看图形找规律题步骤
(完整版)初中数学规律题解题基本方法------图形找规律
![(完整版)初中数学规律题解题基本方法------图形找规律](https://img.taocdn.com/s3/m/f22a0317336c1eb91a375daa.png)
初中数学规律题解题基本方法------图形找规律1.探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n 个这样的三角形需要多少根火柴棒? 2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。
⑵按照上图方式继续排列桌子,完成下表:3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n 张呢?⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐 人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐 人。
4.如图,把一个面积为1的正方形分等分成两个面积为21的矩形,接着把面积为21的矩形等分成两个面积为41的正方形,再把面积为41的矩形等分成两个面积为81的矩形,如此进行下去,试利用图形提示的规律计算:=+++++++256112816413211618141215.把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正方体的个数是 例8.观察下列图形并填表。
个数 1 2 3 4 5 6 7…n32121 41 811611126.用黑白两颜色的正六边形地面砖按如图所示规律,拼成若干个图案: (1)第4个图案中有白色地面砖 块; (2)第n 个图案中有白色地面砖 块。
……7.下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有)2(≥n n 个棋子,每个图案棋子总数为S ,按下图的排列规律推断,S 与n 之间的关系可以用式子 来表示。
……8.观察与分析下面各列数的排列规律,然后填空。
①5,9,13,17, , 。
②4,5,7,11,19, , 。
③10,20,21,42,43, , ,174,175。
④4,9,19,34,54, , ,144。
⑤45,1,43,3,41,5, , ,37,9。
⑥6,1,8,3,10,5,12,7, , 。
小学奥数-找规律题技巧-全
![小学奥数-找规律题技巧-全](https://img.taocdn.com/s3/m/919a78e6f5335a8103d22030.png)
小学奥数找规律题技巧-全问题1:找出图中的变化规律,填出所缺少的图形。
问题1教学图分析:第一题,当然会是最简单的。
图形规律题最重要的是仔细观察,首先要看的是,有没有相同的图形。
有大发现是不是?问题1讲解图1问题1讲解图2问题1讲解图3橙色圈中的图形和黄色圈中的图形,每行都有,玫红色圈中的图形,第三行没有,所以缺少的就是玫红色圈中的图形。
做完之后可以检查一下,如果填玫红圈中图形,正好是每行都有这三种图形,只是依次往左移了一个位置,因此我们填的答案是正确的。
做这一题主要的麻烦在于,图形有点复杂,乍一看头很晕。
那就一个图形一个图形的看,单看一个,头一点都不会晕了吧,看完再比较,哪些图形是相同的。
麻烦的事情,要懂得分步来做。
问题2:问题2教学图你做出来了吗?分析:我要开始分析题目了,审题并不是把注意力平均分配,每个条件都注意,就等于一个都没注意,分析题目一定要抓住重点。
数学必须要做题,但是我不赞成题海战术。
题海真的是无边无际,一个知识点就可以编出无数道题来。
盲目的题海战术,迟早会被无穷的题目,折腾得筋疲力尽。
那应该怎么做呢?非常简单的题目做完就算了,这种题千万不要重复做,只是浪费时间。
有的家长买一堆资料,孩子只做简单题,难的全空着,那这一堆资料除了浪费钱、浪费时间,一点作用都起不到。
买一堆资料不如先只买一本,从头至尾每一题都让孩子认真做,这样才会简单、中等、极难的题都做全,考试也是什么难度的题都会出的。
如果做完还有时间,再去买第二本资料。
对于中等难度和极难的题,一定要做一题就要让它起到作用。
做完题只是一小步,思考总结才是最关键的,想一想:这一题我是怎么做出来的?为什么这种思路就能做出来呢?是因为哪个条件,还是哪个问题提示了我可以这样思考?以后遇到什么情况时,我可以用类似的方法做?了解清楚上面几个问题的答案,才真正把这一道题的思路理顺了,不仅知其然,而且知其所以然。
以后遇到类似的问题,就可以迅速的找到方法和思路了。
初中几何43模型解题 模型【07】 图形变化类(附解析)
![初中几何43模型解题 模型【07】 图形变化类(附解析)](https://img.taocdn.com/s3/m/0b0152f4c0c708a1284ac850ad02de80d4d806db.png)
模型【07】图形变化类【模型分析】解决图形规律题的步骤:(1)标序数——按图号标序;(2)找规律——观察图形,随着序号增加,后一个图形与前一个图形相比,找出图形变化规律,注意变量与不变量,将每个图中所求量的个数表示成与序数有关的式子;(3)验证——代入序号验证所归纳的式子是否正确;【经典例题】例1.(2021·重庆渝北区·八年级期末)如图是一组有规律的图案,第①个图案中有4个三角形,第②个图案中有7个三角形,第③个图案中有10个三角形……,依此规律,第⑧个图案中有()个三角形.A.19B.21C.22D.25【分析】由题意可知:第①个图案有3+1=4个三角形,第②个图案有3×2+1=7个三角形,第③个图案有3×3+1=10个三角形,…依此规律,第n个图案有(3n+1)个三角形,代入n=8即可求得答案.【解析】∵第①个图案有3+1=4个三角形,第②个图案有3×2+1=7个三角形,第③个图案有3×3+1=10个三角形,…∴第n个图案有(3n+1)个三角形.当n=8时,3×8+1=25,选D.【小结】考查图形的变化规律,解题的关键是找出图形之间的变化规律,利用规律解决问题.例2.(2021·北京东城区·八年级期末)如图,30MON ∠=︒,点1234,,,A A A A ,…在射线ON 上,点123,,B B B ,…在射线OM 上,且112223334,,A B A A B A A B A △△△,…均为等边三角形,以此类推,若11OA =,则202120212022A B A △的边长为_______.【分析】根据30MON ∠=︒,11OA =,112A B A △是等边三角形,得11260∠=︒B A A ,进而得1130∠=︒OB A ,1111A O B A ==,可得22OA =,以此类推即可求解.【解析】∵30MON ∠=︒,11OA =,112A B A △是等边三角形,∴11260∠=︒B A A ∴1130∠=︒OB A ∴1111A OB A ==∴22OA =同理:223A B A △,334A B A △,…均为等边三角形,2222B A OA ==,233342B A OA ===…则202120212022A B A △的边长为20202.【小结】本题考查了规律型-图形的变化类,解决本题的关键是观察图形的变化寻找规律.例3.(2021·安徽芜湖市·七年级期末)如图,同一行的两个图形中小正方形的个数相等,但它们的排列方式不一样,根据不同的排列方式可以得到一列等式.(12)223+⨯=⨯(123)234++⨯=⨯(1234)245+++⨯=⨯(1)第n 个图形中对应的等量关系是()21231n +++⋯++⨯=⎡⎤⎣⎦______.(2)根据(1)的结论,求24650+++⋅⋅⋅+的值.【分析】(1)根据前三幅图可知右边的式子等于左边括号内最大的数与比它大1数的积;(2)先逆用乘法分配律变形,然后根据(1)中结论计算即可;【解析】(1)∵(12)223+⨯=⨯,(123)234++⨯=⨯,(1234)245+++⨯=⨯,…,∴[]123(1)2(1)(2)n n n +++++⨯=++ (2)246501(5)2322+++⋅⋅⋅+=+++⋅⋅⋅+⨯2526650=⨯=【小结】本题考查了规律型—图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.也考查了有理数的混合运算.【巩固提升】1.(2020·浙江台州市·七年级期末)如图,用大小相等的黑色三角形按一定规律拼成如图的图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形…,依照此规律,第⑩个图案中黑色三角形的个数为()A .50B .55C .58D .61【分析】根据前3个图案中黑色三角形的个数找出规律,利用规律解题即可.【解析】第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,312=+,第③个图案中有6个黑色三角形,6123=++,……第⑩个图案中黑色三角形的个数为1234567891055+++++++++=,选B【小结】本题注意考查图形类规律探索,找到规律是解题的关键.2.(2021·北京房山区·八年级期末)如图甲,直角三角形ABC 的三边a ,b ,c ,满足222+=a b c 的关系.利用这个关系,探究下面的问题:如图乙,OAB 是腰长为1的等腰直角三角形,90OAB ∠=︒,延长OA 至1B ,使1AB OA =,以1OB 为底,在OAB 外侧作等腰直角三角形11OA B ,再延长1OA 至2B ,使121A B OA =,以2OB 为底,在11OA B 外侧作等腰直角三角形22OA B ,……,按此规律作等腰直角三角形n n OA B (1n ≥,n 为正整数),则22A B 的长及20212021OA B 的面积分别是()A .2,20202B .4,20212C .20202D .2,20192【分析】根据题意结合等腰直角三角形的性质,即可判断出22A B 的长,再进一步推出一般规律,利用规律求解20212021OA B 的面积即可.【解析】由题意可得:11OA AB AB ===,12OB =,∵11OA B 为等腰直角三角形,且“直角三角形ABC 三边a ,b ,c ,满足222+=a b c 关系”,∴根据题意可得:111OA A B ==,∴212OB OA ==,∴22222OA A B ===, ,∴总结出n n OA =,∵111122△OAB S =⨯⨯=,11112△OA B S =,2212222△OA B S =⨯⨯=,∴归纳得出一般规律:1122n n n n n OA B S -=⨯⨯= ,∴2021202120202OA B S = ,选A【小结】本题考查等腰直角三角形的性质,图形变化类的规律探究问题,立即题意并灵活运用等腰直角三角形的性质归纳一般规律是解题关键.3.(2021·山东青岛市·七年级期末)下列图形均是用长度相同的火柴棒按一定的规律搭成,搭第1个图形需要4根火柴棒,搭第2个图形需要10根火柴棒,…,依此规律,搭第10个图形需要________根火柴棒.【分析】由题意,分别求出前面几个的火柴棒数量,然后得到数量的规律,再求出第10个图形的数量即可.【解析】根据题意可知:第1个图案需4根火柴,()4113=⨯+,第2个图案需10根火柴,()10223=⨯+,第3个图案需21根火柴,()18333=⨯+,……,第n 个图案需()3n n +根火柴,则第10个图案需:()10103130⨯+=(根).【小结】此题考查了平面图形,图形变化规律,主要培养学生的观察能力和空间想象能力.4.(2021·全国七年级)如图,△ABC 是边长为1的等边三角形,取BC 边中点E ,作ED ∥AB ,EF ∥AC ,得到四边形EDAF ,它的周长记作C 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,得到四边形E 1D 1FF 1,它的周长记作C 2.照此规律作下去,则C 2020=__.【分析】先计算出C 1、C 2的长,进而得到规律,最后求出C 2020的长即可.【解析】∵E 是BC 的中点,ED ∥AB ,∴DE 是△ABC 的中位线,∴DE =12AB =12,AD =12AC =12,∵EF ∥AC ,∴四边形EDAF 是菱形,∴C 1=4×12,同理C 2=4×12×12=4×212,…C n =4×12n ,∴20202020201811422C =⨯=.【小结】本题考查了中位线的性质,菱形的判定与性质,根据题意得到规律是解题关键.5.(2021·山东青岛市·七年级期末)(问题提出)以长方形ABCD 的4个顶点和它内部的n 个点,共(4)n +个点作为顶点,可把原长方形分割成多少个互不重叠的小三角形?(问题探究)为了解决上面的问题,我们将采取一般问题特殊化的策略,先从简单的情形入手:(探究一)以长方形ABCD 的4个顶点和它内部的1个点P (如图①),共5个点为顶点显然,此时可把长方形ABCD 分割成________个互不重叠的小三角形.(探究二)以长方形ABCD 的4个顶点和它内部的2个点P 、Q ,共6个点为顶点,可把长方形ABCD 分割成多少个互不重叠的小三角形?在探究一的基础上,我们可看作在图①长方形ABCD 的内部,再添加1个点Q ,那么点Q 的位置会有两种情况:一种情况是,点Q 在图①分割成的小三角形的某条公共边上不妨设点Q 在PB 上(如图②);另一种情况是,点Q 在图①分割成的某个小三角形内部.不妨设点Q 在PAB △的内部(如图③).显然,不管哪种情况,都可把长方形ABCD 分割成________个互不重叠的小三角形.(探究三)长方形ABCD 的4个顶点和它内部的3个点P 、Q 、R ,共7个点为顶点,可把长方形ABCD 分割成________个互不重叠的小三角形请在图④中画出一种分割示意图.(问题解决)以长方形ABCD 的4个顶点和它内部的n 个点,共(4)n +个点作为顶点,可把原长方形分割成________个互不重叠的小三角形.(实际应用)以梯形的4个顶点和它内部的2021个点作为顶点,可把梯形分割成________个互不重叠的小三角形.(拓展延伸)以五边形的5个顶点和它内部的m 个点,共(5)m +个点作为顶点,可把原五边形分割成________个互不重叠的小三角形.【分析】探究一:根据图形可回答;探究二:根据图形可回答;探究三:根据图形可回答;n ,进而解决问题;问题解决:由探究活动可得规律为2(1)实际应用:把2021代入所得规律,求值即可;拓展延伸:由四边形的规律可得五边形的规律.【解析】探究一:以长方形ABCD的4个顶点和它内部的1个点P,共5个点为顶点显然,此时可把长方形ABCD 分割成4个互不重叠的小三角形.故答案为:4;探究二:如图,不管哪种情况,都可把长方形ABCD分割成6个互不重叠的小三角形.故答案为;6;探究三:长方形ABCD的4个顶点和它内部的3个点P、Q、R,共7个点为顶点,可把长方形ABCD分割成8个互不重叠的小三角形问题解决:以长方形ABCD 的4个顶点和它内部的1个点,共5个点作为顶点,可把原长方形分割成互不重叠的小三角形个数为:4=2(1+1).以长方形ABCD 的4个顶点和它内部的2个点,共6个点作为顶点,可把原长方形分割成互不重叠的小三角形个数为:6=2(2+1).以长方形ABCD 的4个顶点和它内部的3个点,共7个点作为顶点,可把原长方形分割成互不重叠的小三角形个数为:8=2(3+1).所以,以长方形ABCD 的4个顶点和它内部的n 个点,共(4)n +个点作为顶点,可把原长方形分割成互不重叠的小三角形个数为:2(n +1).实际应用:当n =2021时,以梯形的4个顶点和它内部的2021个点作为顶点,可把梯形分割成互不重叠的小三角形2(2021+1)=4044个.拓展延伸:根据前面的解决问题可知:以五边形的5个顶点和它内部的m 个点,共(5)m +个点作为顶点,可把原五边形分割成互不重叠的小三角形个数为(2m +3)个.故答案为:(2m +3)【小结】本题考查了应用与设计作图,图形的变化规律的问题,读懂题目信息,根据前四个探究得到每多一个点,则三角形的个数增加2是解题的关键.6.(2021·青岛实验学校九年级期末)在平面直角坐标系中,点A 从原点O 出发,沿x 轴正方向按半圆形弧线不断向前运动,其移动路线如图所示,其中半圆的半径为1个单位长度,这时点1234,,,A A A A 的坐标分别为()()()()12340,0,1,12,03,1A A A A -,按照这个规律解决下列问题:()1写出点5678,,,,A A A A 的坐标;()2点2018A 的位置在_____________(填“x 轴上方”“x 轴下方”或“x 轴上”);()3试写出点n A 的坐标(n 是正整数).【分析】()1可根据点在图形中的位置及前4点坐标直接求解;()2根据图形可知点的位置每4个数一个循环,20184504...2÷=,进而判断2018A 与2A 的纵坐标相同在x 轴上方,即可求解;()3根据点的坐标规律可分4种情况分别写出坐标即可求解.【解析】(1)由数轴可得:()54,0A ,()65,1A ,()76,0A ,()87,1A -;(2)根据图形可知点的位置每4个数一个循环,20184504...2÷=,2018A ∴与2A 的纵坐标相同,在x 轴上方,故答案为:x 轴上方;(3)根据图形可知点的位置每4个数一个循环,每个点的横坐标为序数减1,纵坐标为0、1、0、-1循环,∴点n A 的坐标(n 是正整数)为A (n -1,0)或()1,1A n -或()1,0A n -或()1,1A n --.【小结】本题主要考查找点的坐标规律,点的坐标的确定,方法,根据已知点的坐标及图形总结点坐标的变化规律,并运用规律解决问题是解题的关键.。
看图形找规律题步骤
![看图形找规律题步骤](https://img.taocdn.com/s3/m/36c59e1b312b3169a451a45d.png)
---------------------------------------------------------------最新资料推荐------------------------------------------------------看图形找规律题步骤看图形找规律题步骤:①寻找数量关系;②用代数式表示规律;③验证规律。
解题方法:一、基本方法看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第 n 个数可以表示为:a+(n-1)b,其中 a 为数列的第一位数, b 为增幅, (n-1)b 为第一位数到第 n 位的总增幅。
然后再简化代数式 a+(n-1)b。
例:4、 10、 16、 22、 28,求第 n 位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第 n 位数是:4+(n-1)6=6n-2 (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、 5、 7、 9,说明增幅以同等幅度增加。
此种数列第 n 位的数也有一种通用求法。
基本思路是:1、求出数列的第 n-1位到第 n 位的增幅;2、求出第11 / 5位到第第 n 位的总增幅; 3、数列的第1位数加上总增幅即是第 n 位数。
举例说明:2、 5、 10、 17,求第 n 位数。
分析:数列的增幅分别为:3、 5、 7,增幅以同等幅度增加。
那么,数列的第 n-1位到第 n位的增幅是:3+2(n-2)=2n-1,总增幅为:〔3+(2n-1)〕 (n-1)2=(n+1) (n-1)=n2-1 所以,第 n 位数是:2+ n2-1= n2+1 此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。
(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、 3、 5、 9,17增幅为1、 2、 4、 8. (四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
初中数学规律题解题基本方法------图形找规律
![初中数学规律题解题基本方法------图形找规律](https://img.taocdn.com/s3/m/8637cd08b4daa58da0114a3e.png)
初中数学规律题解题基本方法------图形找规律1.探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n 个这样的三角形需要多少根火柴棒? 2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐 人。
⑵按照上图方式继续排列桌子,完成下表:3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n 张呢?⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐 人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐 人。
4.如图,把一个面积为1的正方形分等分成两个面积为21的矩形,接着把面积为21的矩形等分成两个面积为41的正方形,再把面积为41的矩形等分成两个面积为81的矩形,如此进行下去,试利用图形提示的规律计算:=+++++++256112816413211618141215.把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正方体的个数是 例8.观察下列图形并填表。
116.用黑白两颜色的正六边形地面砖按如图所示规律,拼成若干个图案: (1)第4个图案中有白色地面砖 块; (2)第n 个图案中有白色地面砖 块。
……7.下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有)2(≥n n 个棋子,每个图案棋子总数为S ,按下图的排列规律推断,S 与n 之间的关系可以用式子 来表示。
……8.观察与分析下面各列数的排列规律,然后填空。
①5,9,13,17, , 。
②4,5,7,11,19, , 。
③10,20,21,42,43, , ,174,175。
④4,9,19,34,54, , ,144。
⑤45,1,43,3,41,5, , ,37,9。
⑥6,1,8,3,10,5,12,7, , 。
⑦0,1,1,2,3,5, , 。
二年级奥数:《发现图形规律》
![二年级奥数:《发现图形规律》](https://img.taocdn.com/s3/m/ce60e063fd0a79563d1e727e.png)
二年级奥数:《发现图形规律》(预热)前铺知识一、找规律画图1、形状变化【例1】根据规律,画出下一个图形.答案:解析:本组图的规律就是正方形、三角形、圆形三个不同形状的图形为一组,重复出现.2、数量变化【例2】根据规律,在横线上画出适当的图形.答案:解析:本组图的规律是圆形的数量发生了变化,依次增加1个.3、颜色变化【例3】根据规律,画出下一个图形答案:解析:本组图的规律是圆形的颜色发生了变化,红蓝黄绿四种颜色的三角形为一组重复出现.4、位置变化【例4】根据规律,在横线上画出适当的图形.答案:解析:本题的规律是第一组的第一个图形移动到最后一个位置,其它图形依次往前移一小格就变成了第二组图.第二组的第一个图形移动到最后一个位置,其它图形依次往前移一小格就变成了第三组图.第三组的第一个图形移动到最后一个位置,其它图形依次向前移一小格,就变成了.5、方向变化【例5】根据规律,在横线上画出适当的图形.答案:解析:本组图的规律就是箭头的方向发生了变化,每次向顺时针方向旋转90度.6、组合【例6】根据规律,在问号处应该画什么图形.?答案:解析:本组图既要观察图形的形状,又要观察颜色,是一种组合规律题.观察发现,这些图形都分为上下两部分.其中第一行,上部分的形状分别是三角形和半圆环形,颜色为绿色和蓝色,下部分分别为红色的圆环和长方形.第二行,上部分没有变化,下部分的颜色变成了黄色,因此为答案所示图形.【例7】根据规律,在空白处应该画什么图形.答案:解析:本题中,图形的形状、颜色以及位置都在发生变化.但实际上可以将此组图中的每一个大圆内的图形看成一个整体,则下一个图形就是上一个大圆按顺时针依次旋转90度得来的.【例8】根据规律,在问号处应该画什么图形.?答案:解析:观察后可发现,每一横行中,第一个图形叠到第二个图形中间,就组成了第三个图形.课前思考1、要想发现一组图形的规律,你知道可以从哪些角度去观察吗?2、如果颜色、形状、方向等都无法帮助你找到规律,你会如何思考呢?如何预习?第四讲的知识非常的有趣,小朋友们可以尽情的享受找规律的乐趣.在一年级秋季的课程中,我们已经接触过了找规律画图,知道了数学中图形的规律有好多种,例如形状变化的规律,还有颜色变化、数量变化、位置变化、方向变化以及组合出现的规律.在学习二年级秋季第四讲《发现图形规律》这一讲之前,小朋友们可以回顾一下这些知识,为第四讲的课堂学习做一个铺垫.对于应当如何预习,潘老师在这里提醒一下各位小朋友,预习的时间不要过早,应该尽量安排在距离下次上课较近的时间里.预习的时候,不要过于关注做新的题目,对于全新的知识,可以把它们保留到课堂上再去思考、学习.相较于自己去摸索新的知识,不如先把与本讲次内容相关的以前学过的知识再拿出来回顾一下,这样的效果也许会更好哦~当然了,还有几句老话要啰嗦一下,预习的时间不宜过长,内容也不宜过多过细.在预习的时候要边看边做并且边思考,最好能带着你自己的问题去上课.《发现图形规律》知识点精讲【知识点总结】1、单一变化:颜色、形状、方向、大小、数量、位置……2、多样变化【例】按规律画出空白处的图形.这些图案有外部、有内部,它们的变化既有形状、方向的变化,又有数量的变化,因此要分不同的部分来找规律.外部:正三角形→正方形→正五边形→正六边形内部:1条横线→2条竖线→3条横线→4条竖线3、拼组:(1)简单:拼起来【例】根据下面图形排列的规律,问号的地方应该选择哪个图形?经观察,发现每一行、每一列的图形都有同样一个变化规律:第一个与第三个图形拼组在一起就是中间的图形.(2)复杂:组合消失【例】根据下面图形排列的规律,问号的地方应该选择哪个图形?方法1:横着看,每行的任意两个图形拼组到一起,重合部分消失,就变成了另外一个图形. 方法2:竖着看,每列的任意两个图形拼组到一起,重合部分消失,也变成了另外一个图形. (因为这题要求的是最右下角的图形,所以不论是横看还是竖看,最快的方法是通过第一个和第二个的图形拼组在一起,重合部分消失来得到.)4、缺什么补什么【例】下面各种各样的娃娃头好看吗?认真观察你能找到它们排列的规律吗?根据规律把最后一个娃娃头画出来.经观察,发现在每一行每一列,这些娃娃头都由头发(一毛、两毛和三毛)、脸(圆脸、方脸和三角形脸)、眼睛(黑眼、白眼和黑白眼)、嘴巴(一个白三角嘴、两个黑三角嘴)组成,因此可以用缺什么补什么的方法,并且要分部分来看.不管是横着看还是竖着看,最右下角缺的娃娃头是三毛、方脸、黑白眼、白三角嘴.【例】观察图形的变化规律,按照这种变化规律,在空格中画上应有的图形.观察,每个田字格中有4种图形,从第一个田字格变到第二个田字格,每个小图形的位置改变了,并且有些图形自身的形状也改变了.先看位置的变化:每个图形都按逆时针方向旋转.再看图形自身方向的变化:每个图形自身也都在按逆时针方向旋转.(圆形与正方形在本题中旋转后与原先没有区别.)(实际上本题也可以理解成整个田字格在按着顺时针方向旋转.)《发现图形规律》补充题1、根据规律,问号处应填什么图形?2、根据规律,画出空白处的图形.3、根据规律,画出问号处的图形.4、按规律画出空白处的图形.5、下面一组图形的阴影变化是有规律的,请根据这个规律把第四幅图的阴影部分画出来.6、按规律填图.7、根据A~F这几个人的排列规律,接下来应该排列的是G、H、I中的哪一个?答案1、(1)(2)【解析】:两小题中的图形都是依次按逆时针方向旋转90度.2、【解析】:本题中图形排列的规律是每一行的第一个图形和第三个图形合在一起就是第二个图形.3、【解析】:本题可以竖着来看,每一列的图形都是依次按顺时针方向旋转90度.4、(1)【解析】:通过观察,不难发现,图形从左到右的变化规律是:外面是正方形、圆形边框在交替出现,里面是箭头的数量依次加1,并且箭头的方向是一正一反出现.(2)【解析】:每一组都有三种图形,分别是圆形、箭头和三角形,我们可以依次来观察.圆形始终不变,箭头是按顺时针方向旋转,三角形是按逆时针方向旋转.(3)【解析】:观察第一至第三组字母排列变化的规律是:字母D在中间不动,其余字母从左往右依次移动1个位置,最右边的字母则移动到最左边.移动中如果遇到字母C就跳过去.5、【解析】:经观察可发现,每个图形中都有四个阴影格子,依次向右上方向推移.第二个图形中,向上推移后只有3个阴影格子,则还需要1个,注意要在左下方的对角的地方寻找.第三个图形中,继续向上推移只有2个阴影格子,则还需要2个,那么就在另一个对角上寻找到两个.第四个图形,则应该向右上方推移到只有1个阴影格子,则剩下的三个在左下方如图所示位置.注意,两个阴影格子之间没有共用的边,只有一个角相连.6、【解析】:题目给出的例子中,有三种图形,我们可以从上往下依次来观察.左图上部外面的白色圆形变成了右图上部缩小了的黑色圆形,颜色与大小都改变,位置没变,还是在上部.左图上部里面的黑色正方形变成了右图下部的白色正方形,颜色与位置改变,大小不变.左图下部的三角形变成了右图上部的三角形,颜色大小不变,位置改变.同样的规律运用到题目中,可知题目里上部外面的菱形将改变颜色和大小,放置在上部的中心,而上部里面的圆形将不改变大小,改变颜色,放置在下部.而下部的梯形将不改变颜色和大小,放置在上部.7、【解析】:观察可以发现,从第一个火柴人开始,到B增加2条线,到C拿走1条线,到D增加3条线,到E拿走2条线,到F增加4条线,按规律继续往下画在F的基础上应该拿走3条线,应该选择G.。
行测图形推理常见规律及解题技巧(必会)
![行测图形推理常见规律及解题技巧(必会)](https://img.taocdn.com/s3/m/95d2d9c0dd3383c4ba4cd21b.png)
1、全直、全曲
2、曲+直:内外,上下,左右
⚠ 所有图都有外框——内外分开看
三、开闭性
第四节 特殊规律律
• 点、箭头、小小图形(三⻆角、圆圈)
• 位置:线(⻓长线、短线)、⻆角(大大⻆角、小小⻆角)、内外、大大图形小小图形
⚠ 功能元素在哪里里里白白➕ 黑黑
第三节 属性规律律——元素组成不不同、不不相似
一一、对称性(优先考虑)
1、轴对称
• 方方向
• 数量量
• 对称轴与图形线条的关系
(1)重合
(2)垂直
2、中心心对称(平行行行四边形的变形、S、Z、N的变形)
3、既是轴对称又又是中心心对称——存在两条垂直的对称轴
2、部分数
⚠ 没有相交的就是一一部分
第六节 空间重构
一一、相对面面——同时出现,排除
1、隔一一个
2、“Z”字形两端、紧邻Z字中线
二二、相邻面面
公共边:相邻;直⻆角;一一排四个时两头是公共边
第五节 数量量规律律——元素组成不不同、不不相似且无无属性规律律 一一、点数量量
3、曲直交点——点数量量特征,每个图存在曲直相交 4、内外交点——点数量量特征,图形都有外框 (1)内部线条交点 (2)内部线与外框交点——外框相似、内部直线明显,且常规没规律律
二二、线数量量
3、数笔画
多笔画笔画数=奇点数➗ 2
三、面面数量量(优先考虑)
四、元素数量量
1、种类、个数——多个独立立小小图形
⚠ 一一般来讲,同一一形状不不同大大小小,算一一种 ⚠ 一一般来说,两个图形连在一一起算两种,有线穿过算一一种 ⚠ 黑黑的和白白的算两种
1、优先分开看指针旋转,注意方方向、⻆角度
初中数学找规律题型解题技巧
![初中数学找规律题型解题技巧](https://img.taocdn.com/s3/m/e08ebd444b7302768e9951e79b89680203d86b93.png)
初中数学找规律题型解题技巧
初中数学中的找规律题型是考察学生观察、归纳和推理能力的一种题目。
这种题目通常会给出一些数列、图形或者操作方式,让学生找出其中的规律,然后根据这个规律继续填写后面的数列或图形。
解题技巧如下:
1.观察和分析:首先要仔细观察给出的数列或图形,尝试找出它们之间的规律。
可以从数
列的项、项与项之间的关系、图形的形状和结构等方面入手。
2.归纳规律:在观察的基础上,尝试归纳出数列或图形的变化规律。
这个规律可以是递增、
递减、周期性变化等。
3.应用规律:根据归纳出的规律,推算出数列或图形中缺失的部分。
4.检验答案:最后,需要检验得出的答案是否符合数列或图形的变化规律,以确保解题正
确。
例如,对于数列“1,2,4,8,16...”,我们可以观察到每一项都是前一项的2倍。
因此,根据这个规律,我们可以推算出接下来的项应该是32(因为16 * 2 = 32)。
再如,对于图形题,如果一个三角形每次增加一条边,那么我们可以根据这个规律画出接下来的图形。
找规律题目的解题关键在于观察、归纳和推理。
通过不断练习这种题目,可以提高自己的数学思维和解决问题的能力。
同时,也要注意耐心和细心,不要因为题目复杂而放弃。
一年级数学图形找规律
![一年级数学图形找规律](https://img.taocdn.com/s3/m/d5927b904028915f804dc2fe.png)
• 小朋友都有一双明亮的大眼睛,你能通 过仔细观察发现两个图形的相同点吗?
发现图形之间的关系吗?这就要考考你 的眼力了。
• 例1、“?”处应填什么样的图形
解:每组的规律是前两个图 形合成第三个图形,于是? 处应该是
Байду номын сангаас
• 例2、下面是两串有规律的珠子,其中一 段装在盒子里看不到,请画出盒子里串 的珠子。
现,这些动物身体骨架变化是有规律
的,根据图中出现的规律,你知道空 格里应该画什么样的动物骨架吗?
解:仔细观察,发现动物骨架的三部 分分别有规律。
身子可以分为向上弯、向下弯、平直, 共3种。 腿可以分为2条、3条、4条,共3种。 脚分为直线、圆圈、没有,共3种。 根据第三行缺少的,我们知道,应当 是向上弯的身子,三条腿,圆圈脚。 如下图
解:观察发现每个方框中的图形顺序都一样, 只是起点不同,于是可以补出两个缺少的部 分。
• 例9、仔细观察图形的变化情况,中 间空的图应该怎样画?继续下面的两 幅又应该怎样画?
解:观察发现,每个方框中的四个图形是依 次顺时针旋转,所以第三个图形应当是右图: 继续下面的两幅则应该是第二个和第三个的 重复。
• 例6在问号处应填下面一行中四个图的 哪一个?
解:观察发现每个图形中圆圈和黑正方形 的位置都不相同,按照每一个出现过的位 置,问号处应当选A。
• 例7在下面图中,按照前两个图的规律, 在第三个图的空白处填一个合适的图形。
解:图形规律非常容易看出,直接将大圆缩 小画在图形左下角即可。
• 例8仔细观察,问号处应该填哪几个图形?
• 例4、根据前面图形变化规律在问号处 画图。
解:如图规律知道在?处应当是一个六边形,每个顶 角都有一个圆圈。
二年级数学上册有序数图形、找规律、认识方向、观察物体
![二年级数学上册有序数图形、找规律、认识方向、观察物体](https://img.taocdn.com/s3/m/e73c8c04eef9aef8941ea76e58fafab069dc445c.png)
有序数图形读清题目要求,明确数什么。
除了数角可以标角的符号,其余图形一律列举,确保万无一失。
步骤:1、编号2、有序的列举(单个图形:2合一:3合一:……)※过程中不断的判断你列举出的图形是不是符合题目要求的图形3、列式计算23、数一数有多少个三角形。
4、9个这样的图形共有多少个长方形?5找规律步骤:1、找规律(从第一图形找起,锁定第一个图形看是不是重复出现这个图形,不是就找前两个,看后面是不是重复出现这两个图形,不是就找前三个……)、圈一圈(圈一组)2、列算式(图形总个数÷一组的个数)得出几组余几个,写好单位。
3、看余数:余数是几(它就是下一组的第几个)就与每组的第几个相同;没有余数(它就是那组的最后一个)就与每组的最后一个相同。
1、○△△□☆○△△□☆……按规律画下去,第26个图形是什么?按规律画下去,第45个图形是什么?2、小明、小红、小丽和小军按顺序数数,数到30的是谁?3、一班有30名学生,体育课上老师要求按“1、2、3、4、5”循环报数,最后一名学生报几?1、数一数有几个角生活中的方向:1、太阳从()方升起。
太阳从()边落下。
2、夜晚,面对北极星就是()方。
3、人们居住的房屋一般阳台在()边。
中午时分太阳偏向()。
4、知一辨一(利用方向的相对性:东西相对、南北相对)小明面向东,后面是()。
小明背对南,则面向()。
小明和小丽面对面站着,小明面向西,小丽面向()。
小明和小丽背对背站立,小丽面向北,小明面向()。
小明在小丽的东边,那么小丽在小明的()边。
5、知一辨三(方法一:身临其境去思考,题目中面向哪就面向哪思考方法二:利用方向的相对性、旋转性:向右转一圈方向分别是东南西北,即东的右边是南,南的右边是西,西的右边是北,北的右边是东……)例:关注时间、明确面向哪里,前面是什么方向,利用相对性首先确定相对方向,例如面向东,先确定后面是西,左右各是什么方向,先找右,根据旋转性:向右转一圈方向分别是:东南西北,东的右边是南。
【奥赛】小学数学竞赛:图形找规律.学生版解题技巧 培优 易错 难
![【奥赛】小学数学竞赛:图形找规律.学生版解题技巧 培优 易错 难](https://img.taocdn.com/s3/m/cff50baa647d27284a735107.png)
⑴图形数量的变化;
⑵图形形状的变化;
⑶图形大小的变化;
⑷图形颜色的变化;
⑸图形位置的变化;
⑹图形繁简的变化.
对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.
模块一、图形规律——数量规律
【例 1】观察这几个图形的变化规律,在横线上画出适当的图形.
【例 2】请找出下面哪个图形与其他图形不一样.
【例 3】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【例 4】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?
【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?
(3)前10个点群中,所有点的总数是。
【例 8】观察下面由点组成的图形(点群),请回答:
(1)方框内的点群包含个点;
(2)第(10)个点群中包含个点;
(3)前十个点群中,所有点的总数是。
【例 9】下图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请回答:
(1)五层的“宝塔”的最下层包含多少个小三角形?
【例 36】观察下图,看看右图中哪一个图形可以代替“?”
【例 37】仔细观察下图中图形的变化规律,并在“?”处填入合适的图形.
【巩固】根是由9个小人排列的方阵,但有一个小人没有到位,请你从下面图10—2中的6个小人中,选一位小人放到问号的位置,你认为最合适的人选是几号?
【例 18】观察图中所给出图形的变化规律,然后在空白处填画上所缺的图形.
一年级四方格找规律基本方法
![一年级四方格找规律基本方法](https://img.taocdn.com/s3/m/5db6b204640e52ea551810a6f524ccbff021ca41.png)
一年级四方格找规律基本方法
一、根据实物或图形的变化规律来推出下一个实物的位置或方向等
1、多种不同色彩或形状的实物找规律。
思路:要分析不同色彩之间和不同形状之间实物的排列顺序,找出重复出现的地方,得出多种实物排列的规律。
2、多种图形排列找规律。
把相互不相同不重复的几个实物或图形分为一组,观察分析每一组实物或图形之间和谁相邻。
引导孩子根据上一个实物或图形(或下一个实物或图形)找到与它相邻的实物或图形填充进去即可。
3、单一实物或者图形排列找规律。
单一实物或图形的排列规律其实就是数的关系,一般都是看数目上的不同,将图形的数目标出来再看数与数之间有什么规律。
如第一个正方形小方块的数目依次是
4、6、8、10、12.小五角星的数目依次是1、2、3、4、
5、6。
然后再将图形的个数按摆放规律画出来。
二、根据数字的变化规律推出下一个数等
1、同一行数字遵循单一排列的规律。
有的按单数排列,有的按双数排列,有的单数、双数同时出现,通过计算数与数之间的差找出规律,一年级常见是的差是1、2、3、5以及差是10的数字排列。
解题方法:这种单一规律的数字排列题相对简单一些,只要算出前后相邻的两个数之间的差是多少,找出共同的规律就可以了。
2、同一行数字遵循两个规律的排列。
一行数字的排列遵循两个规律,这种题对一年级的孩子来说普遍很难,一般考查很少,可以仅作了解。
3、数与数之间差是等差数列的关系。
如:1和2之间的差是1,4和2之间的差是2,7和4之间的差是3,11和7之间的差是5,由此推算出11和后面的数差也是5,得出11+5=16.方块中应填16.。
四年级奥数 找规律 数图形
![四年级奥数 找规律 数图形](https://img.taocdn.com/s3/m/6c670b3e915f804d2b16c1b9.png)
可见,整齐单排长方形个数的算法与线段计算相同。
例3.数一数,下图中有多少个角?
1
1
2 3 4
1 2
4+3+2+1= 10 个
例4.数出图中共有多少三角形。
A 三角形个数: 4+3+2+1=10
1 2 3 4
B C DE F
数三角形有时也可以用数线段的方法;有的图形要用 编号数图形的方法,还有的图形先要分成几部分分别 去数,再考虑几部分拼合起来看看有没有产生新三角 形。
从上图可以看出,第1个同学要与其余4个同学握手共握手 4次;第2个同学还要与其余3个同学握手共握手3次,第3个同 学要与其余2个同学握手共握手2次;第4个同学还要与最后1个 同学握手共握手1次。 所以,一共要握手4+3+2+1=10(次)
【练习5】 (1)银海学校三年级有9个班,每两个班要比赛拔河一次, 这样一共要拔河几次?
【例题1】 数出下图中有多少条线段?
A _
B _
C _
D _
请跟我一起来数一数吧!
A
B
C
D
例1、数线段:方法一
1 32 5 4
共5+4+3+2+1=
15条线段
练习1、数线段
1
2
3
4
5
6
7
共 7+6+5+4+3+2+1=28 条线段
方法二:
你能一口报出有多少条线段吗?
A
B
C
D
E
F
G
H I
J
K
L
12×11÷2=66(条)
初一数学找规律题讲解【重点】
![初一数学找规律题讲解【重点】](https://img.taocdn.com/s3/m/4eaf728449649b6648d7477a.png)
探索规律:活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒?★注意引导学生概括“探索规律”的一般步骤:①寻找数量关系:②用代数式表示规律:③验证规律:★练习:四棱柱有几个顶点、几条棱、几个面?五棱柱呢?十棱柱呢?n棱柱呢?活动二:探索具体情景下事物的规律问题1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法?问题2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。
⑵按照上图方式继续排列桌子,完成下表:问题3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n张呢?⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐人。
活动三:探索图表的规律 下面是2000年八月份的日历:⑴日历中的绿色方框中的9个数之和与该方框正中间的数有什么关系? ⑵这个关系对其它这样的方框成立吗?你能用代数式表示这个关系吗? ⑶这个关系对任何一个月的日历都成立吗?为什么?⑷你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示。
⑸你还能提出那些问题?中考数学探索题训练—找规律1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。
在电子数字计算机中用的是二进制,只要两个数码:0和1。
如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数 。
2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是 。
一年级找规律,金字塔找规律,很少有学生答对
![一年级找规律,金字塔找规律,很少有学生答对](https://img.taocdn.com/s3/m/d6cb9a11a22d7375a417866fb84ae45c3a35c240.png)
本次的主题是【金字塔找规律填数字】找规律填数字是一年级数学中常见的题型,金字塔是其中的一种图形,以下通过编程截图演示其解题过程。
【题目】找到金字塔中数字的规律,在空白的圈中填写合适的数字【知识点1】金字塔【知识点2】找规律【知识点3】相邻的数【知识点4】加法【知识点5】减法【知识点6】100以内【解题步骤】1.观察一下金字塔,一共4行,从下往上圈越来越少,每个圈中填一个数字2.观察找规律:(1)左下角15+5=20,有15、5和20的数字。
(2)5+5=10,有5、5和10的数字对于一年级的学生来说,可以使用的计算工具只有加法和减法,很明显,这里都使用了加法运算。
发现规律:当前一排的圈中数字等于下一排相邻两个圈中数字之和。
3. 5+右下角的数字=60,那么右下角的数字就是60-5=554.再看上面第2排第1个数字,它的下一排相邻两数是20和10,因此结果是20+10=305.第2排右边的数字,是10+60=706.找到了规律,就可以一层一层的计算了,最上面是30+70=100【错误加强练习】1.如果孩子看不懂金字塔【知识点1】【知识点2】说明孩子对抽象的几何图形没有概念,尤其是三角形,可以在日常生活中让孩子生活中多观察下三角尺、三角形积木等。
2.如果孩子找规律时只能横着加减【知识点2】【知识点3】说明孩子思维相对固定,不能左右斜向看相邻数字,平时可以写一些数字,摆成三角形、四边形等图形,不用太刻意,数字随机放,也许规律很明显,也许没有任何规律(没有规律也是一种规律),让孩子寻找其中的规律,反复练习,让孩子打破固定思维的界限。
3.如果孩子看懂了规律,但是计算加法错了【知识点5】【知识点6】说明孩子100以内的加法运算不熟练,可以每天做一点100以内加法运算练习。
4.如果孩子看懂了规律,但是计算60-5=55错了【知识点5】【知识点6】说明孩子100以内的减法运算不熟练,可以每天做一点100以内减法运算练习。
【免费】小学二年级数学图形找规律解题技巧
![【免费】小学二年级数学图形找规律解题技巧](https://img.taocdn.com/s3/m/178fea87b14e852458fb57b4.png)
小学二年级数学图形找规律解题技巧在二年级开始就有不少的看例题填数字,或看图片找规律的填空题,这样的题目是考察大家对事物变化的观察能力。
也是让大家养成做题仔细认真的好习惯。
这两者有着异曲同工之妙。
无论是观察这些数的变化或者说图形变化,我们一般需要看三个才能发现它的规律,通过三个及以上的比较,找出规律更容易而且准确。
图形一般有哪些变化规律呢?1.数量上的变化。
比如一些图形数量会呈一定规律地增加或减少。
2.形状上的变化。
3.颜色上的变化,这种在幼儿园时期的找规律题中最常见。
又比如说是否有阴影部分?4.还有位置的变化以及方向的变化。
比如说走马灯,通常可以通过水平方向与纵向观察找规律。
如果是单独一种变化,相对来说比较简单。
大多数的题目会多个方面同时在变,比如说形状在变,方向、位置也同时在变啊。
下图就是这样的情况。
所以说大部分的这样的找规律图形,会给我们三幅图,然后要求我们填第4幅或者更后面多少幅图形的样子。
当我们找出了它的规律之后,就比较简单。
我们只需要参照我们要填写的图形的前一幅图,就可以很快的完成。
我们在找规律的时候有多种方法。
先观察所给的图中,图案是否有增减?如果没有,通常我们采用的是缺什么补什么的方法。
比如下图中有4个不同形状的图形。
有些朝向也在发生变化。
有些还带阴影部分,给我们前面三幅图,需要我们填出第4幅图,各个图形的形状以及位置。
那这样的图形我们怎么填啊?怎么填比较快又准确呢?我们可以画一个田字格标上序号1、2、3、4。
比如左上角标为1,右上标为2,右下标为3,左下标为4。
这样的目的是帮我们做个参照。
每一种图形都在哪些位置出现过,还有哪个位置没出现过,这样一目了然。
观察图形的方向也是同样的道理,也就说缺啥补啥,这样是最不容易出错的,尤其是多种条件同时在变。
纵观这几幅图片,每一种基本图形都会在每一幅图中出现,这是大的方向。
我们以第一幅图各图形所在的位置为参照。
看下前三幅图,带十字的圆,分别在1、2、3号位置出现过,显然会在第四幅图的4号位置(左下角)出现。
小学趣味数学课系列之--观察图形找规律
![小学趣味数学课系列之--观察图形找规律](https://img.taocdn.com/s3/m/76659708cc7931b765ce1530.png)
12.请找一找图形的变化规律,在空格处画出恰当的图形.
小学趣味数学课系列之
观察 图形找规律
一、我和老师一起学
1.下图是按照一定规律排列起来的, 请按这一规律在“?”处画出适当的图形.
?
解析:这一组图形我们应该从两方面来看:一是旗子的方向,二是旗子
上星星的颗数. 首先我们看一下旗子的方向.第1面旗子向右,第2面向上,第4面向下,
可以发现,旗子的方向是按逆时针旋转的,并依次旋转 ,所以第3面旗子应 是第2面逆时针旋转 得来的,旗子应向下倒立.
6.图中,哪个图形与众不同?
(1)
(2)
(3)
(4)
(5)
解析:这五辆汽车车窗一致,车轮一致,车底一致,差异就只
能在车头、车身部分去寻找.从车身看,(3)与众不同,只用一笔 画成,可是它的车头与(1)同;从车头看:(2)与众不同,(因车头(1) 与(3)同,(4)与(5)同),但是(2)的车身与(1)、(4)、(5)类似.所以 从车头、车身这些特征比较出来的图形,理由不足以说服人. 我们把目光转移到笔划多少上,就可以找到与众不一的车辆了.
与众不同的汽车是(1).其他四车均是由一个矩形、两个 圆以及四条直线段、一段弧线画成,而(1)多一条直线段.
7.有一个立方体,每个面上分别写上数字1、2、3、 4、5、6、,有3个人
从不同的角度观察的结果如下图所示,这个立方体 的每一个数字的对面各是什么数字?
二年级奥数专题 图形找规律(学生版)
![二年级奥数专题 图形找规律(学生版)](https://img.taocdn.com/s3/m/faac9b264b7302768e9951e79b89680203d86bd7.png)
图形找规律学生姓名授课日期教师姓名授课时长知识定位学会通过观察图形找到规律进而得到某一位置未知的图形。
掌握平移、旋转、合并等常见规律。
知识梳理1、主要变化规律:图形变化边数、方向变化、数量变化、位置变化、填充样式或颜色变化、其他变化2、主要位置变化方式:平移:一般根据图形每行或者每列与相邻列之间变化情况来判断平移的方向,之后来判断未知图形。
旋转:根据相邻图像判断旋转方向。
合并:根据相邻图像判断合并规则。
交换:图形的位置或者颜色、填充样式间进行某种规则的交换。
注意:图形规律题不一定只在同一方向上有规律,或者不止一种规律,需要根据题目情况进行判断,全面考虑,得出符合全部规律的图形。
例题精讲:(★★★)【试题来源】【题目】按规律填出空白图形。
(★★★)【试题来源】【题目】聪明的小朋友们,请你仔细观察下面的图片,然后将空白的部分补充完整。
(★★★)【试题来源】【题目】下面各种各样的娃娃头好看吗?认真观察你能找到它们排列的规律吗?根据规律把最后一个画出来。
(★★★★)【试题来源】【题目】根据下面图形排列的规律,问号的地方应该画什么图形?聪明的孩子们,动手画一画吧!(★★★★★)【试题来源】【题目】观察给出图形的变化规律,“?”处应该画什么图形。
(★★★★★)【试题来源】【题目】根据下列图形的规律,空白的地方应该填什么?请选择。
总结:课后练习【试题来源】【题目】1.★★★按照下面的规律,画一画。
第二排第三个是( ),第三排第二个是( )。
A.●B.▲●C.●D.●▲【试题来源】【题目】2.★★★观察下列各组图的变化规律,并在空白处画出相关的图形。
正确的选项是( ) A.B.C.D.【试题来源】【题目】3.★★★根据规律画出后面的图形。
正确的选项是( )A.B.C.D.【试题来源】【题目】4.★★★★根据规律接着画。
下面选项正确的是( )A.B.C.D.以上答案都不对【试题来源】【题目】5.★★★★★找出下图的变化规律,下一个应该画出什么图形?正确的选项是( )A.B.C.D.【试题来源】【题目】6.★★★★★先找一找方框里八个图形每行排列的规律,再从右面挑选一个合适的图形,把这个图形的号码填入空格内。
小学奥数图形找规律(四年级)
![小学奥数图形找规律(四年级)](https://img.taocdn.com/s3/m/7dfa6cbf6529647d26285223.png)
找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题: ⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化; ⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.板块一 数量规律【例 1】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】 横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个圆形。
【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形??【解析】 (方法一)横着看,每行三角形的个数依次减少,而正方形的个数依次增加,但每行图形的总个数不变.因为三角形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个三角形△. (方法二)竖着看,三角形由左而右依次减少,而正方形由左而右依次增加,三角形按照4、?、2、1的顺序变化,也可以看出 “?”处应是三角形△.【例 2】 观察下面的图形,按规律在“?”处填上适当的图形.(4)(1)?图形找规律【解析】本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形.【例 3】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【解析】观察发现,乌龟的顺序是:头、身→一只脚、背上一个点→两只脚、背上两个点→两只脚、一条尾、背上三个点→三只脚、一条尾、背上四个点,根据这个规律,最后一幅图应该是:→四只脚、一条尾、背上五个点.即:【例 4】观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【解析】第一格有8个圆圈,第二格有4个圆圈,第三格有2个圆圈,第四格有1个圆圈,第五格有半个圆圈.由此发现,前一格中的图减少一般,正好是后一格的图.所以第六格的图应该是第五格图的一半,即:板块二旋转、轮换型规律【例5】相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?○□☆△○□☆△△○□☆△○□☆☆△○□☆△○□()()()()()()()()【解析】有几种方法可以找出密码:(方法一)后面一排和前面一排比,上排的第一个图形移到最后,其他每个图形都向前移动了一格,变成了下一排.(方法二)斜着看,每一斜列的图形是一样的.所以密码就是:□☆△○□☆△○【例 6】 观察下图的变化规律,画出丙图.DBA丙乙甲CB A【解析】ACD【总结】旋转是数学中的重要概念,掌握好这个概念,可以提高观察能力,加快解题速度,对于许多问题的解决,也有事半而功倍的效果.【例 7】 下面各种各样的娃娃头好看吗?认真观察你能找到它们排列的规律吗?根据规律把最后一个画出来.【解析】【例 8】 观察图中所给出图形的变化规律,然后在空白处填画上所缺的图形.【解析】【例 9】 琪琪特别喜欢蝴蝶,她用直尺和圆规在纸上画了9幅蝴蝶图,并用剪刀将它们一一剪下来.她将这9只纸蝴蝶摆在桌上,见下图1,她发现这些纸蝴蝶排列挺有规律,突然一阵风来,吹走了3只纸蝴蝶,见下图2.你能找出蝴蝶的排列规律,将图2的3只蝴蝶放入图1的空缺处吗?图1987654321 图2B CA【解析】 从已摆好的第一行和第一列来看,无论横看或竖看,同一行中3只蝴蝶的翅膀形状各不相同,翅膀上的斑点的形状也各不相同.根据这个规律,剩下的3只蝴蝶图案的排列应该是:6号位置放图案C ;8号位置放图案B ;9号位置放图案A.【例 10】 观察下列各组图的变化规律,并在“?”处画出相关的图形.(1)丁丙乙甲?【解析】 (1)这四个图形的变化规律是:每一个图形都是由其前一个图形顺时针旋转90°而得到的.见下面左图;(2)甲乙丙丁四个图形变化规律也类似,注意因为图形是由旋转而得到的,所以其中三角形、菱形的方向随旋转而变化,作图的时候要注意到这一点.丁图处的图形应是下面右图:丁【例 11】 请你认真仔细观察,按照下面图形的变化规律,在“?”处画出合适的图形。
低年级找规律题技巧
![低年级找规律题技巧](https://img.taocdn.com/s3/m/d7a01b59974bcf84b9d528ea81c758f5f71f297e.png)
低年级找规律题技巧
找规律是小学数学中常见的一种题型,对于低年级的学生来说,掌握找规律的方法和技巧非常重要。
以下是几个低年级找规律题的技巧:
1、观察法:通过观察题目中的图形或数字,找出它们的变化规律。
例如,给出的图形序列中,每个图形都与前一个图形有关联,学生需要找出其中的规律并预测下一个图形是什么。
2、计数法:对于一些涉及计数的问题,学生需要明确计数对象和计数方法,并找出其中的规律。
例如,给出一些连续的数字,要求学生找出其中的和、差、积等规律。
3、归纳法:对于一些较为复杂的问题,学生需要通过观察、实验和归纳来找出其中的规律。
例如,给出一些具有代表性的案例,要求学生通过分析案例来归纳出一般规律。
4、类比法:对于一些具有相似性的问题,学生可以通过类比来找出其中的规律。
例如,给出两个相似的图形或数字序列,要求学生通过比较它们来找出其中的相似规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
看图形找规律题步骤:
①寻找数量关系;
②用代数式表示规律;
③验证规律。
解题方法:
一、基本方法——看增幅
(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2
(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:
1、求出数列的第n-1位到第n位的增幅;
2、求出第1位到第第n位的总增幅;
3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。
那么,数列的第n-1位到第n 位的增幅是:3+2×(n-2)=2n-1,总增幅为:
〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1
所以,第n位数是:2+ n2-1= n2+1
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方
法求出,方法就简单的多了。
(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.
(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧
(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
例如,观察下列各式数:0,3,8,15,24,……。
试按此规律写出的第100个数是什么。
解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。
我们把有关的量放在一起加以比较:
给出的数:0,3,8,15,24,……。
序列号:1,2,3,4,5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。
因此,第n项是n2-1,第100项是1002-1。
(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关。
例如:1,9,25,49,(),(),的第n为(2n-1)2
(三)看例题:
A:2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案与3有关且............
即:n3+1
B:2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关即:2n
(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。
再在找出的规律上加上第一位数,恢复到原来。
例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,
序列号:1、2、3、4、5
分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1
(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
例:4,16,36,64,?,144,196,…?(第一百个数)
同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方。
(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。
当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。
(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。
三、基本步骤
1、先看增幅是否相等,如相等,用基本方法(一)解题。
2、如不相等,综合运用技巧(一)、(二)、(三)找规律
3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律
4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题。