数据为8和8,∴甲成绩的中位数是(8+8)=8;乙成绩中出现次数最多的为7,故乙成绩的众数是7,故答案为:8,7;(3)乙成绩的方差为[(﹣1)2×4+12×2+22×2+(﹣2)2+02]=1.8,∵甲和乙的平均成绩是8(环),而甲成绩的方差小于乙成绩的方差,∴甲的成绩更为稳定.21.解:(1)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图,∵=1.61,∴这组数据的平均数是1.61.∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数为1.65,∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.60,有∴这组数据的中位数为1.60,(Ⅲ)能.∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前10名;∵1.65m>1.60m,∴能进入复赛.22.解:(1)由题可得,3℃的有2天.如图所示:(2)平均气温为:(2×1+2×2+2×3+4)=2(℃);故答案为:2;(3)这8天的日最高气温的方差为:[(0﹣2)2+(3﹣2)2+(1﹣2)2+(3﹣2)2+(2﹣2)2+(1﹣2)2+(2﹣2)2+(4﹣2)2]=.23.解:(1)补全条形统计图:本次监测乙校达到优秀的学生总共约有300×=180(人);(2)乙班的中位数a=(80+81)=80.5;甲班的众数b为75;(3)两组数据的平均数相同,而两组数据良好以上的人数相同,但是乙组数据优秀的人数较多,故乙校的数学学业水平较好.(答案不唯一)24.解:(1)填表:初中平均数为:(75+80+85+85+100)=85(分),众数85(分);高中部中位数80(分).故答案为:85,85,80;(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)∵=[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∴<,因此,初中代表队选手成绩较为稳定.。

2024年北师大版八年级上册数学期末复习专题八 一次函数的常见错误

2024年北师大版八年级上册数学期末复习专题八 一次函数的常见错误

专题
= − ,
−+ = ,
所以ቊ
解得ቊ
= − .
= − ,
所以直线 BC 的表达式为 y =-3 x -1.
因为点 A 和点 B 在直线 y = kx -1的两侧,所以-3<


k <- .
1
2
3
4
5
6
7
8
9
10
11
12
专题
易错点4
忽视分类讨论或分类不全而出错
11. 已知直线 y = kx -4与两坐标轴所围成的三角形面积等于
所以 k -2≠0且 k2-4=0.所以 k =-2.
1
2
3
4
5
6
7
8
9
10
11
12
专题

3. 已知 y =( m -3)
+ m +1是一次函数,求该函数的
表达式.
【解】由一次函数的定义可知 m2-8=1, m -3≠0,
所以 m =-3.
所以该函数的表达式为 y =-6 x -2.
1
+ ( ≤ ),
6. [2024天津月考]若函数 y =൝
则当 y =20时,
( > ),
自变量 x 的值是( D )
A. ±
C. ± 或4
【点拨】
B. 4
D. 4或-
当x>3时,由y=20得5x=20,解得x=4,当x≤3
时,由y=20得x2+6=20,解得x=± .
取值范围.
【解】设直线 AC 的表达式为 y =
ax + b ( a ≠0),

−+ = ,
= − ,

2024八年级数学上册期末复习1勾股定理2易错专项训练习题课件新版北师大版

2024八年级数学上册期末复习1勾股定理2易错专项训练习题课件新版北师大版
最短距离为
10
m.
1
2
3
4
5
易错点4 没有明确直角顶点,考虑不全面出错
4. 同一平面内有 A , B , C 三点, A , B 两点之间的距离为
5 cm,点 C 到直线 AB 的距离为2 cm,且△ ABC 为直角三
角形,则满足上述条件的点 C 有
1
2
3
4
5
8
个.
易错点5 不证明直角直接应用其性质缺少步骤出错
5. 如图,在△ ABC 中, D 是△ ABC 内一点,连接 AD ,
BD ,且 AD ⊥ BD . 已知 AD =4, BD =3, AC =13,
BC =12.求图中阴影部分的面积.
1
2
3
4
5
解:因为 AD ⊥ BD ,
所以 AB2= AD2+ BD2,
因为 AD =4, BD =3,
所以 AB =5.
BD - DC =4. 综上所述, BC 的长为14或4.
1
2
3
4
5
易错点3 求立体图形中两点之间的最短距离时无法找到正确
的展开方式出错
3. 【新考法·展开法】如图是一个长8 m,宽7 m,高5 m的
仓库,在其内的点 A 处有一只壁虎, B 处有一只蚊子,已
知 CA =2 m, PB =4 m,则壁虎沿仓库内爬到蚊子处的
1
2
3
4
5
在Rt△ ABD 中, AB =15, AD =12,由勾股定理得 BD2
= AB2- AD2=81,所以 BD =9.
在Rt△ ADC 中, AC =13, AD =12,由勾股定理得 DC2
= AC2- AD2=25,所以 DC =5.所以 BC = BD + DC =

北师大版八年级上册数学期末测试卷(易错题)

北师大版八年级上册数学期末测试卷(易错题)

北师大版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图,在Rt△ABC中,∠ACB=90°,AC=BC,边AC落在数轴上,点A表示的数是1,点C表示的数是3。

以点A为圆心、AB长为半径画弧交数轴负半轴于点B1,则点B1所表示的数是()A.-2B.-2C.1-2D.2 -12、以下列各组数为边长,不能构成直角三角形的是( )A.3,4,5B.1,1,C.8,12,13D. ,,3、某品牌皮鞋店销售同种品牌不同尺码的男鞋,采购员再次进货时,对于男鞋的尺码,他最关注下列统计资料中的()A.众数B.中位数C.加权平均数D.平均数4、若函数中,y的值随x值的增大而减小,则k的取值范围为()A. B. C. D.5、下列说法中,不正确的是()A.3是的算术平方根B.-3是的算术平方根C.±3是的平方根 D.-3是的立方根6、如图,军训时七(1)班的同学按教官的指令站了7排8列,如果第7排第8列的同学的位置在队列的东北角,可以用有序数对(7,8)来表示,那么表示站在西南角同学的位置的有序数对是()A.(7,8)B.(1,1)C.(1,2)D.(2,1)7、下列说法错误的是()。

A.1的平方根是1B.–1的立方根是-1C. 是2的平方根 D.0是0的平方根8、如图,下列各数中,数轴点A表示的可能是()A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根9、某小组的一次数学检测成绩统计如下(单位:分):76,90,64,100,84,64,73.则这组数据的众数和中位数分别是()A.64,76B.64,100C.76,64D.64,8410、小红、小刚、小敏、小明四位同学在过去两学期10次数学成绩的平均数和方差如下表:学生小红小刚小敏小明平均数136 136 136 136方差0.32 0.18 0.24 0.27则这四人中数学成绩最稳定的是()A.小红B.小刚C.小敏D.小明11、在“六•一”儿童节那天,某商场推出A、B、C三种特价玩具.若购买A种2件、B种1件、C种3件,共需23元;若购买A种1件、B种4件、C种5件,共需36元.那么小明购买A种1件、B种2件、C种3件,共需付款()A.21元B.22元C.23元D.不能确定12、若a,b,c这三个数的平均数为2,方差为s2,则a+2,b+2,c+2的平均数和方差分别是()A.2,s 2B.4,s 2C.2,s 2+2D.4,s 2+413、小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计)一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校公用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的个数是()A.4个B.3个C.2个D.1个14、如图,在中,,将绕点A按逆时针方向旋转得到.若点恰好落在边上,且,则的度数为()A. B. C. D.15、在,,0,-2这四个数中,为无理数的是( )A. B. C.0 D.-2二、填空题(共10题,共计30分)16、如图,直线∥ ,直线分别交、于、两点,,垂足为.若,则________°.17、计算:________18、观察下面的一列数:,-,,-……请你找出其中排列的规律,并按此规律填空:第9个数是________,第14个数是________.19、计算:x =________.20、的倒数是________;64的平方根是________.21、的倒数为________;的算术平方根是________.22、已知一组数据的众数为3,平均数为,则n的值为________.23、我国著名田径运动员刘翔以12秒88创110米跨栏世界新记录后,专家组将刘翔历次比赛和训练时的图象与数据输入电脑后分析,显示出他跨过10栏(相邻两个栏间的距离相等)的每个“栏周期”(跨过相邻两个栏所用时间)都不超过一秒,最快的一个“栏周期”达到了惊人的0.96秒,从起跑线到第一个栏的距离为13.72米,刘翔此段的最好成绩是2.5秒,;最后一个栏到终点线的距离为14.02米,刘翔在此段的最好成绩是1.4秒。

北师大版八年级(上)数学期末测试试题及答案一

北师大版八年级(上)数学期末测试试题及答案一

北师大版八年级(上)数学期末测试试题及答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。

1.(3分)若取1.442,计算﹣3﹣98的结果是()A.﹣100B.﹣144.2C.144.2D.﹣0.014422.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣3,0)、(0,4),以点A为圆心,以AB长为半径画弧交x轴上点C,则点C的坐标为()A.(5,0)B.(2,0)C.(﹣8,0)D.(2,0)或(﹣8,0)3.(3分)商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适()A.2kg/包B.3kg/包C.4kg/包D.5kg/包4.(3分)某品牌鞋子的长度ycm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则38码鞋子的长度为()A.23cm B.24cm C.25cm D.26cm5.(3分)解方程组的下列解法中,不正确的是()A.代入法消去a,由②得a=b+2B.代入法消去b,由①得b=7﹣2aC .加减法消去a ,①﹣②×2得2b =3D .加减法消去b ,①+②得3a =96.(3分)葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其常绕着附近的树干沿最短路线盘旋而上.现有一段葛藤绕树干盘旋2圈升高为2.4m ,如果把树干看成圆柱体,其底面周长是0.5m ,如图是葛藤盘旋1圈的示意图,则这段葛藤的长是( )m .A .1.3B .2.5C .2.6D .2.87.(3分)对于一次函数y =﹣x +5,下列结论正确的是( ) A .函数的图象不经过第三象限B .函数的图象与x 轴的交点坐标是(2,0)C .函数的图象向下平移4个单位长度得y =﹣2x 的图象D .若两点A (1,y 1),B (3,y 2)在该函数图象上,则y 1<y 2 8.(3分)已知,都是关于x ,y 的方程y =﹣3x +c 的一个解,则下列对于a ,b 的关系判断正确的是( ) A .a ﹣b =3B .a ﹣b =﹣3.C .a +b =3D .a +b =﹣39.(3分)定理:三角形的一个外角等于和它不相邻的两个内角的和.下面给出该定理的两种证法. 已知:如图,∠ACD 是△ABC 的外角.求证:∠ACD =∠A +∠B . 证法1:如图,∵∠A +∠B +∠ACB =180(三角形内角和定理), 又∵∠ACD +∠ACB =180°(平角定义),∴∠ACD +∠ACB =∠A +∠B +∠ACB (等量代换).∴∠ACD =∠A +∠B (等式性质). 证法2:如图,∵∠A =76°,∠B =59°,且∠ACD =135°(量角器测量所得),又∵135°=76°+59°(计算所得), ∴∠ACD =∠A +∠B (等量代换).下列说法正确的是( )A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法2只要测量够一百个三角形进行验证,就能证明该定理C.证法2用特殊到一般法证明了该定理D.证法1用严谨的推理证明了该定理10.(3分)描述一组数据的离散程度,我们还可以用“平均差”.在一组数x1、x2、x3、…、x n中,各数据与它们的平均数x的差的绝对值的平均数,即T=(|x1﹣x|+|x2﹣x|+…+|x n﹣x|)叫做这组数据的“平均差”.“平均差”也能描述一组数据的离散程度,“平均差”越大说明数据的离散程度越大,稳定性越小.现有甲、乙两组数据,如表所示,则下列说法错误的是()甲121311151314乙10161018177A.甲、乙两组数据的平均数相同B.乙组数据的平均差为4C.甲组数据的平均差是2D.甲组数据更加稳定二、填空题(每小题3分,共15分)11.(3分)如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6cm,CD⊥BC,则线段CE的长度是cm.12.(3分)在我国新冠疫情虽然得到了有效的控制,但防范意识仍不能松懈,小丽去药店购买口罩和酒精消毒湿巾,若买150只一次性口罩和10包酒精消毒湿巾,需付75元;若买200只一次性口罩和12包酒精消毒湿巾,需付96元.设一只一次性医用口罩x元,一包酒精消毒湿巾y元,根据题意可列二元一次方程组:.13.(3分)一次考试中,某题的得分情况如下表所示,则该题的平均分是.得分01234百分率15%10%25%40%10%14.(3分)某人购进一批苹果到集贸市场零售,已经卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚得元.15.(3分)如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应减少度.三、解答题(本大题共8个小题,满分75分)16.(10分)(1)计算与化简:()()+6﹣(﹣2)2.(2)解方程组:.17.(9分)“欲穷千里目,更上一层楼”,说的是登得高看得远,如图,若观测点的高度为h(单位km),观测者能看到的最远距离为d(单位km),则d≈,其中R是地球半径,通常取6400km.(1)小丽站在海边的一块岩石上,眼睛离海平面的高度h为20m,她观测到远处一艘船刚露出海平面,求此时d的值.(2)判断下面说法是否正确,并说明理由;泰山海拔约为1500m,泰山到海边的最小距离约230km,天气晴朗时站在泰山之巅可以看到大海.18.(9分)“三等分一个任意角”是数学史上一个著名问题,经过无数人探索,现在已经确信,仅用圆规和直尺是不可能作出的.在探索过程中,我们发现,可以利用一些特殊的图形,把一个角三等分.如图:在∠MAN的边上任取一点B,过点B作BC⊥AN于点C,并作BC的垂线BF,连接AF,E是AF上一点,并且∠BAE=∠BEA,∠EBF=∠EFB,请你证明∠F AN=∠MAN.19.(9分)“惜餐为荣,殄物为耻”,为了解落实“光盘行动”的情况,某校数学兴趣小组的同学调研了七、八年级部分班级某一天的餐厨垃圾质量.从七、八年级中各随机抽取10个班的餐厨垃圾质量的数据(单位:kg),进行整理和分析(餐厨垃圾质量用x表示,共分为四个等级:A.x<1,B.1≤x<1.5,C.1.5≤x<2,D.x≥2),下面给出了部分信息.七年级10个班的餐厨垃圾质量:0.8,0.8,0.8,0.9,1.1,1.1,1.6,1.7,1.9,2.3.八年级10个班的餐厨垃圾质量中B等级包含的所有数据为:1.0,1.0,1.0,1.0,1.2.七、八年级抽取的班级餐厨垃圾质量统计表年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.1a0.2640%八年级 1.3b 1.00.23m%根据以上信息,解答下列问题:(1)直接写出上述表中a,b,m的值;(2)该校八年级共30个班,估计八年级这一天餐厨垃圾质量符合A等级的班级数;(3)根据以上数据,你认为该校七、八年级的“光盘行动”,哪个年级落实得更好?请说明理由(写出一条理由即可).20.(9分)如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求出点A、点B的坐标;(2)求△COB的面积;(3)在x轴上是否存在一点P,使得△POC为等腰三角形?若存在,请直接写出点P坐标,若不存在,请说明理由.21.(9分)张氏包装厂承接了一批纸盒加工任务,用如图1所示的长方形和正方形纸板作侧面和底面,做成如图2所示的竖式与横式两种无盖的长方体纸盒(加工时接缝材料不计).(1)做1个竖式纸盒和2个横式纸盒,需要正方形纸板张,长方形纸板张.(2)若该厂购进正方形纸板162张,长方形纸板338张,问竖式纸盒、横式纸盒各加工多少个,恰好能将购进的纸板全部用完?(3)该厂某一天使用的材料清单上显示,这天一共使用正方形纸板162张,长方形纸板a张,全部加工成上述两种纸盒,且290<a<310.试求在这一天加工两种纸盒时,a的所有可能值.22.(10分)如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P)始终以3km/min的速度在离地面5km高的上空匀速向右飞行,2号试飞机(看成点Q)一直保持在1号机P的正下方.2号机从原点O处沿45°仰角爬升,到4km高的A处便立刻转为水平飞行,再过1min到达B处开始沿直线BC降落,要求1min后到达C (10,3)处.(1)求OA的h关于s的函数解析式,并直接写出2号机的爬升速度;(2)求BC的h关于s的函数解析式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离PQ不超过3km的时长是多少.[注:(1)及(2)中不必写s的取值范围]23.(10分)已知AB∥CD,点P在直线AB、CD之间,连接AP、CP.(1)探究发现:(填空)填空:如图1,过P作PQ∥AB,∴∠A+∠1=°()∵AB∥CD(已知)∴PQ∥CD()∴∠C+∠2=180°结论:∠A+∠C+∠APC=°;(2)解决问题:①如图2,延长PC至点E,AF、CF分别平分∠P AB、∠DCE,试判断∠P与∠F存在怎样的数量关系并说明理由;②如图3,若∠APC=100°,分别作BN∥AP,DN∥PC,AM、DM分别平分∠P AB,∠CDN,则∠M的度数为(直接写出结果).参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。

2020北师大版八年级(上)期末数学初二常考试题100题(解析版)

2020北师大版八年级(上)期末数学初二常考试题100题(解析版)

北师大版八年级(上)期末数学常考试题100题参考答案与试题解析一、选择题(共30小题)1.(2015•西宁)使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等考点:直角三角形全等的判定.专题:压轴题.分析:利用全等三角形的判定来确定.做题时,要结合已知条件与三角形全等的判定方法逐个验证.解答:解:A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,A选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故B选项错误;C、一条边对应相等,再加一组直角相等,不能得出两三角形全等,故C选项错误;D、两条边对应相等,若是两条直角边相等,可利用SAS证全等;若一直角边对应相等,一斜边对应相也可证全等,故D选项正确.故选:D.点评:本题考查了直角三角形全等的判定方法;三角形全等的判定有ASA、SAS、AAS、SSS、HL,可以发现少得有一组对应边相等,才有可能全等.2.(2015•宁波)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A.90 B.100 C.110 D.121考点:勾股定理的证明.专题:常规题型.分析:延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.解答:解:如图,延长AB交KF于点O,延长AC交GM于点P,所以四边形AOLP是正方形,边长AO=AB+AC=3+4=7,所以KL=3+7=10,LM=4+7=11,因此矩形KLMJ的面积为10×11=110.故选:C.点评:本题考查了勾股定理的证明,作出辅助线构造出正方形是解题的关键.3.(2015•连云港)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.4B.6C.16 D.55考点:勾股定理;全等三角形的性质;全等三角形的判定.分析:运用正方形边长相等,结合全等三角形和勾股定理来求解即可.解答:解:∵a、b、c都是正方形,∴AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,∴∠BAC=∠DCE,∵∠ABC=∠CED=90°,AC=CD,∴△ACB≌△DCE,∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=11+5=16,故选:C.点评:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.4.(2015•佛山)化简的结果是()A.B.C.D.考点:分母有理化.分析:分子、分母同时乘以(+1)即可.解答:解:原式===2+.故选:D.点评:本题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.5.(2015•定结县模拟)下列根式中不是最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:找到被开方数中含有开得尽方的因数的式子即可.解答:解:各选项中只有选项C、=2,不是最简二次根式,故选:C.点评:最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.6.(2015•荆门)若=(x+y)2,则x﹣y的值为()A.﹣1 B.1C.2D.3考点:二次根式有意义的条件.分析:先根据二次根式的性质,被开方数大于或等于0,可求出x、y的值,再代入代数式即可.解答:解:∵=(x+y)2有意义,∴x﹣1≥0且1﹣x≥0,∴x=1,y=﹣1,∴x﹣y=1﹣(﹣1)=2.故选:C.点评:本题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.(2015•杭州)有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根.其中正确的有()A.0个B.1个C.2个D.3个考点:实数.分析:①根据有理数与数轴上的点的对应关系即可判定;②根据无理数的定义即可判定;③根据立方根的定义即可判定;④根据平方根的定义即可解答.解答:解:①实数和数轴上的点一一对应,故①说法错误;②不带根号的数不一定是有理数,如π,故②说法错误;③负数有立方根,故③说法错误;④∵17的平方根±,∴是17的一个平方根.故④说法正确.故选:B.点评:此题主要考查了实数的定义和计算.有理数和无理数统称为实数,要求掌握这些基本概念并迅速做出判8.下列说法正确的是()A.﹣4是﹣16的平方根B.4是(﹣4)2的平方根C.(﹣6)2的平方根是﹣6 D.的平方根是±4考点:平方根.专题:存在型.分析:根据平方根的定义进行解答即可.解答:解:A、因为﹣16<0,所以﹣16没有平方根,故A选项错误;B、因为(﹣4)2,=16,42,=16,所以4是(﹣4)2的平方根,故B选项正确;C、因为(﹣6)2=36,所以(﹣6)2的平方根是±6,故C选项错误;D、因为=4,所以的平方根是±2,故D选项错误.故选:B.点评:本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.9.下列说法不正确的是()A.1的平方根是±1 B.﹣1的立方根是﹣1C.是2的平方根D.﹣3是的平方根考点:立方根;平方根.专题:计算题.分析:A、根据平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据平方根的定义即可判定;D、根据平方根的定义即可判定.解答:解:A、1的平方根是±1,故A选项正确;B、﹣1的立方根是﹣1,故B选项正确;C、是2的平方根,故C选项正确;D、=3,3的平方根是±,故D选项错误.故选:D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平根.10.(2015•济南)如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)考点:点的坐标.专题:压轴题;规律型.分析:利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇地点,找出规律即可解答.解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;…此时甲、乙回到原出发点,则每相遇三次,两点回到出发点,∵2012÷3=670…2,故两个物体运动后的第2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×=8,物体行的路程为12×2×=16,在DE边相遇;此时相遇点的坐标为:(﹣1,﹣1),故选:D.点评:此题主要考查了行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.11.(2015•威海)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.5考点:坐标与图形变化-平移.专题:压轴题.分析:直接利用平移中点的变化规律求解即可.解答:解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.点评:本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12.(2015•荆州)平面直角坐标系中的点P(2﹣m,m)关于x轴的对称点在第四象限,则m的取值范围在数轴上可表示为()A.B.C.D.考点:关于x轴、y轴对称的点的坐标;在数轴上表示不等式的解集.分析:平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.P(2﹣m)关于x轴的对称点在第四象限,则点P在第一象限,从而横纵坐标都大于0,就得到关于m的不等组,求出m的范围.解答:解:根据题意得:,解得:0<m<2.故选:B.点评:本题比较容易,考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.题根据关于x轴对称的点坐标之间的关系,转化为不等式组的问题.同时,本题还考查了用数轴表示不式组的解集.13.(2014•独山县模拟)函数中自变量x的取值范围是()A.x≤2 B.x=3 C.x<2且x≠3 D.x≤2且x≠3考点:函数自变量的取值范围.专题:函数思想.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:2﹣x≥0且x﹣3≠0,解得:x≤2.故选:A.点评:考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.(2015•白云区一模)若一次函数y=kx+b,当x的值增大1时,y值减小3,则当x的值减小3时,y值()A.增大3 B.减小3 C.增大9 D.减小9考点:一次函数的性质.专题:探究型.分析:先把x+1代入求出k的值,再把x﹣3代入求出y的值即可.解答:解:∵一次函数y=kx+b,当x的值增大1时,y值减小3,∴y﹣3=k(x+1)+b,解得k=﹣3,∴当x减小3时,把x﹣3代入得,y=﹣3(x﹣3)+b,即y=﹣3x+b+9,∴y的值增大9.故选:C.点评:本题考查的是一次函数的性质,先根据题意求出k的值是解答此题的关键.15.(2015•铜仁地区)正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()A.B.C.D.考点:一次函数的图象;正比例函数的性质.专题:压轴题.分析:因为正比例函数y=kx(k≠0)的函数值y随x的增大而增大,可以判断k>0;再根据k>0判断出y=x+k 图象的大致位置.解答:解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而增大,∴k>0,∴一次函数y=x+k的图象经过一、三、二象限.故选:A.点评:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.16.(2015•随州)若函数,则当函数值y=8时,自变量x的值是()A.±B.4C.±或4 D.4或﹣考点:函数值.专题:计算题.分析:把y=8直接代入函数即可求出自变量的值.解答:解:把y=8代入函数,先代入上边的方程得x=,∵x≤2,x=不合题意舍去,故x=﹣;再代入下边的方程x=4,∵x>2,故x=4,综上,x的值为4或﹣.故选:D.点评:本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.17.(2015•杭州)已知一次函数y=kx﹣k,若y随x的增大而减小,则该函数的图象经过()A.第一,二,三象限B.第一,二,四象限C.第二,三,四象限D.第一,三,四象限考点:一次函数的性质.分析:根据题意判断k的取值,再根据k,b的符号正确判断直线所经过的象限.解答:解:若y随x的增大而减小,则k<0,即﹣k>0,故图象经过第一,二,四象限.故选:B.点评:本题考查的是一次函数的性质,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随的增大而减小.能够根据k,b的符号正确判断直线所经过的象限.18.下列函数①y=πx,②y=2x﹣1,③,④y=2﹣1﹣3x,⑤y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个考点:一次函数的定义.分析:根据一次函数的定义条件进行逐一分析即可.解答:解:①y=πx是一次函数;②y=2x﹣1是一次函数;③y=,自变量次数不为1,不是一次函数;④y=2﹣1﹣3x是一次函数;⑤y=x2﹣1,自变量次数不为1,不是一次函数.故选:B.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为19.(2015•呼和浩特)下面四条直线,其中直线上每个点的坐标都是二元一次方程x﹣2y=2的解是()A.B.C.D.考点:一次函数与二元一次方程(组).分析:根据两点确定一条直线,当x=0,求出y的值,再利用y=0,求出x的值,即可得出一次函数图象与坐标交点,即可得出图象.解答:解:∵x﹣2y=2,∴y=x﹣1,∴当x=0,y=﹣1,当y=0,x=2,∴一次函数y=x﹣1,与y轴交于点(0,﹣1),与x轴交于点(2,0),即可得出C符合要求,故选:C.点评:此题主要考查了一次函数与二元一次方程的关系,将方程转化为函数关系进而得出与坐标轴交点坐标是题关键.20.(2015•枣庄)已知是二元一次方程组的解,则a﹣b的值为()A.﹣1 B.1C.2D.3考点:二元一次方程的解.专题:计算题;压轴题.分析:根据二元一次方程组的解的定义,将代入原方程组,分别求得a、b的值,然后再来求a﹣b的值.解答:解:∵已知是二元一次方程组的解,∴由①+②,得a=2,由①﹣②,得b=3,∴a﹣b=﹣1;故选:A.点评:此题考查了二元一次方程组的解法.二元一次方程组的解法有两种:代入法和加减法,不管哪种方法,的都是“消元”.21.(2015•百色)两条直线y=k1x+b1和y=k2x+b2相交于点A(﹣2,3),则方程组的解是()A.B.C.D.考点:一次函数与二元一次方程(组).专题:计算题.分析:由题意,两条直线y=k i x+b1和y=k2x+b2相交于点A(﹣2,3),所以x=﹣2、y=3就是方程组的解.解答:解:∵两条直线y=k i x+b1和y=k2x+b2相交于点A(﹣2,3),∴x=﹣2、y=3就是方程组的解.∴方程组的解为:.故选:B.点评:本题主要考查了二元一次方程(组)和一次函数的综合问题,两直线的交点就是两直线解析式所组成方组的解,认真体会一次函数与一元一次方程之间的内在联系.22.(2015•东营)关于x,y的二元一次方程组的解也是二元一次方程2x+3y=﹣6的解,则k的值是()A.﹣B.C.D.﹣考点:二元一次方程组的解.专题:计算题.分析:先用含k的代数式表示x、y,即解关于x,y的方程组,再代入2x+3y=﹣6中可得.解答:解:解方程组得:x=7k,y=﹣2k,把x,y代入二元一次方程2x+3y=﹣6,得:2×7k+3×(﹣2k)=﹣6,解得:k=﹣,故选:A.点评:此题考查的知识点是二元一次方程组的解,先用含k的代数式表示x,y,即解关于x,y的方程组,再代2x+3y=6中可得.其实质是解三元一次方程组.23.(2015•南通)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.考点:一次函数与二元一次方程(组).专题:数形结合.分析:由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的析式,联立两个函数解析式所组成的方程组即为所求的方程组.解答:解:根据给出的图象上的点的坐标,(0,﹣1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x﹣1,y=﹣x+2,因此所解的二元一次方程组是.故选:D.点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.24.在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都等于S,又填在图中三格中的数字如图,若要能填成,则()108 13A.S=24 B.S=30 C.S=31 D.S=39考点:二元一次方程的应用.专题:数字问题.分析:如图,b x a108 y 13因为要求每行每列及对角线上三个方格中的数字和都等于S,则得到x+10+y=8+y+13且b+11+a=8+10+a 即可得到S.解答:解:如图,b x a108 y 13∵每行每列及对角线上三个方格中的数字和都等于S.∴x+10+y=8+y+13,∴x=11,∵b+11+a=8+10+a,∴b=7,∴S=b+10+13=30.故选:B.点评:这是一道关于发散性思维的典型题例,可从设未知数入手,找题目里的等量关系,层层深入,进而求解25.(2015•凉山州)为了解某班学生每天使用零花钱的使用情况,张华随机调查了15名同学,结果如下表:每天使用零花钱(单位:元)0 1 3 4 5人数 1 3 5 4 2关于这15名同学每天使用的零花钱,下列说法正确的是()A.众数是5元B.平均数是2.5元C.极差是4元D.中位数是3元考点:极差;加权平均数;中位数;众数.专题:计算题.分析:分别计算该组数据的众数、平均数、极差及中位数后找到正确答案即可.解答:解:∵每天使用3元零花钱的有5人,∴众数为3元;==≈2.93,∵最多的为5元,最少的为0元,∴极差为:5﹣0=5;∵一共有15人,∴中位数为第8人所花钱数,∴中位数为3元.故选:D.点评:本题考查了极差、加权平均数、中位数及众数,在解决此类题目的时候一定要细心,特别是求中位数的候,首先排序,然后确定数据总个数.26.(2015•达州)已知样本数据1,2,4,3,5,下列说法不正确的是()A.平均数是3 B.中位数是4 C.极差是4 D.方差是2考点:算术平均数;中位数;极差;方差.专题:计算题.分析:要求平均数只要求出数据之和再除以总个数即可;根据中位数的定义可求出;对于极差是最大值与最小的差;方差是样本中各数据与样本平均数的差的平方和的平均数解答:解:在已知样本数据1,2,4,3,5中,平均数是3;极差=5﹣1=4;方差=2.所以根据中位数的定义,中位数是3,所以B不正确.故选:B.点评:本题考查平均数和中位数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算平均数即为这组数据的中位数.27.下列说法正确的是()A.为了检验一批零件的质量,从中抽取10件,在这个问题中,10是抽取的样本B.如果x1、x2、…、x n的平均数是,那么样本(x1﹣)+(x1﹣)+…+(x n﹣)=0C.8,9,10,11,11这组数的众数是2D.一组数据的标准差是这组数据的方差的平方考点:算术平均数;总体、个体、样本、样本容量;众数;标准差.专题:压轴题.分析:根据样本及样本容量、平均数和方差、众数的概念,分别判断.解答:解:A、10只是样本容量,10件零件的质量才是样本,故A选项错误;B、等式只要把括号去掉就是这n个数的和与平均数的n倍的差等于0,故B选项正确;C、这组数中出现次数最多的数是11,即它的众数是11,故C选项错误;D、一组数据的标准差是这组数据的方差的算术平方根,故D选项错误.故选:B.点评:本题考查样本及样本容量的概念,众数、平均数、方差等知识.28.(2015•德州)如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3等于()A.55°B.60°C.65°D.70°考点:三角形内角和定理;对顶角、邻补角;平行线的性质.分析:设∠2的对顶角为∠5,∠1在l2上的同位角为∠4,结合已知条件可推出∠1=∠4=40°,∠2=∠5=75°,即得出∠3的度数.解答:解:∵直线l1∥l2,∠1=40°,∠2=75°,∴∠1=∠4=40°,∠2=∠5=75°,∴∠3=65°.故选:C.点评:本题主要考查三角形的内角和定理,平行线的性质和对顶角的性质,关键在于根据已知条件找到有关相的角.29.下列说法正确的是()A.同位角相等B.在同一平面内,如果a⊥b,b⊥c,则a⊥cC.相等的角是对顶角D.在同一平面内,如果a∥b,b∥c,则a∥c考点:平行公理及推论;对顶角、邻补角;平行线的判定.分析:根据平行线的性质和判定以及对顶角的定义进行判断.解答:解:A、只有在两直线平行这一前提下,同位角才相等,故A选项错误;B、在同一平面内,如果a⊥b,b⊥c,则a∥c,故B选项错误;C、相等的角不一定是对顶角,因为对顶角还有位置限制,故C选项错误;D、由平行公理的推论知,故D选项正确.故选:D.点评:本题考查了平行线的性质、判定,对顶角的性质,注意对顶角一定相等,但相等的角不一定是对顶角.30.(2015•襄阳)如图,已知直线AB∥CD,∠DCF=110°且AE=AF,则∠A等于()A.30°B.40°C.50°D.70°考点:三角形内角和定理;平行线的性质;等腰三角形的性质.专题:计算题.分析:根据两直线平行,同旁内角互补得出∠BFC,根据AE=AF可得出∠E=∠EFA,根据三角形的内角和为1可求∠A.解答:解:∵AB∥CD,∴∠DCF+∠BFC=180°,∴∠BFC=70°,∴∠EFA=70°,又∵△AEF中,AE=AF,∴∠E=∠EFA=70°,∴∠A=180°﹣∠BFC﹣∠EFA=40°.故选:B.点评:该题考查了平行线的性质及三角形内角和定理.二、填空题(共30小题)31.(2015•资阳)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=45度.考点:直角三角形全等的判定;全等三角形的性质.分析:根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.解答:解:∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.32.(2015•安顺)下图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是76.考点:勾股定理.分析:通过勾股定理可将“数学风车”的斜边求出,然后可求出风车外围的周长.解答:解:设将AC延长到点D,连接BD,根据题意,得CD=6×2=12,BC=5.∵∠BCD=90°∴BC2+CD2=BD2,即52+122=BD2∴BD=13∴AD+BD=6+13=19∴这个风车的外围周长是19×4=76.故答案为:76.点评:本题考查勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.33.附加题:观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…请你写出有以上规律的第⑤组勾股数:11,60,61.考点:勾股定理的逆定理;勾股数.专题:规律型.分析:勾股定理和了解数的规律变化是解题关键.解答:解:从上边可以发现第一个数是奇数,且逐步递增2,故第5组第一个数是11,又发现第二、第三个数相差为一,故设第二个数为x,则第三个数为x+1,根据勾股定理得:112+x2=(x+1)2,解得x=60,则得第5组数是:11、60、61.故答案为:11、60、61.点评:本题考查了勾股数的概念也是找规律题,发现第一个数是从3,5,7,9,…的奇数.34.(2014•福州)计算:(+1)(﹣1)=1.考点:二次根式的乘除法;平方差公式.专题:计算题.分析:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.果是乘式中两项的平方差(相同项的平方减去相反项的平方).解答:解:(+1)(﹣1)=.故答案为:1.点评:本题应用了平方差公式,使计算比利用多项式乘法法则要简单.35.(2015•成都)若x,y为实数,且,则(x+y)2010的值为1.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:先根据非负数的性质列出方程组,求出x、y的值,然后代入(x+y)2010中求解即可.解答:解:由题意,得:x+2=0,y﹣3=0,解得x=﹣2,y=3;因此(x+y)2010=1.故答案为:1.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.36.(2015•湘西州)对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4=.考点:二次根式的性质与化简.专题:新定义.分析:根据新定义的运算法则a※b=得出.解答:解:12※4===.故答案为:.点评:主要考查了新定义题型,此类题目是近年来的热点,解题关键是严格按照新定义的运算法则进行计算即37.(2015•厦门)计算=.考点:分母有理化.专题:计算题.分析:运用二次根式的乘法法则,将分子的二次根式化为积的形式,约分,比较简便.解答:解:原式==.故答案为:.点评:主要考查了二次根式的化简和二次根式的运算法则.注意最简二次根式的条件是:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数因式.上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式.38.(2015•天津)若a、b都是无理数,且a+b=2,则a,b的值可以是π;2﹣π(填上一组满足条件的值即可).考点:无理数.专题:开放型.分析:由于初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…的数,而本题中b的关系为a+b=2,故确定a后,只要b=2﹣a即可.解答:解:本题答案不唯一.∵a+b=2,∴b=2﹣a.例如a=π,则b=2﹣π.故答案为:π;2﹣π.点评:本题主要考查了无理数的定义和性质,答案不唯一,解题关键是正确理解无理数的概念和性质.。

2021-2022学年北师大版八年级数学上册《第4章一次函数》期末复习易错题型专题测试(附答案)

2021-2022学年北师大版八年级数学上册《第4章一次函数》期末复习易错题型专题测试(附答案)

2021-2022学年北师大版八年级数学上册《第4章一次函数》期末复习易错题型专题测试(附答案)一.选择题(共8小题,满分32分)1.将一次函数y=的图象向左平移2个单位得到的新的函数的表达式()A.y=x+1B.y=x+2C.y=x﹣1D.y=x﹣2 2.成都市双流新城公园是亚洲最大的城市湿地公园,周末小李在这个公园里某笔直的道路上骑车游玩,先前进了a千米,休息了一段时间,又原路返回b千米(b<a),再前进c 千米,则他离起点的距离s与时间t的关系的示意图是()A.B.C.D.3.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中,如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象,则下列结论中不正确的是()A.公园离小明家1600米B.小明出发分钟后与爸爸第一次相遇C.小明在公园停留的时间为5分钟D.小明与爸爸第二次相遇时,离家的距离是960米4.已知一次函数y=kx+b,函数值y随自变量x的增大而减小,且kb<0,则函数y=kx+b 的图象大致是()A.B.C.D.5.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲乙两人间距离为s(单位:千米),甲行驶的时间为(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②乙开车速度是80千米/小时;③出发1.5小时时,乙比甲多行驶了60千米;④出发3小时时,甲乙同时到达终点;其中正确结论的个数是()A.1B.2C.3D.46.宇嘉同学从家出发沿笔直的公路去晨练,他离开家的距离y(米)与时间x(分)的函数关系图象如图所示.下列结论中,不正确的是()A.整个行进过程花了30分钟B.整个行进过程共走了1000米C.在图中停下来休息了5分钟D.返回时速度为100米/分7.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较8.已知直线y=﹣x+与x轴,y轴分别交于A,B两点,在坐标轴上取一点P,使得△P AB是等腰三角形,则符合条件的点P有()个A.4B.6C.7D.8二.填空题(共10小题,满分40分)9.某市出租车白天的收费起步价为7元,即路程不超过3千米时收费7元,超过部分每千米收费1.2元,如果乘客白天乘坐出租车的路程为x(x>3)千米,乘车费为y元,那么y与x之间的关系为.10.某地出租车行驶里程x(km)与所需费用y(元)的关系如图.若某乘客一次乘坐出租车里程12km,则该乘客需支付车费元.11.我们知道:当x=2时,不论k取何实数,函数y=k(x﹣2)+3的值为3,所以直线y =k(x﹣2)+3一定经过定点(2,3);同样,直线y=(k﹣2)x+3k一定经过的定点为.12.如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单位长度后所得直线l′的函数解析式为.13.如图,一次函数y=﹣x+8的图象与x轴、y轴分别交于A、B两点.P是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是.14.一次函数y=2x﹣6的图象与两坐标轴所围成的三角形面积为.15.如图是表示的是甲、乙两人运动的图象,图中s(米)和t(秒)分别表示运动的路程和时间,根据图象判断,快者的速度比慢者的速度每秒快米.16.若一次函数y=kx+3与x轴、y轴分别交于点A、B,且三角形OAB的面积是6,则k =.17.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是.18.直线y=﹣x+4与x轴、y轴分别交于点A、B,M是y轴上一点,若将△ABM沿AM 折叠,点B恰好落在x轴上,则点M的坐标为.三.解答题(共6小题,满分48分)19.如图,在平面直角坐标系xOy中,直线y=﹣x+8分别交x轴、y轴于点A、B,将正比例函数y=2x的图象沿y轴向下平移3个单位长度得到直线l,直线l分别交x轴、y 轴于点C、D,交直线AB于点E.(1)直接写出直线l对应的函数表达式;(2)在直线AB上存在点F(不与点E重合),使BF=BE,求点F的坐标;(3)在x轴上是否存在点P,使∠PDO=2∠PBO?若存在,求点P的坐标;若不存在,请说明理由.20.周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.(1)小明骑电动自行车的速度为千米/小时,在甲地游玩的时间为小时;(2)小明从家出发多少小时的时候被妈妈追上?此时离家多远?21.一条笔直的公路上有甲、乙两地相距2400米,王明步行从甲地到乙地,每分钟走96米,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地设他们同时出发,运动的时间为t(分),与乙地的距离为s(米),图中线段EF,折线OABD分别表示两人与乙地距离s和运动时间t之间的函数关系图象(1)李越骑车的速度为米/分钟;F点的坐标为;(2)求李越从乙地骑往甲地时,s与t之间的函数表达式;(3)求王明从甲地到乙地时,s与t之间的函数表达式;(4)求李越与王明第二次相遇时t的值.22.已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数y=x的图象相交于点(2,a),求(1)a的值;(2)k,b的值;(3)这两个函数图象与x轴所围成的三角形的面积.23.有一进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x (单位:分)之间的关系如图所示:(1)求0≤x≤4时y随x变化的函数关系式;(2)当4<x≤12时,求y与x的函数解析式;(3)每分钟进水、出水各是多少升?24.如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣x+b过点C.(1)求m和b的值;(2)直线y=﹣x+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x 轴负方向运动.设点P的运动时间为t秒.①若点P在线段DA上,且△ACP的面积为10,求t的值;②是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.参考答案一.选择题(共8小题)1.解:∵一次函数y=的图象向左平移2个单位,∴平移后所得图象对应的函数关系式为:y=﹣(x+2)+2,即y=﹣x﹣1.故选:C.2.解:由题意,得路程先增加,路程不变,路程减少,路程又增加,故D符合题意;故选:D.3.解:由图可得,公园离小明家1600米,故A选项正确;∵小明从家出发到公园晨练时,速度为1600÷10=160米/分,小明爸爸从公园按小明的路线返回家中的速度为1600÷50=32米/分,∴小明出后与爸爸第一次相遇的时间为1600÷(160+32)=分钟,故B选项正确;由图可得,30分钟后小明与爸爸第二次相遇时,离家的距离是1600﹣30×32=640米,故D选项错误;∵小明在与爸爸第二次相遇后回到家的时间为:40﹣30=10分,∴小明在公园锻炼一段时间后按原路返回的速度为640÷10=64米/分,∴40﹣1600÷64=15分,∴小明在公园停留的时间为15﹣10=5分钟,故C选项正确;故选:D.4.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选:C.5.解:由图象可得,当t=1时,s=0,即出发1小时时,甲乙在途中相遇,故①正确,甲的速度是:120÷3=40千米/时,则乙的速度是:120÷1﹣40=80千米/h,故②正确;出发1.5小时时,乙比甲多行驶路程是:1.5×(80﹣40)=60千米,故③正确;在1.5小时时,乙到达终点,甲在3小时时到达终点,故④错误,故选:C.6.解:①∵当y=0时,x=0或x=30,∴整个行进过程花了30分钟,A正确;②观察函数图象可知,y的最大值为1000,∵1000×2=2000(米),∴整个行进过程共走了2000米,B错误;③∵15﹣10=5(分钟),∴在途中停下来休息了5分钟,C正确;④∵1000÷(30﹣20)=100(米/分),∴返回时速度为100米/分,D正确.故选:B.7.解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.8.解:如图所示,∵直线y=﹣x+与x轴,y轴分别交于A,B两点,∴A(1,0),B(0,),(1)当AB是底边时,作AB的垂直平分线,∵OA≠OB,∴AB的垂直平分线与x轴,y轴都有交点,此时有2个;(2)当AB是腰时,①以A为圆心,以AB为半径画弧,和x轴交于2点,和y轴交于2点(点B除外),即有3个;②以B为圆心,AB为半径画弧,和x轴交于2点(点A除外),和y轴交于2点,即有3个.其中有3个点,即(﹣1,0)重合.共6个.故选:B.二.填空题(共10小题)9.解:依据题意得:y=7+1.2(x﹣3)=1.2x+3.4,故答案为:y=1.2x+3.4,10.解:由图象知,y与x的函数关系为一次函数,并且经过点(2,5)、(4,8),设该一次函数的解析式为y=kx+b,则有:,解得:,∴y=x+2.将x=12代入一次函数解析式,得y=18+2=20,故出租车费为20元.故答案为:20.11.解:根据题意,y=(k﹣2)x+3k可化为:y=(x+3)k﹣2x,∴当x=﹣3时,不论k取何实数,函数y=(x+3)k﹣2x的值为6,∴直线y=(k﹣2)x+3k一定经过的定点为(﹣3,6),故答案为:(﹣3,6).12.解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,过A作AC⊥OC 于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB=,∴OC=,由此可知直线l经过(,3),设直线l为y=kx,则3=k,k=,∴直线l解析式为y=x,∴直线l向右平移3个单位长度后所得直线l′的函数解析式为y=(x﹣3),即y=x ﹣,故答案为:y=x﹣.13.解:由一次函数y=﹣x+8的图象与x轴、y轴分别交于A、B两点,可得AO=6,BO=8,AB=10,分两种情况:①当点P在OA上时,由O与C关于PB对称,可得OP=CP,BC=OB=8,设OP=CP=x,则AP=6﹣x,AC=10﹣8=2,在Rt△ACP中,由勾股定理可得x2+22=(6﹣x)2,解得x=,∴P(,0);②当点P在AO延长线上时,由O与C关于PB对称,可得OP=CP,BC=OB=8,设OP=CP=x,则AP=6+x,AC=10+8=18,在Rt△ACP中,由勾股定理可得x2+182=(6+x)2,解得x=24,∴P(﹣24,0);故答案为:(,0)或(﹣24,0).14.解:∵令x=0,则y=﹣6,令y=0,则x=3,∴一次函数y=2x﹣1的图象与两坐标轴的交点分别为(0,﹣6),(3,0),∴一次函数y=2x﹣1的图象与两坐标轴围成三角形的面积=×3×6=9.故答案为:9.15.解:∵慢者8秒走了64﹣12=52米,快者8秒走了64米,∴快者每秒走:64÷8=8m,慢者每秒走:52÷8=6.5m,所以8﹣6.5=1.5m.故答案为:1.5.16.解:(1)当x=0时,y=3,∴B(0,3),∴OB=3.∵•OA•OB=6,∴3OA=12,∴OA=4,∴A(±4,0).∴0=±4k+3,∴k=±,故答案为±17.解:∵点B1(1,1),B2(3,2),∴A1(0,1)A2(1,2)A3(3,4),∴直线y=kx+b(k>0)为y=x+1,∴Bn的横坐标为A n+1的横坐标,纵坐标为An的纵坐标又A n的横坐标数列为An=2n﹣1﹣1,所以纵坐标为2n﹣1,∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n﹣1,2n﹣1).故答案为:(2n﹣1,2n﹣1).18.解:如图所示,当点M在y轴正半轴上时,设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,则有AB=AC,由直线y=﹣x+4可得,A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,∴CO=AC﹣AO=5﹣3=2,∴点C的坐标为(﹣2,0).设M点坐标为(0,b),则OM=b,CM=BM=4﹣b,∵CM2=CO2+OM2,∴(4﹣b)2=22+b2,∴b=,∴M(0,),如图所示,当点M在y轴负半轴上时,OC=OA+AC=3+5=8,设M点坐标为(0,b),则OM=﹣b,CM=BM=4﹣b,∵CM2=CO2+OM2,∴(4﹣b)2=82+b2,∴b=﹣6,∴M点(0,﹣6),故答案为:(0,)或(0,﹣6).三.解答题(共6小题)19.解:(1)∵l是y=2x向下平移3个单位所得,∴l:y=2x﹣3,(2)∵,解得:,∴E(4,5),∵BF=BE,且F不与E重合,∴F在y轴左侧,又∵y=﹣+8,∴当x=0时,y=8,B(0,8),∴BE==5=BF,设F(x0,﹣x0+8),∴BF==5,解得x0=﹣4,∴F(﹣4,11).(3)由图可知,作PG=PD,G在y轴上,∴∠PGO=∠PDO,又∵∠PDO=2∠PBO,∠PGO=∠PBO+∠BPG,∴∠BPG=∠PBG=∠PDO,∴BG=PG=PD,①P在x轴正半轴,∵l:y=2x﹣3,∴当x0时,y=﹣3,即D(0,﹣3),∴OD=3,∴OG=OD=3,则BF=8﹣3=5=PF,∴OP==4,∴P(4,0).②若P在x轴负半轴,与①同理,P(﹣4,0).综上所述P(4,0),(﹣4,0).20.解:(1)由图象得在甲地游玩的时间是1﹣0.5=0.5(h),小明骑车速度:10÷0.5=20(km/h),故答案为:20,0.5.(2)如图,妈妈驾车速度:20×3=60(km/h)设直线OA的解析式为y=kx(k≠0),则10=0.5k,解得:k=20,故直线OA的解析式为:y=20x.∵小明走OA段与走BC段速度不变,∴OA∥BC,设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=﹣10,∴y=20x﹣10,设直线DE解析式为y=60x+b2,把点D(,0)代入得:b2=﹣80,∴y=60x﹣80,∴,解得:,∴F(1.75,25).答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km.21.解:(1)由图象可得,李越骑车的速度为:2400÷10=240米/分钟,2400÷96=25,所以F点的坐标为(25,0).故答案为:240;(25,0);(2)设李越从乙地骑往甲地时,s与t之间的函数表达式为s=kt,2400=10k,得k=240,即李越从乙地骑往甲地时,s与t之间的函数表达式为s=240t,故答案为:s=240t;(3)设王明从甲地到乙地时,s与t之间的函数表达式为s=kt+2400,根据题意得,25k+2400=0,解得k=﹣96,所以王明从甲地到乙地时,s与t之间的函数表达式为:s=﹣96t+2400;(4)根据题意得,240(t﹣2)﹣96t=2400,解得t=20.答:李越与王明第二次相遇时t的值为20.22.解:(1)由题知,把(2,a)代入y=x,解得a=1;(2)由题意知,把点(﹣1,﹣5)及点(2,a)代入一次函数解析式得:﹣k+b=﹣5,2k+b=a,又由(1)知a=1,解方程组得:k=2,b=﹣3;(3)由(2)知一次函数解析式为:y=2x﹣3,直线y=2x﹣3与x轴交点坐标为(,0)∴所求三角形面积=×1×=.23.解:设y=kx.∵图象过(4,20),∴4k=20,∴k=5.∴y=5x(0≤x≤4);(2)设y=kx+b.∵图象过(4,20)、(12,30),∴,解得:,∴y=x+15 (4≤x≤12);(3)根据图象,每分钟进水20÷4=5升,设每分钟出水m升,则5×8﹣8m=30﹣20,解得:m=,∴每分钟进水、出水各是5升、升.24.解:(1)把点C(2,m)代入直线y=x+2中得:m=2+2=4,∴点C(2,4),∵直线y=﹣x+b过点C,4=﹣+b,b=5;(2)①由题意得:PD=t,y=x+2中,当y=0时,x+2=0,x=﹣2,∴A(﹣2,0),y=﹣x+5中,当y=0时,﹣x+5=0,x=10,∴D(10,0),∴AD=10+2=12,即0≤t≤12,∵△ACP的面积为10,∴•4=10,t=7,则t的值7秒;②存在,分三种情况:i)当AC=CP时,如图1,过C作CE⊥AD于E,∴PE=AE=4,∴PD=12﹣8=4,即t=4;ii)当AC=AP时,如图2,AC=AP1=AP2==4,∴DP1=t=12﹣4,DP2=t=12+4;iii)当AP=PC时,如图3,∵OA=OB=2∴∠BAO=45°∴∠CAP=∠ACP=45°∴∠APC=90°∴AP=PC=4∴PD=12﹣4=8,即t=8;综上,当t=4秒或(12﹣4)秒或(12+4)秒或8秒时,△ACP为等腰三角形.。

【精选】北师大版数学八年级上册 轴对称解答题易错题(Word版 含答案)

【精选】北师大版数学八年级上册 轴对称解答题易错题(Word版 含答案)

【精选】北师大版数学八年级上册轴对称解答题易错题(Word版含答案)一、八年级数学轴对称解答题压轴题(难)1.如图,在ABC△中,已知AD是BC边上的中线,E是AD上一点,且BE AC=,延长BE交AC于点F,求证:AF EF=.【答案】证明见解析【解析】【分析】延长AD到点G,使得AD DG=,连接BG,结合D是BC的中点,易证△ADC和△GDB全等,利用全等三角形性质以及等量代换,得到△AEF中的两个角相等,再根据等角对等边证得AE=EF.【详解】如图,延长AD到点G,延长AD到点G,使得AD DG=,连接BG.∵AD是BC边上的中线,∴DC DB=.在ADC和GDB△中,AD DGADC GDBDC DB=⎧⎪∠=∠⎨⎪=⎩(对顶角相等),∴ADC≌GDB△(SAS).∴CAD G∠=∠,BG AC=.又BE AC=,∴BE BG=.∴BED G ∠=∠.∵BED AEF ∠=∠∴AEF CAD ∠=∠,即AEF FAE ∠=∠∴AF EF =.【点睛】本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键. 2.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.(1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ∆,若2OA =,4OB =,试求C 点的坐标;(2)如图2,若点A 的坐标为()23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以B 为顶点,BA 为腰作等腰Rt ABD ∆.试问:当B 点沿y 轴负半轴向下运动且其他条件都不变时,整式2253m n +-的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ∆,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.【答案】(1) C(-6,-2);(2)不发生变化,值为3-3)EN=12(EM-ON),证明见详解. 【解析】【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ≅,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;(2)作DP ⊥OB 于点P ,可以证明AOB BPD ≅,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-3-(3)作BH ⊥EB 于点B ,由条件可以得出∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ≅,则GM=ON,就有EM-ON=EM-GM=EG,最后由平行线分线段成比例定理就可得出EN=12 (EM-ON).【详解】(1)如图(1)作CQ⊥OA于Q,∴∠AQC=90°,∵ABC△为等腰直角三角形,∴AC=AB,∠CAB=90°,∴∠QAC+∠OAB=90°,∵∠QAC+∠ACQ=90°,∴∠ACQ=∠BAO,又∵AC=AB,∠AQC=∠AOB,∴AQC BOA(AAS),∴CQ=AO,AQ=BO,∵OA=2,OB=4,∴CQ=2,AQ=4,∴OQ=6,∴C(-6,-2).(2)如图(2)作DP⊥OB于点P,∴∠BPD=90°,∵ABD△是等腰直角三角形,∴AB=BD,∠ABD=∠ABO+∠OBD=90°,∵∠OBD+∠BDP=90°,∴∠ABO=∠BDP,又∵AB=BD,∠AOB=∠BPD =90°, ∴AOB BPD ≅∴AO=BP ,∵BP=OB -PO=m-(-n)=m+n,∵A ()23,0-,∴OA=23,∴m+n=23,∴当点B 沿y 轴负半轴向下运动时,AO=BP=m+n=23,∴整式2253m n +-的值不变为3-.(3)()12EN EM ON =- 证明:如图(3)所示,在ME 上取一点G 使得MG=ON,连接BG 并延长,交x 轴于H.∵OBM 为等边三角形,∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°,∴EO=MO,∠EBM=105°,∠1=30°,∵OE=OB,∴OE=OM=BM,∴∠3=∠EMO=15°,∴∠BEM=30°,∠BME=45°,∵OF⊥EB,∴∠EOF=∠BME,∴ENO BGM ≅,∴BG=EN,∵ON=MG,∴∠2=∠3,∴∠2=15°,∴∠EBG=90°,∴BG=12EG, ∴EN=12EG, ∵EG=EM-GM,∴EN=12(EM-GM),∴EN=12(EM-ON).【点睛】本题考查了等腰直角三角形的性质,等边三角形的性质,等腰三角形的性质,三角形的外角与内角的关系,全等三角形的判定与性质,平行线分线段成比例定理的运用.3.再读教材:宽与长的比是5-1(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形 BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.【答案】(15(2)见解析;(3)见解析; (4) 见解析.【解析】分析:(1)由勾股定理计算即可;(2)根据菱形的判定方法即可判断;(3)根据黄金矩形的定义即可判断;(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.详解:(1)如图3中.在Rt△ABC中,AB=22AC BC+=2212+=5.故答案为5.(2)结论:四边形BADQ是菱形.理由如下:如图③中,∵四边形ACBF是矩形,∴BQ∥AD.∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.(3)如图④中,黄金矩形有矩形BCDE,矩形MNDE.∵AD=5.AN=AC=1,CD=AD﹣AC=5﹣1.∵BC=2,∴CDBC=512-,∴矩形BCDE是黄金矩形.∵MNDN=15+=51-,∴矩形MNDE是黄金矩形.(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.长GH51,宽HE=35点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.4.如果一个三角形能被一条线段割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,ABC ∆是等腰锐角三角形,()AB AC AB BC =>,若ABC ∠的角平分线BD 交AC 于点D ,且BD 是ABC ∆的一条特异线,则BDC ∠= 度.(2)如图2,ABC ∆中,2B C ∠=∠,线段AC 的垂直平分线交AC 于点D ,交BC 于点E ,求证:AE 是ABC ∆的一条特异线;(3)如图3,若ABC ∆是特异三角形,30A ∠=,B 为钝角,不写过程,直接写出所有可能的B 的度数.【答案】(1)72;(2)证明见解析;(3)∠B 度数为:135°、112.5°或140°.【解析】【分析】(1)根据等腰三角形性质得出∠C=∠ABC=∠BDC=2∠A ,据此进一步利用三角形内角和定理列出方程求解即可;(2)通过证明△ABE 与△AEC 为等腰三角形求解即可;(3)根据题意分当BD 为特异线、AD 为特异线以及CD 为特异线三种情况分类讨论即可.【详解】(1)∵AB=AC ,∴∠ABC=∠C ,∵BD 平分∠ABC ,∴∠ABD=∠CBD=12∠ABC , ∵BD 是△ABC 的一条特异线,∴△ABD 与△BCD 为等腰三角形,∴AD=BD=BC ,∴∠A=∠ABD ,∠C=∠BDC ,∴∠ABC=∠C=∠BDC ,∵∠BDC=∠A+∠ABD=2∠A ,设∠A=x ,则∠C=∠ABC=∠BDC=2x ,在△ABC 中,∠A+∠ABC+∠C=180°,即:x+2x+2x=180°,∴x=36°,∴∠BDC=72°,故答案为:72;(2)∵DE 是线段AC 的垂直平分线,∴EA=EC,∴△EAC为等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,∴△EAB为等腰三角形,∴AE是△ABC的一条特异线;(3)如图3,当BD是特异线时,如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°+15°=135°;如果AD=AC,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°;如果AD=DB,DC=DB,则∠ABC=∠ABD+∠DBC=30°+60°=90°,不符合题意,舍去;如图4,当AD是特异线时,AB=BD,AD=DC,则:∠ABC=180°−20°−20°=140°;当CD为特异线时,不符合题意;综上所述,∠B度数为:135°、112.5°或140°.【点睛】本题主要考查了等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.5.如图,在等边ABC∆中,点D,E分别是AC,AB上的动点,且AE CD=,BD 交CE于点P.(1)如图1,求证120BPC︒∠=;(2)点M是边BC的中点,连接PA,PM.①如图2,若点A,P,M三点共线,则AP与PM的数量关系是;②若点A,P,M三点不共线,如图3,问①中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.【答案】(1)证明过程见详解;(2)①2AP PM=;②结论成立,证明见详解【解析】【分析】(1)先证明()AEC CDB SAS≌,得出对应角相等,然后利用四边形的内角和和对顶角相等即可得出结论;(2)①2AP PM=;由等边三角形的性质和已知条件得出AM⊥BC,∠CAP=30°,可得PB=PC,由∠BPC=120°和等腰三角形的性质可得∠PCB=30°,进而可得AP=PC,由30°角的直角三角形的性质可得PC=2PM,于是可得结论;②延长BP至D,使PD=PC,连接AD、CD,根据SAS可证△ACD≌△BCP,得出AD=BP,∠ADC =∠BPC=120°,然后延长PM至N,使MN=MP,连接CN,易证△CMN≌△BMP (SAS),可得CN=BP=AD,∠NCM=∠PBM,最后再根据SAS证明△ADP≌△NCP,即可证得结论.【详解】(1)证明:因为△ABC为等边三角形,所以60A ACB∠=∠=︒∵AC BCA ACBAE CD=⎧⎪∠=∠⎨⎪=⎩,∴()AEC CDB SAS≌,∴AEC CDB∠=∠,在四边形AEPD中,∵360AEC EPD PDA A∠+∠+∠+∠=︒,∴18060360AEC EPD CDB∠+∠+︒-∠+︒=︒,∴120EPD∠=︒,∴120BPC∠=︒;(2)①如图2,∵△ABC是等边三角形,点M是边BC的中点,∴∠BAC =∠ABC =∠ACB =60°,AM ⊥BC ,∠CAP =12∠BAC =30°,∴PB =PC , ∵∠BPC =120°,∴∠PBC =∠PCB =30°,∴PC =2PM ,∠ACP =60°﹣30°=30°=∠CAP ,∴AP =PC ,∴AP =2PM ;故答案为:2AP PM ;②AP =2PM 成立,理由如下:延长BP 至D ,使PD =PC ,连接AD 、CD ,如图4所示:则∠CPD =180°﹣∠BPC =60°, ∴△PCD 是等边三角形,∴CD =PD =PC ,∠PDC =∠PCD =60°,∵△ABC 是等边三角形,∴BC =AC ,∠ACB =60°=∠PCD ,∴∠BCP =∠ACD ,∴△ACD ≌△BCP (SAS ),∴AD =BP ,∠ADC =∠BPC =120°,∴∠ADP =120°﹣60°=60°,延长PM 至N ,使MN =MP ,连接CN ,∵点M 是边BC 的中点,∴CM =BM ,∴△CMN ≌△BMP (SAS ),∴CN =BP =AD ,∠NCM =∠PBM ,∴CN ∥BP ,∴∠NCP +∠BPC =180°,∴∠NCP =60°=∠ADP ,在△ADP 和△NCP 中,∵AD=NC ,∠ADP =∠NCP ,PD=PC ,∴△ADP ≌△NCP (SAS ),∴AP =PN =2CM ;【点睛】本题是三角形的综合题,主要考查了等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.6.如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在 x 正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .【解析】【分析】(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;(2)证明△CBA≌△QBD,根据全等三角形的性质得到∠BDQ=∠BAC=60°,求出CD,得到答案;(3)以OA 为对称轴作等边△ADE,连接EP,并延长EP 交x 轴于点F.证明点P 在直线EF上运动,根据垂线段最短解答.【详解】解:(1)作∠DCH =10°,CH 交 BD 的延长线于 H ,∵∠BAO =60°,∴∠ABO =30°,∴AB =2OA =6,∵∠BAO =60°,∠BCO =40°,∴∠ABC =180°﹣60°﹣40°=80°,∵BD 是△ABC 的角平分线,∴∠ABD =∠CBD =40°,∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°,∴DB =DC ,在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ),∴OB =HC ,在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ),∴CF=AB=6,故答案为6;(2)∵△ABD 和△BCQ 是等边三角形,∴∠ABD =∠CBQ =60°,∴∠ABC =∠DBQ ,在△CBA 和△QBD 中,BA BDABC DBQBC BQ=⎧⎪∠=∠⎨⎪=⎩∴△CBA≌△QBD(SAS),∴∠BDQ=∠BAC=60°,∴∠PDO=60°,∴PD=2DO=6,∵PD=23DC,∴DC=9,即 OC=OD+CD=12,∴点 C的坐标为(12,0);(3)如图3,以 OA为对称轴作等边△ADE,连接 EP,并延长 EP交 x 轴于点F.由(2)得,△AEP≌△ADB,∴∠AEP=∠ADB=120°,∴∠OEF=60°,∴OF=OA=3,∴点P在直线 EF上运动,当 OP⊥EF时,OP最小,∴OP=12OF=32则OP的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.7.如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC =20°,求∠AEB 的度数;(3)连结CE ,写出AE ,BE ,CE 之间的数量关系,并证明你的结论.【答案】(1)补图见解析;(2)60°;(3)CE +AE =BE .【解析】【分析】(1)根据题意补全图形即可;(2)根据轴对称的性质可得AC =AD ,∠PAC =∠PAD=20°,根据等边三角形的性质可得AC =AB ,∠BAC =60°,即可得AB =AD ,在△ABD 中,根据等腰三角形的性质和三角形的内角和定理求得∠D 的度数,再由三角形外角的性质即可求得∠AEB 的度数;(3)CE +AE =BE ,如图,在BE 上取点M 使ME =AE ,连接AM ,设∠EAC =∠DAE =x ,类比(2)的方法求得∠AEB =60°,从而得到△AME 为等边三角形,根据等边三角形的性质和SAS 即可判定△AEC ≌△AMB ,根据全等三角形的性质可得CE =BM ,由此即可证得CE +AE =BE .【详解】(1)如图:(2)在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠PAC =∠PAD ,∴AB =AD ∴∠ABD =∠D∵∠PAC =20°∴∠PAD =20°∴∠BAD =∠BAC+∠PAC +∠PAD =100°()1180402D BAD ︒︒∴∠=-∠=.∴∠AEB=∠D+∠PAD=60°(3)CE+AE=BE.在BE上取点M使ME=AE,连接AM,在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AC=AD,∠EAC=∠EAD,设∠EAC=∠DAE=x.∵AD=AC=AB,∴()11802602D BAC x x︒︒∠=-∠-=-∴∠AEB=60-x+x=60°.∴△AME为等边三角形.∴AM=AE,∠MAE=60°,∴∠BAC=∠MAE=60°,即可得∠BAM=∠CAE.在△AMB和△AEC中,AB ACBAM CAEAM AE=⎧⎪∠=∠⎨⎪=⎩,∴△AMB≌△AEC.∴CE=BM.∴CE+AE=BE.【点睛】本题是三角形综合题,主要考查了轴对称的性质、三角形的内角和定理、等边三角形的性质及全等三角形的判定与性质等知识点,解决第三问时,通过做辅助线,把AE转化到BE 上,再证明CE=BM即可得结论.8.已知ABC为等边三角形,E为射线AC上一点,D为射线CB上一点,AD DE=.(1)如图1,当点E在AC的延长线上且CD CE=时,AD是ABC的中线吗?请说明理由;(2)如图2,当点E在AC的延长线上时,写出,,AB BD AE之间的数量关系,请说明理由;(3)如图3,当点D在线段CB的延长线上,点E在线段AC上时,请直接写出,,AB BD AE的数量关系.+=,理由详见【答案】(1)AD是ABC的中线,理由详见解析;(2)AB BD AE=+.解析;(3)AB AE BD【解析】【分析】(1)利用△ABC是等边三角形及CD=CE可得∠CDE=∠E=30°,利用AD=DE,证明∠CAD=∠E =30°,即可解决问题.(2)在AB上取BH=BD,连接DH,证明AHD≌△DCE得出DH=CE,得出AE=AB+BD,(3)在AB上取AF=AE,连接DF,利用△AFD≌△EFD得出角的关系,得出△BDF是等腰三角形,根据边的关系得出结论AB=BD+AE.【详解】(1)解:如图1,结论:AD是△ABC的中线.理由如下:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∵CD=CE,∴∠CDE=∠E,∵∠ACD=∠CDE+∠E=60°,∴∠E=30°,∵DA=DE,∴∠DAC=∠E=30°,∵∠BAC=60°,∴∠DAB=∠CAD,∵AB=AC,∴BD=DC,∴AD是△ABC的中线.(2)结论:AB+BD=AE,理由如下:如图2,在AB上取BH=BD,连接DH,∵BH=BD ,∠B=60°,∴△BDH 为等边三角形,AB-BH=BC-BD ,∴∠BHD=60°,BD=DH ,AH=DC ,∵AD=DE ,∴∠E=∠CAD ,∴∠BAC-∠CAD=∠ACB-∠E∴∠BAD=∠CDE ,∵∠BHD=60°,∠ACB=60°,∴180°-∠BHD=180°-∠ACB,∴∠AHD=∠DCE ,∴在△AHD 和△DCE ,BAD CDE AHD DCE AD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AHD ≌△DCE (AAS ),∴DH=CE ,∴BD=CE ,∴AE=AC+CE=AB+BD .(3)结论:AB=BD+AE ,理由如下:如图3,在AB 上取AF=AE ,连接DF ,∵△ABC 为等边三角形,∴∠BAC=∠ABC=60°,∴△AFE 是等边三角形,∴∠FAE=∠FEA=∠AFE=60°,∴EF ∥BC ,∴∠EDB=∠DEF ,∵AD=DE ,∴∠DEA=∠DAE ,∴∠DEF=∠DAF ,∵DF=DF ,AF=EF ,在△AFD 和△EFD 中,AD DE DF DF AF EF =⎧⎪=⎨⎪=⎩, ∴△AFD ≌△EFD (SSS )∴∠ADF=∠EDF ,∠DAF=∠DEF ,∴∠FDB=∠EDF+∠EDB ,∠DFB=∠DAF+∠ADF ,∵∠EDB=∠DEF ,∴∠FDB=∠DFB ,∴DB=BF ,∵AB=AF+FB ,∴AB=BD+AE .【点睛】本题属于三角形综合题,考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是正确作出辅助线,运用三角形全等找出对应的线段.9.小明在学习了“等边三角形”后,激发了他的学习和探究的兴趣,就想考考他的朋友小崔,小明作了一个等边ABC ∆,如图1,并在边AC 上任意取了一点F (点F 不与点A 、点C 重合),过点F 作FH AB ⊥交AB 于点H ,延长CB 到G ,使得BG AF =,连接FG 交AB 于点l .(1)若10AC =,求HI 的长度;(2)如图2,延长BC 到D ,再延长BA 到E ,使得AE BD =,连接ED ,EC ,求证:ECD EDC ∠=∠.【答案】(1)HI =5;(2)见解析.【解析】【分析】(1)作FP∥BC交AB于点P,证明APF∆是等边三角形得到AH=PH,再证明PFI BGI∆≅∆得到PI=BI,于是可得HI =12AB,即可求解;(2)延长BD至Q,使DQ=AB,连结EQ,就可以得出BE=BQ,得出△BEQ是等边三角形,就可以得出BE=QE,得出△BCE≌△QDE就可以得出结论.【详解】解:如图1,作FP∥BC交AB于点P,∵ABC∆是等边三角形,∴∠ABC=∠A=60°,∵FP∥BC,∴∠APF=∠ABC=60°, ∠PFI=∠BGI,∴∠APF=∠A=60°,∴APF∆是等边三角形,∴PF=AF,∵FH AB⊥,∴AH=PH,∵AF=BG,∴PF=BG,∴在PFI∆和BGI∆中,PIF BIGPFI BGIPF BG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴PFI BGI∆≅∆,∴PI=BI,∴PI+PH=BI+AH=12AB,∴HI=PI+PH =12AB=1102⨯=5;(2)如图2,延长BD至Q,使DQ=AB,连结EQ,∵△ABC 是等边三角形,∴AB=BC=AC ,∠B=60°.∵AE=BD ,DQ=AB ,∴AE+AB=BD+DQ ,∴BE=BQ .∵∠B=60°,∴△BEQ 为等边三角形,∴∠B=∠Q=60°,BE=QE .∵DQ=AB ,∴BC=DQ .∴在△BCE 和△QDE 中,BC DQ B Q BE QE =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△QDE (SAS ),∴EC=ED .∴∠ECD=∠EDC.【点睛】本题考查了等边三角形的判定及性质的运用,全等三角形的判定及性质的运用,解答时作出相应辅助线构造全等三角形是关键.本题难度较大,需要有较强的综合能力.10.如图1,△ABD ,△ACE 都是等边三角形,(1)求证:△ABE ≌△ADC ;(2)若∠ACD=15°,求∠AEB 的度数;(3)如图2,当△ABD 与△ACE 的位置发生变化,使C 、E 、D 三点在一条直线上,求证:AC ∥BE .【答案】(1)见解析(2) ∠AEB=15°(3) 见解析【解析】试题分析:(1)由等边三角形的性质可得AB=AD,AE=AC,∠DAB=∠EAC=60°,即可得∠DAC=∠BAE,利用SAS即可判定△ABE≌△ADC;(2)根据全等三角形的性质即可求解;(3)由(1)的方法可证得△ABE≌△ADC,根据全等三角形的性质和等边三角形的性质可得∠AEB=∠ACD =60°,即可得∠AEB=∠EAC,从而得AC∥BE.试题解析:(1)证明:∵△ABD,△ACE都是等边三角形∴AB=AD,AE=AC,∠DAB=∠EAC=60°,∴∠DAC=∠BAE,在△ABE和△ADC中,∴,∴△ABE≌△ADC;(2)由(1)知△ABE≌△ADC,∴∠AEB=∠ACD,∵∠ACD=15°,∴∠AEB=15°;(3)同上可证:△ABE≌△ADC,∴∠AEB=∠ACD,又∵∠ACD=60°,∴∠AEB=60°,∵∠EAC=60°,∴∠AEB=∠EAC,∴AC∥BE.点睛:本题主要考查了等边三角形的性质、全等三角形的判定及性质,证得△ABE≌△ADC 是解决本题的关键.。

北师大版八年级数学上册易错题复习整理.doc

北师大版八年级数学上册易错题复习整理.doc

1、一支蜡烛长20厘米,.点燃后每小时燃烧5厘米,燃烧时剩下的高度n (厘米)与燃烧时间t(时)的函数关系的图象是()AB C D 2、已知正比例函数kx y (0k )的函数值y 随x 的增大而增大,则一次函数k x y 的图象大致是()A B CD 3、甲、乙两人同时沿着一条笔直的公路朝同一方向前行,开始时,乙在甲前2千米处,甲、乙两人行走的路程S (千米)与时间t (时)的函数图象(如图所示),下列说法正确的是()A 、乙的速度为4千米/时B 、经过1小时,甲追上乙C 、经过0.5小时,乙行走的路程约为2千米D 、经过 1.5小时,乙在甲的前面4、当14a 的值为最小值时, a 的取值为()A 、-1B 、0C 、41D 、1 5、若错误!未找到引用源。

是169的算术平方根,错误!未找到引用源。

是121的负的平方根,则(错误!未找到引用源。

+错误!未找到引用源。

)2的平方根为()A. 2B. 4C.±2D. ±46、满足-3<x <5的整数x 是()A 、-2,-1,0,1,2,3B 、-1,0,1,2,3C 、-2,-1,0,1,2D 、-1,0,1,27、如图,有一圆柱,它的高等于8cm ,底面直径等于4cm (=3).在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A 相对的B 点处的食物,需要爬行的最短路程大约等于()A .10cmB .12 cmC .19cmD .20cm8、直线ykx b 经过点(1,)A m ,(,1)B m (1)m ,则必有()A. 0,0k b .0,0B kb .0,0C k b .0,0D k b 9、如果0ab ,0ac ,则直线a c y x bb 不通过()A .第一象限B .第二象限C .第三象限D .第四象限10、如图,两直线1y kx b 和2y bx k 在同一坐标系内图象的位置可能是()x y xy x y xy O O O O S(千米)1234 0.51乙甲Ot (时)11、某航空公司规定,旅客乘机所携带行李的质量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为()A. 20kg B. 25kg C. 28kg D. 30kg12、.如图,在t R ABC 中,90C ,∠A=30°,DE=2,且DE 是线段AB 的垂直平分线,交AB 于D ,交AC 于E ,则CE 的长是()A 1 B 2 C 3 D 4 13、某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是.14、在直线l 上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=(). A. 4 B. 6 C. 5 D. 6二、填空15、正方形边长为3,若边长增加x 则面积增加y ,求y 随x 变化的函数关系式为。

北师大版八年级上册数学期末试卷附答案

北师大版八年级上册数学期末试卷附答案

北师大版八年级上册数学期末试题一、单选题1.下列运算中错误的是( )A .(23=B =C 2÷=D 2.若函数y =kx (k≠0)的值随自变量的增大而增大,则函数y =x+2k 的图象大致是()A .B .C .D .3.表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差,要选择一名发挥稳定的同学参加数学竞赛,应该选择( )A .甲B .乙C .丙D .丁4.下列说法:①±3都是27的立方根;①116的算术平方根是±14;①2;平方根是±4;①﹣9是81的算术平方根,其中正确的有( )A .1个B .2个C .3个D .4个 5.将一个直角三角形纸片()90ABC ACB ∠=︒,沿线段CD 折叠,使点B 落在B '处,若//B D CB ',3ACB ADB ''∠=∠,则下列结论正确的是( )A .ADB ACD '∠=∠B .90ACB ADB ''∠+∠>︒C .22.5B ∠=︒D .67.5B DC '∠=︒6.下列命题中,假命题有( )①两点之间,线段最短; ①垂线段最短;①过一点有且只有一条直线与已知直线平行; ①垂直于同一直线的两条直线平行.A.4个B.3个C.2个D.1个7.一次函数y=ax+b与y=ax+c(a>0,b≠c)在同一坐标系中的图像可能是()A.B.C.D.8.如图,长方体的长为15宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.20B.25C.30D.329.如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是()A.林老师家距超市1.5千米B.林老师在书店停留了30分钟C .林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D .林老师从书店到家的平均速度是10千米/时10.如图,一束光线从点()4,4A 出发,经y 轴上的点C 反射后经过点()10B ,,则点C 的坐标是( )A .10,2⎛⎫ ⎪⎝⎭B .40,5⎛⎫ ⎪⎝⎭C .()0,1D .()0,2 二、填空题11.直角三角形的斜边为10cm ,两直角边之比为3:4,那么这个直角三角形的周长为______.12.已知方程mx+n=0的解为x=-3,则直线y=mx+n 与x 轴的交点坐标是____. 13.在数轴上表示实数a 的点如图所示,化简2(5)a -+|a -2|的结果为____________.14.命题 “若a=b ,则|a|=|b|”的逆命题________(是/不是)真命题.15.若点A (2,-3),B (4,3),C (5,a )在同一条直线上,则a 的值_________.16.设a ,b a b <<,是,则a b =____.17.如图所示,AB①CD ,①1=115°,①3=140°,则①2=__________.18.如图,已知①1=100°,①2=140°,那么①3=________度.三、解答题19.计算:(1)(2)21)(1--.20.解方程组:234347x yx y⎧+=⎪⎨⎪-=-⎩21.如图,是规格为8×8的正方形网格,每个小正方形的边长均为1,请在所给网格中按下列要求操作:(1)在网格中建立平面直角坐标系,使A点坐标为(4,2),B点坐标为(1,-1);(2)在第一象限内的格点上画一点C,使点C与线段AB构成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是;(3)若①A'B'C'与①ABC关于y轴对称,写出点A'和点B'的坐标.22.在学校组织的“学习强国”知识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分和70分.年级组长张老师将801班和802班的成绩进行整理并绘制成如图所示的统计图.(1)在本次竞赛中,802班成绩在C级以上(包括C级)的人数为多少?(2)请你将下面的表格补充完整:(3)结合以上统计量,请你从不同角度对这次竞赛成绩的结果进行分析(写出两条).23.如图,已知BD①AC,EF①AC,D,F分别为垂足,G是AB上一点,且①1=①2.试说明:①AGD=①ABC.24.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品,要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共多少块?25.甲、乙两组工人同时加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍,两组各自加工零件的数量y(件)与时间x(小时)之间的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式;(2)求乙组加工零件总量a的值及乙组更换设备后加工零件的数量y与时间x之间的函数关系式;(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱.26.如图,在Rt①ABC中,①ACB=90°,AC=6,BC=8,将①ACB沿CD折叠,使点A恰好落在BC边上的点E处.(1)求①BDE的周长;(2)若①B=37°,求①CDE的度数.27.在图a中,应用三角形外角的性质不难得到下列结论:①BDC=①A+①ABD+①ACD.我们可以应用这个结论解决同类图形的角度问题.(1)在图a中,若①1=20°,①2=30°,①BEC=100°,则①BDC=;(2)在图a中,若BE平分①ABD,CE平分①ACD,BE与CE交于E点,请写出①BDC,①BEC 和①BAC之间的关系;并说明理由.(3)如图b,若113ABD∠=∠,123ACD∠=∠试探索①BDC,①BEC和①BAC之间的关系.(直接写出)参考答案1.D【分析】分别利用二次根式加减、乘除法则计算即可.【详解】A 、(23=,此选项计算正确,不符合题意;B =C 2÷=,此选项计算正确,不符合题意;D故选:D .【点睛】本题考查二次根式的加减法法则和乘除法法则,根据题目计算出正确结果是解答本题的关键.2.A【分析】先根据正比例函数的性质判断出k 的符号,再根据一次函数的图象和性质选出对应的答案.【详解】解:①函数y kx =的值随自变量的增大而增大①0k >,① 在函数2y x k =+中,10>,20k >①函数2y x k =+的图象经过一、二、三象限.故选:A .【点睛】本题主要考查一次函数的图象和性质,牢记比例系数k 和常数b 的值所对应的一次函数图象是解题的关键.3.B【分析】根据方差的定义,方差越小数据越稳定即可解答.【详解】解:从平均数看,四名同学成绩相同,从方差看,乙方差最小,发挥最稳定,所以要选择一名发挥稳定的同学参加数学竞赛,应该选择乙,故选:B .【点睛】本题主要考查平均数与方差的应用,解题关键在于掌握方差越小波动就越小.4.A【分析】根据平方根,算术平方根,立方根的定义找到错误选项即可.【详解】①3是27的立方根,原来的说法错误; ①116的算术平方根是14,原来的说法错误;①是正确的;,4的平方根是±2,原来的说法错误;①9是81的算术平方根,原来的说法错误.故其中正确的有1个.故选:A .【点睛】本题考查了立方根,平方根,算术平方根的知识;用到的知识点为:一个正数的正的平方根叫做这个数的算术平方根;一个正数的平方根有2个;任意一个数的立方根只有1个.5.C【分析】设①B=x .想办法证明①A=3x ,根据三角形内角和定理构建方程求出x 即可解决问题.【详解】解:设①B=x ,①DB′①BC ,①①ADB′=①B=x ,①①ACB′=3①ADB′=3x ,由翻折可知:①B=①B′=x ,又①①ADB′=①B①AB①B′C ,①①A=①ACB′=3x ,①①ACB=90°,①x+3x=90°,①x=22.5°,①①B=22.5°,故C 正确;①=390ACB ADB x x ''∠+∠+=︒,故B 错误;①DC B DC B '∠=∠,22.5ADB '∠=︒, ①()1=18022.5=78.752B DC '∠⨯︒-︒︒,故D 错误; ①=180ACD A ADC ∠︒-∠-∠=180A ADB B DC ''︒-∠-∠-∠=18067.522.578.75︒-︒-︒-︒=11.25°,①ADB ACD '∠≠∠,故A 错误.故选:C .【点睛】本题考查三角形内角和定理,平行线的性质等知识,解题的关键是学会利用参数构建方程解决问题.6.C【分析】根据概念判断即可.【详解】①两点之间,线段最短;说法正确,不是假命题;①垂线段最短;说法正确,不是假命题;①过直线外一点有且只有一条直线与已知直线平行;原说法错误,是假命题;①在同一平面内,垂直于同一直线的两条直线平行;原说法错误,是假命题;故选:C .【点睛】本题考查线段的定义,平行线的判定,熟记各知识点是解答本题的关键.7.A【分析】根据a 相同,判定直线平行;结合a>0,判定图像分布一定过一三象限,判断即可.【详解】①一次函数y=ax+b 与y=ax+c(a>0,b≠c),①直线平行,图像分布一定过一三象限,故选A .8.B【详解】解:将长方体展开,连接A 、B ,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:.(2)如图,BC=5,AC=20+10=30,由勾股定理得,(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:①长方体的宽为10,高为20,点B离点C的距离是5,①BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:由于25<,故选B.9.D【分析】根据图象中的数据信息进行分析判断即可.【详解】解:A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.故选D.【点睛】本题考查了函数图象,读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键.10.B【分析】延长AC 交x 轴于点D ,利用反射定律,可得1OCB ∠=∠,利用ASA 可证()COD COB ASA ∆≅∆,已知点B 坐标,从而得点D 坐标,利用A ,D 两点坐标,求出直线AD 的解析式,即可求得点C 坐标.【详解】如图所示,延长AC 交x 轴于点D .设()0,C c①这束光线从点()4,4A 出发,经y 轴上的点C 反射后经过点()10B ,,①由反射定律可知,1OCB ∠=∠,①①1=①OCD ,①OCB OCD ∠=∠,①CO DB ⊥于O ,①COD COB ∠=∠=90°,在COD ∆和COB ∆中OCD OCBOC OC COD COB∠=∠⎧⎪=⎨⎪∠=∠⎩,①()COD COB ASA ∆≅∆,①1OD OB ==,①()1,0D -,设直线AD 的解析式为y kx b =+,①将点()4,4A ,点()1,0D -代入得:440k bk b =+⎧⎨=-+⎩, 解得:4545k b ⎧=⎪⎪⎨⎪=⎪⎩,①直线AD 的解析式为:4455y x =+,①点C 坐标为40,5⎛⎫⎪⎝⎭.故选B.11.24cm【分析】设两直角边分别为3x,4x,根据勾股定理列式求出x,得到边长,再根据周长计算方法计算即可.【详解】解:设两直角边分别为3x,4x,由勾股定理得,(3x)2+(4x)2=102,解得,x=2,则两直角边分别为6cm,8cm,①这个直角三角形的周长=6cm+8cm+10cm=24cm,故答案为:24cm.【点睛】此题考查直角三角形的勾股定理计算,题中有比值关系时根据比值设未知数,根据勾股定理列出方程求出边长是解题的关键.12.(-3,0)【分析】求直线与x轴的交点坐标,需使直线y=mx+n的y值为0,则mx+n=0;已知此方程的解为x=-3.因此可得答案.【详解】解:①方程的解为x=-3,①当x=-3时mx+n=0;又①直线y=mx+n与x轴的交点的纵坐标是0,①当y=0时,则有mx+n=0,①x=-3时,y=0.①直线y=mx+n与x轴的交点坐标是(-3,0).【点睛】本题主要考查了一次函数与一元一次方程的关系,解题的关键是了解一次函数图像与x轴的交点横坐标就是对应的一元一次方程的解.13.3【详解】解:由数轴得,a>2且a<5,所以a -5<0,a -2>0,原式=5-a+a -2=3.故答案为:314.不是【分析】根据逆命题的概念写出原命题的逆命题,判断真假即可.【详解】解:命题“如a b =,那么||||a b =”的逆命题是如果||||a b =,那么a b =, 如果||||a b =,那么a b =,不是真命题,如:4a =,4b =-,则||||a b =,但a b .故答案为:不是.【点睛】本题考查了命题的逆命题、以及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题.15.6【分析】设出函数解析式,转化为求函数值问题计算即可.【详解】设直线的解析式为y=kx+b ,根据题意,得 2343k b k b +=-⎧⎨+=⎩, 解得39k b =⎧⎨=-⎩, 直线解析式为y=3x -9,当x=5时,a=15-9=6,故答案为:6.【点睛】本题考查了待定系数法求解析式,根据解析式求函数值,熟练掌握待定系数法是解题的关键.16.9a 、b 的值,代入求出即可.【详解】①23,①a=2,b=3,①b a=32=9.故答案为:9.【点睛】本题考查了估算无理数的大小的应用,关键是求出a、b的值.17.75°【分析】根据两直线平行,同旁内角互补求出①4的度数,再根据三角形的一个外角等于和它不相邻的两个内角的和即可求出①2的度数.【详解】如图,①AB①CD,①3=140°,①①4=180°-140°=40°,①①1=115°,①①2=①1-①4=115°-40°=75°.故答案为75°.【点睛】本题主要利用两直线平行,同旁内角互补的性质和三角形的一个外角等于和它不相邻的两个内角的和求解.18.60【分析】据邻补角得出①4的度数,利用三角形外角性质得出①3即可.【详解】解:①①1+①4=180°,①1=100°,①①4=180°-①1=180°-100°=80°,①①2=①3+①4,①①3=①2-①4=140°-80°=60°,故答案为:60.【点睛】本题考查三角形外角性质,关键是根据三角形的一个外角等于和它不相邻的两个内角的和解答.19.(1)(2)11-+【分析】(1)先化简二次根式,再利用二次根式的加减法法则计算即可;(2)先用平方差公式和完全平方公式计算,再利用二次根式的加减法法则计算即可.(1)解:原式752=⨯⨯== (2)解:原式(222211⎡⎤=---⎢⎥⎣⎦31112=--+11=-+【点睛】本题考查二次根式的化简、平方差公式和完全平方公式的应用、二次根式的加减法法则,熟练掌握相关运算法则是解答本题的关键.20.34x y =⎧⎨=⎩【分析】方程组利用加减消元法求出解即可.【详解】方程组可化为4324347x y x y +=⎧⎨-=-⎩①②, ①×4+①×3得:25x=75,解得:x=3,把x=3代入①得:3×3﹣4y=﹣7,解得:y=4,所以,方程组的解是34xy=⎧⎨=⎩.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(1)见解析(2)C点坐标是(2,1).不唯一(3)A'(-4,2),B'(-1,-1)【分析】(1)将点B的坐标向上平移一个单位长度,再向左平移一个单位长度,得到原点,以水平直线为x轴建立坐标系即可.(2)根据等腰三角形的定义,无理数的性质,选择即可.(3)根据关于y轴对称点的坐标特点,纵坐标不变,横坐标变为相反数计算确定即可.(1)①B点坐标为(1,-1),①将点B的坐标向上平移一个单位长度,再向左平移一个单位长度,得到原点,以水平直线为x轴建立坐标系如下:(2)点C如图所示,C点坐标是(2,1),故答案为:(2,1).(3)①关于y轴对称点的坐标特点,纵坐标不变,横坐标变为相反数,且A点坐标为(4,2),B 点坐标为(1,-1),①A'(-4,2),B'(-1,-1).【点睛】本题考查了平面直角坐标系的建立,对称点坐标的确定,等腰三角形顶点坐标的确定,平移的运用,熟练掌握平移的规律,对称点的坐标特点是解题的关键.22.(1)21(2)见解析(3)①从平均数的角度看两班成绩一样;从中位数的角度看801班比802班的成绩好;①从平均数的角度看两班成绩一样;从众数的角度看802班比801班的成绩好.(答案不唯一)【分析】(1)先求出801班参加比赛的人数,再求802班参加比赛的C级以上(包括C级)的人数;(2)由中位数和众数的定义解答;(3)由平均数、中位数和众数的定义的分析即可.(1)解:801班参加比赛的人数为6+12+2+5=25,①每班参加比赛的人数相同,①802班参加比赛的有25人,①C级以上(包括C级)的人数为25×(44%+4%+36%)=21.(2)解:801班成绩的众数为90分,802班成绩为A级的学生有25×44%=11(人),成绩为B级的学生有25×4%=1(人),成绩为C级的学生有25×36%=9(人),成绩为D级的学生有25×16%=4(人),故802班竞赛成绩的中位数为80分,802班成绩为B级及以上的人数为11+1=12,补全表格如下:(3)解:①从平均数的角度看两班成绩一样;从中位数的角度看801班比802班的成绩好; ①从平均数的角度看两班成绩一样;从众数的角度看802班比801班的成绩好.(答案不唯一).【点睛】本题考查条形统计图和扇形统计图的综合应用,读懂统计图,从不同的统计图得到必要信息是解答本题的关键.23.见解析.【分析】由BD①AC ,EF①AC 推出BD①EF ,得到①DBC =①1,再结合①1=①2推出GD①BC ,可证①AGD =①ABC.【详解】①BD①AC ,EF①AC ,①BD①EF ,①①DBC =①1.①①1=①2,①①2=①DBC ,①GD①BC ,①①AGD =①ABC.【点睛】本题考查的知识点是平行线的判定与性质,解题的关键是熟练的掌握平行线的判定与性质.24.恰好需用A 、B 两种型号的钢板共11块.【分析】根据题目意思列出二元一次方程组,解出A 、B 两种型号的钢板的数量即可.【详解】解:设需用A 型钢板x 块,B 型钢板y 块,根据题意得4337218x y x y +=⎧⎨+=⎩ 解得47x y =⎧⎨=⎩, ①4711x y +=+=,①恰好需用A 、B 两种型号的钢板共11块.【点睛】本题考查二元一次方程组的应用,根据题目意思列出二元一次方程组是解答本题的关键.25.(1)y=60x(0≤x≤6)(2)300件,y=100x -180(2.8<x≤4.8)(3)经过3小时恰好装满第1箱【分析】(1)将(6,360)代入关系式y=kx中,求出k即可;(2)先求出更换设备前的工作效率,可知更换设备后的工作效率,可求出a;进而求出更换设备后的关系式;(3)分三段根据两种设备加工的零件和=300列出方程,求出符合条件的结果即可.(1)设甲组加工零件的数量y与时间x之间的函数关系式为y=kx(k≠0),①当x=6时,y=360,①6k=360,解得k=60,①y=60x(0≤x≤6);(2)由题图知,更换设备前,乙组2小时加工100件,①乙组的加工速度是每小时加工50件.①乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍,①更换设备后,乙组的工作速度是每小时加工50×2=100件,①a=100+100×(4.8-2.8)=300.乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为y=100+100(x-2.8)=100x-180(2.8<x≤4.8);(3)当0≤x≤2时,60x+50x=300,解得x=3011,不合题意,舍去;当2<x≤2.8时,100+60x=300,解得x=103,不合题意,舍去;当2.8<x≤4.8时,60x+100x-180=300,解得x=3,符合题意,①经过3小时恰好装满第1箱.【点睛】本题主要考查了求正比例函数和一次函数关系式,从图象中获取信息是解题的关键.26.(1)①BDE的周长为12;(2)①CDE的度数为82°.【分析】(1)由折叠的性质可知,DE=AD,CE=AC,则①BDE的周长=BD+DE+BE=BD+BE+AD=AB+BE,先求出BE的长,再利用勾股定理求出AB的长即可;(2)由折叠的性质可知:①ACD=①BCD,①A=①CED,再利用三角形内角和定理求解即可.【详解】解:(1)由折叠的性质可知,DE=AD ,CE=AC ,①①BDE 的周长=BD+DE+BE=BD+BE+AD=AB+BE ,①①ACB=90°,AC=6,BC=8,①BE=BC -CE=BC -AC=2,10AB =,①①BDE 的周长=AB+BE=10+2=12;(2)由折叠的性质可知:①ACD=①BCD ,①A=①CED ,①①ACB=90°,①B=37°,①①A=①CED=53°,1452ECD ACB ==∠∠, ①=180=82CDE BCD CED --∠∠∠.【点睛】本题主要考查了折叠的性质,勾股定理,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.27.(1)150°(2)①BDC+①BAC=2①BEC(3)2①BDC+①BAC=3①BEC【分析】(1)根据题目给出的条件可得:12150BDC BEC ∠=∠+∠+∠=︒;(2)根据题意得出①BDC=①BEC+①1+①2,①BEC=①BAC+①ABE+①ACE ,再根据BE 平分①ABD ,CE 平分①ACD ,得出①ABE=①1,①ACE=①2,然后进行化简即可得出结论; (3)先根据题意得出①BDC=①BEC+①1+①2,①BEC=①BAC+①ABE+①ACE ,再根据113ABD ∠=∠,123ACD ∠=∠,得出①BEC=①BAC+2①1+2①2,整理化简即可得出结论. (1)解:①①1=20°,①2=30°,①BEC=100°,①12150BDC BEC ∠=∠+∠+∠=︒.故答案为:150°.(2)由题意可知,①BDC=①BEC+①1+①2,①①BEC=①BAC+①ABE+①ACE,①①BE平分①ABD,CE平分①ACD,①①ABE=①1,①ACE=①2,①-①得①BDC-①BEC=①BEC-①BAC,即①BDC+①BAC=2①BEC.(3)由题意可知,①BDC=①BEC+①1+①2,①①BEC=①BAC+①ABE+①ACE,①①①1=13①ABD,①2=13①ACD,①①ABE=2①1,①ACE=2①2.由①得①BEC=①BAC+2①1+2①2,①①×2-①得2①BDC-①BEC=2①BEC-①BAC,即2①BDC+①BAC=3①BEC.21。

北师大版八年级上期期末数学易错题和典型试题经典1

北师大版八年级上期期末数学易错题和典型试题经典1

y
〔2〕假设点 P〔 x , y 〕是第二象限内的直线上的一个动点,在
F
点 P 的运动过程中,试写出△的面积 S 及 x 的函数关系式,并
写出自变量 x 的取值范围;
E
A
ox
〔3〕探究:当点 P 运动到什么位置时,△的面积为,并说明理
由。

18、P〔1,2〕在第一象限,那么 m 的取值范围为〔

1
1
A、 2 <m< 2 B、 1<m<2 C、 m<2
A. k 0,b 0
B.k 0,b 0 C.k 0,b 0
D.k 0,b 0
26、如图,两直线 y1 kx b 和 y2 bx k 在同一坐标系内图象的位置可能是〔 〕
27、① ( 6 2 15 ) 3 6 1 ② 12 27 1 48 15 1 ③ 1 5 5 2 ④ 20 5 2
C 反射
后经过点 B〔6,6〕,那么光线从点 A 到点 B 所经过的路程是


A、10
B、8 C、6
D、4
5.如图,正三角形的边长为 4,那么点 C 的坐标是〔

(A)〔4,-2〕 (B)〔4,2〕 (C)〔 2 3 ,-2〕 (D)〔-2, 2 3 〕
6.如图 A、B、C 为一个平行四边形的三个顶点,A、B、C 三点的坐标分别为〔3,3〕、
)A、 ab
10
12、如果 a 0,那么 a3等于〔 〕A、 a a
B、 3ab C、 ab
D、 3ab
10
100
100
B、a a
C、a a
D、a a
13、 x 0, y 0,且x 2 xy 15y 0,求 2x+ xy 3y 的值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版八年级上期期末复习易错题和典型试题1、2(9)-的算术平方根是 。

2、2、已知22114,)1x y x x y x +-+-+=+3则(2= 。

3、已知实数211,,a-b 20,24ca b c b c c c ab+++-+=满足则的算术平方根是 。

4、已知x 、y 是有理数,且x 、y满足22322332x y y ++=-,则x+y= 。

5、设62,53,A B =+=+则A 、B 中数值较小的是 。

6、使式子252x x --有意义的x 的取值范围是 。

7、若1101,6,a a a a a+=-且则的值为 。

5 的整数部分是 ,小数部分是 。

8.已知的整数部分a,小数部分是b,求a-b 的值.91011、已知5,14,0.063a b ===则( )A 、10ab B 、310ab C 、100ab D 、3100ab12、如果30,a a -那么等于( )A 、a a B 、a a - C、a a - D 、a a --13、已知30,0,2150,yxyx xy y x xy y+--=+-2x+xy 且求的值。

9,,32220022002,x y z x y z x y z x y x y +--++-=+-+--设适合关系式试求x,y,z 的值。

15、已知x 、y 是实数,且222(1)533x y x y x y -+--+与互为相反数,求的值。

(2)已知m,n 是有理数,且(52)(325)70m n ++-+=,求m,n的值。

16、已知实数a 满足3230,11a a a a a ++=-++=那么 。

17、设62,53,A B =+=+则A 、B 中数值较小的是 。

18.已知△AB C中,∠A =12∠C=13∠B ,则它的三条边之比为( ).A.1:1:2 B.1:3:2 C.1:2:3 D.1:4:119.一根高9米的旗杆在离地4米高处折断,折断处仍相连,此时在3.9米远处玩耍的身高为1米的小明是否有危险 ( )A.没有危险 B .有危险C.可能有危险 D.无法判断 20.△ABC 中,若AB=15,AC=13,高AD=12,则△A BC 的周长是( ) A.42 B.32 C .42或32 D.37或3321、直角三角形中一直角边的长为11,另两边为自然数,则直角三角形的周长 22、如图,实数a 、b 在数轴上的位置,化简 222()a b a b --- =23、当14+a 的值为最小值时,a 的取值为( ) A、-1 B、0 C、41- D 、124、如图,有一圆柱,它的高等于8cm ,底面直径等于4cm (π=3).在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面与A相对的B 点处的食物,需要爬行的最短路程大约等于 ( ) A.10cm B.12 cm C.19c m D.20cm 25、直线y kx b =+经过点(1,)A m -,(,1)B m (1)m >,则必有( )A. 0,0k b >> .0,0B k b >< .0,0C k b <> .0,0D k b <<26、如图,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )27、①2163)1526(-⨯- ②311548412712-++ ③()()2551-+④25520-+⑤⎩⎨⎧=-+=-+0519203637y x y x ⑥⎪⎩⎪⎨⎧=-+=+018343121y x y x (用代入法)29.(1)若直角三角形中,有两边长是12和5,则第三边长的平方为( 30.求x 的值:2)2(-x -144=031:当m =_______时,函数y=(m -0.5)x 2m ,+1+4x-5(x≠0)是一个一次函数。

32:一个弹簧,不挂物体时长为12cm,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例,如果挂上3kg 的物体后,弹簧总长是13.5cm,求弹簧总长y(cm)与所挂物体质量x (kg )之间的函数关系式,并画出函数的图象。

34.:某校初中二年级有两个班,在一次数学测试中,一班参考人数52人,平均成绩为75分;二班参考人数为50人,平均成绩为76.56分,求本次考试初中二年级的平均成绩.38.点M (-1,3)关于直线y=1对称点M '的坐标是44、 在平面直角坐标系中,已知A(-3,3),在y 轴上确定一点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )45、 A.2个 B.3个 C .4个 D.5个45、一艘轮船以15海里/时的速度由南向北航行,在A 处测得小岛P 在北偏西15°方向上,两小时后,轮船在B处测小岛P在北偏西30°方向上,在小岛周围18海里内有暗礁。

若轮船仍按15海里/时的速度向前航行,有无触礁的危险?试说明理由。

46、工程问题:一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定3天,现在由甲、乙两队合作2天,剩下的由乙队独做,C O xyA (0,2)B (6,6) 图1AB DC EF 也刚好在规定日期内完成,问规定日期是几天?(只设和列,不解)47、行程问题:八年级学生去距学校10k m的博物馆参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度. (只设和列,不解)51.=-|2332|______.7.当a ______时,|a -2 |=a -2.52.若实数a 、b 互为相反数,c 、d 互为负倒数,则式子3cd b a ++-=______. 53. 一次函数的图象与x 轴的交点的坐标是___________,与y 轴的交点的坐标是__________,它的图象与两坐标轴所围成的图形的面积是____________. 54.等腰三角形一腰上的高与底边的夹角等于( )A.顶角B.顶角的一半C.顶角的2倍D.底角的一半.55.等腰三角形一腰上的高与另一腰的夹角为30o,则顶角的度数为( )A. 60o . B. 120o . C. 60o 或150o. D. 60o 或120o .56.若∠A 和∠B 的两边分别平行,且∠A 比∠B 的2倍少30°,则∠B 的度数为57.如图,在△ABC 中,∠B=40°,∠C=20°,A D⊥AC ,垂足为A,交BC 于D,若AB=3,则CD = 58. 已知∠BAC=20°,BA=BC=CD=D E=EF,则∠N FE= .59.两块完全相同的含30°的三角板重叠在一起,若绕长直角边中点M 转动,使上面一块的斜边刚好过下面一块的直角顶点,如图∠A=30°,A C=10,则此两直角顶点C、D间的距离是 。

60.如图,折叠长方形ABC D的一边AD,点D 落在BC 边上的点F 处,已知A B=8cm ,B C=10cm , 求E C的长。

63.已知某5个数的和是a,另6个数的和是b,则这11个数的平均数是( )(A)(a+b)/2 (B) (a+b)/11 (C ) (5a+6b)/11 (D) (a/5+b/6)/2 64.已知数据X 1,X 2,X 3,……,Xn 的平均数为1,方差是2,则一组新数据3X 1+5,3X 2+5,……,3Xn+5的平均数是 ,方差是 。

65.如果四个正整数数据中的三个分别是2,4,6,且它们的中位数也是整数,那么它们的中位数是 。

1.某班举办元旦联欢会,班长对全班同学最爱吃哪几种水果这一问题作了调查,班长在确定购买哪一种水果时,最值得关注的统计量是( )(A )中位数 (B)平均数 (C)众数 (D )加权平均数 2.点P (m ,1)在第二象限内,则点Q(-m,0)在( )A 、x 轴正半轴上B 、x 轴负半轴上C 、y 轴正半轴上D 、y轴负半轴上 3.连接A(1,2),B(-2,-1),C(1,-1)三点所组成的三角形是( ) A 、锐角三角形 B、钝角三角形 C、直角三角形 D 、等边三角形 4.如图1,一束光线从y 轴点A (0,2)出发,经过x 轴上点C 反射 后经过点B(6,6),则光线从点A 到点B 所经过的路程是( ) A 、10 B、8 C 、6 D 、4AFEoyx5.如图,正三角形的边长为4,则点C 的坐标是( )(A)(4,-2) (B)(4,2) (C)(32,-2) (D)(-2,32)6.如图A 、B 、C为一个平行四边形的三个顶点,A 、B 、C三点的坐标分别为(3,3)、(6,4)、(4,6)。

这个平行四边形第四个顶点的坐标是 。

7.如图、三角形AB C是正三角形,AB=3,A(-1,0),AB 在X 轴上,边AC 交Y 轴的正半轴于D,则B 点坐标为 , C 点坐标为 ,D 点纵坐标为 。

8.如图判断三角形的形状9.如图,在直角坐标系中,将长方形OABC 沿OB 对折,使点A落在A1处,已知O A=3,AB=1 (1) 求∠AOB 的大小,并说明理由; (2) 求线段CD 的长度,并说明理由;(3) 写出点A1和点D 的坐标,并说明理由。

10.以下四条直线中,与直线y=3x+2相交于第三象限的是( ) A 、y=4x-1 B 、y=2x-3 C 、 y=3x-1 D 、 y=1-x 11.函数y=k(x -k ) (k<0 )的图象不经过( )A、第一象限 B 、第二象限 C 、第三象限 D 、第四象限12.如果直线y =2x +m 与两坐标轴围成的三角形面积等于m ,则m 的值是( )A 、±3B 、3 C、±4 D、413.已知直线y=(k –2)x +k 不经过第三象限,则k的取值范围是( ) k ≠2 ﻩB.k>2 ﻩC .0<k <2ﻩD.0≤k <214.若函数28(3)m y m x -=-是正比例函数,则常数m 的值是 。

15.从A 地向B 地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收1元, 若通话t分钟(t ≥3),则需付电话费y(元)与t(分钟)之间的函数关系式是 。

16.在函数y =-2x+3中,当自变量x满足 时,图像在第一象限。

17.如图,直线6y kx =+与x 轴y 轴分别交于点E、F,点E 的坐标为(-8,0),点A的坐标为(-6,0)。

(1)求k 的值;(2)若点P(x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围; (3)探究:当点P运动到什么位置时,△OPA 的面积为\f(27,8),并说明理由。

相关文档
最新文档