小学五年级奥数竞赛分类练习完整版
小学五年级下册奥数题型分类讲义 (附答案)
小学五年级奥数分类讲义含答案图形问题专题1 长方形、正方形的周长一、专题解析同学们都知道,长方形的周长=(长+宽)×2,正方形的周长=边长×4。
长方形、正方形的周长公式只能用来计算标准的长方形和正方形的周长。
那么如何应用所学知识巧求表面上看起来不是长方形或正方形的图形的周长呢?还需同学们灵活应用已学知识,掌握转化的思考方法,把复杂的图形转化为标准的图形,以便计算它们的周长。
二、精讲精练【例题1】有5张同样大小的纸如下图(a)重叠着,每张纸都是边长6厘米的正方形,重叠的部分为边长的一半,求重叠后图形的周长。
【思路导航】根据题意,我们可以把每个正方形的边长的一半同时向左、右、上、下平移(如图b),转化成一个大正方形,这个大正方形的周长和原来5个小正方形重叠后的图形的周长相等。
因此,所求周长是18×4=72厘米。
练习11、右图由8个边长都是2厘米的正方形组成,求这个图形的周长。
2、右图由1个正方形和2个长方形组成,下方长方形长为50cm,求这个图形的周长。
3、有6块边长是1厘米的正方形,如例题中所说的这样重叠着,求重叠后图形的周长。
【例题2】一块长方形木板,沿着它的长度不同的两条边各截去4厘米,截掉的面积为192平方厘米。
现在这块木板的周长是多少厘米?【思路导航】把截掉的192平方厘米分成A、B、C三块(如图),其中AB的面积是192-4×4=176(平方厘米)。
把A和B移到一起拼成一个宽4厘米的长方形,而此长方形的长就是这块木板剩下部分的周长的一半。
176÷4=44(厘米),现在这块木板的周长是44×2=88(厘米)。
练习21、有一个长方形,如果长减少4米,宽减少2米,面积就比原来减少44平方米,且剩下部分正好是一个正方形。
求这个正方形的周长。
2、有两个相同的长方形,长是8厘米,宽是3厘米,如果按下图叠放在一起,这个图形的周长是多少?3、有一块长方形广场,沿着它不同的两条边各划出2米做绿化带,剩下的部分仍是长方形,且周长为280米。
五年级奥数综合性竞赛训练1-150题(含详细答案)
五年级奥数综合性竞赛训练1~150题(含详细答案)1、有6堆桃,把第一堆平均分给8 个人,还余5 个;把第二堆平均分给8个人,还剩4 个;把第三堆平均分给8 个人,还余3个;把第四堆平均分给8 个人,还余7 个;把第五堆平均分给8 个人,还余1 个;第六堆与第二堆的个数一样多;如果把六堆桃子放在一起,平均分给8个人,能不能正好分完?为什么?2、五(1)班有学生38 人,他们住在同一条街的同一侧;他们家的门牌号数分别是7 号、17 号、27 号、37 号、47 号、……、357 号、367 号、377 号。
把他们38 家的门牌号数相乘,所得的积的个位数字是几?3、在下面13 个8 之间的适当位置添上+、-、×、÷运算符号或括号,使得下式成立:8 8 8 8 8 8 8 8 8 8 8 8 8 =1995。
4、765×213÷27+765×327÷275、(9999+9997+...+9001)-(1+3+ (999)6、19981999×19991998-19981998×199919997、(873×477-198)÷(476×874+199)8、2000×1999-1999×1998+1998×1997-1997×1996+…+2×19、用9去除一个六位数,所得的商是一个没有重复数字的最小的六位数,而原来的六位数的数字和正好是小明哥哥的年龄。
请问小明的哥哥今年几岁?10、为了迎接建国45 周年,某街道从东往西按照五面红旗、三面黄旗、四面绿旗、两面粉旗的规律排列,共悬挂1995 面彩旗,你能算出从西往东数第100 面彩旗是什么颜色的吗?11、有7个数,它们的平均数是18。
去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。
五年级奥赛试题及答案
五年级奥赛试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是质数?A. 4B. 6C. 9D. 11答案:D2. 一个数的因数中,最小的因数是几?A. 0B. 1C. 2D. 3答案:B3. 一个数的倍数中,最大的倍数是几?A. 0B. 1C. 它本身D. 无最大倍数答案:D4. 一个数的约数中,最大的约数是几?A. 0B. 1C. 它本身D. 无最大约数答案:C5. 一个数的倍数中,最小的倍数是几?A. 0B. 1C. 它本身D. 无最小倍数答案:C二、填空题(每题3分,共15分)6. 一个数的因数的个数是有限的,最小的因数是1,最大的因数是______。
答案:它本身7. 一个数的倍数的个数是无限的,最小的倍数是______。
答案:它本身8. 一个数的因数中,最大的因数是______。
答案:它本身9. 一个数的倍数中,最大的倍数是______。
答案:无最大倍数10. 一个数的约数中,最小的约数是______。
答案:1三、解答题(每题5分,共20分)11. 求出15的因数,并判断15是质数还是合数。
答案:15的因数有1、3、5、15。
因为15除了1和它本身以外还有别的因数,所以15是合数。
12. 求出48的所有约数,并找出其中最大的约数。
答案:48的约数有1、2、3、4、6、8、12、16、24、48。
其中最大的约数是48。
13. 求出100以内最大的质数。
答案:100以内最大的质数是97。
14. 求出200以内最小的合数。
答案:200以内最小的合数是4。
四、应用题(每题10分,共20分)15. 一个班级有45名学生,如果每3名学生组成一个学习小组,那么可以组成多少个学习小组?答案:45 ÷ 3 = 15(组),所以可以组成15个学习小组。
16. 一个长方形的长是15厘米,宽是10厘米,求它的周长。
答案:周长= (15 + 10) × 2 = 25 × 2 = 50(厘米),所以周长是50厘米。
小学五年级数学奥数竞赛练习
小学五年级数学奥数竞赛练习1、5.45×24×0.2-3.45×4.8=()2、200-199+198-197+······+4-3+2-1=()3、一列火车全长215米,每秒行驶25米,要经过长960米的大桥,全车通过需要()秒。
4、甲乙两个数的和是70,甲比乙多16,甲乙两数的积是()。
5、果园里有桃树、梨树和苹果树共200棵,桃树是梨树的3倍,苹果树是桃树的2倍,苹果树有()棵。
6、有一批水果,每箱放30个则多20个;每箱放35个则少10个。
这批水果至少有()个。
7、在一个长20分米,宽15分米的长方体容器中,有20分米深的水。
现在在水中沉入一个棱长30厘米的正方体铁块,这时容器中水深()分米。
8、东城区粮库,第一天运出所有粮食的一半多2吨,第二天又运出余下的一半少0.8吨,第三天运出6吨粮食后,还有4吨。
粮库中原来共存粮食()吨。
9、甲乙两车分别同时从A、B两地出发,甲车每小时行55千米,乙车每小时行45千米,两车在离中点25千米处相遇。
两地相距()千米。
10、一个正方体的高增加3分米,就变成了一个长方体,且表面积比原来增加了60平方分米,原来正方体的体积是()立方分米。
11、一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加()平方厘米。
12、5100除以一个三位数,余数是95,这个三位数最大是()。
13、有一个长方形,如果长减少4米,宽减少2米,面积就比原来减少44平方米,且剩下部分正好是一个正方形,这个正方形的周长是()米。
14、两数相除商是4,余数是17,被除数、除数、商和余数的和是673,被除数是()。
15、两段长度相等的铁丝,第一段用去1.8米,第二段用去2.5米,余下的第一段正好是第二段的2倍,第一段铁丝原来长()。
16、一次考试,甲乙丙三人平均分91分,乙丙丁三人平均分89分,甲丁二人平均分95分,丁得()分。
小学五年级数学奥林匹克竞赛题(含答案)
小学五年级数学奥林匹克竞赛题(含答案)一、小数的巧算(一)填空题1. 计算 1.996+19.97+199.8=_____。
答案:221.766。
解析:原式=(2-0.004)+(20-0.03)+(200-0.2)=222-(0.004+0.03+0.2)=221.766。
2. 计算 1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____。
答案:103.25。
解析:原式=1.1⨯(1+3+...+9)+1.01⨯(11+13+ (19)=1.1⨯25+1.01⨯75=103.25。
3. 计算 2.89⨯4.68+4.68⨯6.11+4.68=_____。
答案:46.8。
解析:4.68×(2.89+6.11+1)=46.84. 计算 17.48⨯37-17.48⨯19+17.48⨯82=_____。
答案:1748。
解析: 原式=17.48×37-17.48×19+17.48×82=17.48×(37-19+82)=17.48×100=1748。
5. 计算 1.25⨯0.32⨯2.5=_____。
答案:1。
解析:原式=(1.25⨯0.8)⨯(0.4⨯2.5)=1⨯1=1。
6. 计算 75⨯4.7+15.9⨯25=_____。
答案:750。
原式=75⨯4.7+5.3⨯(3⨯25)=75⨯(4.7+5.3)=75⨯10=750。
7. 计算 28.67⨯67+3.2⨯286.7+573.4⨯0.05=____。
答案:2867。
原式=28.67⨯67+32⨯28.67+28.67⨯(20⨯0.05)=28.67⨯(67+32+1)=28.67⨯100=2867。
(二)解答题8. 计算 172.4⨯6.2+2724⨯0.38。
答案:原式=172.4⨯6.2+(1724+1000)⨯0.38=172.4⨯6.2+1724⨯0.38+1000⨯0.38=172.4⨯6.2+172.4⨯3.8+380=172.4⨯(6.2+3.8)+380=172.4⨯10+380=1724+380=2104。
(完整版)小学五年级奥数题及答案(附精讲)
(完整版)⼩学五年级奥数题及答案(附精讲)⼩学五年级奥训练题及答案(精讲)⼀、⼯程问题1.⼀件⼯作,甲、⼄合做需4⼩时完成,⼄、丙合做需5⼩时完成。
现在先请甲、丙合做2⼩时后,余下的⼄还需做6⼩时完成。
⼄单独做完这件⼯作要多少⼩时?2.修⼀条⽔渠,单独修,甲队需要20天完成,⼄队需要30天完成。
如果两队合作,由于彼此施⼯有影响,他们的⼯作效率就要降低,甲队的⼯作效率是原来的五分之四,⼄队⼯作效率只有原来的⼗分之九。
现在计划16天修完这条⽔渠,且要求两队合作的天数尽可能少,那么两队要合作⼏天?3.甲⼄两个⽔管单独开,注满⼀池⽔,分别需要20⼩时,16⼩时.丙⽔管单独开,排⼀池⽔要10⼩时,若⽔池没⽔,同时打开甲⼄两⽔管,5⼩时后,再打开排⽔管丙,问⽔池注满还是要多少⼩时?4.⼀项⼯程,第⼀天甲做,第⼆天⼄做,第三天甲做,第四天⼄做,这样交替轮流做,那么恰好⽤整数天完⼯;如果第⼀天⼄做,第⼆天甲做,第三天⼄做,第四天甲做,这样交替轮流做,那么完⼯时间要⽐前⼀种多半天。
已知⼄单独做这项⼯程需17天完成,甲单独做这项⼯程要多少天完成?5.师徒俩⼈加⼯同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.⼀批树苗,如果分给男⼥⽣栽,平均每⼈栽6棵;如果单份给⼥⽣栽,平均每⼈栽10棵。
单份给男⽣栽,平均每⼈栽⼏棵?7.⼀个池上装有3根⽔管。
甲管为进⽔管,⼄管为出⽔管,20分钟可将满池⽔放完,丙管也是出⽔管,30分钟可将满池⽔放完。
现在先打开甲管,当⽔池⽔刚溢出时,打开⼄,丙两管⽤了18分钟放完,当打开甲管注满⽔是,再打开⼄管,⽽不开丙管,多少分钟将⽔放完?8.某⼯程队需要在规定⽇期内完成,若由甲队去做,恰好如期完成,若⼄队去做,要超过规定⽇期三天完成,若先由甲⼄合作⼆天,再由⼄队单独做,恰好如期完成,问规定⽇期为⼏天?9.两根同样长的蜡烛,点完⼀根粗蜡烛要2⼩时,⽽点完⼀根细蜡烛要1⼩时,⼀天晚上停电,⼩芳同时点燃了这两根蜡烛看书,若⼲分钟后来点了,⼩芳将两⽀蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?⼆.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数⽐兔的腿数少28条,,问鸡与兔各有⼏只?三.数字数位问题1.把1⾄2005这2005个⾃然数依次写下来得到⼀个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是⼩于100的两个⾮零的不同⾃然数。
2014年小学五年级奥数竞赛分类练习题
一、和差问题练习题1、植树节,育红小学五、六年级学生共植树106棵,六年级比五年级多植树24棵,五、六年级各植树多少棵?2、小明期中考试,语文和数学的平均分数是97分,语文比数学少6分,语文、数学各得了多少分?3:两筐苹果共重90千克,如果从第一筐中取出6千克放入第二筐后,两筐的重量相等,两筐苹果原来各多少千克?4:甲、乙两筐香蕉共64千克,从甲筐里取出5千克放到乙筐里去,结果甲筐的香蕉比乙筐的香蕉多2千克。
甲、乙两筐原有香蕉各有多少千克?5:甲乙两船共载客623人,若甲船增加34人,乙船减少57人,这时两船乘客同样多,甲船原有乘客多少人?6:在减法算式中,被减数、减数、差三数之和是2002,减数比差大123,减数是多少?7两筐苹果共重64千克,如果从第一筐中取出8千克放入第二筐中,那么,第一筐苹果比第二筐少2千克。
两筐苹果原来各有多少千克?8:一部书有上、中、下三册,上册比中册贵1元,中册比下册贵2元,这部书售价32元。
上、中、下三册各是多少元?9:师徒两人合做3小时,共生产零件165个,师傅每小时比徒弟多生产5个,师徒两人每小时各生产零件多少个?10.甲、乙、丙三个人同时参加储蓄。
甲乙两人共储蓄220元,乙丙两人共储蓄180元。
甲丙两人共储蓄200元。
问三人共储蓄多少元?11.甲、乙、丙三个数,和为300,已知甲比乙大50,乙比丙大20,甲数是多少?12 .如果两个数的和与差的积是77,这两个数各是多少?二、和差倍问题专项练习11、禽养场今年养鸡和鸭共4600只,养的鸡比鸭的4倍还多100只,禽养场今年的鸡鸭各多少只?2、姐姐和妹妹共做了340朵小红花,后来姐姐把她做的红花送给了小明30朵,妹妹自己又做了20朵,这时姐姐做的小红花是妹妹的5倍。
问原来姐姐,妹妹各做了多少朵红花?3、一根电线长240米,把它截成三段,使第一段比第二段长20米,第三段长是第一段的2倍。
这三段电线各长多少米?4、A,B,C三个停车场,A停车场的汽车比B停车场的汽车2倍多1辆,C停车场的汽车比A停车场的汽车多2倍,已知A,B,C三个停车场共停汽车121辆,求A,B,C三个停车场各停汽车多少辆?5、一筐苹果,一筐梨和一筐橘子平均重40千克,已知苹果重量是梨的2倍,梨的重量是橘子的3倍。
五年级奥数竞赛题答案
五年级奥数竞赛题答案【篇一:小学五年级奥数题集锦及答案】xt>1、甲乙两车同时从ab两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求ab两地相距多少千米?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?解:甲乙速度比=8:6=4:3相遇时乙行了全程的3/7那么4小时就是行全程的4/7所以乙行一周用的时间=4/(4/7)=7小时4、甲乙两人同时从a地步行走向b地,当甲走了全程的1\4时,乙离b地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求ab两地距离是多少米?解:甲走完1/4后余下1-1/4=3/4此时甲一共走了1/4+5/8=7/8那么甲乙的路程比=7/8:7/10=5:4那么ab距离=640/(1-1/5)=800米5、甲,乙两辆汽车同时从a,b两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,a,b两地相距多少千米?解:一种情况:此时甲乙还没有相遇乙车3小时行全程的3/74/7)=420千米一种情况:甲乙已经相遇(225-15)/(1-3/7)=210/(4/7)=367.5千米6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇?解:甲相当于比乙晚出发3+3+3=9分钟将全部路程看作单位1那么甲的速度=1/30乙的速度=1/20那么甲乙合走的距离1-9/20=11/20甲乙的速度和=1/20+1/30=1/12那么再有(11/20)/(1/12)=6.6分钟相遇7、甲,乙两辆汽车从a地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?速度差=48-36=12千米/小时乙车需要72/12=6小时追上甲8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度? 解:那么甲比乙多走20-18=2千米那么相遇时用的时间=2/0.5=4小时所以甲的速度=20/4=5千米/小时乙的速度=5-0.5=4.5千米/小时9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?解:速度和=60+40=100千米/小时分两种情况,没有相遇那么需要时间=(400-100)/100=3小时已经相遇那么需要时间=(400+100)/100=5小时10、甲每小时行驶9千米,乙每小时行驶7千米。
五年级奥数竞赛试题含答案(人教版)
五年级奥数竞赛试卷姓名:得分:一、填空。
(每题4分,共56分)1、一个三位数,最高位上的数是a,十位上的数是b,个位上的数是c,这个三位数是()。
2、直角三角形的三条边分别是5米、4米和3米,面积是()。
3、用一个杯子向空瓶里倒水,如果倒进3杯水,连瓶共重440克,如果倒进5杯水,连瓶共重600克,这个瓶子是()克。
4、爸爸今年43岁,儿子今年11岁,()年后爸爸的年龄是儿子的3倍。
5、早晨6时,钟面上的时针和分针所成的角是平角,下午3时,时针和分针所成的角是直角。
5时的时候,时针和分针所成的角是()度。
6、某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,则同时参加语文、数学两科竞赛的有()人。
7、有6个学生都面向北站成一排,每喊一次口令只能有五个人向后转,则最少喊()次,才能使这6人都面向南。
8、三个数的平均数是4.2,其中第一个数是4.25,第二个数比第一个数多0.3,第三个数是()。
9、新学期开学,第一天见面每两位同学互相握手问候一次,全班40人共握手()次。
10、在等差数列7、10、13、16……中,907是第()个数,第907个数是()。
11、从A城到B城,甲用10小时,乙用8小时,甲、乙两人的速度比是()。
12、猴妈妈从山上摘回一篮梨和苹果,平均分给一群小猴,每只小猴分2个梨和3个苹果,最后梨刚好分完,而苹果还剩10个。
已知苹果个数是梨的2倍。
这群小猴共有()只。
13、水池内有棵水草,每天都要长大一倍,10天正好长满水池,第()天正好长满水池的一半。
14、有一批货物,原计划16天运完,实际每天多运了5吨,结果12天就运完了,这批货物原有()吨。
二、判断。
(每题2分,共10分)1、循环小数都是无限小数。
()2、两个三角形一定能拼成一个平行四边形。
()3、两个因数相乘,所得的积一定大于其中一个因数。
()4、长方体的6个面展开后,一定都是长方形。
(完整)五年级奥数竞赛题
1. 小阳期终测试时语文和数学的平均分数是96 分, 数学比语文多8 分. 语文是( ) 分,数学是( ) 分.2. 甲、乙两个仓库共存大米42 吨,如果从甲仓库调 3 吨大米到乙仓库,那么两个仓库所存的大米就正好同样多. 原来甲仓库存大米( ) 吨, 乙仓库存大米( )吨.3. 爸爸和爷爷1994 年的年龄加在一起是127 岁, 十年前爷爷比爸爸大37 岁, 爷爷是( ) 年出生的.4. 有一个停车场上,现有24 辆车,其中汽车是 4 个轮子,摩托车是 3 个轮子, 这些车共有86 个轮子.其中摩托车有( ) 辆.5. 参加少年宫科技小组的同学,今年比去年的 3 倍少35 人,去年比今年少41人,今年参加科技小组的同学有( ) 人.6. 父亲今年47 岁,儿子今年19 岁, ( ) 年前父亲的年龄是儿子的 5 倍.7. 一个植树小组植树,如果每人栽 5 棵,还剩14 棵;如果每人栽7 棵,就缺4棵.这个植树小组有( ) 人,一共要栽( ) 棵树.8. 甲、乙、丙三数之和是1160,甲是乙的一半,乙是丙的 2 倍.三个数各是多少?9. 某招待所开会,每个房间住 3 人,那么36 人没床位;每个房间住4 人,那么还有13人没床位,如果每个房间住5人,那么情况又怎么样?10. 小明读一本书,第一天读83 页,第二天读74页,第三天读71 页,第四天读64 页,第五天读的页数比这五天中平均读的页数要多 3.2 页.小明第五天读了多少页?11. 在桥上测量桥高, 把绳子对折后垂到水面时绳子还剩下8 米;把绳子三折后, 垂到水面时绳子还剩下 2 米,求桥高和绳长各是多少米.12.44 名学生去划船,一共乘坐10只船,其中每只大船坐6人,每只小船坐4人.大船和小船各有多少只?13. 实验小学四年级举行数学竞赛,一共出了10 道题,答对一题得10 分,答错一题倒扣 5 分.张华把10 道题全部做完,结果得了70 分.他答对了几道题?14. 买4 支铅笔和5 块橡皮,共付 6 元;买同样的6 支铅笔和 2 块橡皮,共付 4.60 元.每支铅笔和每块橡皮各多少钱?15. 修一条路,第一天修了全长的一半多 6 米,第二天修了余下的一半少20 米, 第三天修了30 米,最后还剩14 米没修.这条路长多少米?16. 张强用270 元买了一件外衣,一顶帽子和一双鞋子,外衣比鞋贵140 元,买外衣和鞋比帽子多花210 元,张强买这双鞋花了多少钱?17. 红光厂方案每天生产电冰箱40 台,经过技术革新后,每天比原方案多生产5台,这样提前 2 天完成了这批生产任务,并且比原方案还多生产了35 台.实际生产了多少台电冰箱?18. 有16 位教授, 有人带1 个研究生, 有人带2 个研究生, 也有人带3 个研究生, 他们共带了27 个研究生,其中带 1 个研究生的教授人数与带 2 个和 3 个研究生的教授总数一样多,问带 2 个研究生的教授有几人?19. 甲、乙两人共储蓄640 元,乙、丙两人共储蓄600 元,甲、丙两人共储蓄44 0 元.甲储蓄多少元?20. 一个除式,商是18,余数是4,被除数与除数的和是270,被除数是多少?21. 有甲、乙两筐苹果,平均每筐重52 千克,现从甲筐中取出 5 千克放入乙筐, 那么两筐苹果重量相等.甲筐苹果原来重多少千克?22. 甲、乙、丙三人共做了183 道数学题,乙做的题比丙的 2 倍少4 道,甲做的题比丙的 3 倍多7 道.丙做了多少道题?23. 有甲、乙两桶油,如果给甲再注入15 升油,两桶油就同样多;如果给乙桶再注入145 升油,乙桶的油就是甲桶的 3 倍.原来乙桶油有多少升?24. 哥哥和弟弟各买假设干本练习本,如果哥哥给弟弟 3 本,两人的练习本数量就同样多;如果弟弟给哥哥 1 本, 哥哥的练习本本数就是弟弟的 3 倍. 哥哥和弟弟原来各买练习本多少本?25. 大马的年龄是小马年龄的4 倍, 再过20 年大马的年龄比小马的2 倍小14 岁. 大马、小马现年各几岁?26. 有1000 人报名参参加学测试, 最后录取了150人. 录取者的平均成绩与没有录取者的平均成绩相差38 分, 全体考生的平均成绩是55 分, 录取分数线比录取者的平均成绩少 6.3 分.问录取分数线是多少分.27. 甲、乙、丙三人, 平均体重63 千克, 甲与乙的平均体重比丙的体重多 3 千克, 甲比丙重 2 千克,求乙的体重.28. 有一个班的同学去划船.他们算了一下,如果增加一条船,正好每条船坐6个人;如果减少一条船,每条船必须坐9 个人.这个班共有多少同学去划船?29. 有14 个纸盒,其中有装 1 只球的,也有装 2 只和3 只球的,这些球共有25只.装 1 只球的盒子数等于装 2 只球与 3 只球的盒数的和.装1、2、3 只球的盒子各有多少个?30. 大小酒瓶共50 个,每个大瓶装酒 1 千克,每个小瓶装酒0.75 千克,大瓶比小瓶多装酒15 千克,大、小瓶各有多少个?31. 本学期数学课进行了五次测验, 小明的成绩第二次比第一次多10分, 第三次比第二次少 5 分,第四次比第三次多 4 分,前4 次的平均成绩是85 分.如果第五次比第四次少13 分,那么小明全学期五次测验的平均成绩是多少分?32. 甲级茶叶 2 千克和乙级茶叶 5 千克的价格相等,买 6千克甲级茶叶和7 千克乙级茶叶共付款601.92 元,每千克甲级茶叶和每千克乙级茶叶的价格各是多少元?33. 有甲、乙、丙三个书架,共有图书450 本,如果从甲架拿出60 本放入乙架, 再从乙架拿出120 本放入丙架,最后再从丙架拿出50 本放入甲架,那么三个书架图书本数一样多.原来三个书架各有图书多少本?34. 某人领得奖金240 元,有2 元、5 元、10 元三种人民币,共50 张,其中2元与 5 元的张数一样多,那么 2 元、 5 元、10 元各有多少张?35. 苹果的个数是梨的3 倍,如果每天吃 2 个苹果、1 个梨,假设干天后,梨正好吃完,而苹果还剩下7 个,原来的苹果有多少个?36. 某区小学生进行两次数学竞赛,第一次及格的比不及格的 3 倍多4 人;第二次及格人数增加了 5 人, 正好是不及格人数的 6 倍. 问共有多少学生参加数学竞赛.37. 学校买来一批英文打字机分给各班学习.如果其中两个班每班分到 4 台,其余班级每班分 2 台,那么多 4 台;如果有一个班分 6 台,其余班级每班分 4 台,那么缺乏12 台.这个学校买来的英文打字机共有多少台?38. 蜘蛛有8 只脚,蜻蜓有 6 只脚和两对翅膀,蝉有 6 只脚和一对翅膀,现有这三种小虫共18 只,共有脚118 只,翅膀20 对.求每种小虫的只数.39. 小象说:“妈妈,我到你现在这么大时,你就是31 岁了.〞大象说:“我像你这么大年龄时,你只有 1 岁.〞大、小象现在各几岁?6.有三个数,每次选取其中两个数, 算出这两个数的平均值, 再加上余下的第三个数, 这样算了三次,分别得到35、27 和25.求原来这三个数是多少.40. 有甲、乙、丙三种练习本,小芳各买 2 本,共付 4.8 元;小红买了2本甲种本、 3 本乙种本、4本丙种本、共付7.6 元;小青买了2本甲种本、4本乙种本、5 本丙种本,共付9.4 元.甲、乙、丙三种练习本每本售价各是多少元?41. 有三堆弹子, 共46 颗. 第一次从第一堆里拿出与第二堆颗数相同的弹子并入第二堆里;第二次再从第二堆里拿出与第三堆颗数相同的弹子并入第三堆里;第三次再从第三堆里拿出与第一堆剩下的颗数相同的弹子并入第一堆里. 经过这样的变动后,三堆弹子的颗数恰好完全相同.原来每堆弹子各有多少颗?42. 两个四位数的差是2005,那么这两个四位数的和最大是几,最小是几?43. 某次数学测试五道题,全班52人参加,共做对181道,每人至少做对1 道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多, 那么做对4道的人数有多少人?44. A、B、C、D E是从小到大排列的五个不同整数,用其中每两个数相加,可以得到十个和,这十个和中不相同的有八个:分别是17、22、25、28、31、33、36与39.求这五个整数的平均数.45. 商店购进甲、乙、丙三种不同的糖果,所付的钱数相等.甲、乙、丙三种糖果每千克的购进价格分别为8.8元、12元和13.2元,如果把这三种糖果混合在一起成为什锦糖,那么这种什锦糖每千克的本钱是多少元?46. 爸爸把钓来的一条大鲤鱼分成前、中、后三段,中段的重量恰好比前、后两段重量的和少1千克,后段重量等于中段重量的一半与前段重量的和.只知道前段重2千克,你能算出这条鲤鱼的重量吗?47. A、B、C、D E五人在一次总分值为100分的测试中,得分都是大于91的整数. 如果A、B、C的平均分为95分,B、C、D的平均分为94分;A是第一名;E是第三名得96分;那么D的得分是多少?48. 加工一批零件,甲独做需3天完成,乙独做需4天完成.两人同时加工这批零件,完成任务时,甲比乙多做24个,这批零件共有几个?49. 在一列数2、2、4、8、2、……中,从第3个数开始,每个数都是它前面两个数的乘积的个位数字.按这个规律,这列数中的第2004个数是〔〕.50. 甲乙两个工作队原来共有工人170人,后来因工作需要从甲队调出30人,而给乙队调进10人,这时甲队工人是乙队工人数的2倍,两个工作队原来甲队有〔〕人,乙队有〔〕人.51. 甲筐有苹果400个,乙筐有苹果240个,现在从两筐取出数目相等的苹果,剩下的苹果个数,甲筐恰好是乙筐的 5 倍,甲筐所剩苹果数是〔〕个,乙筐所剩苹果是〔〕 .52. 一个湖泊周长1800 米, 沿湖泊周围每隔 3 米栽一棵柳树, 每2 棵柳柳中间栽一棵桃树,湖泊周围栽柳树〔〕棵,栽桃树〔〕棵.53. 小东方案到周口店参观猿人遗址. 如果他坐汽车以40 千米/ 小时的速度行驶, 那么比骑车去早到 3 小时,如果他以8 千米/ 小时的速度步行去,那么比骑车晚到 5 小时,小东的出发点到周口店有多少千米?54. 六位数〔〕2004〔〕能被99 整除,这个六位数是多少?55. 甲、乙两地相距465千米, 一辆汽车从甲地开往乙地, 以每小时60千米的速度行驶一段后, 每小时加速15 千米, 共用了7 小时到达乙地. 每小时60 千米的速度行驶了几小时?56. 笼中装有鸡和兔假设干只,共100 只脚,假设将鸡换成兔,兔换成鸡,那么共92只脚.笼中原有兔、鸡各多少只?57. 蜘蛛有8 条腿,蜻蜓有 6 条腿和2 对翅膀.蝉有 6 条腿和1 对翅膀.现在这三种小虫共18 只,有118 条腿和20 对翅膀,每种小虫各几只?58. 学雷锋活动中,同学们共做好事240 件,大同学每人做好事8 件,小同学每人做好事 3 件,他们平均每人做好事 6 件.参加这次活动的小同学有多少人?59. 某班42 个同学参加植树, 男生平均每人种 3 棵, 女生平均每人种 2 棵,男生比女生多种56 棵,男、女生各有多少人?60. 一本百科全书的页数一共需要6869 个数码,问这本书有几页?图形题1 .如图,一个平行四边形,对角线BE=ED 底边BF=FG=GC三角形FEG的面积是3平方米,这个平行四边形总面积是多少?u r2 .把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形,求这个立体图形的外表积.3 .如图,在一个边长为6的正方形中,放入一个边长为2的正方形, 保持与原正方形的边平行,现在分别连接大正方形的一个顶点与小正方形的两个顶点,形成了图中的阴影图形,阴影局部的面积是多少?4.如图把一个长方形分成8块,求A B C面积.g A B g162012c5.一块正方形玻璃,四条边都减少8厘米,面积就减少了448平方厘米,求正方形玻璃原来的面积.。
(完整版)小学五年级奥数知识点分类汇总及解析
小学五年级奥数知识点分类汇总及解析第1讲平均数(一)一、知识要点把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。
如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数二、精讲精练【例题1】有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个.一箱苹果多少个?【思路导航】(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:1箱苹果比1箱桃多126—108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个).1箱苹果和1箱桃共有多少个:37×2=74(个)1箱苹果比1箱桃多多少个:42×3-36=18(个)1箱苹果有多少个:28+18=46(个)练习1:1。
一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。
问:甲、丁各得多少分?2.甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克.求四人的平均体重是多少千克?3。
甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。
三个小组各植树多少棵?【例题2】一次数学测验,全班平均分是91。
2分,已知女生有21人,平均每人92分;男生平均每人90。
5分。
求这个班男生有多少人?【思路导航】女生每人比全班平均分高92-91.2=0.8(分),而男生每人比全班平均分低91。
世界奥林匹克数学竞赛五年级试题
世界奥林匹克数学竞赛五年级试题一、试题1。
1. 题目:一个数除以5余3,除以6余4,除以7余5。
这个数最小是多少?2. 解析:- 一个数除以5余3,如果这个数加上2就能被5整除;除以6余4,加上2就能被6整除;除以7余5,加上2就能被7整除。
- 所以求出5、6、7的最小公倍数,然后减去2就是这个数。
- 5、6、7互质,它们的最小公倍数是5×6×7 = 210。
- 这个数最小是210 - 2=208。
二、试题2。
1. 题目:有一个长方形,如果长减少4米,宽减少2米,面积就比原来减少44平方米,且剩下部分正好是一个正方形。
求这个正方形的边长。
2. 解析:- 设正方形的边长为x米。
- 原来长方形的长为(x + 4)米,宽为(x+2)米。
- 根据长方形面积公式S =长×宽,可得到方程(x + 4)(x + 2)-x^2=44。
- 展开式子得x^2+2x + 4x+8 - x^2=44。
- 化简得6x+8 = 44。
- 移项得6x=44 - 8=36,解得x = 6米。
三、试题3。
1. 题目:在1 - 100的自然数中,既不是3的倍数也不是5的倍数的数有多少个?2. 解析:- 1 - 100中3的倍数有100÷3 = 33·s·s1,即33个。
- 5的倍数有100÷5 = 20个。
- 15的倍数(既是3的倍数又是5的倍数)有100÷15 = 6·s·s10,即6个。
- 是3或者5的倍数的数有33 + 20-6 = 47个。
- 既不是3的倍数也不是5的倍数的数有100 - 47 = 53个。
四、试题4。
1. 题目:把1/7化成小数,小数点后面第100位上的数字是多少?2. 解析:- 1÷7 = 0.1̇42857̇,循环节是142857,共6位。
- 100÷6 = 16·s·s4。
五年级奥数竞赛题及答案
五年级奥数竞赛题及答案【题目一】题目:小明有3个苹果,小红有5个苹果,他们决定将苹果平均分给5个小朋友。
问每个小朋友能得到多少个苹果?答案:首先计算小明和小红一共有多少个苹果,即 3 + 5 = 8个苹果。
然后将8个苹果平均分给5个小朋友,每个小朋友可以得到8 ÷ 5 = 1.6个苹果。
但是苹果不能分割,所以实际上每个小朋友可以得到1个苹果,剩余的3个苹果无法平均分配。
【题目二】题目:一个数字乘以3后再加上10,得到的结果是40。
求这个数字是多少?答案:设这个数字为x,根据题意,我们有方程 3x + 10 = 40。
解这个方程,首先将10移到等号右边,得到3x = 40 - 10,即3x = 30。
然后将两边同时除以3,得到x = 30 ÷ 3,即x = 10。
所以这个数字是10。
【题目三】题目:一个班级有48名学生,其中女生人数是男生人数的2倍。
问这个班级有多少名男生?答案:设男生人数为x,女生人数为2x。
根据题意,男生和女生的总人数是48,所以我们有方程 x + 2x = 48。
合并同类项,得到3x = 48。
然后将两边同时除以3,得到x = 48 ÷ 3,即x = 16。
所以这个班级有16名男生。
【题目四】题目:一个长方形的长是宽的3倍,如果长增加20厘米,宽增加5厘米,面积就增加了155平方厘米。
求原来的长方形的长和宽分别是多少?答案:设原来的长方形的宽为x厘米,那么长就是3x厘米。
根据题意,新的长方形的长为3x + 20厘米,宽为x + 5厘米。
新的面积减去原来的面积等于155平方厘米,即 (3x + 20) * (x + 5) - 3x * x = 155。
展开这个方程,我们得到 3x^2 + 15x + 20x + 100 - 3x^2 = 155。
简化后得到 35x + 100 = 155。
将100移到等号右边,得到35x = 155 - 100,即35x = 55。
五年级奥数竞赛试题
五年级奥数竞赛试题一、找规律填数1. 题目:观察数列1,3,6,10,15,(),28,…,括号里应填什么数?解析:通过观察可以发现,相邻两个数的差依次是2、3、4、5、…。
1到3相差2,3到6相差3,6到10相差4,10到15相差5,那么下一个数与15应该相差6,所以括号里的数是15 + 6=21。
2. 题目:数列2,4,8,16,32,(),128,…中括号里的数是多少?解析:这个数列的规律是后一个数是前一个数的2倍。
2×2 = 4,4×2 = 8,8×2 = 16,16×2 = 32,所以括号里的数是32×2 = 64。
二、数字谜1. 题目:在下面的竖式中,相同的字母表示相同的数字,不同的字母表示不同的数字,那么A、B、C分别代表什么数字?A B C+C B A1 2 3 2解析:从个位看,C+A = 2或者C + A=12。
先假设C+A = 2,因为A、C是不同的数字,那么只能是A = 1,C = 1,这与不同数字矛盾,所以C+A = 12。
再看百位,A + C进位1后得到12,向千位进1,所以A+C = 12。
又因为十位上B + B = 3或者B + B=13,若B + B = 3,B不是整数,所以B + B = 13,B = 6.5不符合题意。
那么只能是B + B = 3不进位,B = 1.5也不符合题意。
所以我们重新考虑C+A = 12,A和C可能是3和9、4和8、5和7等组合。
假设A = 5,C = 7,从十位看B + B = 2(不进位),B = 1,代入竖式验证:517+715 = 1232,符合题意。
所以A =5,B = 1,C = 7。
三、简单的行程问题1. 题目:甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是每小时5千米,乙的速度是每小时4千米,经过3小时两人相遇。
A、B两地相距多少千米?解析:根据路程=速度和×相遇时间。
小学五年级奥数知识点分类汇总及解析
小学五年级奥数知识点分类汇总及解析练习1:1.老师带着几个同学在做花,老师做了21朵,同学平均每人做了5朵.如果师生合起来算,正好平均每人做了7朵.求有多少个同学在做花?2.一位同学在期中测验中,除了数学外,其它几门功课的平均成绩是94分,如果数学算在内,平均每门95分.已知他数学得了100分,问这位同学一共考了多少门功课?3.两组同学进行跳绳比赛,平均每人跳152次.甲组有6人,平均每人跳140次,如果乙组平均每人跳160次,那么,乙组有多少人?【例题2】小亮在期末考试中,政治、语文、数学、英语、自然五科的平均成绩是89分,政治、数学两科平均91.5分,政治、英语两科平均86分,英语比语文多10分.小亮的各科成绩是多少分?【思路导航】因为语文、英语两科平均分84分,即语文+英语=168分,而英语比语文多10分,即英语-语文=10分,所以,语文是(168-10)÷2=79分,英语是79+10=89分.又因为政治、英语两科平均86分,所以政治是86×2-89=83分;而政治、数学两科平均分91.5分,数学是91.5×2-83=100分;最后根据五科的平均成绩是89分可知,自然分是89×5-(79+89+83+100)=94分.练习2:1.甲、乙、丙三个数的平均数是82.甲、乙两数的平均数是86,乙、丙两数的平均数是77.乙数是多少?甲、丙两个数的平均数是多少?2.小华的前几次数学测验的平均成绩是80分,这一次得了100分,正好把这几次的平均分提高到85分.这一次是他第几次测验?3.五个数排一排,平均数是9.如果前四个数的平均数是7,后四个数的平均数是10,那么,第一个数和第五个数的平均数是多少?【例题3】两地相距360千米,一艘汽艇顺水行全程需要10小时,已知这条河的水流速度为每小时6千米.往返两地的平均速度是每小时多少千米?【思路导航】用往返的路程除以往返所用的时间就等于往返两地的平均速度.显然,要求往返的平均速度必须先求出逆水行全程时所用的时间.因为360÷10=36(千米)是顺水速度,它是汽艇的静水速度与水流速度的和,所以,此汽艇的静水速度是36-6=30(千米).而逆水速度=静水速度-水流速度,所以汽艇的逆水速度是30-6=24(千米).逆水行全程时所用时间是360÷24=15(小时),往返的平均速度是360×2÷(10+15)=28.8(千米).练习3:1.甲、乙两个码头相距144千米,汽船从乙码头逆水行驶8小时到达甲码头,已知汽船在静水中每小时行驶21千米.求汽船从甲码头顺流行驶几小时到达乙码头?2.一艘客轮从甲港驶向乙港,全程要行165千米.已知客轮的静水速度是每小时30千米,水速每小时3千米.现在正好是顺流而行,行全程需要几小时?3.甲船逆水航行300千米,需要15小时,返回原地需要10小时;乙船逆水航行同样的一段水路需要20小时,返回原地需要多少小时?【例题4】幼儿园小班的20个小朋友和大班的30个小朋友一起分饼干,小班的小朋友每人分10块,大班的小朋友每人比大、小班小朋友的平均数多2块.求一共分掉多少块饼干?【思路导航】只要知道了大、小班小朋友分得的平均数,再乘(30+20)人就能求出饼干的总块数.因为大班的小朋友每人比大、小班小朋友的平均数多2块,30个小朋友一共多2×30=60(块),这60块平均分给20个小班的小朋友,每人可得60÷20=3(块).因此,大、小班小朋友分得平均块数是10+3=13(块).一共分掉13×(30+20)=650(块).练习4:1.数学兴趣小组里有4名女生和3名男生,在一次数学竞赛中,女生的平均分是90分,男生的平均分比全组的平均分高2分,全组的平均分是多少分?2.两组同学跳绳,第一组有25人,平均每人跳80下;第二组有20人,平均每人比两组同学跳的平均数多5下,两组同学平均每人跳几下?3.一个技术工带5个普通工人完成了一项任务,每个普通工人各得120元,这位技术工人的收入比他们6人的平均收入还多20元.问这位技术工得多少元?【例题5】王强从A地到B地,先骑自行车行完全程的一半,每小时行12千米.剩下的步行,每小时走4千米.王强行完全程的平均速度是每小时多少千米?【思路导航】求行完全程的平均速度,应该用全程除以行全程所用的时间.由于题中没有告诉我们A地到B地间的路程,我们可以设全程为24千米(也可以设其他数),这样,就可以算出行全程所用的时间是12÷12+12÷4=4(小时),再用24÷4就能得到行全程的平均速度是每小时6千米.练习5:1.小明去爬山,上山时每小时行3千米,原路返回时每小时行5千米.求小明往返的平均速度.2.运动员进行长跑训练,他在前一半路程中每分钟跑150米,后一半路程中每分钟跑100米.求他在整个长跑中的平均速度.3.把一份书稿平均分给甲、乙二人去打,甲每分钟打30个字,乙每分钟打20个字.打这份书稿平均每分钟打多少个字? 第3讲长方形、正方形的周长一、知识要点同学们都知道,长方形的周长=(长+宽)×2.正方形的周长=边长×4.长方形、正方形的周长公式只能用来计算标准的长方形和正方形的周长.如何应用所学知识巧求表面上看起来不是长方形或正方形的图形的周长,还需同学们灵活应用已学知识,掌握转化的思考方法,把复杂的问题转化为标准的图形,以便计算它们的周长.二、精讲精练【例题1】有5张同样大小的纸如下图(a)重叠着,每张纸都是边长6厘米的正方形,重叠的部分为边长的一半,求重叠后图形的周长.【思路导航】根据题意,我们可以把每个正方形的边长的一半同时向左、右、上、下平移(如图b),转化成一个大正方形,这个大正方形的周长和原来5个小正方形重叠后的图形的周长相等.因此,所求周长是18×4=72厘米.练习1: 1.下图由8个边长都是2厘米的正方形组成,求这个图形的周长.2.下图由1个正方形和2个长方形组成,求这个图形的周长.3.有6块边长是1厘米的正方形,如例题中所说的这样重叠着,求重叠后图形的周长.【例题2】一块长方形木板,沿着它的长度不同的两条边各截去4厘米,截掉的面积为192平方厘米.现在这块木板的周长是多少厘米?【思路导航】把截掉的192平方厘米分成A、B、C三块(如图),其中AB的面积是192-4×4=176(平方厘米).把A和B 移到一起拼成一个宽4厘米的长方形,而此长方形的长就是这块木板剩下部分的周长的一半.176÷4=44(厘米),现在这块木板的周长是44×2=88(厘米).练习2:1.有一个长方形,如果长减少4米,宽减少2米,面积就比原来减少44平方米,且剩下部分正好是一个正方形.求这个正方形的周长.2.有两个相同的长方形,长是8厘米,宽是3厘米,如果按下图叠放在一起,这个图形的周长是多少?3.有一块长方形广场,沿着它不同的两条边各划出2米做绿化带,剩下的部分仍是长方形,且周长为280米.求划去的绿化带的面积是多少平方米?【例题3】已知下图中,甲是正方形,乙是长方形,整个图形的周长是多少?【思路导航】从图中可以看出,整个图形的周长由六条线段围成,其中三条横着,三条竖着.三条横着的线段和是(a+b)×2.三条竖着的线段和是b×2.所以,整个图形的周长是(a+b)×2+b×2.即2a+4b.练习3:1.有一张长40厘米,宽30厘米的硬纸板,在四个角上各剪去一个同样大小的正方形后准备做一个长方体纸盒,求被剪后硬纸板的周长.2.一个长12厘米,宽2厘米的长方形和两个正方形正好拼成下图(1)所示长方形,求所拼长方形的周长?3.求下面图形(图2)的周长(单位:厘米).【例题4】下图是边长为4厘米的正方形,求正方形中阴影部分的周长.【思路导航】我们把阴影部分周长中左边的5条线段全部平移到左边,其和正好是4厘米.再把下面的线段全部平移到下面,其和也正好是4厘米.因此,阴影部分的周长与边长是4厘米的正方形的周长是相等的.练习4:1.求下面图形的周长(单位:厘米).2.在( )里填上“>”、“<”或“=”.甲的周长( )乙的周长3.下图中的每一小段的长度都相等,求图形的周长.【例题5】如下图,阴影部分是正方形,DF=6厘米,AB=9厘米,求最大的长方形的周长.【思路导航】根据题意可知,最大长方形的宽就是正方形的边长.因为BC=EF,CF=DE,所以,AB+BC+CF=AB+FE+ED=9+6=15(厘米),这正好是最大长方形周长的一半.因此,最大长方形的周长是(9+6)×2=30(厘米).练习5:1.下面三个正方形的面积相等,剪去阴影部分的面积也相等,求原来正方形的周长发生了什么变化?(单位:厘米)2.下面是一个零件的平面图,图中每条短线段都是5厘米,零件长35厘米,高30厘米.这个零件的周长是多少厘米?3.有两个相同的长方形,长7厘米,宽3厘米,如下图重叠着,求重叠图形的周长.第4讲长方形、正方形的面积一、知识要点长方形的面积=长×宽,正方形的面积=边长×边长.掌握并能运用这两个面积公式,就能计算它们的面积.但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目.这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答.二、精讲精练【例题1】已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米.求大、小正方形的面积各是多少平方厘米?【思路导航】从图中可以看出,大正方形的面积比小正方形的面积大出的40平方厘米,可以分成三部分,其中A和B 的面积相等.因此,用40平方厘米减去阴影部分的面积,再除以2就能得到长方形A和B的面积,再用A或B的面积除以2就是小正方形的边长.求到了小正方形的边长,计算大、小正方形的面积就非常简单了.练习1:1.有一块长方形草地,长20米,宽15米.在它的四周向外筑一条宽2米的小路,求小路的面积.2.正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形.原正方形的面积是多少平方厘米?3.把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形.求这个正方形的边长是多少分米?【例题2】一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积.【思路导航】因为AE×CE=6,DE×EB=35,把两个式子相乘AE×CE×DE×EB=35×6,而CE×EB=14,所以AE×DE=35×6÷14=15.练习2:1.下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积.2.下面一个长方形被分成六个小长方形,其中四个长方形的面积如图所示(单位:平方厘米),求A和B的面积.3.下图中阴影部分是边长5厘米的正方形,四块完全一样的长方形的宽是8厘米,求整个图形的面积.【例题3】把20分米长的线段分成两段,并且在每一段上作一正方形,已知两个正方形的面积相差40平方分米,大正方形的面积是多少平方分米?【思路导航】我们可以把小正方形移至大正方形里面进行分析.两个正方形的面积差40平方分米就是图中的A和B两部分,如图.如果把B移到原来小正方形的上面,不难看出,A和B正好组成一个长方形,此长方形的面积是40平方分米,长20分米,宽是40÷20=2(分米),即大、小两个正方形的边长相差2分米.因此,大正方形的边长就是(20+2)÷2=11(分米),面积是11×11=121(平方分米).练习3:1.一块正方形,一边划出1.5米,另一边划出10米搞绿化,剩下的面积比原来减少了1350平方米.这块地原来的面积是多少平方米?2.一个正方形,如果它的边长增加5厘米,那么,面积就比原来增加95平方厘米.原来正方形的面积是多少平方厘米?3.有一个正方形草坪,沿草坪四周向外修建一米宽的小路,路面面积是80平方米.求草坪的面积.【例题4】有一个正方形ABCD如下图,请把这个正方形的面积扩大1倍,并画出来.【思路导航】由于不知道正方形的边长和面积,所以,也没有办法计算出所画正方形的边长或面积.我们可以利用两个正方形之间的关系进行分析.以正方形的四条边为准,分别作出4个等腰直角三角形,如图中虚线部分,显然,虚线表示的正方形的面积就是原正方形面积的2倍.练习4:1.四个完全一样的长方形和一个小正方形组成了一个大正方形,如果大、小正方形的面积分别是49平方米和4平方米,求其中一个长方形的宽.2.正图的每条边都垂直于与它相邻的边,并且28条边的长都相等.如果此图的周长是56厘米,那么,这个图形的面积是多少?3.正图中,正方形ABCD的边长4厘米,求长方形EFGD的面积.【例题5】有一个周长是72厘米的长方形,它是由三个大小相等的正方形拼成的.一个正方形的面积是多少平方厘米?【思路导航】三个同样大小的正方形拼成的长方形,它的周长是原正方形边长的8倍,正方形的边长为72÷8=9(厘米),一个正方形的面积就是9×9=81(平方厘米).练习5:1.五个同样大小的正方形拼成一个长方形,这个长方形的周长是36厘米,求每个正方形的面积是多少平方厘米?2.有一张长方形纸,长12厘米,宽10厘米.从这张纸上剪下一个最大的正方形后,剩下部分的周长是多少厘米?3.有一个小长方形,它和一个正方形拼成了一个大长方形ABCD(如下图),已知大长方形的面积是35平方厘米,且周长比原来小长方形的周长多10厘米.求原来小长方形的面积.第5讲分类数图形一、知识要点我们在数数的时候,遵循不重复、不遗漏的原则,不能使数出的结果准确.但是在数图形的个数的时候,往往就不容易了.分类数图形的方法能够帮助我们找到图形的规律,从而有秩序、有条理并且正确地数出图形的个数.二、精讲精练【例题1】下面图形中有多少个正方形?【思路导航】图中的正方形的个数可以分类数,如由一个小正方形组成的有6×3=18个,2×2的正方形有5×2=10个,3×3的正方形有4×1=4个.因此图中共有18+10+4=32个正方形.练习1:1.下图中共有多少个正方形?2.下图中共有多少个正方形?3.下图中共有多少个正方形,多少个三角形?【例题2】下图中共有多少个三角形?( )个【思路导航】为了保证不漏数又不重复,我们可以分类来数三角形,然后再把数出的各类三角形的个数相加.(1)图中共有6个小三角形;(2)由两个小三角形组合的三角形有3个;(3)由三个小三角形组合的三角形有4个;(4)由六个小三角形组合的三角形有1个.所以共有6+3+4+1=14个三角形.练习2:1.下面图中共有多少个三角形?2.数一数,图中共有多少个三角形.3.数一数,图中共有多少个三角形?()个()个()个【例题3】数出下图中所有三角形的个数.【思路导航】和三角形AFG一样形状的三角形有5个;和三角形ABF一样形状的三角形有10个;和三角形ABG一样形状的三角形有5个;和三角形ABE一样形的三角形有5个;和三角形AMD一样形状的三角形有5个,共35个三角形.练习3:数出下面图形中分别有多少个三角形.【例题4】如下图,平面上有12个点,可任意取其中四个点围成一个正方形,这样的正方形有多少个?【思路导航】把相邻的两点连接起来可以得到下面图形,从图中可以看出:(1)最小的正方形有6个;(2)由4个小正方形组合而成的正方形有2个;(3)中间还可围成2个正方形.所以共有6+2+2=10个.练习4:1.下图中共有8个点,连接任意四点围成一个长方形,一共能围成多少个长方形?2.下图中共有6个点,连接其中的三点围成一个三角形,一共能围成多少个三角形?3.下图中共有9个点,连接其中的四个点围成一个梯形,一共能围成多少个梯形?【例题5】数一数,下图中共有多少个三角形?【思路导航】我们可以分类来数:1.单一的小三角形有16个;2.两个小三角形组合的有10个;3.四个小三角形组合的有8个;4.八个小三角形组合的有2个.所以,图中一共有16+10+8+2=36个三角形.练习5:1.图中共有( )个三角形.2.图中共有( )个三角形.3.图中共有( )个正方形.第6讲尾数和余数一、知识要点自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数.尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题.二、精讲精练【例题1】写出除213后余3的全部两位数.【思路导航】因为213=210+3.把210分解质因数:210=2×3×5×7,所以,符号题目要求的两位数有2×5=10,2×7=14,3×5=15,3×7=21.5×7=35,2×3×5=30,2×3×7=42.一共有7个两位数.练习1:1.写出除109后余4的全部两位数.2.178除以一个两位数后余数是3.适合条件的两位数有哪些?3.写出除1290后余3的全部三位数.【例题2】 (1)125×125×125×……×125[100个25]积的尾数是几?(2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几?【思路导航】(1)因为个位5乘5,积的个位仍然是5,所以不管多少个125相乘,个位还是5;(2)每个括号里21乘26积的个位是6,我们只要分析100个6相乘,积的尾数是几就行了.因为个位6乘6,积的个位仍然是6,所以不管多少个(21×26)连乘,积的个位还是6.练习2:1.21×21×21×……×21[50个21]积的尾数是几?2.1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几?3.(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?【例题3】 (1)4×4×4×…×4[50个4]积的个位数是几?(2)9×9×9×…×9[51个9]积的个位数是几?【思路导航】(1)我们先列举前几个4的积,看看个位数在怎样变化,1个4个位就是4;4×4的个位是6;4×4×4的个位是4;4×4×4×4的个位是6……由此可见,积的尾数以“4,6”两个数字在不断重复出现.50÷2=25没有余数,说明50个4相乘,积的个位是6.(2)用上面的方法可以发现,51个9相乘时,积的个位是以“9,1”两个数字不断重复,51÷2=25……1.余数是1.说明51个9本乘积的个位是9.练习3:1.24×24×24×…×24[2001个24],积的尾数是多少?2.1×2×3×…×98×99,积的尾数是多少?3.94×94×94×…×94[102个94]-49×49×…×49[101个49],差的个位是多少?【例题4】把1/7化成小数,那么小数点后面第100位上的数字是多少?【思路导航】因为1/7≈0.142857142857……,化成的小数是一个无限循环小数,循环节“142857”共有6个数字.由于100÷6=16……4,所以,小数点后面的第100位是第17个循环节的第4个数字,是8.练习4:1.把1/11化成小数,求小数点后面第2001位上的数字.2.5/7写成循环小数后,小数点后第50个数字是几?3.有一串数:5、8、13、21、34、55、89……,其中,从第三个数起,每个数恰好是前两个数的和.在这串数中,第1000个数被3除后所得的余数是多少?【例题5】 555…55[2001个5]÷13.当商是整数时,余数是几?【思路导航】如果用除法硬除显然太麻烦,我们可以先用竖式来除一除,看一看余数在按怎样的规律变化.从竖式中可以看出,余数是按3、9、4、6、0、5这六个数字不断重复出现.2001÷6=333……3.所以,当商是整数时,余数是4.练习5:1.444…4÷6[100个4],当商是整数时,余数是几?2.当商是整数时,余数各是几?(1)666…6÷4[100个6](2)444…4÷74[200个4](3)888…8÷7[200个8](4)111…1÷7[50个1]第7讲一般应用题(一)一、知识要点一般复合应用题往往是有两组或两组以上的数量关系交织在一起,有的已知条件是间接的,数量关系比较复杂,叙述的方式和顺序也比较多样.因此,一般应用题没有明显的结构特征和解题规律可循.解答一般应用题时,可以借助线段图、示意图、直观演示手段帮助分析.在分析应用题的数量关系时,我们可以从条件出发,逐步推出所求问题(综合法);也可以从问题出发,找出必须的两个条件(分析法).在实际解时,可以根据题中的已知条件,灵活运用这两种方法.二、精讲精练【例题1】五年级有六个班,每班人数相等.从每班选16人参加少先队活动,剩下的同学相当于原来4个班的人数.原来每班多少人?【思路导航】从每班选16人参加少先队活动,6个班共选16×6=96(人).剩下的同学相当于原来4个班的人数,那么,96人就相当于原来(6-4)个班人人数,所以,原来每班96÷2=48(人).练习1:1.五个同学有同样多的存款,若每人拿出16元捐给“希望工程”后,五位同学剩下的钱正好等于原来3人的存款数.原来每人存款多少?2.把一堆货物平均分给6个小组运,当每个小组都运了68箱时,正好运走了这堆货物的一半.这堆货物一共有多少箱?3.老师把一批树苗平均分给四个小队栽,当每队栽了6棵时,发现剩下的树苗正好是原来每队分得的棵数.这批树苗一共有多少棵?【例题2】某车间按计划每天应加工50个零件,实际每天加工56个零件.这样,不仅提前3天完成原计划加工零件的任务,而且还多加工了120个零件.这个车间实际加工了多少个零件?【思路导航】如果按原计划的天数加工,加工的零件就会比原计划多56×3+120=288(个).为什么会多加工288个呢?是因为每天多加工了56-50=6(个).因此,原计划加工的天数是288÷6=48(天),实际加工了50×48+120=1520(个)零件.练习2:1.汽车从甲地开往乙地,原计划每小时行40千米,实际每小时多行了10千米,这样比原计划提前2小时到达了乙地.甲、乙两地相距多少千米?2.小明骑车上学,原计划每分钟行200米,正好准时到达学校,有一天因下雨,他每分钟只能行120米,结果迟到了5分钟.他家离学校有多远?3.加工一批零件,原计划每天加工80个,正好按期完成任务.由于改进了生产技术,实际每天加工100个,这样,不仅提前4天完成加工任务,而且还多加工了100个.他们实际加工零件多少个?【例题3】甲、乙二人加工零件.甲比乙每天多加工6个零件,乙中途停了15天没有加工.40天后,乙所加工的零件个数正好是甲的一半.这时两人各加工了多少个零件?【思路导航】甲工作了40天,而乙停止了15天没有加工,乙只加工了25天,所以他加工的零件正好是甲的一半,也就是甲20天加工的零件和乙25天加工的零件同样多.由于甲每天比乙多加工6个,20天一共多加工6×20=120(个).这120个零件相当于乙25-20=5(天)加工的个数,乙每天加工120÷(25-20)=24(个).乙一共加工了24×25=600(个),甲一共加工了600×2=1200(个)练习3:1.甲、乙二人加工一批帽子,甲每天比乙多加工10个.途中乙因事休息了5天,20天后,甲加工的帽子正好是乙加工的2倍,这时两人各加工帽子多少个?2.甲、乙两车同时从A、B两地相对开出,甲车每小时比乙车多行20千米.途中乙因修车用了2小时,6小时后甲车到达两地中点,而乙车才行了甲车所行路程的一半.A、B两地相距多少千米?3.甲、乙两人承包一项工程,共得工资1120元.已知甲工作了10天,乙工作了12天,且甲5天的工资和乙4天的工资同样多.求甲、乙每天各分得工资多少元?【例题4】服装厂要加工一批上衣,原计划20天完成任务.实际每天比计划多加工60件,照这样做了15天,就超过原计划件数350件.原计划加工上衣多少件?【思路导航】由于每天比计划多加工60件,15天就比原计划的15天多加工60×15=900(件),这时已超过计划件数350件,900件中去掉这350件,剩下的件数就是原计划(20-15)天中的工作量.所以,原计划每天加工上衣(900-350)÷(20-15)=110(件),原计划加工110×20=2200(件).练习4:1.用汽车运一堆煤,原计划8小时运完.实际每小时比原计划多运1.5吨,这样运了6小时就比原计划多运了3吨.原计划8小时运多少吨煤?2.汽车从甲地开往乙地,原计划10小时到达.实际每小时比原计划多行15千米,行了8小时后,发现已超过乙20千。
小学五年级奥数竞赛数学竞赛试卷及答案图文百度文库
小学五年级奥数竞赛数学竞赛试卷及答案图文百度文库一、拓展提优试题1.如图,在等腰直角三角形ABC中,斜边AB上有一点D,已知CD=5,BD 比AD长2,那么三角形ABC的面积是.2.甲乙两人分别从AB两地同时出发相向而行,当甲走到一半时,乙将速度提高一倍,结果两人在距离B地1200米处相遇,并且最后同时到达,那么两地相距米3.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是419.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.4.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.5.用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.6.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.7.如图:平行四边形ABCD中,OE=EF=FD.平行四边形面积是240平方厘米,阴影部分的面积是平方厘米.8.用0、1、2、3、4这五个数字可以组成个不同的三位数.9.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=厘米.10.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.11.用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).12.从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.13.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?14.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.15.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.【参考答案】一、拓展提优试题1.解:作CE ⊥AB 于E .∵CA =CB ,CE ⊥AB ,∴CE =AE =BE ,∵BD ﹣AD =2,∴BE +DE ﹣(AE ﹣DE )=2,∴DE =1,在Rt △CDE 中,CE 2=CD 2﹣DE 2=24,∴S △ABC =•AB •CE =CE 2=24,故答案为242.2800[解答] 设两地之间距离为S 。
小学五年级数学奥林匹克竞赛题(含答案)
小学五年级数学奥林匹克竞赛题(含答案)一、小数的巧算(一)填空题1. 计算 1.996+19.97+199.8=_____。
答案:221.766。
解析:原式=(2-0.004)+(20-0.03)+(200-0.2)=222-(0.004+0.03+0.2)=221.766。
2. 计算 1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____。
答案:103.25。
解析:原式=1.1⨯(1+3+...+9)+1.01⨯(11+13+ (19)=1.1⨯25+1.01⨯75=103.25。
3. 计算 2.89⨯4.68+4.68⨯6.11+4.68=_____。
答案:46.8。
解析:4.68×(2.89+6.11+1)=46.84. 计算 17.48⨯37-17.48⨯19+17.48⨯82=_____。
答案:1748。
解析: 原式=17.48×37-17.48×19+17.48×82=17.48×(37-19+82)=17.48×100=1748。
5. 计算 1.25⨯0.32⨯2.5=_____。
答案:1。
解析:原式=(1.25⨯0.8)⨯(0.4⨯2.5)=1⨯1=1。
6. 计算 75⨯4.7+15.9⨯25=_____。
答案:750。
原式=75⨯4.7+5.3⨯(3⨯25)=75⨯(4.7+5.3)=75⨯10=750。
7. 计算 28.67⨯67+3.2⨯286.7+573.4⨯0.05=____。
答案:2867。
原式=28.67⨯67+32⨯28.67+28.67⨯(20⨯0.05)=28.67⨯(67+32+1)=28.67⨯100=2867。
(二)解答题8. 计算 172.4⨯6.2+2724⨯0.38。
答案:原式=172.4⨯6.2+(1724+1000)⨯0.38=172.4⨯6.2+1724⨯0.38+1000⨯0.38=172.4⨯6.2+172.4⨯3.8+380=172.4⨯(6.2+3.8)+380=172.4⨯10+380=1724+380=2104。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学五年级奥数竞赛分类练习HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】一、和差问题练习题1、植树节,育红小学五、六年级学生共植树106棵,六年级比五年级多植树24棵,五、六年级各植树多少棵?2、小明期中考试,语文和数学的平均分数是97分,语文比数学少6分,语文、数学各得了多少分?3:两筐苹果共重90千克,如果从第一筐中取出6千克放入第二筐后,两筐的重量相等,两筐苹果原来各多少千克?4:甲、乙两筐香蕉共64千克,从甲筐里取出5千克放到乙筐里去,结果甲筐的香蕉比乙筐的香蕉多2千克。
甲、乙两筐原有香蕉各有多少千克?5:甲乙两船共载客623人,若甲船增加34人,乙船减少57人,这时两船乘客同样多,甲船原有乘客多少人?6:在减法算式中,被减数、减数、差三数之和是2002,减数比差大123,减数是多少?7两筐苹果共重64千克,如果从第一筐中取出8千克放入第二筐中,那么,第一筐苹果比第二筐少2千克。
两筐苹果原来各有多少千克?8:一部书有上、中、下三册,上册比中册贵1元,中册比下册贵2元,这部书售价32元。
上、中、下三册各是多少元?9:师徒两人合做3小时,共生产零件165个,师傅每小时比徒弟多生产5个,师徒两人每小时各生产零件多少个?10.甲、乙、丙三个人同时参加储蓄。
甲乙两人共储蓄220元,乙丙两人共储蓄180元。
甲丙两人共储蓄200元。
问三人共储蓄多少元?11.甲、乙、丙三个数,和为300,已知甲比乙大50,乙比丙大20,甲数是多少?12 .如果两个数的和与差的积是77,这两个数各是多少?二、和差倍问题专项练习11、禽养场今年养鸡和鸭共4600只,养的鸡比鸭的4倍还多100只,禽养场今年的鸡鸭各多少只?2、姐姐和妹妹共做了340朵小红花,后来姐姐把她做的红花送给了小明30朵,妹妹自己又做了20朵,这时姐姐做的小红花是妹妹的5倍。
问原来姐姐,妹妹各做了多少朵红花?3、一根电线长240米,把它截成三段,使第一段比第二段长20米,第三段长是第一段的2倍。
这三段电线各长多少米?4、A,B,C三个停车场,A停车场的汽车比B停车场的汽车2倍多1辆,C停车场的汽车比A停车场的汽车多2倍,已知A,B,C三个停车场共停汽车121辆,求A,B,C三个停车场各停汽车多少辆?5、一筐苹果,一筐梨和一筐橘子平均重40千克,已知苹果重量是梨的2倍,梨的重量是橘子的3倍。
问苹果、梨、橘子各是多少千克?6、小红和小明都爱画画,两人各有若干枝水彩笔。
如果小红给小明8枝,小明的水彩笔是小红的3倍。
如果小明给小红8枝,则两人的水彩笔一样多。
小红和小明原来各有多少枝水彩笔?7、小花比爷爷小57岁,爷爷的年龄是小花的6倍少3岁,那么小花和爷爷各是多少岁?8、有大中小三筐苹果,小筐装的是中筐的一半,中筐比大筐少装16千克,大筐装的是小筐的4倍。
大中小三筐共有苹果多少千克?9、王亮期中考试语文语文和数学的平均分时94分,数学没考好,语文比数学多8分。
问王亮的语文数学各得了多少分?10、某车间共有工人77名,其中女工人数比徒工人数的2倍还多4人,男工人数比徒工和女工人数之和的2倍少7人,问:这个车间徒工,女工,男工各多少人?11、四年级甲班为筹办红领巾图书室号召同学捐送书籍,共收到科技书和故事书320笨,其中科技书是故事书的3倍,四年级甲班同学捐送的科技书和故事书各是多少本?12、甲乙丙丁四个数之和为45,若将甲数加上2,乙数减去2.,丙数乘以2,丁数除以2,则四个数恰好相等,求这四个数各是多少?13、父亲今年47岁,徐红今年11岁,问几年前父亲的年龄是徐红年龄的5倍?二、和差倍问题专项练习21、在书架上摆放着三层书共275本,第三层比第二层的书的3倍多2本,第一层比第二层的2倍少3本,三层上个摆放着多少本书?2、一笔奖金分一等奖,二等奖和三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。
如果评一,二,三等奖各两人,那么每个一等奖金实308元;如果凭一个一等奖,三个三等奖,两个二等奖,那么一等奖的奖金是多少元?3、把一个减法算式里的被减数,减数与差相加,得数是592,已知减数比差的2倍还大2,问减数是多少?4、甲乙丙三人的平均年龄是42岁,若将甲的岁数增加7岁,已的岁数扩大2倍,丙的岁数缩小2倍,则三人岁数相等,那么丙的年龄为多少岁?5、甲数减去878,就等于乙数;如果甲数加1142,就等于乙数的5倍。
甲乙两数各是多少?6、某中学利用暑假进行军训,晴天每日行35千米,雨天每天行22千米,13天共行403千米。
这期间雨天有多少天?7、三只木筏运木板910块,第一只木筏比第二只木筏多运30块,第三只木筏比第二只木筏少运20块。
三只木筏各运多少块?8、1988年父亲得年龄师兄弟两人年龄之和的2倍,是兄弟两人年龄差得7倍,父子三人年龄和是84,那么,父亲出生是在()年,弟弟今年几岁?9、小明三天读完一本74页的书,第一天比第二天少读5页,第二天比第三天少读7页。
小明三天各读多少页?10、四人年龄之和是77岁,最小的10岁,他与最大的年龄之和比另外两人年龄之和大7岁。
最大的年龄是几岁?三、差倍问题:1、小丽和小荣集邮,小丽邮票的张数是小荣的5倍,如果小丽把自己的邮票给小荣100张,她俩邮票的张数正好相等。
小丽和小荣各有多少张2、启东水泥厂有甲、乙两仓库,各有水泥若干袋,甲仓库存水泥的袋数是乙仓库的3倍,后来从甲仓库运出450袋,从乙仓库运出50袋。
这时仓库剩余的袋数相等,甲仓库原有水泥()袋,乙仓库原有()袋。
3、两筐桃的个数相等。
如果第一筐卖出150个,第二筐卖出194个,那么剩下的桃第一筐是第二筐的3倍,第一筐有()个,第二筐有()个。
4、甲、乙两人存款若干元,甲存款是乙存款的3倍,如果甲取出240元,乙取出40元,甲、乙存款数正好相等。
问甲原有存款元,乙原有存款元5、小勇和小英各有钱若干元,若小勇给小英24元,二人钱数相等。
如果小英给小勇27元,则小勇的钱数就是小英钱数的2倍。
问小勇原有()元,小英原有()元。
6、如果甲数加上152等于乙数,如果乙数加上480等于甲数的3倍,问原来甲数(),乙数()。
7、有两根同样长的铅笔,第一根用去14厘米,第二根用去2厘米后,第二根的长度是第一根的3倍,问原有铅笔各()厘米。
8、两块同样长的布,第一块用去31米,第二块用去19米,结果所余米数,第二块是第一块的4倍,两块布原来各长()米。
四、等差数列问题1、计算:18+19+20+2l+22+23 100+102+104+106+108+110+112+114 73+77+81+85+89+93 995+996+997+998+999.(1 999+1997+1 995+…+13+11)-(12+14+16+…+1 996+1 998)1+3+5+7+…+37+39 2+6+10+14+…+210+214.4+7+10+13+…+298+301 1+11+21+31+…+101+111.10、求出所有的2位数的和.11、自1开始,每隔两个数写出一个数来,得到数列:1,4,7,10,13,…,求出这个数列前100项之和.12、影剧院有座位若干排,第一排有25个座位,以后每排比前一排多3个座位.最后一排有94个座位.问:这个影剧院共有多少个座位?1、求1至100内被4除余1的数的和.2、求1至100内既是3的倍数又是5的倍数的所有数的和.3、有10只盒子,44只乒乓球.把这44只乒乓球放到盒子中,每个盒子中至少要放一个球,能不能使每个盒中的球数都不相同?4、影剧院共有25排座位.第一排有20个座位,以后每排比前一排多2个座位.问:影剧院共有多少个座位?5、力学小学的礼堂里共有30排座位.从第一排开始,以后每排比前一排多2个座位,最后一排有75个座位.问:这个礼堂共有多少个座位?6、时钟在每个整点时敲这钟点数,每半点钟时敲1下.问:一昼夜该时钟总共敲了多少下?7、求所有三位数的和.8、求1至100(包括100在内)的所有5的倍数的和.9、50把锁的钥匙搞乱了.为了使每把锁都配上自己的钥匙,至多要试多少次就足够了?10、已知数列:2,5,3,3,7,2,5,3,3,7,2,5,3,3,7,….这个数列的第30项是哪个数到第25项止,这些数的和是多少11、在24个连续的自然数中,有一个自然数出现3次,另有2个自然数各出现2次。
这样,共28个自然数,它们的平均值是23.问:出现2次的自然数,最大能是多少12、11,12,13,…,32,33,34,11,25,34,34的平均数是多少在上题中,出现2次的自然数最小是多少五、追及问题【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间1、小明以每分钟50米的速度从学校步行回家。
12分钟后小强从学校出发骑自行车去追小明,结果距学校1000米追上小明。
小强骑自行车每分钟行多少米?2、在300米长的环形跑道上,甲乙二人同时同地同向跑步,甲每秒跑5米,乙每秒跑米,两人起跑后的第一次相遇点在起跑线的前多少米?3、猎人带猎狗追野兔,野兔先跑出80步,猎狗跑2步的时间等于野兔跑3步的时间,猎狗跑4步的距离等于野兔跑7步的距离,问猎狗需要多少步可以追上野兔?4、一艘快艇和一艘轮船分别从A、B两地同向出发到C地去,快艇在后,每小时行42千米,轮船每小时行34千米,小时后同时C地,A、B两地相距多少千米?甲厂有原料120吨,乙厂有原料96吨。
甲厂每天用15吨,乙厂每天用9吨,多少天后两厂剩的原料一样多5、从学校到家,步行要6小时,骑自行车顶3小时。
已知骑自行车比步行每小时快18千米。
学校到家的距离是多少千米?6、A、B两地相距1200千米。
甲从A地、乙从B地同时出发,相向而行。
甲每分钟行50千米,乙每分钟行70千米。
两人在C处第一次相遇。
问AC之间距离是多少如相遇后两人继续前进,分别到达A、B两地后立即返回,在D处第二次相遇。
问CD之间距离是多少7、甲、乙两人在环形跑道上赛跑,跑道全长400米。
如果甲的速度为16米/秒,乙的速度为12米/秒。
两人同时同地同向而行,那么多少秒后第一次相遇?8、姐姐从家上学校,每分钟走50米,妹妹从学校回家,每分钟走45米。
如果妹妹比姐姐上动身5分钟,那么姐妹两人同时到达目的地。
问从家到学校有多远?9、甲、乙两人同时分别从两地骑车相向而行。
甲每小时行20千米,乙每小时行18千米。
两人相遇时距全程中点3千米。
问全程长多少米?10、两地相距900千米,甲走需15天,乙走需12天。
现在甲先出发2天,乙去追甲。
问要走多少千米才可追上?11、甲、乙两人分别在相距240千米的A、B两地乘车出发,相向而行,5小时相遇。