27.2.2相似三角形的应用举例课件
合集下载
相似三角形的简单运用课件
证明定理
利用相似三角形的性质,可以证明一些几何定理。
在几何学中,有些定理的证明需要利用相似三角形的性质,比如勾股定理、射影定理等。通过 相似三角形的性质,可以证明这些定理,进一步揭示了几何图形之间的内在关系。
03
相似三角形在生活中的应用
建筑设计
建筑设计中的比例与尺度
利用相似三角形原理,建筑师可以精 确地计算出建筑物的比例和尺度,确 保建筑外观和内部结构的协调性和美 感。
03 面积比等于相似比的平方
即$frac{S}{S'} = (frac{a}{a'})^2$。
判定条件
01 角角角判定
两个三角形对应的角分别相等,则这两个三角形 相似。
02 边边角判定
两个三角形对应的两边成比例且夹角相等,则这 两个三角形相似。
03 三边判定
两个三角形三边分别成比例,则这两个三角形相 似。
建筑测量
建筑结构分析
通过相似三角形原理,建筑师可以分 析建筑结构的稳定性、承载能力和抗 震性能,确保建筑的安全性和可靠性 。
在建筑测量中,相似三角形可用于确 定建筑物的高度、宽度、长度等参数 ,提高测量的准确性和效率。
地图绘制
地图比例尺
地图绘制中,利用相似三角形原 理可以确定地图的比例尺,从而 将实际地理尺寸缩小或放大到地 图上,为人们提供准确的地理信
计算太阳的角度
总结词
通过相似三角形原理,利用太阳和地面上的物体来计算太阳的角度。
详细描述
首先选择一个地面上的物体,并测量其高度和影子的长度。然后观察太阳下物体的影子,并记录下影 子的长度。接着,在影子的顶端放置一个直角三角形,使其与太阳和地面形成一个相似三角形。最后 ,利用三角函数计算出太阳的角度。
数学:27.2.2相似三角形的应用举例课件(人教新课标九年级下)
(1)请你在图中画出小亮恰好能看见小明时的 视线,以及此时小亮所在位置(用点C标出); MN 20m,MD 8m ,PN 24m (2)已知: , 求(1)中的C点到胜利 M B 街口的距离CM.
步行街 D E
建筑物
光明巷
A
胜利街
P
N
Q
练习
1.在同一时刻物体的高度与它的影长成正比 例.在某一时刻,有人测得一高为1.8米的竹竿 的影长为3米,某一高楼的影长为60米,那么高 楼的高度是多少米?
C
E
请同学们自已解答 并进行交流
D
例3:已知左,右并排的两棵大树的高分 别是AB=8m和CD=12m,两树的根部的距 离BD=5m。一个身高1.6m的人沿着正对 着两棵树的一条水平直路从左向右前进, 当他与左边较低的树的距离小于多少时, 就不能看见右边较高的树的顶端点C?
仰 :视线在水平 线以 角 上的夹角。
A B
D
E
C
4、如图,一条河的两岸有一段是平行的, 在河的南岸边每隔5米有一棵树,在北岸边 每隔50米有一根电线杆.小丽站在离南岸边 15米的点处看北岸,发现北岸相邻的两根电 线杆恰好被南岸的两棵树遮住,并且在这两 棵树之间还有三棵树,则河宽为 米.
5. 小明在打网球时,使球恰好能打过网,而且落 在离网5米的位置上,求球拍击球的高度h.(设网 球是直线运动)
B
D
C
E
BD EC 120 50 解得AB 100(米) DC 60 答: 两岸间的大致距离为100米.
(方法二) 我们在河对岸选定一目标点A,在河的一边选点 D和 E,使DE⊥AD,然后选点B,作BC∥DE,与视线 EA相交于点C。此时,测得DE , BC, BD, 就可以求两岸 间的大致距离AB了。 A 此时如果测得DE=120米, BC=60米,BD=50米,求 两岸间的大致距离AB. B
步行街 D E
建筑物
光明巷
A
胜利街
P
N
Q
练习
1.在同一时刻物体的高度与它的影长成正比 例.在某一时刻,有人测得一高为1.8米的竹竿 的影长为3米,某一高楼的影长为60米,那么高 楼的高度是多少米?
C
E
请同学们自已解答 并进行交流
D
例3:已知左,右并排的两棵大树的高分 别是AB=8m和CD=12m,两树的根部的距 离BD=5m。一个身高1.6m的人沿着正对 着两棵树的一条水平直路从左向右前进, 当他与左边较低的树的距离小于多少时, 就不能看见右边较高的树的顶端点C?
仰 :视线在水平 线以 角 上的夹角。
A B
D
E
C
4、如图,一条河的两岸有一段是平行的, 在河的南岸边每隔5米有一棵树,在北岸边 每隔50米有一根电线杆.小丽站在离南岸边 15米的点处看北岸,发现北岸相邻的两根电 线杆恰好被南岸的两棵树遮住,并且在这两 棵树之间还有三棵树,则河宽为 米.
5. 小明在打网球时,使球恰好能打过网,而且落 在离网5米的位置上,求球拍击球的高度h.(设网 球是直线运动)
B
D
C
E
BD EC 120 50 解得AB 100(米) DC 60 答: 两岸间的大致距离为100米.
(方法二) 我们在河对岸选定一目标点A,在河的一边选点 D和 E,使DE⊥AD,然后选点B,作BC∥DE,与视线 EA相交于点C。此时,测得DE , BC, BD, 就可以求两岸 间的大致距离AB了。 A 此时如果测得DE=120米, BC=60米,BD=50米,求 两岸间的大致距离AB. B
人教版九年级下册数学27.2.3:相似三角形的应用 举例 测量(金字塔高度、河宽)问题 课件 (共12张PPT)
明朝未及,我只有过好每一个今天,唯一的今天。
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
27.2.3相似三角形应用举例(优质课)省公开课获奖课件说课比赛一等奖课件
DE BC EF BC
C.AB BC
DE EF
D.DABE
AC DF
例5 如图,为了估算河旳宽度,我们能够在河对岸选定一种目 旳点P,在近岸点Q和S,使点P、Q、S共线且直线PS与河垂直, 接着在过点S且与PS垂直旳直线a上选择合适旳点T,拟定PT与 过点Q且垂直PS旳直线b旳交点R.假如测得QS=45m,ST= 90m,QR=60m,求河旳宽度PQ.
2. 在处理某些不能直接度量旳物体旳高度或宽
度等测量类问题时,能够借助他物间接测量,这 时往往需要构造相同三角形来处理.
3. 我们把观察者眼睛旳位置称为视点,观察时 ,从下方向上看,视线与水平线旳夹角称为仰角.
4.相同三角形旳实际应用 (1)测量物高 利用“同一时刻旳物高和影长”
比例式为:DABE=BECF.
FH AH FK CK
为这棵树旳遮挡,右边树 旳顶端点C在观察者旳盲
即 FH 8 1.6 6.4
FH 5 12 1.6 10.4
区之内,观察者看不到 它.
解得 FH=8
利用相同来处理测量物体高度旳问题旳一般思绪 是怎样旳?
一般情况下,能够从人眼所在旳部位向物体作垂 线,根据人、物体都与地面垂直构造相同三角形 数学模型,利用相同三角形相应边旳比相等处理 问题.
池塘旳宽为36m.
4. 如图是小明设计用手电来测量某古城墙高度旳示 意图,点处放一水平旳平面镜,光线从点出发经 平面镜反射后刚好射到古城墙旳顶端处,已知小
明身高1.6米,且测得BP=2米,PD=10米,那么该
古城墙旳高度是( B )
A. 6米 B. 8米 C. 18米 D. 24米
例6 已知左、右并排旳两棵大树旳高分别是AB=6cm和CD= 12m,两树旳根部旳距离BD=5m.一种身高1.6m旳人沿着正 对这两棵树旳一条水平直路 l 从左向右迈进,当他与左边较低 旳树旳距离不大于多少时,就不能看到右边较高旳树旳顶端点
C.AB BC
DE EF
D.DABE
AC DF
例5 如图,为了估算河旳宽度,我们能够在河对岸选定一种目 旳点P,在近岸点Q和S,使点P、Q、S共线且直线PS与河垂直, 接着在过点S且与PS垂直旳直线a上选择合适旳点T,拟定PT与 过点Q且垂直PS旳直线b旳交点R.假如测得QS=45m,ST= 90m,QR=60m,求河旳宽度PQ.
2. 在处理某些不能直接度量旳物体旳高度或宽
度等测量类问题时,能够借助他物间接测量,这 时往往需要构造相同三角形来处理.
3. 我们把观察者眼睛旳位置称为视点,观察时 ,从下方向上看,视线与水平线旳夹角称为仰角.
4.相同三角形旳实际应用 (1)测量物高 利用“同一时刻旳物高和影长”
比例式为:DABE=BECF.
FH AH FK CK
为这棵树旳遮挡,右边树 旳顶端点C在观察者旳盲
即 FH 8 1.6 6.4
FH 5 12 1.6 10.4
区之内,观察者看不到 它.
解得 FH=8
利用相同来处理测量物体高度旳问题旳一般思绪 是怎样旳?
一般情况下,能够从人眼所在旳部位向物体作垂 线,根据人、物体都与地面垂直构造相同三角形 数学模型,利用相同三角形相应边旳比相等处理 问题.
池塘旳宽为36m.
4. 如图是小明设计用手电来测量某古城墙高度旳示 意图,点处放一水平旳平面镜,光线从点出发经 平面镜反射后刚好射到古城墙旳顶端处,已知小
明身高1.6米,且测得BP=2米,PD=10米,那么该
古城墙旳高度是( B )
A. 6米 B. 8米 C. 18米 D. 24米
例6 已知左、右并排旳两棵大树旳高分别是AB=6cm和CD= 12m,两树旳根部旳距离BD=5m.一种身高1.6m旳人沿着正 对这两棵树旳一条水平直路 l 从左向右迈进,当他与左边较低 旳树旳距离不大于多少时,就不能看到右边较高旳树旳顶端点
相似三角形性质的应用PPT课件
在地图绘制中,利用相似三角形的性质可以确定地球上各个地点的相对位置和距离。
通过相似三角形,可以将地球上的大范围区域缩小到地图上,方便人们理解和研究 地理分布和特征。
地图绘制中的比例尺就是利用相似三角形的原理,将实际距离按照一定比例缩小到 地图上。
在物理实验中的应用
在物理实验中,常常需要利用 相似三角形来测量和计算各种 物理量,例如力、速度、加速 度等。
面积比等于相似比的平方
两个相似三角形的面积比等于它们的相似比的平方,即 (AB/DE)^2=(BC/EF)^2=(CA/FD)^2。
相似三角形的判定方法
01
02
03
平行线判定法
如果一个三角形与另一个 三角形的一边平行且等于 这边上的一个线段,则这 两个三角形相似。
角角判定法
如果两个三角形有两个对 应的角相等,则这两个三 角形相似。
利用相似三角形解决长度问题
总结词
通过相似三角形的性质,可以解决一些长度问题,如求线段长度ຫໍສະໝຸດ 判断线段大小关系等。详细描述
利用相似三角形的对应边成比例性质,可以通过已知线段长度求解未知线段长度,或者判断线段的大小关系。例 如,在解题过程中,可以通过构建相似三角形,利用对应边成比例的特点,将未知线段长度转化为已知线段长度, 从而求解问题。
相似三角形与面积
相似三角形的面积比等于其对应边长的平方 比。
相似三角形与角平分线
角平分线将相对边分为两段,与角平分线所 形成的两个小三角形相似。
实际问题实例
测量问题
建筑设计
利用相似三角形的性质,可以方便地测量 无法直接到达的物体的高度或距离。
在建筑设计过程中,可以利用相似三角形 的性质来计算建筑物的尺寸和角度,以确 保建筑物的外观和稳定性。
通过相似三角形,可以将地球上的大范围区域缩小到地图上,方便人们理解和研究 地理分布和特征。
地图绘制中的比例尺就是利用相似三角形的原理,将实际距离按照一定比例缩小到 地图上。
在物理实验中的应用
在物理实验中,常常需要利用 相似三角形来测量和计算各种 物理量,例如力、速度、加速 度等。
面积比等于相似比的平方
两个相似三角形的面积比等于它们的相似比的平方,即 (AB/DE)^2=(BC/EF)^2=(CA/FD)^2。
相似三角形的判定方法
01
02
03
平行线判定法
如果一个三角形与另一个 三角形的一边平行且等于 这边上的一个线段,则这 两个三角形相似。
角角判定法
如果两个三角形有两个对 应的角相等,则这两个三 角形相似。
利用相似三角形解决长度问题
总结词
通过相似三角形的性质,可以解决一些长度问题,如求线段长度ຫໍສະໝຸດ 判断线段大小关系等。详细描述
利用相似三角形的对应边成比例性质,可以通过已知线段长度求解未知线段长度,或者判断线段的大小关系。例 如,在解题过程中,可以通过构建相似三角形,利用对应边成比例的特点,将未知线段长度转化为已知线段长度, 从而求解问题。
相似三角形与面积
相似三角形的面积比等于其对应边长的平方 比。
相似三角形与角平分线
角平分线将相对边分为两段,与角平分线所 形成的两个小三角形相似。
实际问题实例
测量问题
建筑设计
利用相似三角形的性质,可以方便地测量 无法直接到达的物体的高度或距离。
在建筑设计过程中,可以利用相似三角形 的性质来计算建筑物的尺寸和角度,以确 保建筑物的外观和稳定性。
27.2.2 相似三角形的应用举例(2)
CD=12 m,两树根部的距离BD=5 m.一个身高1.6 m的
人沿着正对这两棵树的一条水平直路L从左向右前进,当 他与左边较低的树的距离小于多少时,就不能看到右边较 高的树的顶端点C?
三、提出问题
你能设计方案,利用相似三角形的知识测量 旗杆的高度吗? 方法一:利用阳光下的影子
操作方法:一名学生在直立于旗杆影子的顶端处, 测出该同学的影长和此时旗杆的影长. 点拨:把太阳的光线看成是平行的.
四、运用提高
如图,测得BD=120 m,DC=60 m,EC=50 m, 求河宽AB.
100 m.
五、课堂小结
谈谈你在本节课的收获.
六、布置作业
1.必做题:
教材第55,56页习题27.2第10、11题. 2.选做题: 教材第56页习题27.2第16题.
3.备选题:
一盗窃犯于夜深人静之时潜入某单位作案,该
∵太阳的光线是平行的, ∴AE∥CB, ∴∠AEB=∠CBD. ∵人与旗杆是垂直于地面的, ∴∠ABE=∠CDB,
∴△ABE∽△CBD. ∴
AB BE CD BD
.即CD=
AB BD . BE
因此,只要测量出人的影长BE,旗杆的影长DB,再 知道人的身高AB,就可以求出旗杆CD的高度了.
方法二:利用镜子的反射
单位的自动摄像系统摄下了他作案的全过程.请你为
警方设计一个方案,估计该盗窃犯的大致身高.
∴∠B=∠D=90°.
AB BE ∴ . CD DE
因此,测量出人与镜子的距离BE,旗杆与镜子的 距离DE,再知道人的身高AB,就可以求出旗杆CD的 高度.
方法三:利用标杆测量旗杆的高度
操作方法:选一名学生为观测者,在他和旗杆之间 的地面上直立一根高度已知的标杆,观测者前后调整自 己的位置,使旗杆顶部、标杆顶部与眼睛恰好在同一直 线上时,分别测出他的脚与旗杆底部,以及标杆底部的 距离即可求出旗杆的高度. 点拨:人、标杆和旗杆都垂直于地面.
27.2.2+相似三角形的性质++课件++-2024-2025学年人教版九年级数学下册
位置情况进行分类. 注意多种情况的存在,利用相似找函
数关系往往需要考虑相似比与对应线段的比,以及相似比
与面积比之间的关系.
综合应用创新
题型
4 利用相似三角形的性质解决实际问题
例 7 课本中有一道复习题:如图27.2-37 ①所示,有一
块三角形材料ABC,它的边BC=120 mm,高AD=
80 mm,要把它加工成正方形零件,使正方形的边
′′
= =k
′′
相似比为k
感悟新知
知1-讲
续表
图形
推理
结论
由两角分别相等
的两个三角形相 相 似 三 角
对应
似 , 得 △ABD ∽ 形 对 应 高
高的
AD , A′D′ 分 别 为 △A′B′D′ , 再 由 相 的 比 等 于
比
△ABC 和 △A′B′C′ 的 似 三 角 形 的 性 质 ,相似比
-6
3
2
6
3 2
2
) ×24= x -
2
12x
+24.
3
8
3
2
9
8
∴ y=S△A1MN-S△A1EF= x2-( x2-12x+24=- x2+12x-
24(4 <x<8).
16
易知当x= 时,y最大=8.
3
16
3
∵ 8>6,∴当x= 时,y最大,y 最大=8.
综合应用创新
解法提醒
本题运用了分类讨论思想,对点A1与四边形BCNM的
的平分线.
感悟新知
知1-练
例 1 如图27.2-32,在△ABC中,AD是BC边上的高,矩形
EFGH内接于△ABC,且长边FG在BC上,AD与EH的
数关系往往需要考虑相似比与对应线段的比,以及相似比
与面积比之间的关系.
综合应用创新
题型
4 利用相似三角形的性质解决实际问题
例 7 课本中有一道复习题:如图27.2-37 ①所示,有一
块三角形材料ABC,它的边BC=120 mm,高AD=
80 mm,要把它加工成正方形零件,使正方形的边
′′
= =k
′′
相似比为k
感悟新知
知1-讲
续表
图形
推理
结论
由两角分别相等
的两个三角形相 相 似 三 角
对应
似 , 得 △ABD ∽ 形 对 应 高
高的
AD , A′D′ 分 别 为 △A′B′D′ , 再 由 相 的 比 等 于
比
△ABC 和 △A′B′C′ 的 似 三 角 形 的 性 质 ,相似比
-6
3
2
6
3 2
2
) ×24= x -
2
12x
+24.
3
8
3
2
9
8
∴ y=S△A1MN-S△A1EF= x2-( x2-12x+24=- x2+12x-
24(4 <x<8).
16
易知当x= 时,y最大=8.
3
16
3
∵ 8>6,∴当x= 时,y最大,y 最大=8.
综合应用创新
解法提醒
本题运用了分类讨论思想,对点A1与四边形BCNM的
的平分线.
感悟新知
知1-练
例 1 如图27.2-32,在△ABC中,AD是BC边上的高,矩形
EFGH内接于△ABC,且长边FG在BC上,AD与EH的
相似三角形的应用课件初中数学PPT课件
相似三角形可以与三角函数、向量等知识点结合,解决更广泛的实际问题。
相似三角形在现实生活中的应用
相似三角形在现实生活中有着广泛的应用,如建筑设计、地理测量、物理实验等。通过了解 这些应用,可以更好地理解相似三角形的重要性和实用性。
THANKS
感谢观看
构造相似三角形,通 过已知条件求解未知 边长。
利用相似三角形证明角相等
通过证明两个三角形相似,进 而证明对应角相等。
利用相似三角形的性质,通过 已知角求解未知角。
构造相似三角形,通过证明对 应角相等来证明两角相等。
利用相似三角形解决面积问题
通过已知相似三角形的边长比例, 利用面积公式求解未知面积。
构造相似三角形,通过已知条件 求解未知面积。
利用相似三角形的性质,通过已 知面积求解未知面积。
03 相似三角形在代 数问题中应用
利用相似三角形建立方程
通过相似三角形的性质,建立比例关 系,从而构建方程。
结合图形与代数方法,将几何问题转 化为代数问题。
利用已知边长和角度,通过相似三角 形对应边成比例的性质,列出方程。
通过比较两个三角形的对应角或对应边来判断它们是否相似。
相似三角形的应用
利用相似三角形可以解决一些实际问题,如测量高度、计算距离等。
易错难点剖析及注意事项提醒
易错点
在判断两个三角形是否相似时, 需要注意对应角和对应边的关系,
避免出现错误。
难点
在实际问题中,如何准确地找到相 似三角形并应用其性质进行求解是 一个难点。
结合相似三角形的性质, 解决一些综合性的问题。
04 相似三角形在三 角函数问题中应 用
利用相似三角形推导三角函数公式
通过相似三角形的性质,推导正弦、余弦、正切等基本三角函数公式。 引导学生理解三角函数公式与相似三角形之间的联系,加深对公式的理解和记忆。
相似三角形在现实生活中的应用
相似三角形在现实生活中有着广泛的应用,如建筑设计、地理测量、物理实验等。通过了解 这些应用,可以更好地理解相似三角形的重要性和实用性。
THANKS
感谢观看
构造相似三角形,通 过已知条件求解未知 边长。
利用相似三角形证明角相等
通过证明两个三角形相似,进 而证明对应角相等。
利用相似三角形的性质,通过 已知角求解未知角。
构造相似三角形,通过证明对 应角相等来证明两角相等。
利用相似三角形解决面积问题
通过已知相似三角形的边长比例, 利用面积公式求解未知面积。
构造相似三角形,通过已知条件 求解未知面积。
利用相似三角形的性质,通过已 知面积求解未知面积。
03 相似三角形在代 数问题中应用
利用相似三角形建立方程
通过相似三角形的性质,建立比例关 系,从而构建方程。
结合图形与代数方法,将几何问题转 化为代数问题。
利用已知边长和角度,通过相似三角 形对应边成比例的性质,列出方程。
通过比较两个三角形的对应角或对应边来判断它们是否相似。
相似三角形的应用
利用相似三角形可以解决一些实际问题,如测量高度、计算距离等。
易错难点剖析及注意事项提醒
易错点
在判断两个三角形是否相似时, 需要注意对应角和对应边的关系,
避免出现错误。
难点
在实际问题中,如何准确地找到相 似三角形并应用其性质进行求解是 一个难点。
结合相似三角形的性质, 解决一些综合性的问题。
04 相似三角形在三 角函数问题中应 用
利用相似三角形推导三角函数公式
通过相似三角形的性质,推导正弦、余弦、正切等基本三角函数公式。 引导学生理解三角函数公式与相似三角形之间的联系,加深对公式的理解和记忆。
相似三角形应用课件
表示两个三角形相似的符 号为“∽”。
相似变换
通过相似变换,可以将一 个三角形的边和角对应地 缩小或放大,得到另一个 三角形。
相似三角形的性质
对应边成比例
周长和面积的比值相等
相似三角形的对应边长之比是一个常 数,这个常数称为相似比。
相似三角形的周长之比等于它们的相 似比,面积之比等于相似比的平方。
对应角相等
确定建筑物的水平角度
通过相似三角形的边长比例关系,结合已知的测量点和角 度,计算出建筑物的水平角度,确保建筑物的方向和定位 准确。
利用相似三角形解决航海定位问题
确定船只的位置
利用相似三角形原理,结合已知的陆地标志和船只的位置,计算出 船只的具体位置,为航行安全和导航提供保障。
确定船只的航向
通过相似三角形,结合已知的陆地标志和船只的航向,计算出船只 的航向,确保船只在正确的航线上航行。
感谢观看
02
相似三角形在几何中的应用
利用相似三角形解决几何问题
计算长度
利用相似三角形的性质, 可以计算出无法直接测量 的长度。
角度计算
通过相似三角形,可以计 算出某些难以测量的角度。
面积和周长
利用相似三角形的面积比 和边长比,可以计算出某 些图形的面积和周长。
利用相似三角形证明几何定理
勾股定理
利用相似三角形,可以证明勾股定理。
利用相似三角形的性质,将实际问题中的比例关系转化为代数方程,从而解决一些复杂的代数与实际问题。
详细描述
在解决一些实际问题时,我们常常需要借助代数方法来描述问题。例如,在计算物体的重量时,我们可 以通过相似三角形的性质,将物体的重量与长度之间的比例关系转化为代数方程,从而计算出物体的重 量。
THANKS
相似变换
通过相似变换,可以将一 个三角形的边和角对应地 缩小或放大,得到另一个 三角形。
相似三角形的性质
对应边成比例
周长和面积的比值相等
相似三角形的对应边长之比是一个常 数,这个常数称为相似比。
相似三角形的周长之比等于它们的相 似比,面积之比等于相似比的平方。
对应角相等
确定建筑物的水平角度
通过相似三角形的边长比例关系,结合已知的测量点和角 度,计算出建筑物的水平角度,确保建筑物的方向和定位 准确。
利用相似三角形解决航海定位问题
确定船只的位置
利用相似三角形原理,结合已知的陆地标志和船只的位置,计算出 船只的具体位置,为航行安全和导航提供保障。
确定船只的航向
通过相似三角形,结合已知的陆地标志和船只的航向,计算出船只 的航向,确保船只在正确的航线上航行。
感谢观看
02
相似三角形在几何中的应用
利用相似三角形解决几何问题
计算长度
利用相似三角形的性质, 可以计算出无法直接测量 的长度。
角度计算
通过相似三角形,可以计 算出某些难以测量的角度。
面积和周长
利用相似三角形的面积比 和边长比,可以计算出某 些图形的面积和周长。
利用相似三角形证明几何定理
勾股定理
利用相似三角形,可以证明勾股定理。
利用相似三角形的性质,将实际问题中的比例关系转化为代数方程,从而解决一些复杂的代数与实际问题。
详细描述
在解决一些实际问题时,我们常常需要借助代数方法来描述问题。例如,在计算物体的重量时,我们可 以通过相似三角形的性质,将物体的重量与长度之间的比例关系转化为代数方程,从而计算出物体的重 量。
THANKS
九年级数学下册第27章相似27.2相似三角形2相似三角形应用举例第1课时习题课件新人教版
【解析】∵DE∥AB,∴∠A=∠E,∠B=∠D,
∴△ABC∽△EDC,∴ B C 即A B .
DC ED
∴AB=870 m.
290 AB . 10 30
答:湖两岸的距离AB是870 m.
【想一想错在哪?】如图,某一时刻,身高为1.6 m的小明站 在离墙1 m的地方,发现自己在太阳光下的影子有一部分在地 面上,另一部分在墙上,墙上的部分影子长为0.2 m,同时他 又量得附近一棵大树的影子长为10 m,求这棵大树的高度.
【互动探究】求灯罩的半径时,还有什么方法?
提示:利用相似三角形的性质,得到MN=4 r,在Rt△OMN中应用
3
勾股定理列方程求解.
【总结提升】利用相似三角形测量物体高度的一般步骤 1.画出示意图,利用平行光线、影子、标杆等构造相似三角形. 2.测量与表示未知量的线段相对应的边长,以及另外一组对应 边的长度. 3.利用相似三角形的性质列出包括以上四个量的比例式,解出 未知量. 4.检验并得到答案.
知识点 2 应用相似三角形测量宽度 【例2】如图,为了估算河的宽度,我们可以在河对岸选定一个 目标作为点A,再在河的这一边选点B和C,使AB⊥BC,然后,再 选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得 BD=110 m,DC=55 m,EC=52 m,求两岸间的大致距离AB.
x 30
路灯甲的高为9 m. 答案:9
3.如图,铁道口的栏杆短臂长1 m,长臂长16 m.当短臂端点 下降0.5 m时,长臂端点升高____m(杆的宽度忽略不计).
【解析】设长臂上升的高度为x m,根据题意得 0 .5 1 ,
x 16
解得x=8. 答案:8
4.如图,小明为了测量一高楼MN的高,在离N点20 m的A处放了 一个平面镜,小明沿NA后退到C点,正好从镜中看到楼顶M点, 若AC=1.5 m,小明的眼睛离地面的高度为1.6 m,请你帮助小 明计算一下楼房的高度(精确到0.1 m).
27.2.2.2相似三角形应用举例(2)
(2)当x=0.5时,y最大值=2.
因此
A
P Q E N C
80–x
80
=
x
D M
120
,得 x=48(毫米)。答:-------。
如图、在正△ABC中,边长为 2cm,P为AB上一 点,作矩形PMNQ内接于△ABC,又Q在AC上,P 在AB上,M、N在BC上,高AD分别交PQ 、 BC于 E 、 D,设PM=x, 矩形PMNQ的面积为y。 ①求出y与x之间的函数关系式?试确 定x的取值范围。 ②当PM为多少时,矩形的面积有 最大值?并求之。
(1)设线段BP为xcm,线段CQ为ycm,求y关于x 的函数关系式及自变量x的取值范围; (2)求当BP=CQ时,S△BQC与S△PAB的面积的比. (3)当P在什么位置时,BP+CQ=13cm,并求此时
Q到BC的距离.
A Q
P
D
B
O
C
例3.如图, △ABC中,BC=4, ∠B=450,AB=3 ,M,N分别为AB,AC上的 点,MN∥BC,并设MN=x, △MNC的面积为s, (1)求出s与x间的函数关系式及自变量x的取值范围. (2)是否存在平行线段MN,使△MNC的面积 等于2.若存在求出MN的长;若不存在,请说 明理由.
A M E
N
B
D
Cቤተ መጻሕፍቲ ባይዱ
挑战自我
3.如图,△ABC是一块锐角三角形余料,边 BC=120毫米,高AD=80毫米,要把它加工成正方 形零件,使正方形的一边在BC上,其余两个顶点 分别在AB、AC上,这个正方形零件的边长是多少?
解:设正方形PQMN是符合要求的 △ABC的高AD与PN相交于点E。设 正方形PQMN的边长为x毫米。 因为PN∥BC,所以△APN∽ △ABC AE PN = 所以 B AD BC
相似三角形应用举例课件
优化建筑布局
在建筑布局设计中,可以利用相 似三角形原理来优化空间布局, 提高建筑的使用效率和舒适度。
航海中的应用
确定航向
导航定位
在航海过程中,可以利用相似三角形 原理来计算船只与目标之间的角度, 从而确定正确的航向。
在导航定位过程中,可以利用相似三 角形原理来计算船只的位置和航速, 确保航行安全和准确到达目的地。
相似三角形应用举例课件
目录
CONTENTS
• 相似三角形的基本概念 • 相似三角形在生活中的应用 • 相似三角形在数学问题中的应用 • 相似三角形在实际问题中的解决策略 • 相似三角形的综合应用举例
01 相似三角形的基本概念
CHAPTER
相似三角形的定义
01
02
03
相似三角形
如果两个三角形对应的角 相等,则这两个三角形相 似。
如果两个三角形有一个对 应的角相等和一组对应的 边成比例,则这两个三角 形相似。
02 相似三角形在生活中的应用
CHAPTER
测量中的应用
测量建筑物高度
利用相似三角形原理,通过测量 建筑物的影长或其他已知高度的 物体,可以计算出建筑物的高度。
测量河流宽度
在河流两岸分别设置标杆,利用相 似三角形原理,可以计算出河流的 宽度。
示例
证明两条线段相等,可以通过构造两个三角形,使它们相似,然后利用对应边成比例的性 质来证明线段相等。
在代数问题中的应用
01
总结词
利用相似三角形的性质,解决代数方程或不等式问题。
02 03
详细描述
在代数问题中,有时需要通过解方程或不等式来求解未知数。通过构造 相似三角形,可以利用相似三角形的性质,如对应边成比例、对应角相 等,来转化方程或不等式,从而简化求解过程。
初中九年级数学下册人教版27.2.2相似三角形的应用ppt课件
答:楼高36米.
2. 如图,测得BD=120m,DC=60m,EC=50m,求河宽AB.
解: ∵ AB∥CE ∴△ABD∽△ECD
BD AB DC EC
120 AB 60 50
AB=100m. 答:河宽AB为100m.
A
C
B
D
E
课堂小结
本节课我们学习了利用相似三角形来测量高度和宽度的
解:太阳光是平行的光线, 因此:∠BAO=∠EDF. 又 ∠AOB=∠DFE=900.
∴△ABO∽△DEF.
因此金字塔的高为134m.
一题多解
E
┐ F △ABO∽△AEF
还可以有其他方法测量吗? B
平面镜
A
OB
OA
EF = AF
┐ O
OB =
OA ·EF AF
例4.如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸 取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直 的直线a上选择适当的点T,确定PT与点Q且垂直PS的直线b的交点R.如果测 得QS=45m,ST=90m,QR=60m,求河的宽度PQ.
A
∠ABC=∠ECD=90°, 所以 △ABD∽△ECD,
那么 AB = BD EC DC
解得AB = ?(米)
B
D
C
E
答: 两岸间的大致距离为?米.
例5 、已知左、右并排的两棵大树的高分别是AB=6m和CD=12m,两树的根部的距离BD =5m.一个身高1.6m的人沿着正对这两棵树的一条水平直路L从左向右前进,当他与左 边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?
交于点E。设正方形PQMN的边长为x毫米。
2. 如图,测得BD=120m,DC=60m,EC=50m,求河宽AB.
解: ∵ AB∥CE ∴△ABD∽△ECD
BD AB DC EC
120 AB 60 50
AB=100m. 答:河宽AB为100m.
A
C
B
D
E
课堂小结
本节课我们学习了利用相似三角形来测量高度和宽度的
解:太阳光是平行的光线, 因此:∠BAO=∠EDF. 又 ∠AOB=∠DFE=900.
∴△ABO∽△DEF.
因此金字塔的高为134m.
一题多解
E
┐ F △ABO∽△AEF
还可以有其他方法测量吗? B
平面镜
A
OB
OA
EF = AF
┐ O
OB =
OA ·EF AF
例4.如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸 取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直 的直线a上选择适当的点T,确定PT与点Q且垂直PS的直线b的交点R.如果测 得QS=45m,ST=90m,QR=60m,求河的宽度PQ.
A
∠ABC=∠ECD=90°, 所以 △ABD∽△ECD,
那么 AB = BD EC DC
解得AB = ?(米)
B
D
C
E
答: 两岸间的大致距离为?米.
例5 、已知左、右并排的两棵大树的高分别是AB=6m和CD=12m,两树的根部的距离BD =5m.一个身高1.6m的人沿着正对这两棵树的一条水平直路L从左向右前进,当他与左 边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?
交于点E。设正方形PQMN的边长为x毫米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、判断两三角形相似有哪些方法?
1.定义: 2.定理(平行法): 3.判定定理一(边边边):
4.判定定理二(边角边):
5.判定定理三(角角):
2、相似三角形有什么性质?
对应角相等,对应边的比相等
胡夫金字塔是埃及现存规模最大的金字塔,被喻为 “世界古代七大奇观之一”。塔的4个斜面正对东南西北 四个方向,塔基呈正方形,每边长约230多米。据考证, 为建成大金字塔,共动用了10万人花了20年时间.原 高146.59米,但由于经过几千年的风吹雨打,顶端 被风化吹蚀.所以高度有所降低 。
即该金字塔高为137米.
例2:如图,为了估算河的宽度,我们可以在河对岸选
定一个目标作为点A,再在河的这一边选点B和C,使 AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和 AE的交点D.
此时如果测得BD=120米,DC=60米,EC=50米,求 两岸间的大致距离AB.ABDC E
例2:如图,为了估算河的宽度,我们可以在河对岸选定
一个目标作为点A,再在河的这一边选点B和C,使AB⊥BC, 然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点 D. 此时如果测得BD=120米,DC=60米,EC=50米,求 两岸间的大致距离AB.(方法一) A
解: ∠ADB=∠EDC, 因为
AB EC BD DC
∠ABC=∠ECD=90°, 所以 △ABD∽△ECD,
那么
B
D
C
E
解得AB
BD EC DC
120 50 60
100(米)
答: 两岸间的大致距离为100米.
(方法二) 我们在河对岸选定一目标点A,在河的一边选点 D和 E,使DE⊥AD,然后选点B,作BC∥DE,与视线 EA相交于点C。此时,测得DE , BC, BD, 就可以求两岸 间的大致距离AB了。 A 此时如果测得DE=120米, BC=60米,BD=50米,求 两岸间的大致距离AB. B
C
E
请同学们自已解答 并进行交流
D
练习
1.在同一时刻物体的高度与它的影长成正比 例.在某一时刻,有人测得一高为1.8米的竹竿 的影长为3米,某一高楼的影长为60米,那么高 楼的高度是多少米?
解: 设高楼的高度为 米, x 因为 在同一时刻物体的高度与它的影长成正比例
则有 1.8 3 x 60
解得
O
O′
A
A′
B′
B
例1:如果O′B′=1,A′B′=2,AB= 274,求金字塔的高度OB. 解:由于太阳光是平行光线, 因此∠OAB=∠O′A′B′. 又因为 ∠ABO=∠A′B′O′=90°. 所以 △OAB∽△O′A′B′, OB∶O′B′=AB∶A′B′,
O
O′
A A B ′
B
AB O B 274 1 OB 137(米) 2 A B
埃及著名的考古专家穆罕穆德决定 重新测量胡夫金字塔的高度.在一个烈 日高照的上午.他和儿子小穆罕穆德来 到了金字塔脚下,他想考一考年仅14岁 的小穆罕穆德. 给你一条2米高 的木杆,一把皮 尺.你能利用所 学知识来测出塔 高吗?
2米木杆
皮尺
借太阳的光辉助我们解题,你想到了吗?
D
B
A
C
┐
┐
E
古代一位数学家想出了一种测量金字塔高 度的方法:如图所示,为了测量金字塔的高度 OB,先竖一根已知长度的木棒O′B′,比较棒 子的影长A′B′与金字塔的影长AB,即可近似 算出金字塔的高度OB.
x 36
即高楼的高度为36米。
2.如图,铁道口的栏杆短臂长1m,长臂长 16m,当短臂端点下降0.5m时,长臂端点升 高 m。
16m 0.5m B
8 ?
┏
C
┛
1mO
A
D
练习
3.为了测量一池塘的宽AB,在岸边 找到了一点C,使AC⊥AB,在AC上找 到一点D,在BC上找到一点E,使 DE⊥AC,测出AD=35m,DC=35m,DE =30m,那么你能算出池塘的宽AB吗?
A B
D
E
C
1.
通过本堂课的学习和探索,你学会了什么?
谈一谈!你对这堂课的感受?
2.
1. 在实际生活中, 我们面对不能直接测量物 体的高度和宽度时. 可以把它们转化为数学问 题,建立相似三角形模型,再利用对应边的比相 等来达到求解的目的!
2. 能掌握并应用一些简单的相似三角形模型.
1.定义: 2.定理(平行法): 3.判定定理一(边边边):
4.判定定理二(边角边):
5.判定定理三(角角):
2、相似三角形有什么性质?
对应角相等,对应边的比相等
胡夫金字塔是埃及现存规模最大的金字塔,被喻为 “世界古代七大奇观之一”。塔的4个斜面正对东南西北 四个方向,塔基呈正方形,每边长约230多米。据考证, 为建成大金字塔,共动用了10万人花了20年时间.原 高146.59米,但由于经过几千年的风吹雨打,顶端 被风化吹蚀.所以高度有所降低 。
即该金字塔高为137米.
例2:如图,为了估算河的宽度,我们可以在河对岸选
定一个目标作为点A,再在河的这一边选点B和C,使 AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和 AE的交点D.
此时如果测得BD=120米,DC=60米,EC=50米,求 两岸间的大致距离AB.ABDC E
例2:如图,为了估算河的宽度,我们可以在河对岸选定
一个目标作为点A,再在河的这一边选点B和C,使AB⊥BC, 然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点 D. 此时如果测得BD=120米,DC=60米,EC=50米,求 两岸间的大致距离AB.(方法一) A
解: ∠ADB=∠EDC, 因为
AB EC BD DC
∠ABC=∠ECD=90°, 所以 △ABD∽△ECD,
那么
B
D
C
E
解得AB
BD EC DC
120 50 60
100(米)
答: 两岸间的大致距离为100米.
(方法二) 我们在河对岸选定一目标点A,在河的一边选点 D和 E,使DE⊥AD,然后选点B,作BC∥DE,与视线 EA相交于点C。此时,测得DE , BC, BD, 就可以求两岸 间的大致距离AB了。 A 此时如果测得DE=120米, BC=60米,BD=50米,求 两岸间的大致距离AB. B
C
E
请同学们自已解答 并进行交流
D
练习
1.在同一时刻物体的高度与它的影长成正比 例.在某一时刻,有人测得一高为1.8米的竹竿 的影长为3米,某一高楼的影长为60米,那么高 楼的高度是多少米?
解: 设高楼的高度为 米, x 因为 在同一时刻物体的高度与它的影长成正比例
则有 1.8 3 x 60
解得
O
O′
A
A′
B′
B
例1:如果O′B′=1,A′B′=2,AB= 274,求金字塔的高度OB. 解:由于太阳光是平行光线, 因此∠OAB=∠O′A′B′. 又因为 ∠ABO=∠A′B′O′=90°. 所以 △OAB∽△O′A′B′, OB∶O′B′=AB∶A′B′,
O
O′
A A B ′
B
AB O B 274 1 OB 137(米) 2 A B
埃及著名的考古专家穆罕穆德决定 重新测量胡夫金字塔的高度.在一个烈 日高照的上午.他和儿子小穆罕穆德来 到了金字塔脚下,他想考一考年仅14岁 的小穆罕穆德. 给你一条2米高 的木杆,一把皮 尺.你能利用所 学知识来测出塔 高吗?
2米木杆
皮尺
借太阳的光辉助我们解题,你想到了吗?
D
B
A
C
┐
┐
E
古代一位数学家想出了一种测量金字塔高 度的方法:如图所示,为了测量金字塔的高度 OB,先竖一根已知长度的木棒O′B′,比较棒 子的影长A′B′与金字塔的影长AB,即可近似 算出金字塔的高度OB.
x 36
即高楼的高度为36米。
2.如图,铁道口的栏杆短臂长1m,长臂长 16m,当短臂端点下降0.5m时,长臂端点升 高 m。
16m 0.5m B
8 ?
┏
C
┛
1mO
A
D
练习
3.为了测量一池塘的宽AB,在岸边 找到了一点C,使AC⊥AB,在AC上找 到一点D,在BC上找到一点E,使 DE⊥AC,测出AD=35m,DC=35m,DE =30m,那么你能算出池塘的宽AB吗?
A B
D
E
C
1.
通过本堂课的学习和探索,你学会了什么?
谈一谈!你对这堂课的感受?
2.
1. 在实际生活中, 我们面对不能直接测量物 体的高度和宽度时. 可以把它们转化为数学问 题,建立相似三角形模型,再利用对应边的比相 等来达到求解的目的!
2. 能掌握并应用一些简单的相似三角形模型.