2019 九年级数学 几何综合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图,在△ABC 中,AC =BC ,∠ACB =90°,D 为AC 上一点(与点A ,C 不重合),连接BD ,过点A 作AE ⊥BD 的 延长线于E
(1)①在图中作出△ABC 的外接圆⊙O ,并用文字描述 圆心O 的位置
②连接OE ,求证:点E 在⊙O 上
(2)①延长线段BD 至点F ,使EF =AE ,连接CF ,根据题 意补全图形
②用等式表示线段CF 与AB 的数量关系,并证明 2 丰台
如图,△ABC 是等边三角形,D ,E 分别是AC ,BC 边上的点,且AD = CE ,连接BD ,AE 相交于点F (1)∠BFE 的度数是
(2)如果2
1
=AC AD ,那么
=BF AF (3)如果n
AC AD 1
=时,请用含n 的式子表示AF ,BF 的数量关系,并证明
A
B
C D
E
A
D
B
F
已知在△ABC 中,AB =AC ,∠BAC =α,直线l 经过点A (不经过点B 或点C ),点C 关于直线l 的对称点为点D ,连接
BD ,CD
(1)如图1 ①求证:点,,B C D 在以点A 为圆心,AB 为半径的圆上 ②直接写出∠BDC 的度数(用含α的式子表示)为___________
(2)如图2,当α=60°时,过点D 作BD 的垂线与直线l 交于点E ,求证:AE =BD
(3)如图3,当α=90°时,记直线l 与CD 的交点为F ,连接BF .将直线l 绕点A 旋转,当线段BF 的长取得最大值时,直接写出tan FBC ∠的值
4 怀柔
在菱形ABCD 中,∠ADC=60°,BD 是一条对角线,点P 在边CD 上(与点C ,D 不重合),连接AP ,平移ADP ∆,使点D 移动到点C ,得到BCQ ∆,在BD 上取一点H ,使HQ=HD ,连接HQ ,AH ,PH (1) 依题意补全图1 (2)判断AH 与PH 的数量关系及∠AHP 的度数,并加以证明 (3)若141AHQ ∠=︒,菱形ABCD 的边长为1,请写出求DP 长的思路(可以不写出计算结果.........)
B
B
A B
C
D
P
A B
C
D
如图1,在正方形ABCD 中,点F 在边BC 上,过点F 作EF ⊥BC ,且FE =FC (CE (1)用等式表示线段BF 与FG 的数量关系是___________________ (2)将图1中的△CEF 绕点C 按逆时针旋转,使△CEF 的顶点F 恰好在正方形ABCD 的对角线AC 上,点G 仍是 AE 的中点,连接FG 、DF ①在图2中,依据题意补全图形 ②求证 :DF = 6 燕山 正方形ABCD 中,将边AB 所在直线绕点A 逆时针旋转一个角度α得到直线AM ,过点C 作CE ⊥AM ,垂足为E ,连接 BE (1) 当045α︒<<︒时,设AM 交BC 于点F ① 如图1,若α=35°,则∠BCE = ° ② 如图2,用等式表示线段AE ,BE ,CE 之间的数量关系,并证明 (2) 当4590α︒<<︒时(如图3),请直接用等式表示线段AE ,BE ,CE 之间的数量关系 图2 图1 F 35° M B C D A E F A B E M C D α A B E M C D 如图,Rt △ ABC 中,∠ACB =90°,AD 平分∠BAC , 作AD 的垂直平分线EF 交AD 于点E ,交BC 的延长线于点F ,交 AB 于点G ,交AC 于点H (1)依题意补全图形 8 门头沟 如图,在△ABC 中,AC = BC ,∠ACB = 90°,D 是线段AC 延长线上一点,连接BD ,过点A 作AE ⊥BD 于E (1)求证:∠CAE =∠CBD (2)将射线AE 绕点A 顺时针旋转45°后,所得的射线与线段BD 的延长线交于点F ,连接CE ① 依题意补全图形 ② 用等式表示线段EF ,CE ,BE 之间的数量关系,并证明 A A B C D E M 是正方形ABCD 的边AB 上一动点(不与A ,B 重合)MC BP ⊥,垂足为P ,将CPB ∠绕点P 旋转,得到''PB C ∠,当射线'PC 经过点D 时,射线'PB 与BC 交于点N (1)依题意补全图形 (2)求证:CPD ∽∆∆BPN (3)在点M 的运动过程中,图中是否存在与BM 始终相等的线段?若存在,请写出这条线段并证明,若不存在,请说明理由 10 西城 如图,在△ABC 中,AB =AC .△ADE ∽△ABC ,连接BD ,CE (1)判断BD 与CE 的数量关系,并证明你的结论 (2)若AB =2,AD =22,∠BAC =105°,∠CAD =30° ①BD 的长为 ②点P ,Q 分别为BC ,DE 的中点,连接PQ ,写出求 PQ 长的思路 如图,在ABC Rt ∆中,BC AB ABC ==∠,090,点E 为线段AB 上一动点(不与点A ,B 重合),连接CE ,将ACE ∠的两边CE ,CA 分别绕点C 顺时针旋转090,得到射线''CA CE ,,过点A 作AB 的垂线AD ,分别交射线''CA CE ,于点F ,G (1)依题意补全图形 (2)若α=∠ACE ,求AFC ∠的大小(用含α的式子表示) (3)用等式表示线段AE ,AF ,与BC 之间的数量关系,并证明 12 东城 如图,M 为正方形ABCD 内一点,点N 在AD 边上,且MB MN BMN 2900==∠,,点E 为MN 的中点,点P 为DE 的中点,连接MP 并延长到点F ,使得PF=PM ,连接DF (1)依题意补全图形 (2)求证:DF=BM (3)连接AM ,用等式表示线段PM 和AM 的数量关系并证明