最新-高中物理易错题分析——热学精品
高中物理必修3物理 全册全单元精选试卷易错题(Word版 含答案)
高中物理必修3物理 全册全单元精选试卷易错题(Word 版 含答案)一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,ABCD 竖直放置的光滑绝缘细管道,其中AB 部分是半径为R 的1/4圆弧形管道,BCD 部分是固定的水平管道,两部分管道恰好相切于B .水平面内的M 、N 、B 三点连线构成边长为L 等边三角形,MN 连线过C 点且垂直于BCD .两个带等量异种电荷的点电荷分别固定在M 、N 两点,电荷量分别为+Q 和-Q.现把质量为m 、电荷量为+q 的小球(小球直径略小于管道内径,小球可视为点电荷),由管道的A 处静止释放,已知静电力常量为k,重力加速度为g.求:(1)小球运动到B 处时受到电场力的大小; (2)小球运动到C 处时的速度大小;(3)小球运动到圆弧最低点B 处时,小球对管道压力的大小.【答案】(1)2qQ k L (22gR (322229qQ k m g L ⎛⎫+ ⎪⎝⎭【解析】 【分析】 【详解】(1)设小球在圆弧形管道最低点B 处分别受到+Q 和-Q 的库仑力分别为F 1和F 2.则122qQ F F kL==① 小球沿水平方向受到的电场力为F 1和F 2的合力F ,由平行四边形定则得F=2F 1cos60° ② 联立①②得2qQF kL =③ (2)管道所在的竖直平面是+Q 和-Q 形成的合电场的一个等势面,小球在管道中运动时,小球受到的电场力和管道对它的弹力都不做功,只有重力对小球做功,小球的机械能守恒,有mgR =12mv C 2−0 ④ 解得2C v gR =(3)设在B 点管道对小球沿竖直方向的压力的分力为N By ,在竖直方向对小球应用牛顿第二定律得2B By v N mg m R-=⑥ v B =v C ⑦联立⑤⑥⑦解得N By =3mg⑧设在B 点管道对小球在水平方向的压力的分力为N Bx ,则2Bx qQN F kL ==⑨圆弧形管道最低点B 处对小球的压力大小为B N .⑩ 由牛顿第三定律可得小球对圆弧管道最低点B 的压力大小为B B N N '=2.(1)科学家发现,除了类似太阳系的恒星-行星系统,还存在许多双星系统,通过对它们的研究,使我们对宇宙有了较深刻的认识.双星系统是由两个星体构成,其中每个星体的线度(直径)都远小于两星体间的距离,一般双星系统距离其它星体很远,可以当做孤立系统处理.已知某双星系统中每个星体的质量都是M 0,两者相距L ,它们正围绕两者连线的中点做匀速圆周运动,引力常量为G .①求该双星系统中每个星体的线速度大小v ;②如果质量分别为m 1和m 2的质点相距为r 时,它们之间的引力势能的表达式为12p m m E Gr=-,求该双星系统的机械能. (2)微观世界与宏观世界往往存在奇妙的相似性.对于氢原子模型,因为原子核的质量远大于电子质量,可以忽略原子核的运动,形成类似天文学中的恒星-行星系统,记为模型Ⅰ.另一种模型认为氢原子的核外电子并非绕核旋转,而是类似天文学中的双星系统,核外电子和原子核依靠库仑力作用使它们同时绕彼此连线上某一点做匀速圆周运动,记为模型Ⅱ.假设核外电子的质量为m ,氢原子核的质量为M ,二者相距为r ,静电力常量为k ,电子和氢原子核的电荷量均为e .已知电荷量分别为+q 1和-q 2的点电荷相距为r 时,它们之间的电势能的表达式为12p q q E kr=-. ①模型Ⅰ、Ⅱ中系统的能量分别用E Ⅰ、 E Ⅱ表示,请推理分析,比较E Ⅰ、 E Ⅱ的大小关系; ②模型Ⅰ、Ⅱ中电子做匀速圆周运动的线速度分别用v Ⅰ、v Ⅱ表示,通常情况下氢原子的研究采用模型Ⅰ的方案,请从线速度的角度分析这样做的合理性.【答案】(1)①v =②202M G L -(2)①2-2ke r②模型Ⅰ的简化是合理的【解析】(1)① 22002/2M M v G L L =,解得 v =②双星系统的动能2200k 0012222GM GM E M v M L L =⨯==,双星系统的引力势能20P GM E L =-,该双星系统的机械能E=E k +E p =202M G L-(2)①对于模型Ⅰ:22I2mvker r=,此时电子的动能E kⅠ=22ker又因电势能2pIeE kr=-,所以EⅠ= E kⅠ+E pⅠ=2-2ker对于模型Ⅱ:对电子有:22121mvker r=,解得22112mv rrke=对于原子核有:22222Mvker r=,解得22222Mv rrke=因为r1+r2=r,所以有22221222+mv r Mv rr ke ke=解得E kⅡ=2 221211222ke mv Mvr+=又因电势能2peE kr=-Ⅱ,所以EⅡ= E kⅡ+E pⅡ=2-2ker即模型Ⅰ、Ⅱ中系统的能量相等,均为2 -2 ker②解法一:模型Ⅰ中:对于电子绕原子核的运动有22II2=mvkem vr rω=,解得2I2=kevm rω模型Ⅱ中:对电子有:22II1II21=mvkem vr rω=,解得2II21=kevm rω对于原子核有:22222=ke MvM vr rω=,因ω1=ω2,所以mvⅡ=Mv又因原子核的质量M远大于电子的质量m,所以vⅡ>>v,所以可视为M静止不动,因此ω1=ω2=ω,即可视为vⅠ=vⅡ.故从线速度的角度分析模型Ⅰ的简化是合理的.②解法二:模型Ⅰ中:对于电子绕原子核的运动有22I2mvker r=,解得Iv模型Ⅱ中:库仑力提供向心力:222122=kemr Mrrωω== (1)解得12=r Mr m;又因为r1+r2=r所以1=Mrm M+2=mrm M+带入(1)式:()2ke M m rMmω+=,所以:()21=?ke M v r r m M m ω=+Ⅱ ()22=?ke mv r r m M Mω=+又因原子核的质量M 远大于电子的质量m ,所以v Ⅱ>>v ,所以可视为M 静止不动;故从线速度的角度分析模型Ⅰ的简化是合理的.3.如图所示,在绝缘的水平面上,相隔2L 的,A 、B 两点固定有两个电量均为Q 的正点电荷,C 、O 、D 是AB 连线上的三个点,O 为连线的中点,CO=OD=L/2。一质量为m 、电量为q 的带电物块以初速度v 0从c 点出发沿AB 连线向B 运动,运动过程中物块受到大小恒定的阻力作用。当物块运动到O 点时,物块的动能为初动能的n 倍,到达D 点刚好速度为零,然后返回做往复运动,直至最后静止在O 点。已知静电力恒量为k,求: (1)AB 两处的点电荷在c 点产生的电场强度的大小; (2)物块在运动中受到的阻力的大小; (3)带电物块在电场中运动的总路程。【答案】(1)(2) (3)【解析】 【分析】 【详解】(1)设两个正点电荷在电场中C 点的场强分别为E 1和E 2,在C 点的合场强为E C ;则12()2kQ E L =;223()2kQ E L = 则E C =E 1-E 2 解得:E C =232 9kQL. (2)带电物块从C 点运动到D 点的过程中,先加速后减速.AB 连线上对称点φC =φD ,电场力对带电物块做功为零.设物块受到的阻力为f , 由动能定理有:−fL =0−12mv 02 解得:2012f mv L=(3)设带电物块从C 到O 点电场力做功为W 电,根据动能定理得:220011222L W f n mv mv 电=-⋅⋅-解得:()201214W n mv -电=设带电物块在电场中运动的总路程为S ,由动能定理有:W 电−fs =0−12mv 02 解得:s=(n+0.5)L 【点睛】本题考查了动能定理的应用,分析清楚电荷的运动过程,应用动能定理、点电荷的场强公式与场的叠加原理即可正确解题.4.如图所示,MPQO 为有界的竖直向下的匀强电场,电场强度为E ,ACB 为光滑固定的半圆形轨道,轨道半径为R ,A 、B 为圆水平直径的两个端点,AC 为14圆弧一个质量为m ,电荷量为+q 的带电小球,从A 点正上方高为H 处由静止释放,并从A 点沿切线进入半圆轨道不计空气阻力及一切能量损失.(1)小球在A 点进入电场时的速度;(2)小球在C 点离开电场前后瞬间对轨道的压力分别为多少; (3)小球从B 点离开圆弧轨道后上升到最高点离B 点的距离. 【答案】(12gH (2)233mgH mg qE R ++、232mgHmg qE R++; (3)qERH mg+. 【解析】 【详解】(1)对从释放到A 点过程,根据动能定理,有:2102A mgH mv =- 解得:2A v gH =(2)对从释放到最低点过程,根据动能定理,有:21()02mg H R qER mv +=-+ ……① 小球在C 点离开电场前瞬间,根据牛顿第二定律,有:21N mg q v E Rm --= ……..②小球在C 点离开电场后瞬间,根据牛顿第二定律,有:22v N mg m R-=……. ③联立①②③解得:1233mgHN mg qE R =++ 2232mgHN mg qE R =++根据牛顿第三定律,小球在C 点离开电场前后瞬间对轨道的压力分别为1233mgHN mg qE R'=++2232mgHN mg qE R'=++(3)从释放小球到右侧最高点过程,根据动能定理,有:()00mg H h qER -+=-解得:qERh H mg=+答:(1)小球在A(2)小球在C 点离开电场前后瞬间对轨道的压力分别为233mgHmg qE R++、232mgHmg qE R++; (3)小球从B 点离开圆弧轨道后上升到最高点离B 点的距离为qERH mg+.5.如图所示,充电后的平行板电容器水平放置,电容为C ,极板间距离为d ,上极板正中有一小孔。
【高中物理】功率易错题剖析
【高中物理】功率易错题剖析功率是各地命题的重点,要学好功率,首先要准确理解功率的含义。
功率的概念比较抽象,一定要结合具体实例,理解概念的确切含义。
其次,要注意区分功与功率、功率与机械效率,以免引起错解。
下面精选了几个易出错的例题进行分析,以加强对有关知识的理解。
一、对“权力”概念的误解会导致错误例1 关于功和功率,下列说法正确的是【】a、你做的工作越多,你必须拥有的权力就越多b.做功时间越长,功率一定越大c、工作做得越多,工作时间越长,功率必须越大d.在相同的时间内做功越多,功率越大曲解a、B或C剖析此题造成错解的主要原因是对功率概念理解不透。
功率的大小只表示物体所做的功的速度,而不是所做的功的大小。
根据功率P=w/T的含义,功率的大小由两个因素决定:一个是功w;第二个是完成这些工作所需的时间t。
当工作相同时,时间越短,功率越大;当工作时间相同时,所做的工作越多,功率就越大。
在问题设计中,仅仅通过讲述工作或工作时间来比较和判断权力是不可能的。
如果你做更多的工作,功率不一定很大,因为没有指定工作时间,所以选项a是错误的。
工作时间长,功率不一定大,因为它不能解释在这段时间内完成了多少工作,所以选项B是错误的。
工作做得越多,工作时间就越长,功率也不一定大,因为工作时间比,即单位时间内完成的工作不一定多,所以选项C是错误的。
正解d二、混淆“功率”和“机械效率”会导致错误例2 下列说法中正确的是【】a、机械效率越高,机械工作必须完成得越快b.做功越多的机械,机械效率一定越高c、功率越大,机械效率越高d.做功越快的机械,功率一定越大曲解a或C剖析由于对功率和机械效率的概念模糊不清,一知半解是造成错解的主要原因。
功率和机械效率是两个不同的概念。
机械效率表示物体所做的主动功与总功的比率,功率表示物体所做的功的速度。
它们有不同的物理意义,完全没有直接联系。
没有相互制约的关系,不能混淆。
功率大的机械,机械效率不一定高;机械效率高的机械,功率也不一定大。
高中物理热学题解析
高中物理热学题解析热学是高中物理中的一个重要部分,涉及到热量、温度、热传导、热膨胀等概念和原理,是学生们容易感到困惑的内容之一。
本文将通过具体的题目举例,解析高中物理热学题目的考点,并给出解题技巧和指导,帮助学生更好地理解和掌握热学知识。
1. 热传导题目题目:两根长度相等的铁棒,一根温度为100℃,另一根温度为0℃,两者相接触后达到热平衡,求最终的温度。
解析:这是一道典型的热传导题目。
热传导是物体内部热量从高温区向低温区传递的过程。
根据热传导的基本原理,热量会从高温物体传递给低温物体,直到两者达到热平衡。
在这道题目中,两根铁棒接触后,热量会从100℃的铁棒传递给0℃的铁棒,直到两者温度相等。
解题技巧:根据热传导的原理,我们可以利用热传导的公式来解决这个问题。
热传导公式为:Q = k * A * △T / L,其中Q表示传导的热量,k表示热导率,A表示传导面积,△T表示温度差,L表示传导长度。
由于两根铁棒长度相等,传导面积相等,所以可以简化为:Q1 = Q2,k1 * △T1 / L1 = k2 * △T2 / L2。
根据题目中的条件,可以得到:k1 * (100 - T) = k2 * T,解方程可得到最终的温度T。
2. 热膨胀题目题目:一根铁棒的长度为1m,温度升高10℃后,长度增加了多少?解析:这是一道典型的热膨胀题目。
热膨胀是物体在温度升高时由于分子热运动加剧而导致体积或长度增加的现象。
根据热膨胀的基本原理,物体的长度变化与温度变化之间存在一定的关系。
解题技巧:根据题目中的条件,我们可以利用热膨胀系数来解决这个问题。
热膨胀系数表示单位温度升高时物体单位长度的变化量。
对于铁来说,热膨胀系数为α = 12 * 10^-6 ℃^-1。
根据热膨胀的公式,长度变化△L = α * L * △T,其中△L表示长度变化,α表示热膨胀系数,L表示初始长度,△T表示温度变化。
代入题目中的数值,可以计算出长度增加的值。
高中物理热力学题解析
高中物理热力学题解析热力学是物理学中的一个重要分支,研究热量和能量之间的转换关系以及物体热平衡状态的规律。
在高中物理课程中,热力学作为一个重要的考点,经常出现在考试中。
本文将针对高中物理热力学题目进行解析,分析各个题型的考点和解题技巧,帮助学生和家长更好地理解和掌握热力学知识。
一、热力学基本概念题热力学基本概念题主要考察学生对热力学基本概念的理解和应用能力。
例如,某题目要求计算物体的热容量,考生需要理解热容量的定义和计算公式,以及如何根据题目中给出的信息进行计算。
解题技巧:首先,要明确热容量的定义,即单位质量物体温度升高1摄氏度所需要吸收的热量。
其次,要根据题目中给出的信息,计算物体的质量和温度变化量,代入热容量的计算公式进行计算。
最后,注意单位的转换,确保最终结果的准确性。
二、热力学定律题热力学定律题主要考察学生对热力学定律的理解和应用能力。
例如,某题目要求根据热力学第一定律计算物体的内能变化量,考生需要理解内能的定义和计算方法,以及如何根据题目中给出的信息进行计算。
解题技巧:首先,要明确内能的定义,即物体分子内部的能量总和。
其次,要根据题目中给出的信息,计算物体的吸热量和做功量,代入热力学第一定律的计算公式进行计算。
最后,注意单位的转换,确保最终结果的准确性。
三、热力学循环题热力学循环题主要考察学生对热力学循环的理解和应用能力。
例如,某题目要求计算卡诺循环的效率,考生需要理解卡诺循环的特点和效率的计算方法,以及如何根据题目中给出的信息进行计算。
解题技巧:首先,要明确卡诺循环的特点,即由等温过程和绝热过程组成的循环。
其次,要根据题目中给出的信息,计算吸热量和放热量,代入卡诺循环效率的计算公式进行计算。
最后,注意单位的转换,确保最终结果的准确性。
四、热力学方程题热力学方程题主要考察学生对热力学方程的理解和应用能力。
例如,某题目要求根据理想气体状态方程计算气体的压强,考生需要理解理想气体状态方程的含义和计算方法,以及如何根据题目中给出的信息进行计算。
46道高中物理33题热学热门大题整理大全
1\如图5所示,厚度和质量不计、横截面积为S=10 cm2的绝热汽缸倒扣在水平桌面上,汽缸内有一绝热的“T”形活塞固定在桌面上,活塞与汽缸封闭一定质量的理想气体,开始时,气体的温度为T0=300 K,压强为p=0.5×105 Pa,活塞与汽缸底的距离为h=10 cm,活塞与汽缸可无摩擦滑动且不漏气,大气压强为p0=1.0×105 Pa。
图5(1)求此时桌面对汽缸的作用力F N;(2)现通过电热丝将气体缓慢加热到T,此过程中气体吸收热量为Q=7 J,内能增加了ΔU=5 J,整个过程活塞都在汽缸内,求T的值。
解析(1)对汽缸受力分析,由平衡条件有F N+pS=p0S,解得F N=(p0-p)S=(1.0×105 Pa-0.5×105 Pa)×10×10-4 m2=50 N。
(2)设温度升高至T时活塞距离汽缸底距离为H,则气体对外界做功W=p0ΔV=p0S(H-h),由热力学第一定律得ΔU=Q-W,解得H=12 cm。
气体温度从T0升高到T的过程,由理想气体状态方程得pShT0=p0SHT,解得T=p0Hph T0=105×0.120.5×105×0.10×300 K=720 K。
答案(1)50 N(2)720 K(等压变化,W=pΔV;只要温度发生变化,其内能就发生变化。
(4)结合热力学第一定律ΔU=W+Q求解问题。
2.如图8所示,用轻质活塞在汽缸内封闭一定质量的理想气体,活塞与汽缸壁间摩擦忽略不计,开始时活塞距离汽缸底部高度h 1=0.50 m ,气体的温度t 1=27 ℃。
给汽缸缓慢加热至t 2=207 ℃,活塞缓慢上升到距离汽缸底某一高度h 2处,此过程中缸内气体增加的内能ΔU =300 J ,已知大气压强p 0=1.0×105 Pa ,活塞横截面积S =5.0×10-3 m 2。
(易错题)高中物理选修三第三章《热力学定律》检测(有答案解析)(2)
一、选择题1.(0分)[ID:130347]关于分子动理论和热力学定律,下列说法中正确的是()A.空气相对湿度越大时,水蒸发越快B.物体的温度升高,每个分子的动能都增大C.第二类永动机不可能制成是因为它违反了热力学第一定律处逐渐减小到很难再靠近的过程中,分子间作用力先D.两个分子间的距离由大于910m增大后减小到零,再增大2.(0分)[ID:130342]随着世界经济的快速发展,能源短缺问题日显突出,油价的不断攀升,已对各国人民的日常生活造成了各种影响,如排长队等待加油的情景已经多次在世界各地发生,能源成为困扰世界经济发展的重大难题之一。
下列有关能量转化的说法正确的是()A.只要对内燃机不断改进,就可以把内燃机得到的全部内能转化为机械能B.满足能量守恒定律的物理过程都能自发地进行C.可以直接利用空气中的内能,减少“温室效应”D.物体吸收热量,物体的内能可能减小3.(0分)[ID:130341]下列说法不正确的是()A.饱和气压与热力学温度成正比B.一定量的理想气体在等温膨胀过程中吸收的热量等于对外做的功,并不违反热力学第二定律C.当分子间的引力与斥力平衡时,分子力一定为零,分子势能一定最小D.在任何自然过程中,一个孤立系统中的总熵不会减少4.(0分)[ID:130331]下列说法正确的是()A.把玻璃管道的裂口放在火上烧熔,它的尖端就变圆,是因为熔化的玻璃在表面张力的作用下,表面要收缩到最小的缘故B.用气筒给自行车打气,越打越费劲,说明气体分子之间有斥力C.实际气体在温度不太高、压强不太大时可以当做理想气体来处理D.为了节约能源,应提高利用率,随着技术的进步,一定可以制造出效率为100%的热机5.(0分)[ID:130328]一定质量的理想气体,由初始状态A开始,状态变化按图中的箭头所示方向进行,最后又回到初始状态A,对于这个循环过程,以下说法正确的是()A.由A→B,气体的分子平均动能增大,放出热量B.由B→C,气体的分子数密度增大,内能减小,吸收热量C.由C→A,气体的内能减小,放出热量,外界对气体做功D.经过一个循环过程后,气体内能可能减少,也可能增加6.(0分)[ID:130322]A、B两装置,均由一支一端封闭、一端开口且带有玻璃泡的管状容器和水银槽组成,除玻璃泡在管上的位置不同外,其他条件都相同.将两管抽成真空后,开口向下竖直插人水银槽中(插入过程没有空气进入管内),水银柱上升至图示位置停止.假设这一过程水银与外界没有热交换,则下列说法正确的是A.A中水银的内能增量大于B中水银的内能增量B.B中水银的内能增量大于A中水银的内能增量C.A和B中水银体积保持不变,故内能增量相同D.A和B中水银温度始终相同,故内能增量相同7.(0分)[ID:130321]图为某种椅子与其升降部分的结构示意图,M、N两筒间密闭了一定质量的气体,M可沿N的内壁上下滑动,设筒内气体不与外界发生热交换,在M向下滑动的过程中A.外界对气体做功,气体内能增大B.外界对气体做功,气体内能减小C.气体对外界做功,气体内能增大D.气体对外界做功,气体内能减小8.(0分)[ID:130296]一定质量的理想气体,从状态M开始,经状态N、Q回到原状态M,其p—V图像如图所示,其中QM平行于横轴,NQ平行于纵轴,M、N在同一等温线上。
高中物理易错难点汇总
高中物理易错难点汇总一、力学部分1、受力分析时容易漏掉某个力,尤其是摩擦力和其他隐藏力。
2、对平衡状态判断不清,导致对物体的受力分析不准确。
3、对牛顿第二定律的理解不深入,导致在计算加速度时出现错误。
4、混淆动量守恒和能量守恒的条件,对两守恒定律的应用出现混淆。
二、电学部分1、对电场强度、电势、电动势等概念的理解不清晰,导致在计算中出错。
2、混淆欧姆定律和基尔霍夫定律的应用条件,对两种定律的适用范围不清楚。
3、对电容器的理解不够深入,无法准确计算电容器的电量和电压。
三、光学部分1、对光的折射和反射定律理解不准确,导致在计算光路时出现错误。
2、对光的波动性和粒子性理解不清楚,导致无法正确解释一些光学现象。
四、热学部分1、对热力学第一定律和第二定律的理解不深入,导致在计算中出错。
2、对气体的性质理解不清晰,无法正确计算气体的状态变化。
以上是高中物理学习中常见的易错难点,同学们在学习中应该对这些知识点进行深入的理解和掌握,避免在解题时出现错误。
多做练习题,通过实践来加深对知识点的理解和记忆也是非常有效的学习方法。
高中物理易错点汇总高中物理是一门对理解力和应用能力要求很高的学科。
在学习过程中,很多学生可能会遇到一些易错点,下面就对这些问题进行汇总,帮助大家更好地掌握物理知识。
一、概念理解不清物理概念是学习物理的基础,如果对概念理解不清,就很容易在解题过程中出错。
例如,在速度与加速度的学习中,学生可能会混淆速度和加速度的概念,导致解题错误。
对于矢量和标量的概念,也容易混淆。
二、公式应用不当物理公式是解决问题的关键,但有些学生往往在没有完全理解公式的情况下盲目套用,导致错误。
例如,在电场强度和电势的学习中,E=kQ/r²和φ=kQ/r是两个常用的公式,但学生在应用时可能会忽视公式的适用条件和范围,导致结果错误。
三、单位换算错误物理学科中的单位换算是很常见的,但有些学生往往会因为单位换算错误而导致解题出错。
高中物理热学解答题举例与分析
高中物理热学解答题举例与分析热学是高中物理中的一个重要分支,涉及到热量、温度、热传导等内容。
在考试中,热学解答题是一个常见的题型,要求学生能够灵活运用热学知识解决实际问题。
本文将通过几个具体的例子,分析热学解答题的考点和解题技巧,帮助高中学生更好地应对这类题目。
例一:一个小球从高处自由下落,落地后与地面发生碰撞,落地后的温度变化如何?这个问题考察的是热传导的知识。
当小球与地面碰撞时,会产生热量。
根据热传导的规律,热量会从高温物体传递到低温物体,直到两者温度达到平衡。
因此,小球在与地面碰撞后,温度会上升,直到与地面达到热平衡。
例二:一个容器内有一杯热水和一块冰,当冰完全融化后,容器内的温度变化如何?这个问题考察的是相变的知识。
当冰开始融化时,热量从热水传递到冰上,使冰融化。
在这个过程中,热量的传递会导致热水的温度降低,直到冰完全融化。
此时,容器内的温度将保持不变,直到冰完全融化。
例三:一个房间里有一台加热器,当加热器工作时,房间内的温度如何变化?这个问题考察的是热平衡的知识。
当加热器工作时,会向房间内提供热量。
根据热平衡的原理,热量会从加热器传递到房间内的空气,直到两者达到热平衡。
因此,房间内的温度会逐渐上升,直到达到加热器提供的热量所能维持的温度。
通过以上几个例子,我们可以看出,热学解答题的考点主要包括热传导、相变和热平衡等知识。
在解答这类题目时,学生需要注意以下几点解题技巧:1. 理清问题的关键信息:在阅读问题时,要仔细理解问题中的关键信息,例如温度变化、热量传递方向等。
这样可以帮助我们确定问题所涉及的热学知识点。
2. 运用热学公式和定律:在解答题目时,要根据问题所涉及的热学知识,灵活运用相应的公式和定律。
例如,热传导可以使用热传导定律,相变可以使用相变热的公式等。
3. 注意能量守恒:在解答热学问题时,要注意能量守恒的原则。
热学问题中的能量转化是一个重要的考点,要确保能量的输入和输出保持平衡。
高中物理热力学问题中的热传导和热辐射的题目解析
高中物理热力学问题中的热传导和热辐射的题目解析热力学是高中物理中的一个重要内容,其中热传导和热辐射是常见的考点。
在解题过程中,我们需要理解热传导和热辐射的基本概念和原理,并运用相关公式和知识进行分析和计算。
本文将通过具体的题目来说明这两个题型的考点,并给出解题技巧和指导。
一、热传导题目解析1. 题目:一根长为L的均匀导热棒,两端分别与温度为T1和T2的热源接触,求导热棒上某一位置x处的温度分布。
解析:这是一个典型的热传导问题,我们需要运用热传导定律来解答。
热传导定律表明,热传导速率正比于温度梯度,与导热系数和截面积成正比。
在这个题目中,我们可以利用导热方程来求解。
解题技巧:首先,我们可以设定导热棒的一端为原点,建立坐标系。
然后,根据导热方程进行计算,考虑边界条件,即导热棒两端的温度。
最后,通过求解微分方程,得到导热棒上不同位置处的温度分布。
2. 题目:一个物体的温度为T1,放置在温度为T2的环境中,经过一段时间后,物体的温度变为T3,求物体的热传导系数。
解析:这个题目要求我们通过物体的温度变化来求解热传导系数。
我们可以利用热传导定律和热传导方程来解答。
解题技巧:首先,我们可以根据热传导定律得到物体的热传导速率与温度差的关系。
然后,利用热传导方程,将热传导速率与热传导系数联系起来。
最后,通过求解方程,得到物体的热传导系数。
二、热辐射题目解析1. 题目:一个黑体表面的温度为T1,面积为A1,另一个黑体表面的温度为T2,面积为A2,求两个黑体之间的热辐射功率。
解析:这是一个热辐射问题,我们需要运用斯特藩-玻尔兹曼定律来解答。
斯特藩-玻尔兹曼定律表明,热辐射功率正比于温度的四次方,与表面积的乘积成正比。
解题技巧:首先,我们可以利用斯特藩-玻尔兹曼定律得到热辐射功率与温度差的关系。
然后,考虑两个黑体表面的面积,将热辐射功率与表面积联系起来。
最后,通过求解公式,得到两个黑体之间的热辐射功率。
2. 题目:一个物体的温度为T1,面积为A1,另一个物体的温度为T2,面积为A2,求两个物体之间的热辐射功率。
最新最全,高中物理选修,3---3《热学》,高考必考知识点,的整体分析
高中物理选修3…3《热学》整体分析高中物理选修3---3《热学》与选修3---4《光学》在高考中占15分之多,选修3---3相较于选修3---4而言,知识点少,内容条理性强。
目前,相关资料对选修3----3考点的归纳与总结只是单纯地自各个考点本身着手,并没有一个自教材整体的高度来加以综合概括分析。
本文力图将《热学》自四个方面加以整体分析描述,使教材中的各个知识点连成线,便于高三学生在短时间内熟练的掌握各个知识点,从而达到顺利解决高考中热学选考题的目的。
§§第一部分:分子动理论一、 物体是由大量分子组成的。
1、分子模型:①固体与液体分子可以看为球体或正方体模型,分子的体积分别为3030a v d 6v =π=与,其中d(分子直径)与a(正方体边长)均可以看为两个相邻分子之间的距离。
②气体分子只能看为正方体模型,该正方体的体积30a v =,只能说成是气体分子所占据有的空间体积,其中a(正方体的边长)可以看为相邻两气体分子之间的平均距离。
2、油膜法测液体分子的直径: Ⅰ.实验操作的关键点:①一种模型:将油酸分子看为球体模型; ②一种思路:使水面上形成单分子油膜层。
Ⅱ.实验步骤与相应操作的目的:①配制一定浓度的油酸酒精溶液,如向amL 纯油酸中加入酒精,直至溶液总量达到bmL ,则油酸浓度00100ba A ⨯=,(目的:酒精起稀释作用,便于在液面上形成单分子油膜层,避免油酸分子在液面上重叠,导致分子直径的测量值偏大);②将油酸酒精溶液一滴一滴滴入量筒中,记下n 滴溶液的总体积V ,(目的:测大不测小,减小读数产生的偶然误差);③在水面上均匀地撒上痱子粉或石膏粉,(目的:利于看清油膜层边缘的轮廓);④将一滴油酸酒精溶液(令其体积为v 1)滴入水中,则这一滴溶液中的纯油酸体积为ba n v bav v 10⋅=⨯=,(减少纯油酸的量,便于形成单分子油膜);⑤在坐标纸上描出油膜层轮廓的形状,〔目的:求单分子油膜层的面积S ,数格子,多余半格算一格(偏大),少于半格舍去(偏小),整体面积偏差可以忽略不计〕; ⑥令油酸分子的直径为d ,则nbsvas v d 0==。
高中物理易错题汇总含答案
高中物理易错题汇总含答案一.选择题(共8小题)1.图甲为一玩具起重机的电路示意图,理想变压器的原副线圈匝数比为5:1,变压器原线圈中接入图乙所示的正弦交流电,电动机的内阻为R M=5Ω,装置正常工作时,质量为m =2kg的物体恰好以v=0.25m/s的速度匀速上升,照明灯正常工作,电表均为理想电表,电流表的示数为3A。
g取10m/s2,设电动机的输出功率全部用来提升物体,下列说法正确的是()A.原线圈的输入电压为B.照明灯的额定功率为30WC.电动机被卡住后,原线圈上的输入功率增大D.电动机正常工作时内阻上的热功率为20W2.“张北的风点亮北京的灯”,中国外交部发言人赵立坚这一经典语言深刻体现了2022年北京冬奥会的“绿色奥运”理念。
张北可再生能源示范项目,把张北的风转化为清洁电力,并入冀北电网,再输向北京、延庆、张家口三个赛区。
远距离输电过程,我们常常采用高压输电。
某风力发电站,通过远距离输送一定功率的交流电,若将输送电压升高为原来的n倍,则输电线上的电功率损失为()A.原来的B.原来的C.原来的n倍D.原来的n2倍3.质谱仪是一种测定带电粒子质量和分析同位素的重要设备,构造原理如图所示。
离子源S产生的各种不同正离子束(初速度可视为零,不计粒子间相互作用)经MN间的加速电压加速后从小孔O垂直进入匀强磁场,运转半周后到达照相底片上的P点,P点到小孔O的距离为x。
下列关于x与(比荷的倒数)的图像可能正确的是()A.B.C.D.4.磁电式电流表是常用的电学实验器材,如图所示,电表内部由线圈、磁铁、极靴、圆柱形软铁、螺旋弹簧等构成。
下列说法正确的是()A.极靴与圆柱形软铁之间为匀强磁场B.当线圈中电流方向改变时,线圈受到的安培力方向不变C.通电线圈通常绕在铝框上,主要因为铝的电阻率小,可以减小焦耳热的产生D.在运输时,通常把正、负极接线柱用导线连在一起,是应用了电磁阻尼的原理5.一含有理想变压器的电路如图甲所示,图中理想变压器原、副线圈匝数之比为2:1,电阻R1和R2的阻值分别为3Ω和10Ω,电流表、电压表都是理想交流电表,a、b输入端的电流如图乙所示,下列说法正确的是()A.0.03s时,通过电阻R1的电流为B.电流表的示数为C.电压表的示数为D.0~0.04s内,电阻R1产生的焦耳热为0.48J6.某同学自己绕制了两个线圈套在可拆变压器的铁芯上,组成了一个新变压器,如图甲所示,线圈a作为原线圈连接到学生电源的交流输出端,原、副线圈的匝数比为3:1,电源输出的电压如图乙所示,线圈b接小灯泡。
高中物理热学综合题举例与分析
高中物理热学综合题举例与分析在高中物理学习中,热学是一个重要的内容模块。
热学综合题是考察学生对热学知识的综合应用和解题能力的重要形式之一。
本文将通过举例和分析,帮助高中学生和他们的父母更好地理解和应对热学综合题。
例题一:一个物体的温度由20℃升高到60℃,它所吸收的热量为4×10^4J。
这个物体的质量是多少?分析:这是一个关于热量和温度变化的问题。
根据热学知识,物体吸收的热量与温度变化和物体的热容量有关。
热容量可以用物体的质量和比热容表示。
所以,我们可以利用热量公式和比热容的定义来解决这个问题。
解答:根据热量公式Q=mcΔθ,其中Q为吸收的热量,m为物体的质量,c为物体的比热容,Δθ为温度变化。
代入已知条件,可以得到4×10^4=m×c×(60-20)。
解方程可得物体的质量m=2×10^3kg。
这道题的考点是热量和温度变化的关系,以及热容量的概念。
通过解答这道题,学生可以巩固对热学公式的理解,并且了解到物体的质量和热容量之间的关系。
例题二:一块质量为0.2kg的冰块,温度为-10℃,放在温度为30℃的水中,最终达到热平衡,求水的质量。
分析:这是一个关于热平衡的问题。
当两个物体处于热平衡时,它们的温度相等。
根据热学知识,热平衡时两个物体吸收和放出的热量相等。
我们可以利用热量公式和热平衡条件来解决这个问题。
解答:根据热量公式Q=mcΔθ,其中Q为吸收或放出的热量,m为物体的质量,c为物体的比热容,Δθ为温度变化。
设水的质量为M,代入已知条件,可以得到0.2×2100×(0-(-10))=M×4200×(30-0)。
解方程可得水的质量M=0.04kg。
这道题的考点是热平衡的条件和热量的守恒定律。
通过解答这道题,学生可以理解热平衡的概念,并且掌握热量守恒定律的应用。
例题三:一根铁棒的两端分别与两个恒温热源相接触,一个热源温度为100℃,另一个热源温度为0℃。
高中物理易错题150道(附答案解析)
19.如图所示,在墙角有一根质量为m 的均匀绳,一端悬于天花板上的A 点,另一端悬于竖直墙壁上的B 点,平衡后最低点为C 点,测得AC=2BC ,且绳在B 端附近的切线与墙壁夹角为α.则绳在最低点C 处的张力和在A 处的张力分别是多大?解析:如(a)图所示,以CB 段为研究对象,031cos =-mg T B α,αcos 3mgT B =,又0sin =-αB C T T ,αtan 3mgT C =,AC 段受力如(b)图所示,α222tan 43)32(+=+=mgT mg T C A .20.如图所示,一个半球形的碗放在桌面上,碗口水平,O为其球心,碗的内表面及碗口是光滑的,一根细线跨在碗口上,线的两端分别系有质量为m l 和m 2的小球,当它们处于平衡状态时,质量为m 1的小球与O 点的连线与水平线的夹角为α=60°,两小球的质量比21m m 为:(A)33. (B).32 (c)23. (D) 22.答案:A .21.在“共点力的合成”实验中,如图所示使b 弹簧所受拉力方向与OP 垂直,在下列操作过程中保持O 点位置和a 弹簧的读数不变,关于b 弹簧的拉力方向和其读数变化描述正确的是: (A)a 逆时针转动,则b 也必逆时针转动且b 的示数减小.(B)a 逆时针转动,则b 必逆时针方向转动且b 的示数先减小后增大. (C)a 顺时针转动,则b 也必顾时针转动且b 的示数减小. (D)a 顺时针转动,则b 也必顺时针转动且b 的示数增大. 答案:B .22.消防车的梯子,下端用光滑铰链固定在车上,上端搁在竖直光滑的墙壁上,如图所示,当消防人员沿梯子匀速向上爬时,下面关于力的分析,正确的是: ①铰链对梯的作用减小②铰链对梯的作用力方向逆时针转动 ③地对车的摩擦力增大 ④地对车的弹力不变(A)①②. (B)①②③. (C)③④. (D)②④. 答案:C .23.如图所示,A 、B 、c 三个物体通过细线、光滑的轻质滑轮连接成如图装置,整个装置 保持静止.c 是一只砂箱,砂子和箱的重力都等于G.打开箱子下端的小孔,使砂均匀流出,经过时间t0,砂子流完.下面四条图线中表示了这个过程中桌面对物体B的摩擦力f随时间变化关系的是:( )24.如图所示,木板A的质量为m,木块B的质量是2m,用细线系住A,细线与斜面平行.B木块沿倾角为α的斜面,在木板的下面匀速下滑.若A和B之间及B和斜面之间的动摩擦因数相同,求动摩擦因数μ及细线的拉力T.25.如左图所示,AOB为水平放置的光滑杆,∠AOB为600,两杆上分别套有质量都为m的小环,两环用橡皮绳相连接,一恒力F作用于绳中点C沿∠AOB的角平分线水平向右移动,当两环受力平衡时,杆对小环的弹力为多大?26.在半径为R的光滑的圆弧槽内,有两个半径均为R/3、重分别为G1、G2的球A和B,平衡时,槽面圆心O与A球球心连线与竖直方向夹角α应为多大?27.一均匀的直角三角形木板ABc,可绕垂直纸面通过c点的水平轴转动,如图所示.现用一始终沿直角边AB作用于A点的力F,使BC边缓慢地由水平位置转至竖直位置.在此过程中,力F的大小随a角变化的图线是图中的:[ ]28.常用的雨伞有8根能绕伞柱上端转动的金属条,还有8根支撑金属条的撑杆,撑杆两端通过铰链分别同金属条和伞柱上的滑筒相连.它们分布在四个互成450角的竖直平面内.图中画出了一个平面内两根金属条和两根撑杆的连接情况.设撑杆长度是金属条长度的一半,撑杆与金属条中点相连,当用力F竖直向上推滑筒时,同一平面内的两撑杆和两金属条都互成120°角.若不计滑筒和撑杆的重力,忽略一切摩擦,则此时撑杆对金属条的作用力是多少?29.如(a)图所示,将一条轻质柔软细绳一端拴在天花板上的A点,另一端拴在竖直墙上的B点,A和B到O点的距离相等,绳的长度是OA的两倍.(b)图为一质量不计的动滑轮K,下挂一个质量为m的重物.设摩擦可忽略不计,现将滑轮和重物一起挂到细绳上,在达到平衡时,绳所受的拉力是多大?30.如图所示,重为G的物体A.在力F的推动下沿水平面匀速运动,若木块与水平面间的动摩擦因数为μ,F 与水平方向成θ角. (1)力F 与物体A 所受摩擦力的合力的方向.(A)一定竖直向上. (B)一定竖直向下. (C)可能向下偏左. (D)可能向下偏右.(2)若θ角超过某临界值时,会出现摩擦自锁的现象,即无论推力F 多大,木块都不会发生滑动,试用μ值表示该临界角的大小.31.质量分别为m 、2m 的A 、B 两同种木块用一轻弹簧相连.当它们沿着斜面匀速下滑时,弹簧对B 的作用力为:(A)0. (B)向上, (C)向下. (D)倾角未知.无法确定.32.如图所示,人的质量为60 kg ,木板A 的质量为30kg ,滑轮及绳的质量不计,若人想通过绳子拉住木块A ,他必须用的力大小是: [ ] (A)225 N . (B)300 N . (C)450 N . (D)600 N .33.两个半球壳拼成的球形容器内部已抽成真空,球形容器的半径为R ,大气压强为p o ,为使两个半球壳沿图中箭头方向互相分离,应施加的力F 至少为:[ ](A)4πR 2p o . (B)πR 2p o . (c)2πR 2p o . (D)21πR 2p o .34.如图所示,重力为G 的质点M ,与三根劲度系数相同的螺旋弹簧A 、B 、c 相连,C 处于竖直方向,静止时,相邻弹簧间的夹角均为1200,巳知弹簧A 和B 对质点的作用力的大小均为2G ,则弹簧C 对质点的作用力的大小可能为: [ ](A)2G . (B)G . (C)O . (D)3G .35.直角支架COAB ,其中CO=OA=AB=L ,所受重力不计,并可绕轴O 转动,在B 处悬挂一个重为G 的光滑圆球,悬线与BO 夹角θ,重球正好靠在A 点,如图,为使支架不翻倒,在C 处应加一个竖直向下的压力,此力F 至少要等于 :如用等于球所受重力G 的铁块压在CO 上的某点,则该点至少离O 轴——支架才不至于翻倒.考查意图:力、力矩平衡的综合应用. .36.如图所示,用光滑的粗铁丝做成一个直角三角形,BC 边水平,AC 边竖直,∠ABC =β,AB 及AC 两边上分别套有用细线系着的铜环,当它们静止时,细线跟AB 边所成的角θ的范围是 .37.如图所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分 别用销钉M 、N 固定于杆上,小球处于静止状态.设拔去销钉M 瞬间,小球加速度的大小为12m /s .求若不拔去销钉M 而拔去销钉N 的瞬间,小球的加速度.(g 取10 m /s 2)38.如图所示,质量均匀分布的杆BO 的质量为m ,在P 点与长方体木块接触,为两物体都静止时,已知BP =BO /3,且杆与水平方向的夹角为θ,求: (1)杆BO 对长方体的压力是多大?(2)长方体A 所受地面的静摩擦力的大小和方向.39.对匀变速直线运动的物体,下列说法正确的是 A .在任意相等的时间内速度变化相等; B .位移总是与时间的平方成正比;C .在任意两个连续相等的时间内的位移之差为一恒量;D .在某段位移内的平均速度,等于这段位移内的初速度与末速度之和的一半.40.如图所示,两个光滑的斜面,高度相同,右侧斜面由两段斜面AB 和BC 搭成,存在一定夹角,且AB +BC =AD .两个小球a 、b 分别从A 点沿两侧由静止滑到底端,不计转折处的机械能损失,分析哪个小球先滑到斜面底端?41.对匀变速直线运动而言,下列说法正确的是: (A) 在任意相等的时间内的速度变化相等. (B) 位移总是与时间的平方成正比.(C)在任意两个连续相等的时问内的位移之差为一恒量.(D)在某段位移内的平均速度,等于这段位移内的初速度与末速度之和的一半.42.一个做匀变速直线运动的物体,某时刻的速度大小为4 m /s ,l s 后速度大小变为10 m /s .在这1 s 内该物体的(A)位移的大小可能大于10 m . (B)位移的大小可能小于4 m . (C)加速度的大小可能大于l0 m /s 2. (D)加速度的大小可能小于4 m /s 2.43.一遥控电动小车从静止开始做匀加速直线运动,第4 s 末通过遥控装置断开小车上的电源,再过6 s 汽车静止,测得小车的总位移是30 m 。
2023人教版带答案高中物理必修一第一章运动的描述微公式版重点易错题
2023人教版带答案高中物理必修一第一章运动的描述微公式版重点易错题单选题1、用气垫导轨和数字计时器更能精确地测量物体的瞬时速度。
滑块在牵引力作用下先后通过两个光电门,配套的数字毫秒计记录了遮光板通过第一个光电门的时间为Δt1=0.20s,通过第二个光电门的时间Δt2=0.05s,遮光板的宽度为2.0cm。
遮光条从开始遮住第一个光电门到开始遮住第二个光电门的时间t为2.5s,则滑块的加速度为()A.0.12m/s2B.1.2m/s2C.0.16m/s2D.1.6m/s2答案:A较短时间内的平均速度可以表示瞬时速度求出瞬时速度;滑块通过光电门1时的速度v1=dΔt1=2.0×10−20.20m/s=0.10m/s滑块通过光电门2时的速度v2=dΔt2=2.0×10−20.05m/s=0.40m/s则滑块的加速度为a=v2−v1t=0.40−0.102.5m/s2=0.12m/s2故选A。
2、下列说法正确的是()A.研究“嫦娥四号”探月卫星绕月球飞行的运动时,卫星是不可以被看成质点的B.加速度越大,速度变化量也一定越大C.质点做减速直线运动时,加速度可能在增大D.位移的大小一定不会比路程小答案:CA.研究“嫦娥四号”探月卫星绕月球飞行的运动时,卫星可以被看成质点,选项A错误;B.根据a=Δv Δt可知,加速度越大,速度变化量不一定越大,还与时间有关,选项B错误;C.质点做减速直线运动时,加速度的方向与速度相反,加速度可能在增大,选项C正确;D.位移的大小一定不会比路程大,选项D错误。
故选C。
3、以下关于时间和时刻的说法中正确的是()A.列车员说“火车8点42分到站”指的是时间间隔B.轮船船务员说“本班轮船离港时间为17点25分”指的是时间间隔C.“前3秒”“最后3秒”“第3秒内”指的都是时间间隔D.“第1秒末”“最后1秒内”指的都是时刻答案:CA.列车员说“火车8点42分到站”指的是时刻,故A错误;B.轮船船务员说“本班轮船离港时间为17点25分”指的是时刻,故B错误;C.“前3秒”“最后3秒”“第3秒内”指的都是时间间隔,故C正确;D.“第1秒末”指的是时刻,“最后1秒内”指的是时间间隔,故D错误。
高中物理:复习精讲易错题集(164页超全)
第一章质点的运动错题集一、主要内容本章内容包括位移、路程、时间、时刻、平均速度、即时速度、线速度、角速度、加速度等基本概念,以及匀变速直线运动的规律、平抛运动的规律及圆周运动的规律。
在学习中要注意准确理解位移、速度、加速度等基本概念,特别应该理解位移与距离(路程)、速度与速率、时间与时刻、加速度与速度及速度变化量的不同。
二、基本方法本章中所涉及到的基本方法有:利用运动合成与分解的方法研究平抛运动的问题,这是将复杂的问题利用分解的方法将其划分为若干个简单问题的基本方法;利用物理量间的函数关系图像研究物体的运动规律的方法,这也是形象、直观的研究物理问题的一种基本方法。
这些具体方法中所包含的思想,在整个物理学研究问题中都是经常用到的。
因此,在学习过程中要特别加以体会。
三、错解分析在本章知识应用的过程中,初学者常犯的错误主要表现在:对要领理解不深刻,如加速度的大小与速度大小、速度变化量的大小,加速度的方向与速度的方向之间常混淆不清;对位移、速度、加速度这些矢量运算过程中正、负号的使用出现混乱:在未对物体运动(特别是物体做减速运动)过程进行准确分析的情况下,盲目地套公式进行运算等。
例1 汽车以10 m/s的速度行使5分钟后突然刹车。
如刹车过程是做匀变速运动,加速度大小为5m/s2 ,则刹车后3秒钟内汽车所走的距离是多少?【错解】因为汽车刹车过程做匀减速直线运动,初速v0=10 m/s加速度【错解原因】出现以上错误有两个原因。
一是对刹车的物理过程不清楚。
当速度减为零时,车与地面无相对运动,滑动摩擦力变为零。
二是对位移公式的物理意义理解不深刻。
位移S对应时间t,这段时间内a必须存在,而当a不存在时,求出的位移则无意义。
由于第一点的不理解以致认为a永远地存在;由于第二点的不理解以致有思考a什么时候不存在。
【分析解答】依题意画出运动草图1-1。
设经时间t1速度减为零。
据匀减速直线运动速度公式v1=v0-at则有0=10-5t解得t=2S由于汽车在2S时【评析】物理问题不是简单的计算问题,当得出结果后,应思考是否与s=-30m 的结果,这个结果是与实际不相符的。
高中物理热学练习题(含解析)
高中物理热学练习题学校:___________姓名:___________班级:___________一、单选题1.关于两类永动机和热力学的两个定律,下列说法正确的是( )A .第二类永动机不可能制成是因为违反了热力学第一定律B .第一类永动机不可能制成是因为违反了热力学第二定律C .由热力学第一定律可知做功不一定改变内能,热传递也不一定改变内能,但同时做功和热传递一定会改变内能D .由热力学第二定律可知从单一热源吸收热量,完全变成功是可能的2.下列关于系统是否处于平衡态的说法,正确的是( )A .将一根铁丝的一端插入100℃的水中,另一端插入0℃的冰水混合物中,经过足够长的时间,铁丝处于平衡态B .两个温度不同的物体相互接触时,这两个物体组成的系统处于非平衡态C .0℃的冰水混合物放入1℃的环境中,冰水混合物处于平衡态D .压缩密闭容器中的空气,空气处于平衡态3.分子直径和分子的质量都很小,它们的数量级分别为( )A .102610m,10kg d m --==B .102910cm,10kg d m --==C .102910m,10kg d m --==D .82610m,10kg d m --==4.下列现象中,通过传热的方法来改变物体内能的是( )A .打开电灯开关,灯丝的温度升高,内能增加B .太阳能热水器在阳光照射下,水的温度逐渐升高C .用磨刀石磨刀时,刀片的温度升高,内能增加D .打击铁钉,铁钉的温度升高,内能增加5.图甲是一种导热材料做成的“强力吸盘挂钩”,图乙是它的工作原理图。
使用时,按住锁扣把吸盘紧压在墙上(图乙1),吸盘中的空气(可视为理想气体)被挤出一部分。
然后把锁扣缓慢扳下(图乙2),让锁扣以盘盖为依托把吸盘向外拉出。
在拉起吸盘的同时,锁扣对盘盖施加压力,致使盘盖以很大的压力压住吸盘,保持锁扣内气体密闭,环境温度保持不变。
下列说法正确的是( )A .锁扣扳下后,吸盘与墙壁间的摩擦力增大B .锁扣扳下后,吸盘内气体分子平均动能增大C .锁扣扳下过程中,锁扣对吸盘中的气体做正功,气体内能增加D .锁扣扳下后吸盘内气体分子数密度减小,气体压强减小6.以下说法正确的是( )A .气体对外做功,其内能一定减小B .分子势能一定随分子间距离的增加而增加C .烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形,说明蜂蜡是晶体D .在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体7.在汽缸右侧封闭一定质量的理想气体,压强与大气压强相同。
高中物理热力学热传导问题解析
高中物理热力学热传导问题解析热传导是热力学中的一个重要概念,它描述了热量在物体内部传递的过程。
在高中物理中,我们经常会遇到与热传导相关的问题。
本文将通过具体题目的举例,分析和解释一些常见的热传导问题,帮助高中学生理解和掌握这一知识点。
一、热传导的基本概念在开始具体的题目分析之前,我们先来回顾一下热传导的基本概念。
热传导是指热量通过物体内部的分子碰撞传递的过程。
当两个物体的温度不同时,它们之间会发生热传导,热量从高温物体传递到低温物体,直到两者达到热平衡。
二、题目一:热传导问题题目描述:一个长为L、截面积为A的均匀导热棒,一端与高温热源接触,另一端与低温环境接触。
已知导热棒的热导率为λ,温度差为ΔT,求导热棒上单位时间内传导的热量。
解析:这是一个典型的热传导问题。
根据热传导的基本定律,热量的传导速率与热导率、截面积、温度差和传导距离有关。
我们可以使用热传导定律的公式来解决这个问题:热传导速率Q = λ * A * (ΔT / L)其中,Q表示单位时间内传导的热量,λ表示热导率,A表示截面积,ΔT表示温度差,L表示传导距离。
这个题目的考点是理解和运用热传导定律的公式。
通过计算,我们可以得到导热棒上单位时间内传导的热量。
这个问题的解答过程比较简单,但是考察了对热传导定律的理解和运用。
三、题目二:热传导系数问题题目描述:一个导热棒的两端分别与两个热源接触,已知两个热源的温度分别为T1和T2,导热棒的长度为L,热导率为λ,求导热棒上某一点的温度。
解析:这个问题是一个与热传导系数相关的问题。
根据热传导的基本定律,热传导速率与热导率、截面积、温度差和传导距离有关。
在这个问题中,我们需要求解导热棒上某一点的温度,可以使用热传导定律的公式来解决:Q = λ * A * (T1 - T2) / L根据这个公式,我们可以求解出热传导速率Q,进而得到导热棒上某一点的温度。
这个问题的考点是理解和运用热传导定律的公式,特别是在求解温度问题时的运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理易错题分析——热学[内容和方法]本单元内容包括两部分,一是微观的分子动理论部分,一是宏观的气体状态变化规律。
其中分子动理论部分包括分子动理论的基本观点、分子热运动的动能、分子间相互作用的势能和物体的内能等概念,及分子间相互作用力的变化规律、物体内能变化的规律、能量转化和守恒定律等基本规律;气体状态变化规律中包括热力学温度、理想气体和气体状态参量等有关的概念,以及理想气体的等温、等容、等压过程的特点及规律(包括公式和图象两种描述方法)。
本单元中所涉及到的基本方法是理想化的模型方法,其中在分子动理论中将微观分子的形状视为理想的球体,这是通过阿伏伽德罗常数对微观量进行估算的基础;在气体状态变化规律中,将实际中的气体视为分子没有实际体积且不存在相互作用力的理想气体,从而使气体状态变化的规律在误差允许的范围内得以大大的简化。
[例题分析]在本单元知识应用的过程中,初学者常犯的错误主要表现在:对较为抽象的分子热运动的动能、分子相互作用的势能及分子间相互作用力的变化规律理解不到位,导致这些微观量及规律与宏观的温度、物体的体积之间关系不能建立起正确的关系。
对于宏观的气体状态的分析,学生的问题通常表现在对气体压强的分析与计算方面存在着困难,由此导致对气体状态规律应用出现错误;另外,本单元中涉及到用图象法描述气体状态变化规律,对于p—V,p—T,V—T图的理解,一些学生只观注图象的形状,不能很好地理解图象上的点、线、斜率等的物理意义,因此造成从图象上分析气体温度变化(内能变化)、体积变化(做功情况)时出现错误,从而导致利用图像分析气体内能变化等问题时的困难。
例1 下列说法中正确的是[ ]A.温度低的物体内能小B.温度低的物体分子运动的平均速率小C.做加速运动的物体,由于速度越来越大,因此物体分子的平均动能越来越大D.外界对物体做功时,物体的内能不一定增加【错解分析】错解一:因为温度低,动能就小,所以内能就小,所以应选 A而温度低的物体分子平均动能小,所以速率也小。
所以应选B。
错解三:由加速运动的规律我们了解到,物体的速度大小由初速和加速度与时间决定,随着时间的推移,速度肯定越来越快再由动能公式错解一是没有全面考虑内能是物体内所有分子的动能和势能的总和。
温度低只表示物体分子平均动能小,而不表示势能一定也小,也就是所有分子的动能和势能的总和不一定也小,所以选项A是错的。
实际上因为不同物质的分子质量不同,而动能不仅与速度有关,也与分子质量有关,单从一方面考虑问题是不够全面的,所以错解二选项B也是错的。
错解三的原因是混淆了微观分子无规则运动与宏观物体运动的差别。
分子的平均动能只是分子无规则运动的动能,而物体加速运动时,物体内所有分子均参与物体的整体、有规则的运动,这时物体整体运动虽然越来越快,但并不能说明分子无规则运动的剧烈情况就要加剧。
从本质上说,分子无规则运动的剧烈程度只与物体的温度有关,而与物体的宏观运动情况无关。
【正确解答】由于物体内能的变化与两个因素有关,即做功和热传递两方面。
内能是否改变要从这两方面综合考虑。
若做功转化为物体的内能等于或小于物体放出的热量,则物体的内能不变或减少。
即外界对物体做功时,物体的内能不一定增加,选项D是正确的例2 如图7-1所示,一个横截面积为S的圆筒型容器竖直放置,金属圆板A的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M,不计圆板A与容器内壁之间的摩擦,若大气压强为P0,则被圆板封闭在容器中气体的压强p等于[ ]【错解分析】错解一:因为圆板下表面是倾斜的,重力产生的压强等于错解三:大气压p0可以向各个方向传递,所以气体压强里应包括p0,重力产生的压强,压力都应该是垂直于接触面方向,所以重力产生压强应是重力的分力Mg/cosθ,而不是Mg,错解一是对压力这个概念理解不对。
错解二虽然注意到重力的分力Mg/cosθ产生压强,但没有考虑到面错解三在分解重力时错了,重力的一个分力应是Mg/cosθ而不是Mgcosθ,因为另一个分力一定要垂直斜板的竖直面,如图7-2。
所以重【正确解答】以金属圆板A为对象,分析其受力情况,从受力图7-3可知,圆板A受竖直向下的力有重力Mg、大气压力p0S,竖直向上的正确答案应为D。
【小结】正如本题的“分析解答”中所做的那样,确定被活塞封闭的气体的压强的一般方法是:以活塞为研究对象;分析活塞的受力情况;概括活塞的运动情况(通常为静止状态),列出活塞的受力方程(通常为受力平衡方程);通过解这个方程便可确定出气体的压强。
例3如图7-4所示,在一个圆柱形导热的气缸中,用活塞封闭了一部分空气,活塞与气缸壁间是密封而光滑的,一弹簧秤挂在活塞上,将整个气缸悬吊在天花板上。
当外界气温升高(大气压不变)时,[ ]A.弹簧秤示数变大B.弹簧秤示数变小C.弹簧秤示数不变D.条件不足,无法判断【错解分析】错解:对活塞进行受力分析,如图7-5由活塞平衡条件可知:F = mg+p0S-pS当外界气温上升时,气体压强增大,所以弹簧秤的接力F将变小,所以答案应选B。
主要是因为对气体压强变化的判断,没有认真细致地具体分析,而是凭直觉认为温度升高,压强增大。
【正确解答】对活塞受力分析如错解,F= mg+p0S-pS现在需要讨论一下气体压强的变化。
以气缸为对象受力分析,如图7-6因为M、S、P0均为不变量,所以,在气体温度变化时,气体的压强不变。
而气体在此过程中作等压膨胀。
由此而知,弹簧秤的示数不变,正确答案为C。
【小结】通过本题的分析可以看出,分析问题时,研究对象的选取对解决问题方向的作用是至关重要的。
如本题要分析气体压强的变化情况,选取气缸为研究对象比研究活塞要方便得多。
另外如本题只是分析弹簧秤的示数变化,选整个气缸和活塞为研究对象更为方便,因对气缸加热的过程中,气缸、气体及活塞所受重力不变,所以弹簧秤对它们的拉力就不会变化,因此弹簧秤的示数不变。
例4 设一氢气球可以自由膨胀以保持球内外的压强相等,则随着气球的不断升高,因大气压强随高度而减小,气球将不断膨胀。
如果氢气和大气皆可视为理想气体,大气的温度、平均摩尔质量以及重力和速度随高度变化皆可忽略,则氢气球在上升过程中所受的浮力将______(填“变大”“变小”“不变”)【错解分析】错解一:因为气球上升时体积膨胀,所以浮力变大。
错解二:因为高空空气稀薄,所以浮力减小。
因为浮力的大小等于气球排开大气所受的重力,F=ρ空·g·V,当气球升入高空时,密度ρ减小,体积V增大,错解一和二都是分别单一地强调一方面的变化,没有综合考虑,因此导致错解。
【正确解答】以氢气为研究对象,设地面附近和高空h处的压强和体积分别为p1,p2,V1,V2。
因为温度不变,由玻意耳定律可知:p1V1=p2V2以大气为研究对象,在地面附近和高空h处的压强和大气密度分别为ρ1,ρ2(与氢气对应相等)p1,p2因为大气密度和压强都与高度设氢气球在地面附近和高空h处的浮力分别为F1,F2则F1=ρ1·g·V1F2=ρ2·gV2所以正确答案为浮力不变。
【小结】如上分析,解决变化问题,需要将各种变化因素一一考虑,而不能单独只看到一面而忽略另一面。
此题也可以利用克拉珀龙方程求解:在高度h处:对氢气列克拉珀龙方程对排开空气列克拉珀龙方程因为p,V,R,T均相同所以联立①②得:我们知道,空气、氢气的摩尔质量是不变的,此题气球中的氢气质量也是一定的,所以排开空气的质量不随高度h而变,又因为重力加速度也不变(由题目知)所以,气球所受浮力不变。
利用克拉珀龙方程处理浮力,求解质量问题常常比较方便。
例 5 容积V=20L的钢瓶充满氧气后,压强为p=30atm,打开钢瓶阀门,让氧气分装到容积为V'=5L 的小瓶子中去。
若小瓶子已抽成真空,分装到小瓶中的氧气压强均为P'=2atm压。
在分装过程中无漏气现象,且温度保持不变,那么最多可能装的瓶数是:[ ]A.4瓶B.50瓶C.56瓶D.60瓶【错解分析】错解:设可充气的瓶子数最多为n,利用玻意耳定律得:pV=np'V'所以答案应为D。
上述解答中,认为钢瓶中的气体全部充入到小瓶中去了,事实上当钢瓶中气体的压强随着充气过程的进展而下降,当钢瓶中的气体压强降至2atm时,已无法使小瓶继续充气,达到2atm,即充最后一瓶后,钢瓶中还剩下一满瓶压强为2atm的气体。
【正确解答】设最多可装的瓶子数为n,由玻意耳定律得:pV=p'V+np'V'解得:n=56(瓶)所以本题的正确答案为C。
【小结】解答物理问题时我们不仅要会用数学方法进行处理,同时还要考虑到物理问题的实际情况。
任何物理问题的数学结果都要接受物理事实的制约,因此在学习中切忌将物理问题纯数学化。
例6内径均匀的U型细玻璃管一端封闭,如图7-7所示,AB段长30mm,BC段长10mm,CD段长40mm,DE段充满水银,DE=560mm,AD段充满空气,外界大气压p0=1.01325×105Pa=760mmHg,现迅速从E向上截去400mm长玻璃管,平衡后管内空气柱的长度多大?【错解分析】错解:当从下面截去400mm后,空气柱的压强变了,压强增大,在等温条件下,体积减小,根据玻意耳定律。
初态:p1=(760-560)=200mmHg V1=(300+100+400)S=800S(mm)3末态:p2=(760-160)=600(mmHg) V2=?。