小波基础知识 PPT课件
合集下载
小波分析基础知识PPT课件
10
线性空间
线性空间的判定方法 (1)一个集合,如果定义的加法和乘数运 算是通常的实数间的加乘运算,则只需检验对运 算的封闭性.
例1 实数域上的全体 m n矩阵,对矩阵的加法
和数乘运算构成实数域上的线性空间,记作 Rmn.
A m n B m n C m n , A m nD m n,
16
线性空间
下面一一验证八条线性运算规律:
( 1 ) a b a b b b a a ; ( 2 ) a b ( ) c ( a ) c ( b a ) c a b ( b c ) (3)R中存在 1,对 零任 a元 R 何 ,素 有
a 1 a 1 a ; (4) a R ,有负 a1 元 R ,使 素
18
线性空间
例7 n个有序实数组成的数组的全体
S n x ( x 1 , x 2 , , x n ) T x 1 , x 2 , , x n R
对于通常的有序数组的加法及如下定义的乘法
(x 1 , ,x n ) T 0 , ,0
不构成线性空间. Sn对运算封.闭
但 1xo, 不满足第五条运算规律.
a a 1aa 11 ;
17
线性空间
(5)1aa1a;
( 6 ) a a a a a ;
(7 )aa a a a a a a ;
( 8 ) ( a b ) ( a ) a b a b b
a b a b .
所以 R 对所定义的运算构成线性空间.
14
线性空间
s 1 A 1 s x B i 1 n A 1 s x B i 1 n S[x]
Sx是一个线性空间.
一般地
例5 在区间 [a,b]上全体实连续函数,对函数的 加法与数和函数的数量乘法,构成实数域上的线性 空间.
线性空间
线性空间的判定方法 (1)一个集合,如果定义的加法和乘数运 算是通常的实数间的加乘运算,则只需检验对运 算的封闭性.
例1 实数域上的全体 m n矩阵,对矩阵的加法
和数乘运算构成实数域上的线性空间,记作 Rmn.
A m n B m n C m n , A m nD m n,
16
线性空间
下面一一验证八条线性运算规律:
( 1 ) a b a b b b a a ; ( 2 ) a b ( ) c ( a ) c ( b a ) c a b ( b c ) (3)R中存在 1,对 零任 a元 R 何 ,素 有
a 1 a 1 a ; (4) a R ,有负 a1 元 R ,使 素
18
线性空间
例7 n个有序实数组成的数组的全体
S n x ( x 1 , x 2 , , x n ) T x 1 , x 2 , , x n R
对于通常的有序数组的加法及如下定义的乘法
(x 1 , ,x n ) T 0 , ,0
不构成线性空间. Sn对运算封.闭
但 1xo, 不满足第五条运算规律.
a a 1aa 11 ;
17
线性空间
(5)1aa1a;
( 6 ) a a a a a ;
(7 )aa a a a a a a ;
( 8 ) ( a b ) ( a ) a b a b b
a b a b .
所以 R 对所定义的运算构成线性空间.
14
线性空间
s 1 A 1 s x B i 1 n A 1 s x B i 1 n S[x]
Sx是一个线性空间.
一般地
例5 在区间 [a,b]上全体实连续函数,对函数的 加法与数和函数的数量乘法,构成实数域上的线性 空间.
第六章小波分析基础ppt课件
1、多分辨分析(MRA)的概念[5]
由母小波按如下方式的伸缩平移可构成L2(R)空间的标准正交基
j
j,k (t) 2 2 (2 j t k),j, k Z,t R
(3.1)
如何构造母小波呢?1989年,Mallat和Meyer提出了按多分辨分析 的思想来构造母小波,其基本思想是:
现构造一个具有特定性质的层层嵌套的闭子空间序列{Vj}jZ, 这个闭子空间序列充满了整个L2(R)空间。 在V0子空间找一个函数g(t),其平移{g(t-k)}k Z构成V0子空间的 Riesz基。
如图1所示的LENA图像f(x,y),假设图像的大小是512x512,量 化级是256,即
0 f (x, y) 255 0 x, y 511
y
x
2、L2(R)空间的正交分解和变换[1] 对 f(t)L2(R) , 存 在 L2(R) 的 一 组 标 准 正 交 基 gi(t) , t R ,
一、认识小波
1、预备知识 从数学的角度讲,小波是构造函数空间正交基的基本单元,
是在能量有限空间L2(R) 上满足允许条件的函数,这样认识小波 需要L2(R) 空间的基础知识,特别是内积空间中空间分解、函数 变换等的基础知识。
从信号处理的角度讲,小波(变换)是强有力的时频分析(处理) 工具,是在克服傅立叶变换缺点的基础上发展而来的,所以从信 号处理的角度认识小波,需要傅立叶变换、傅立叶级数、滤波器 等的基础知识。
小波变换有效地克服了傅立叶变换的这一缺点,信号变换到 小波域后,小波不仅能检测到高音与低音,而且还能将高音 与低音发生的位置与原始信号相对应,如图所示。
例2、信号逼近:如图(a)和(b)是原始信号,其余的是逼近信号。
因此我们需要这样一个数学工具:既能在时域很好地刻画信号的局部性,
由母小波按如下方式的伸缩平移可构成L2(R)空间的标准正交基
j
j,k (t) 2 2 (2 j t k),j, k Z,t R
(3.1)
如何构造母小波呢?1989年,Mallat和Meyer提出了按多分辨分析 的思想来构造母小波,其基本思想是:
现构造一个具有特定性质的层层嵌套的闭子空间序列{Vj}jZ, 这个闭子空间序列充满了整个L2(R)空间。 在V0子空间找一个函数g(t),其平移{g(t-k)}k Z构成V0子空间的 Riesz基。
如图1所示的LENA图像f(x,y),假设图像的大小是512x512,量 化级是256,即
0 f (x, y) 255 0 x, y 511
y
x
2、L2(R)空间的正交分解和变换[1] 对 f(t)L2(R) , 存 在 L2(R) 的 一 组 标 准 正 交 基 gi(t) , t R ,
一、认识小波
1、预备知识 从数学的角度讲,小波是构造函数空间正交基的基本单元,
是在能量有限空间L2(R) 上满足允许条件的函数,这样认识小波 需要L2(R) 空间的基础知识,特别是内积空间中空间分解、函数 变换等的基础知识。
从信号处理的角度讲,小波(变换)是强有力的时频分析(处理) 工具,是在克服傅立叶变换缺点的基础上发展而来的,所以从信 号处理的角度认识小波,需要傅立叶变换、傅立叶级数、滤波器 等的基础知识。
小波变换有效地克服了傅立叶变换的这一缺点,信号变换到 小波域后,小波不仅能检测到高音与低音,而且还能将高音 与低音发生的位置与原始信号相对应,如图所示。
例2、信号逼近:如图(a)和(b)是原始信号,其余的是逼近信号。
因此我们需要这样一个数学工具:既能在时域很好地刻画信号的局部性,
《小波分析》课件
小波变换与其他数学方法的结合
小波变换与傅里叶分析的结合
小波变换作为傅里叶分析的扩展,能够提供更灵活的时频分析能力,适用于非平稳信号 的处理。
小波变换与数值分析的结合
小波变换在数值分析中可用于函数逼近、数值积分、微分方程求解等领域,提高计算效 率和精度。
小波变换在大数据分析中的应用
特征提取
小波变换能够提取大数据中隐藏的时间或频 率特征,用于分类、聚类和预测等任务。
正则性
小波基的正则性是指其在时频域的连续性和光滑 性,影响信号重构的精度和稳定性。
01
小波变换在信号处 理中的应用
信号的降噪处理
总结词
通过小波变换,可以将信号中的噪声成 分与有用信号分离,从而实现降噪处理 。
VS
详细描述
小波变换具有多尺度分析的特点,能够将 信号在不同尺度上进行分解,从而将噪声 与有用信号分离。在降噪处理中,可以选 择合适的小波基和阈值处理方法,对噪声 进行抑制,保留有用信号。
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
图像的压缩编码
01
通用性强
02
小波变换的通用性强,可以广泛 应用于各种类型的图像压缩,包 括灰度图像、彩色图像、静态图 像和动态图像等。
图像的边缘检测
精确检测
小波变换具有多尺度分析的特性,能 够检测到图像在不同尺度下的边缘信 息,实现更精确的边缘检测。
图像的边缘检测
抗噪能力强
小波变换能够有效地抑制噪声对边缘 检测的影响,提高边缘检测的准确性 和稳定性。
信号的压缩编码
总结词
小波变换可以将信号进行压缩编码,减小存储和传输所需的带宽和空间。
详细描述
小波分析简述(第五章)PPT课件
六、多分辨率分析(Multi-resolution Analysis ,MRA),又称为多尺度分析
若我们把尺度理解为照相机的镜头的话,当尺 度由大到小变化时,就相当于将照相机镜头由 远及近地接近目标。在大尺度空间里,对应远 镜头下观察到的目标,只能看到目标大致的概 貌。在小尺度空间里,对应近镜头下观察目标, 可观测到目标的细微部分。因此,随着尺度由 大到小的变化,在各尺度上可以由粗及精地观 察目标,这就是多尺度(即多分辨率)的思想。
小波变换(Wavelet Transform)
1
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
03
2
主要内容
一、小波的发展历史 二、小波定义 三、连续小波变换 四、小波变换的特点 五、离散小波变换 六、多分辨率分析 七、Mallat算法 八、小波的应用 九、小波的进展
傅立叶分析是把一个信号分解成各种不同频率的正弦波, 因此正弦波是傅立叶变换的基函数。同样,小波分析是 把一个信号分解成由原始小波经过移位和缩放后的一系 列小波,因此小波是小波变换的基函数,即小波可用作 表示一些函数的基函数。
8
• 小波变换的反演公式
xtc1 0 a d2a W xa T ,a,td
26
小波基函数和滤波系数(db 2--正交,不对称 )
db小波
“近似”基函 数
“细节”基 函数
“正变换” 低频 和
高频 “滤波系数 “ ”反变换” 低频 和
• 小波基必须满足的条件—允许条件
ˆ2
c d
ˆ00
tdt0
9
四、小波变换的特点
《小波分析概述》课件
小波变换在信号处理中发挥了重要作用,能够有效地分析信号的局部特征,如突变和奇异点,为信号 处理提供了新的工具。
泛函分析
泛函分析是研究函数空间和算子的性 质及其应用的数学分支。
小波分析在泛函分析的框架下,将函 数空间表示为小波基的线性组合,从 而能够更好地研究函数空间的性质和 算子的行为。
03
小波变换的算法实现
《小波分析概述》ppt课件
目录
• 小波分析的基本概念 • 小波变换的数学基础 • 小波变换的算法实现 • 小波分析在图像处理中的应用 • 小波分析在信号处理中的应用 • 小波分析的未来发展与挑战
01
小波分析的基本概念
小波的定义与特性
小波的定义
小波是一种特殊的数学函数,具有局 部特性和可伸缩性,能够在时间和频 率两个维度上分析信号。
一维小波变换算法
一维连续小波变换算法
01
基于连续小波基函数的变换方法,通过伸缩和平移参数实现信
号的多尺度分析。
一维离散小波变换算法
02
将连续小波变换离散化,便于计算机实现,通过二进制伸缩和
平移实现信号的多尺度分析。
一维小波包变换算法
03
基于小波包的概念,对信号进行更精细的分解,提供更高的频
率分辨率和时间分辨率。
图像增强
图像平滑
小波分析能够去除图像中的噪声 ,实现平滑处理,提高图像的视 觉效果。
细节增强
通过调整小波变换的参数,可以 突出图像中的某些细节,增强图 像的对比度和清晰度。
边缘检测
小波变换能够快速准确地检测出 图像中的边缘信息,有助于后续 的图像分析和处理。
图像识别
特征提取
小波变换可以将图像分解成不同频率的子带,提取出与特定任务 相关的特征,为后续的图像识别提供依据。
泛函分析
泛函分析是研究函数空间和算子的性 质及其应用的数学分支。
小波分析在泛函分析的框架下,将函 数空间表示为小波基的线性组合,从 而能够更好地研究函数空间的性质和 算子的行为。
03
小波变换的算法实现
《小波分析概述》ppt课件
目录
• 小波分析的基本概念 • 小波变换的数学基础 • 小波变换的算法实现 • 小波分析在图像处理中的应用 • 小波分析在信号处理中的应用 • 小波分析的未来发展与挑战
01
小波分析的基本概念
小波的定义与特性
小波的定义
小波是一种特殊的数学函数,具有局 部特性和可伸缩性,能够在时间和频 率两个维度上分析信号。
一维小波变换算法
一维连续小波变换算法
01
基于连续小波基函数的变换方法,通过伸缩和平移参数实现信
号的多尺度分析。
一维离散小波变换算法
02
将连续小波变换离散化,便于计算机实现,通过二进制伸缩和
平移实现信号的多尺度分析。
一维小波包变换算法
03
基于小波包的概念,对信号进行更精细的分解,提供更高的频
率分辨率和时间分辨率。
图像增强
图像平滑
小波分析能够去除图像中的噪声 ,实现平滑处理,提高图像的视 觉效果。
细节增强
通过调整小波变换的参数,可以 突出图像中的某些细节,增强图 像的对比度和清晰度。
边缘检测
小波变换能够快速准确地检测出 图像中的边缘信息,有助于后续 的图像分析和处理。
图像识别
特征提取
小波变换可以将图像分解成不同频率的子带,提取出与特定任务 相关的特征,为后续的图像识别提供依据。
《小波分析》PPT课件
(Orthonormal Wavelet and Multiresolution Analysis)
3.1. 多分辨分析
(Multiresolution Analysis)
➢ 在(a,b)-W(a,b)给出的二维小波谱空间 ,二进离散小波谱点的分布规律可以用 Appendix C Fig.3. 加以说明。
Appendix C Fig.3.
正交小波的点谱吸收特性
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
01234567
0
1
2
3
0
1
0
§3. 正交小波和多分辨分析
级数的系数k, j 正好是信号f(x)的
小波变W f换a, b
在二进离散点:
2k , 2k j
(37)
上的取值。这说明:对于正交小波来说,任 何信号在二进离散点上的小波变换包含了它 的小波变换的全部信息,所以
正交小波具有优美的谱吸收特点。
小波变换与Fourier变换
Fourier变换:
➢ 对于任何信号f(x),只有当它是时间有 限时,它的谱F()(Fourier变换)才是频 率吸收的;
信号f(x)的另一种等价描述(因为Fourier变
换是信号的等价描述)
局限
遗憾的是,Gabor变换存在如下局限:
Gabor变换没有“好”的(即可以
构成标架或者正交基)离散形式;
Gabor变换没有快速算法:比如没 有 类 似 于 离 散 Fourier 变 换 之 FFT
的快速数值算法;
Appendix A Fig.1. Gabor变换的固定时-频窗口
注释
注释:如果小波母函数 x
的
3.1. 多分辨分析
(Multiresolution Analysis)
➢ 在(a,b)-W(a,b)给出的二维小波谱空间 ,二进离散小波谱点的分布规律可以用 Appendix C Fig.3. 加以说明。
Appendix C Fig.3.
正交小波的点谱吸收特性
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
01234567
0
1
2
3
0
1
0
§3. 正交小波和多分辨分析
级数的系数k, j 正好是信号f(x)的
小波变W f换a, b
在二进离散点:
2k , 2k j
(37)
上的取值。这说明:对于正交小波来说,任 何信号在二进离散点上的小波变换包含了它 的小波变换的全部信息,所以
正交小波具有优美的谱吸收特点。
小波变换与Fourier变换
Fourier变换:
➢ 对于任何信号f(x),只有当它是时间有 限时,它的谱F()(Fourier变换)才是频 率吸收的;
信号f(x)的另一种等价描述(因为Fourier变
换是信号的等价描述)
局限
遗憾的是,Gabor变换存在如下局限:
Gabor变换没有“好”的(即可以
构成标架或者正交基)离散形式;
Gabor变换没有快速算法:比如没 有 类 似 于 离 散 Fourier 变 换 之 FFT
的快速数值算法;
Appendix A Fig.1. Gabor变换的固定时-频窗口
注释
注释:如果小波母函数 x
的
《小波与分形理论》课件
分形在小波分析中的应用
分形理论可以用于理解和描述小波变换 的性质和行为,例如小波变换的分形维
数和小波变换的局部性等。
分形结构可以作为小波基函数,用于构 造具有特定性质的小波,例如具有特定 分形维数的小波或具有特定局部性特征
的小波。
分形理论还可以用于分析和理解小波变 换在处理复杂信号和图像时的性能和特 点,例如小波变换在处理具有分形特征
信号处理与分析
信号降噪
小波变换能够将信号分解成不同频率 的子信号,从而实现对信号的降噪处 理。通过对低频子信号进行阈值处理 ,可以去除信号中的噪声,提高信号 的信噪比。
信号特征提取
分形理论在信号特征提取方面也有应 用。通过计算信号的分形维数,可以 提取出信号中的特征信息,从而用于 信号分类、识别和预测等任务。
小波变换与量子计算
量子计算技术的发展为小波变换提供了新的计算平台,有望加速小波变 换的计算速度,提高算法的实时性。
当前研究的热点问题
小波变换在医学影像处理中的应用
医学影像数据具有高维度和复杂的空间结构,小波变换在医学影像处理中具有广泛的应用 前景,如图像压缩、特征提取和疾病诊断等。
分形理论在金融市场中的应用
计算机图形学与艺术
计算机动画
小波变换可以用于计算机动画的制 作。通过小波变换,可以将复杂的动 画场景分解成简单的子场景,从而实 现动画的分层制作和细节控制。
数字艺术创作
分形理论在数字艺术创作方面也有应 用。通过分形算法,可以生成具有自 相似性的艺术图案,从而用于数字艺 术作品的创作和设计。
05
未来展望与研究方向
的信号和图像时的优势和局限性。
04
小波与分形理论的实际应用
图像压缩与处理
第十二讲 小波基构造与常用小波 ppt课件
其输出信号的相位特性,除一常数外,与延时为 的输入信号 f (x )
的相位特性完全一致。也就是说,当滤波器具有线性相位时,输出信
ppt课件
9
号将不产生相位畸变。
原始信号
非畸变信号
畸变信号
ppt课件
10
2 常用小波
Haar 小波 Mexican hat 小波 Morlet 小波 Meyer 小波 Daubechies 小波系 Coiflet 小波系 Biorthogonal 小波系
k0
N k
k
1xk
ppt课件
24
3.3 构造步骤(二)
利用欧拉公式转化为含 e j 的各次幂的多项式,然后以 z e j 代替,
从而得到关于 z 的多项式 M (z) ,其中 M (z) 具有以下形式
M
(z)
a0
1 2
N 1
an (zn
n 1
zn)
ppt课件
ppt课件
11
2.1 Haar小波
Haar 小波是一个最早应用也是最简单的具有紧支撑的正交小波 函数,其定义如下:
1, 0x1/ 2 (x) 1, 1/ 2x1
0 其它
ppt课件
12
2.2 墨西哥帽小波
ppt课件
29
求得 M (z) 0 的两个实根为
z1,2 2 3
因为
c
1 2
|
a1
|
1 2
,可得
m()
e j c(
z1
z1 )
1
e j
(
2 3)
2 2 3
1 2e j 1
小波PPT
其MATLAB程序如下: t=0:0.001:1.3; %时间间隔为0.001说明采样频
率为1000 Hz
x=sin(2*pi*50*t)+sin(2*pi*300*t);%产生主要频率 为50 Hz和300 Hz的信号
19 f=x+3.5*randn(1,length(t));%在信号中加入白噪
(1.7)
该性质表明,时间函数f(t)沿t轴向左或向右位移t0的傅里叶 变换等于f(t)的傅里叶变换乘以因子 ei wt 0 或
e
。
傅里叶逆变换亦具有类似的位移性质。
14 3.微分性质
设F(w)为函数f(t)的傅里叶变换,f(t)表示函数f(t)的微
分,则有
f (t) jwF(w)
(1.8)
功率谱图(图1.1(b))中,我们可以明显地看出该信号是由频
率为50 Hz和300 Hz的正弦信号和频率分布广泛的白噪声信 号组成的,也可以明显地看出信号的频率特性。
23 虽然傅里叶变换能够将信号的时域特征和频域特征联
系起来,能分别从信号的时域和频域观察,但不能把二者
有机地结合起来。这是因为信号的时域波形中不包含任何 频域信息,而其傅里叶谱是信号的统计特性。从其表达式
为序列{ fn}的离散傅里叶变换,称
i
2πk n N
(1.3)
9
1 fn N
X (k )e
k 0
N 1
i
2πk n N
k 0,1,, N 1
(1.4)
为序列{X(k)}的离散傅里叶逆变换(IDFT)。
在式(1.4)中,n相当于对时间域的离散化,k相当于频
率域的离散化,且它们都是以N点为周期的。离散傅里叶 变换序列{X(k)}是以2p为周期的,且具有共轭对称性。
率为1000 Hz
x=sin(2*pi*50*t)+sin(2*pi*300*t);%产生主要频率 为50 Hz和300 Hz的信号
19 f=x+3.5*randn(1,length(t));%在信号中加入白噪
(1.7)
该性质表明,时间函数f(t)沿t轴向左或向右位移t0的傅里叶 变换等于f(t)的傅里叶变换乘以因子 ei wt 0 或
e
。
傅里叶逆变换亦具有类似的位移性质。
14 3.微分性质
设F(w)为函数f(t)的傅里叶变换,f(t)表示函数f(t)的微
分,则有
f (t) jwF(w)
(1.8)
功率谱图(图1.1(b))中,我们可以明显地看出该信号是由频
率为50 Hz和300 Hz的正弦信号和频率分布广泛的白噪声信 号组成的,也可以明显地看出信号的频率特性。
23 虽然傅里叶变换能够将信号的时域特征和频域特征联
系起来,能分别从信号的时域和频域观察,但不能把二者
有机地结合起来。这是因为信号的时域波形中不包含任何 频域信息,而其傅里叶谱是信号的统计特性。从其表达式
为序列{ fn}的离散傅里叶变换,称
i
2πk n N
(1.3)
9
1 fn N
X (k )e
k 0
N 1
i
2πk n N
k 0,1,, N 1
(1.4)
为序列{X(k)}的离散傅里叶逆变换(IDFT)。
在式(1.4)中,n相当于对时间域的离散化,k相当于频
率域的离散化,且它们都是以N点为周期的。离散傅里叶 变换序列{X(k)}是以2p为周期的,且具有共轭对称性。
小波分析PPT课件
4
一首数学史诗
• 多年的政治生涯及颠簸不定的生活,并没有使他放弃研究数学的强 烈兴趣.事实上,早在1807年他就研究了现在称之为Fourier分析的核 心内容.
• 1822年,正式出版推动世界科学研究进展的巨著——《热的解析理 论》(The Analytic Theory of Heat).由于这一理论成功地求解了困扰 科学家150年之久的牛顿二体问题微分方程,因此Fourier分析成为几 乎每个研究领域科学工作者乐于使用的数学工具,尤其是理论科学家。
• 目前,Fourier的思想和方法被广泛用于线性规划、大地测量以及电 话、收音机、x射线等难以计数的科学仪器中,是基础科学和应用科 学研究开发的系统平台。所以物理学家Maxwell称赞Fourier 分析是一 首伟大的数学史诗。
5
Fourier分析的核心内容
①用数学语言提出任何一个周期函数都能表示为一组正弦函数和余 弦函数之和。这一无限和现称之为Fourier级数。也就是说,任 何一条周期曲线,无论多么跳跃或不规则,都能表示成一组光滑 的曲线之和,见图。
实际上是将信 号投影在由正 弦和余弦函数 组成的正交基 上,对其实施 Fourier变换。
6
Fourier分析的核心内容
②他解释了为什么这一数学论断是有用的。1807年,他显示任何周 期函数(最下图形)是由正弦和余弦函数叠加而成。 Fourier分析 从本质上改变了数学家对函数的看法.他提供了某些微分方程的 直接求解方法,为计算机和CD等数字技术的实现铺平了道路。
但FFT 的本质还是Fourier变换。
10
Fourier变换的缺点
① Fourier分析对非线性问题感到力不从心。
因为非线性系统具有高度不可预测性,输入端微小的 变化会对输出端产生重大影响。例如牛顿定律方程是非线 性的,若用它来预测空间三个物体之间较长时间的行为是 十分困难的,甚至是不可能的,原因是该系统高度不稳定。 正如著名科学家Korner指出:“19世纪的伟大发现是证 明自然方程是线性的,20世纪的伟大发现是证明自然方程 是非线性的。” ② Fourier变换公式没有反映出随时间变化的频率。实际
一首数学史诗
• 多年的政治生涯及颠簸不定的生活,并没有使他放弃研究数学的强 烈兴趣.事实上,早在1807年他就研究了现在称之为Fourier分析的核 心内容.
• 1822年,正式出版推动世界科学研究进展的巨著——《热的解析理 论》(The Analytic Theory of Heat).由于这一理论成功地求解了困扰 科学家150年之久的牛顿二体问题微分方程,因此Fourier分析成为几 乎每个研究领域科学工作者乐于使用的数学工具,尤其是理论科学家。
• 目前,Fourier的思想和方法被广泛用于线性规划、大地测量以及电 话、收音机、x射线等难以计数的科学仪器中,是基础科学和应用科 学研究开发的系统平台。所以物理学家Maxwell称赞Fourier 分析是一 首伟大的数学史诗。
5
Fourier分析的核心内容
①用数学语言提出任何一个周期函数都能表示为一组正弦函数和余 弦函数之和。这一无限和现称之为Fourier级数。也就是说,任 何一条周期曲线,无论多么跳跃或不规则,都能表示成一组光滑 的曲线之和,见图。
实际上是将信 号投影在由正 弦和余弦函数 组成的正交基 上,对其实施 Fourier变换。
6
Fourier分析的核心内容
②他解释了为什么这一数学论断是有用的。1807年,他显示任何周 期函数(最下图形)是由正弦和余弦函数叠加而成。 Fourier分析 从本质上改变了数学家对函数的看法.他提供了某些微分方程的 直接求解方法,为计算机和CD等数字技术的实现铺平了道路。
但FFT 的本质还是Fourier变换。
10
Fourier变换的缺点
① Fourier分析对非线性问题感到力不从心。
因为非线性系统具有高度不可预测性,输入端微小的 变化会对输出端产生重大影响。例如牛顿定律方程是非线 性的,若用它来预测空间三个物体之间较长时间的行为是 十分困难的,甚至是不可能的,原因是该系统高度不稳定。 正如著名科学家Korner指出:“19世纪的伟大发现是证 明自然方程是线性的,20世纪的伟大发现是证明自然方程 是非线性的。” ② Fourier变换公式没有反映出随时间变化的频率。实际
小波基本理论及应用PPT课件
小波变换通过选取不同的小波基函数, 对信号进行多尺度分解,得到信号在 不同尺度和频率上的系数,这些系数 可以反映信号在不同时间和频率上的 特征。
小波变换的应用领域
信号处理
小波变换在信号处理领域应用广泛,可 以用于信号的降噪、压缩、识别和分类
等。
模式识别
小波变换可以用于模式识别中的特征 提取和分类器设计,如人脸识别、语
小波基本理论及应用ppt课 件
目录
• 小波理论概述 • 小波变换的数学基础 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换在其他领域的应用
01
小波理论概述
小波的定义与特性
小波的定义
小波是一种特殊的函数,其时间窗和频率窗都可以改变,且在时间域和频率域 都具有很好的局部化特性。
在信号处理中,通过调整小波变换的尺度和平移参数,可 以得到信号在不同时间和频率下的局部信息,从而更好地 理解信号的特征和性质。
03
小波变换的算法实现
一维小波变换算法
一维小波变换算法是实现小波变换的基本方法之一,它通过对一维信号进行多尺度分析,将信号分解 成不同频率和不同时间分辨率的成分。
一维小波变换算法可以分为连续小波变换和离散小波变换两种,其中离散小波变换在实际应用中更为广 泛。
量子纠缠的检测
小波变换可以用于检测量子纠缠,有 助于理解和应用量子纠缠的性质。
量子计算中的优化问题
小波变换可以用于优化量子计算中的 某些问题,提高量子计算的效率。
量子模拟中的近似方法
小波变换可以用于近似求解某些量子 模拟问题,提供一种有效的近似方法。
在金融领域的应用
金融数据分析
小波变换可以用于金融数据分析,如股票价 格、外汇汇率和商品价格等的分析。
小波变换的应用领域
信号处理
小波变换在信号处理领域应用广泛,可 以用于信号的降噪、压缩、识别和分类
等。
模式识别
小波变换可以用于模式识别中的特征 提取和分类器设计,如人脸识别、语
小波基本理论及应用ppt课 件
目录
• 小波理论概述 • 小波变换的数学基础 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换在其他领域的应用
01
小波理论概述
小波的定义与特性
小波的定义
小波是一种特殊的函数,其时间窗和频率窗都可以改变,且在时间域和频率域 都具有很好的局部化特性。
在信号处理中,通过调整小波变换的尺度和平移参数,可 以得到信号在不同时间和频率下的局部信息,从而更好地 理解信号的特征和性质。
03
小波变换的算法实现
一维小波变换算法
一维小波变换算法是实现小波变换的基本方法之一,它通过对一维信号进行多尺度分析,将信号分解 成不同频率和不同时间分辨率的成分。
一维小波变换算法可以分为连续小波变换和离散小波变换两种,其中离散小波变换在实际应用中更为广 泛。
量子纠缠的检测
小波变换可以用于检测量子纠缠,有 助于理解和应用量子纠缠的性质。
量子计算中的优化问题
小波变换可以用于优化量子计算中的 某些问题,提高量子计算的效率。
量子模拟中的近似方法
小波变换可以用于近似求解某些量子 模拟问题,提供一种有效的近似方法。
在金融领域的应用
金融数据分析
小波变换可以用于金融数据分析,如股票价 格、外汇汇率和商品价格等的分析。
小波分析入门PPT课件
随着机器学习的发展,小波分析有望在特征提取、数据压缩等领域与机器学习相结合, 提高机器学习的性能和效率。
THANKS
感谢观看
应用
在音频处理、图像处理、信号处理等领域有广泛应用 。
复数小波变换
定义
复数小波变换是指小波基函数为复数的小波变换,其变换结果也 为复数。
特点
复数小波变换具有更强的灵活性和表达能力,能够更好地描述信 号的复杂性和细节。
应用
在雷达信号处理、通信信号处理、图像处理等领域有广泛应用。
04
CATALOGUE
小波变换的基本原理
小波变换的定义
小波变换是一种信号的时间-频率分析方法,通过将信号分解 成不同频率和时间的小波分量,实现对信号的时频分析和去 噪。
小波变换的原理
小波变换通过将信号与一组小波基函数进行内积运算,得到 信号在不同频率和时间上的投影,从而实现对信号的时频分 析和去噪。
小波变换的应用领域
小波变换的基本理论
一维小波变换
定义
实例
一维小波变换是一种将一维函数分解 为不同频率和时间尺度的过程,通过 小波基函数的平移和伸缩实现。
一维小波变换在图像压缩中广泛应用 ,如JPEG2000标准就采用了小波变 换技术。
作用
一维小波变换用于信号处理、图像处 理等领域,能够有效地提取信号中的 特征信息,实现信号的时频分析和去 噪等。
数值计算中的应用
数值求解偏微分方程
小波分析可以用于求解偏微分方程的数值解,通过小波变 换可以将方程转化为离散形式,便于计算。
数值积分与微分
小波分析可以用于数值积分与微分的计算,通过小波基函 数展开被积函数或被微分函数,可以快速计算积分或微分 值。
数值优化
THANKS
感谢观看
应用
在音频处理、图像处理、信号处理等领域有广泛应用 。
复数小波变换
定义
复数小波变换是指小波基函数为复数的小波变换,其变换结果也 为复数。
特点
复数小波变换具有更强的灵活性和表达能力,能够更好地描述信 号的复杂性和细节。
应用
在雷达信号处理、通信信号处理、图像处理等领域有广泛应用。
04
CATALOGUE
小波变换的基本原理
小波变换的定义
小波变换是一种信号的时间-频率分析方法,通过将信号分解 成不同频率和时间的小波分量,实现对信号的时频分析和去 噪。
小波变换的原理
小波变换通过将信号与一组小波基函数进行内积运算,得到 信号在不同频率和时间上的投影,从而实现对信号的时频分 析和去噪。
小波变换的应用领域
小波变换的基本理论
一维小波变换
定义
实例
一维小波变换是一种将一维函数分解 为不同频率和时间尺度的过程,通过 小波基函数的平移和伸缩实现。
一维小波变换在图像压缩中广泛应用 ,如JPEG2000标准就采用了小波变 换技术。
作用
一维小波变换用于信号处理、图像处 理等领域,能够有效地提取信号中的 特征信息,实现信号的时频分析和去 噪等。
数值计算中的应用
数值求解偏微分方程
小波分析可以用于求解偏微分方程的数值解,通过小波变 换可以将方程转化为离散形式,便于计算。
数值积分与微分
小波分析可以用于数值积分与微分的计算,通过小波基函 数展开被积函数或被微分函数,可以快速计算积分或微分 值。
数值优化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设T : X
军事电子对抗与武器的智能化;计算机分 类与识别;音乐与语言的人工合成;医学 成像与诊断;地震勘探数据处理;大型机 械的故障诊断等方面;例如,在数学方面, 它已用于数值分析、构造快速数值方法、 曲线曲面构造、微分方程求解、控制论等。 在信号分析方面的滤波、去噪声、压缩、 传递等。在图象处理方面的图象压缩、分 类、识别与诊断,去污等。在医学成像方 面的减少B超、CT、核磁共振成像的时间, 提高分辨率等。
2
2
3
V,ej
2
v2
2
j 1
3 2
v1
1 2
v2
3 2
v1
1 2
v2
3 2
[
v1
2
v2
2]
3 2
V
定义、定理及证明
1. (巴拿赫)Banach空间与Hibert(西耳伯特) 空间
由于F(0) = 0,故 =0
2. 线性算子与同构
我们只考虑可分的Hilbert空间。
1986年著名数学家Y.Meyer偶然构造出一个真正的 小波基,并与S.Mallat合作建立了构造小波基的 同样方法及其多尺度分析之后,小波分析才开始 蓬勃发展起来,其中比利时女数学家 I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作 用。它与Fourier变换、窗口Fourier变换(Gabor 变换)相比,这是一个时间和频率的局域变换, 因而能有效的从信号中提取信息,通过伸缩和平 移等运算功能对函数或信号进行多尺度细化分析 (Multiscale Analysis),解决了Fourier变换 不能解决的许多困难问题,从而小波变化被誉为 “数学显微镜”,它是调和分析发展史上里程碑 式的进展。
1987年,Mallat统一了多分辨率分析和小波 变换,给出了快速算法。
1988年,Daubecies在NSF的小波专题研讨 会进行了讲座
J.Morlet,地震信号分析。 S.Mallat,二进小波用于图像的边缘检
测、图像压缩和重构 Farge,连续小波用于涡流研究 Wickerhauser,小波包用于图像压缩。 Frisch噪声的未知瞬态信号。 Dutilleux语音信号处理 H.Kim时频分析 Beykin正交小波用于算子和微分算子的
第一章准备知识
距离空间
设X是任一集合,x, y X ,都对应一个实数(x, y),而且满足 1.非负性:(x, y) 0,当且仅当x y时,(x, y) 0. 2.对称性:(x, y) ( y, x) 3.三角不等式:x, y, z X ,有(x, y) (x, z) (z, y) 则称(x, y)为x和y之间的距离,X为以(x, y)为距离的距离空间。
什么叫张成span?
设ek (t)为一个函数序列,X表示为ek (t)所有可能的线性组合构成的集合,即
X { akek (t);t, ak R, k Z}称X为由序列ek (t)张成的线性空间:
k
X span{ek }
即g(t) X ,有g(t) akek (t)
k
什么叫基底?
如果ek (t)是线性无关的,使得上 式系数ak是唯一的,称 {ek (t)}kZ 为空间的基底
小波变换如同一台可变焦距的数学显微 镜,改变各种焦距便可探测到被处理信 号中所隐含的奇异点并识别出它的性质, 或分析出非平衡信号所包含的各种成分, 从而可有效地探测并诊断出精密复杂设 备中的疑难故障,是该领域具有明显应 用前景的前沿课题
现在,对于其性质随实践是稳定不变的信号, 处理的理想工具仍然是傅立叶分析。但是在 实际应用中的绝大多数信号是非稳定的,而 特别适用于非稳定信号的工具就是小波分析。 事实上小波分析的应用领域十分广泛, 它包括:数学领域的许多学科;信号分析、 图象处理;量子力学、理论物理、模式识别、 语音识别、地震勘探、流体力学、电磁场、 CT成象、机器视觉、机械故障诊断、分形、 数值计算。
说明
Z表示整数集合 R表示实数集合 C表示复数集合 Z +表示正整数集合 R n表示n为欧氏空间
内积 x, y x(t) y(t)dt
R
常用的距离空间
1.n维欧氏空间Rn
n维向量x (x1, x2,, xn )的全体所组成的集合.
n
2
x, y Rn ,定义距离(x, y) [ (xi yi ) ]1/2
1822年Fourier变换,在频域的定位最准确,无任 何时域定位能力。
函数,时域定位完全准确,频域无任何定位能 力
1946年Gabor变换,STFT,窗函数的大小和形状与 时间和频率无关而保持固定不变。不构成正交基。
1982年Burt提出金字塔式图像压缩编码,子带编 码(subband coding),多采样率滤波器组 (multirate sampling filter bank).
小波分析的应用是与小波分析的理论研究紧 密地结合在一起地。现在,它已经在科技信 息产业领域取得了令人瞩目的成就。 电子 信息技术是六大高新技术中重要的一个领域, 它的重要方面是图象和信号处理。现今,信 号处理已经成为当代科学技术工作的重要部 分,信号处理的目的就是:准确的分析、诊 断、编码压缩和量化、快速传递或存储、精 确地重构(或恢复)。从数学地角度来看, 信号与图象处理可以统一看作是信号处理 (图象可以看作是二维信号),在小波分析 地许多分析的许多应用中,都可以归结为信 号处理问题。
(1)小波分析用于信号与图象压缩是小波分 析应用的一个重要方面。它的特点是压缩 比高,压缩速度快,压缩后能保持信号与 图象的特征不变,且在传递中可以抗干扰。 基于小波分析的压缩方法很多,比较成功 的有小波包最好基方法,小波域纹理模型 方法,小波变换零树压缩,小波变换向量 压缩等。
(2)小波在信号分析中的应用也十分广泛。 它可以用于边界的处理与滤波、时频分析、 信噪分离与提取弱信号、求分形指数、信 号的识别与诊断以及多尺度边缘检测等。
函数序列 k (t)是相关的,空间X中的元素也能够展开为x(t) x(t), k (t) k (t) n1
k (t)称为框架。
H为一个Hilbert空间,{ j (t)}jZ 为H中的一个函数序列,f H , 0 A B ,使得下述不等式成立:
A f 2
f , j
2
B
f
2
jZ
什么叫正交?
x, y为内积空间 X中的两个元素,若 x, y 0, 称x与y正交,记作 xy
什么叫标准正交系?
内积空间中元素列{en}满足:
em , en
0 1
m m
nn,则称{en
}为空间X中的标准正交系
什么叫完全的标准正交系?
内积空间 X中的标准正交系{en},x X ,n Z,若xen,必有x 0.
称{ j (t)}jZ 为一个框架,称A, B分别框架的上、下界。
如果A B, 称此框架为紧框架,则
f , j
2
A
f
2
jZ
由此式可推得f A1 f , j j jZ
H C 2 ,即二维向量空间,取e1 (0,1),e2 (
31 2 , 2),e3 (
3 , 1) 22
V (v1, v2 ) C 2 , 有
(3)在工程技术等方面的应用。包括计算 机视觉、计算机图形学、曲线设计、湍流、 远程宇宙的研究与生物医学方面
参考资料
1. I. Daubechies, Ten lectures on wavelets, Siam, Philadelphia, PA 1992. 2. S. Mallat, A wavelet tour to signal processing, Academic Press, Boston, 1998. 3. Y. Meyer, 小波与算子,第一卷, 世界图书出版社,1992. 4. 龙瑞麟,高维小波分析,世界图书出版社,1995。 5. 关肇直,张慕庆,冯德兴, 线性泛函分析入门, 上海科学技术出版社,1979.
1910年Harr提出规范正交基。
1981年Stormberg对Harr系进行改进,证明了小波 函数的存在。
1984年,Morlet提出了连续小波
1985年,Meyer,Grossmann,Daubecies提出 离散的小波基
1986年,Meyer证明了不可能存在时域频域 同时具有正则性的正交小波基,证明了小 波的自正交性。
小波变换教案
绪论
小波变换的历史:
小波分析是当前数学中一个迅速发展的新 领域,它同时具有理论深刻和应用十分广 泛的双重意义。
小波变换的概念是由法国从事石油信号处 理的工程师J.Morlet在1974年首先提出的, 通过物理的直观和信号处理的实际需要经 验的建立了反演公式,当时未能得到数学 家的认可。
i 1
定义距离(x, y) [ (xi yi )2 ]1/2 x, y l 2 i 1
函数空间概念
线性空间
设X是任一非空集合,在 X中定义了线性运算(元 素的加法和元素的数乘 运算), 并且满足加法或数乘的 结合律及分配律。 对于线性空间的任一向 量,用范数 x 来定义其长度。
线性赋范空间
设X为一线性空间,x X , 存在非负实数 x 与之对应,满足
1. x 0,当且仅当x 0时,x 0 2. R, x x 3.x, y X , x y x y 距离定义为(x, y) y x
Banach (巴拿赫)空间
设空间X中的任一序列{xi}iZ 都有极限,并且此极限都在X中,该空间为完备的。 完备的线性赋范空间称为Banach空间。
简化
正如1807年法国的热学工程师 J.B.J.Fourier提出任一函数都能展开成 三角函数的无穷级数的创新概念未能得到 著名数学家grange,place 以及A.M.Legendre的认可一样。幸运的是, 早在七十年代,A.Calderon表示定理的发 现、Hardy空间的原子分解和无条件基的 深入研究为小波变换的诞生做了理论上的 准备,而且J.O.Stromberg还构造了历史 上非常类似于现在的小波基;