概率论与数理统计应用案例分析(徐小平主编)PPT模板
合集下载
概率论与数理统计(完整版)(课堂PPT)
![概率论与数理统计(完整版)(课堂PPT)](https://img.taocdn.com/s3/m/9928149e26fff705cc170a5c.png)
32
(二) 乘法公式:
由条件概 ,立率 即P 定 可 (A 义 0 得 )则 , 有 P(AP B()A)|A P)(.B
推广 P(AB)>0, 则有 P(ABC)=P(A)P(B|A)P(C|AB). 一般, 设A1, A2, …,An是n个事件,(n≥2), P(A1A2 ...An-1)>0, 则有乘法公式: P(A1A2…An)=P(A1)P(A2|A1)…P(An-1|A1A2…An-2) P(An|A1A2…An-1).
(1P) (|A )0.
(2设 )B 1,B 2,,B n两两互 ,则 不相
n
n
P ( Bi |A) P(iB|A.)
30
i1
i1
(3P )B (|A )1P (B |A ).
(4P ) (C B |A P ) |( A B P ) |( A C ) -P(|A B)C .
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.
不可能事件:空集φ不包含任何样本点, 它在每次试验中 都不发生,称为不可能事件。
6
例1. 试确定试验E2中样本空间, 样本点的个数, 并给出如
下事件的元素: 事件A1=“第一次出现正面”、事件A2=“ 恰好出现一次正面”、事件A3=“至少出现一次正面”.
7
(三)事件间的关系与事件的运算
1.包含关系和相等关系:
(1) 对任一事件A,有P(A)≥0; (非负性) (2) P(S)=1;(规范性) (3) 设A1,A2,…是两两互不相容的事件,则有
P(A1 A2 …)=P(A1)+P(A2)+… (可列可加性)
25
2.概率的性质: 性1质 . P()0.
(二) 乘法公式:
由条件概 ,立率 即P 定 可 (A 义 0 得 )则 , 有 P(AP B()A)|A P)(.B
推广 P(AB)>0, 则有 P(ABC)=P(A)P(B|A)P(C|AB). 一般, 设A1, A2, …,An是n个事件,(n≥2), P(A1A2 ...An-1)>0, 则有乘法公式: P(A1A2…An)=P(A1)P(A2|A1)…P(An-1|A1A2…An-2) P(An|A1A2…An-1).
(1P) (|A )0.
(2设 )B 1,B 2,,B n两两互 ,则 不相
n
n
P ( Bi |A) P(iB|A.)
30
i1
i1
(3P )B (|A )1P (B |A ).
(4P ) (C B |A P ) |( A B P ) |( A C ) -P(|A B)C .
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.
不可能事件:空集φ不包含任何样本点, 它在每次试验中 都不发生,称为不可能事件。
6
例1. 试确定试验E2中样本空间, 样本点的个数, 并给出如
下事件的元素: 事件A1=“第一次出现正面”、事件A2=“ 恰好出现一次正面”、事件A3=“至少出现一次正面”.
7
(三)事件间的关系与事件的运算
1.包含关系和相等关系:
(1) 对任一事件A,有P(A)≥0; (非负性) (2) P(S)=1;(规范性) (3) 设A1,A2,…是两两互不相容的事件,则有
P(A1 A2 …)=P(A1)+P(A2)+… (可列可加性)
25
2.概率的性质: 性1质 . P()0.
概率论与数理统计课件ppt
![概率论与数理统计课件ppt](https://img.taocdn.com/s3/m/85a115a64bfe04a1b0717fd5360cba1aa9118c69.png)
简化数据结构,解释变量间的关系。
操作步骤
计算相关系数矩阵、求特征值和特征 向量、确定主成分个数。
实例
分析消费者对不同品牌手机的偏好。
聚类分析
聚类分析
常见方法
目的
实例
将类似的对象归为同一 组,即“簇”,不同簇
的对象尽可能不同。
层次聚类、K均值聚类、 DBSCAN等。
揭示数据的内在结构, 用于分类、猜测和决策
用数学符号表示一个随机实验的结果 。
随机变量可以取到任何实数值,且取 每个结果的概率为一个确定的函数。
离散型随机变量
随机变量可以取到所有可能的结果, 且取每个结果的概率为一个确定的数 。
随机变量的函数变换
线性变换
对于随机变量X和常数a、b,有 aX+b的散布与X的散布不同。
非线性变换
对于随机变量X和函数g(x),g(X)的散 布与X的散布不同。
置信区间
根据样本数据对总体参数进行估计的一个范围,表示我们对 估计的可靠程度。
假设检验与置信水平
假设检验
通过样本数据对总体参数或散布进行 假设,然后根据检验结果判断假设是 否成立。
置信水平
假设检验中,我们相信结论正确的概 率,通常表示为百分比。
05 数理统计的应用
方差分析
方差分析(ANOVA)
随机进程在通讯、气象、物理等领域有广泛应用。
马尔科夫链蒙特卡洛方法
01
马尔科夫链蒙特卡洛方法是一种 基于蒙特卡洛模拟的统计推断方 法,通过构造一个马尔科夫链来 到达近似求解复杂问题的目的。
02
马尔科夫链蒙特卡洛方法在许多 领域都有应用,如物理学、化学 、经济学等。
04 数理统计基础
样本与样本空间
操作步骤
计算相关系数矩阵、求特征值和特征 向量、确定主成分个数。
实例
分析消费者对不同品牌手机的偏好。
聚类分析
聚类分析
常见方法
目的
实例
将类似的对象归为同一 组,即“簇”,不同簇
的对象尽可能不同。
层次聚类、K均值聚类、 DBSCAN等。
揭示数据的内在结构, 用于分类、猜测和决策
用数学符号表示一个随机实验的结果 。
随机变量可以取到任何实数值,且取 每个结果的概率为一个确定的函数。
离散型随机变量
随机变量可以取到所有可能的结果, 且取每个结果的概率为一个确定的数 。
随机变量的函数变换
线性变换
对于随机变量X和常数a、b,有 aX+b的散布与X的散布不同。
非线性变换
对于随机变量X和函数g(x),g(X)的散 布与X的散布不同。
置信区间
根据样本数据对总体参数进行估计的一个范围,表示我们对 估计的可靠程度。
假设检验与置信水平
假设检验
通过样本数据对总体参数或散布进行 假设,然后根据检验结果判断假设是 否成立。
置信水平
假设检验中,我们相信结论正确的概 率,通常表示为百分比。
05 数理统计的应用
方差分析
方差分析(ANOVA)
随机进程在通讯、气象、物理等领域有广泛应用。
马尔科夫链蒙特卡洛方法
01
马尔科夫链蒙特卡洛方法是一种 基于蒙特卡洛模拟的统计推断方 法,通过构造一个马尔科夫链来 到达近似求解复杂问题的目的。
02
马尔科夫链蒙特卡洛方法在许多 领域都有应用,如物理学、化学 、经济学等。
04 数理统计基础
样本与样本空间
概率论与数理统计ppt课件
![概率论与数理统计ppt课件](https://img.taocdn.com/s3/m/6db9d0516ad97f192279168884868762caaebbaa.png)
04
理解基本概念和原理
做大量练习题,培养解题能力
05
06
阅读相关书籍和论文,拓宽知识面
02
概率论基础
概率的基本概念
试验
一个具有有限个或无限个 可能结果的随机试验。
事件
试验中的某些结果的总称 。
概率
衡量事件发生可能性的数 值,通常表示为0到1之间 的实数。
必然事件
概率等于1的事件。
不可能事件
概率等于0的事件。
01 点估计
用样本统计量估计总体参数,如用样本均值估计 总体均值。
02 区间估计
给出总体参数的估计区间,如95%置信区间。
03 估计量的性质
无偏性、有效性和一致性。
假设检验
假设检验的基本思想
先假设总体参数具有某种 特性,然后通过样本信息 来判断这个假设是否合理 。
双侧检验
当需要判断两个假设是否 相等时,如总体均值是否 等于某个值。
连续型随机变量
取值无限的随机变 量。
方差
衡量随机变量取值 分散程度的数值。
03
数理统计基础
总体与样本
总体
研究对象的全体。
抽样方法
简单随机抽样、分层抽样、系统抽样等。
样本
从总体中随机抽取的一部分个体,用于估 计和推断总体的特性。
样本大小
样本中包含的个体数量,需要根据研究目 的和资源来确定。
参数估计
单因素方差分析
单因素方差分析的定义
单因素方差分析是方差分析的一种形式,它只涉及一个实验因素。通过对不同组的均值进行比 较,可以确定这个因素对实验结果的影响是否显著。
单因素方差分析的步骤
单因素方差分析通常包括以下步骤:首先,对实验数据进行分组;其次,计算每组的均值;接 着,计算总的均值和总的变异性;然后,计算组间变异性和组内变异性;最后,通过比较这两 种变异,得出因素的显著性。
概率论与数理统计完整ppt课件
![概率论与数理统计完整ppt课件](https://img.taocdn.com/s3/m/6b8051c9d1d233d4b14e852458fb770bf78a3b04.png)
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
概率论与数理统计案例分析
![概率论与数理统计案例分析](https://img.taocdn.com/s3/m/f9b9be4deef9aef8941ea76e58fafab069dc4488.png)
概率论与数理统计案例分析概率论与数理统计作为数学的一个重要分支,广泛应用于各个领域。
本文将通过一些具体案例来分析概率论和数理统计在实际中的应用。
案例一:市场营销中的A/B测试在市场营销领域,A/B测试是一种常见的实验设计方法,用于比较两种不同的营销策略、广告设计或产品设计等。
假设某电商公司希望提高其网站用户的转化率,他们可以设计一个A/B测试来比较两种不同的促销活动对用户购买行为的影响。
首先,将用户随机分为两组,一组接受A方案,另一组接受B方案。
然后通过收集和分析用户的购买数据,可以利用概率论和数理统计方法来评估两种方案的效果。
通过统计显著性检验和置信区间分析,可以得出结论,哪种方案对用户购买行为影响更大,从而指导公司的营销策略。
案例二:医学研究中的双盲试验在医学研究领域,双盲试验是一种常用的研究设计,用于评估新药物的疗效。
在一次双盲试验中,研究者和参与者都不知道哪些人接受了治疗,哪些人接受了安慰剂。
通过随机分组和盲法设计,可以最大程度地减少实验结果的偏倚。
利用概率论和数理统计方法,研究人员可以对试验数据进行分析,来评估新药物的疗效是否显著,以及是否出现不良反应等情况。
通过以上案例分析,可以看出概率论和数理统计在实际中的重要性和应用价值。
无论是市场营销领域还是医学研究领域,都离不开对数据的收集、分析和解释。
掌握好概率论和数理统计知识,对于提高决策的科学性和准确性有着重要的意义。
希望本文的案例分析能够让读者更深入地理解概率论和数理统计的实际应用,为他们在相关领域的工作和研究提供一定的启发和帮助。
概率论与数理统计书ppt课件
![概率论与数理统计书ppt课件](https://img.taocdn.com/s3/m/7d855c713b3567ec102d8af8.png)
a+b-1 个 球
另解: P(A) Ca1 (a b 1)! a
中 取 出
(a b)! a b
的
有放回是有序行为,无放回是无序行为 39
1-4
1.4 条件概率
1.4.1条件概率
在实际问题中,除了要知道事件A的概率 P( A) 外,有时还要考虑在“已知事件B发生”的条 件 下,事件A发生的概率。一般情况下,两者的 概率是不相等的,为了区P(别A B所) 见,我们把后者 称为条件概率。
12
事件的并(或称和) 定义:若事件A发生或事件B发生,则称这样
的事件为并事件,记为:A B。
结论:(A B) A ;(A B) B 。
B A
注:包括事件A与B 同时发生
13
例3
A={1,2,7,8,a,b,c}, B={1,5,8,b,e}
则 AUB={1,2,5,7,8,a,b,c,e}
运动员平均分成两组,问4名种子选手:(1)
各有两人分在一组的概率;(2)分在同一组
的概率。
36
解(1):n
C162
,m
C42C84
;
P( A)
15 33
(2):m C82 ;
P( A) 1 33
例10、一盒中含有N-1个黑球,一个白球,每
次从盒中随机地取一只球,并还入一只黑球,
10
1.2.3事件之间的关系及其运算
定义:若事件A发生必导致事件B发生,则称
事件B包含事件A。记为:B A或A B。
比如例2中,A:表示小于3点事件,B表示小
于5点事件。)
11
事件相等
若事件A B且 B A,则称
另解: P(A) Ca1 (a b 1)! a
中 取 出
(a b)! a b
的
有放回是有序行为,无放回是无序行为 39
1-4
1.4 条件概率
1.4.1条件概率
在实际问题中,除了要知道事件A的概率 P( A) 外,有时还要考虑在“已知事件B发生”的条 件 下,事件A发生的概率。一般情况下,两者的 概率是不相等的,为了区P(别A B所) 见,我们把后者 称为条件概率。
12
事件的并(或称和) 定义:若事件A发生或事件B发生,则称这样
的事件为并事件,记为:A B。
结论:(A B) A ;(A B) B 。
B A
注:包括事件A与B 同时发生
13
例3
A={1,2,7,8,a,b,c}, B={1,5,8,b,e}
则 AUB={1,2,5,7,8,a,b,c,e}
运动员平均分成两组,问4名种子选手:(1)
各有两人分在一组的概率;(2)分在同一组
的概率。
36
解(1):n
C162
,m
C42C84
;
P( A)
15 33
(2):m C82 ;
P( A) 1 33
例10、一盒中含有N-1个黑球,一个白球,每
次从盒中随机地取一只球,并还入一只黑球,
10
1.2.3事件之间的关系及其运算
定义:若事件A发生必导致事件B发生,则称
事件B包含事件A。记为:B A或A B。
比如例2中,A:表示小于3点事件,B表示小
于5点事件。)
11
事件相等
若事件A B且 B A,则称
概率论与数理统计(完整版)(课堂PPT)
![概率论与数理统计(完整版)(课堂PPT)](https://img.taocdn.com/s3/m/9928149e26fff705cc170a5c.png)
E3: 将一枚硬币抛三次,观察出现正面的情况. E4: 电话交换台一分钟内接到的呼唤次数. E5: 在一批灯泡中任取一只, 测试它的寿命.
3
随机试验:
(1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的结 果; (3) 一次试验前不能确定会出现哪个结果.
4
§2. 样本空间与随机事件
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
5
(二) 随机事件
定义 样本空间S的子集称为随机事件, 简称事件. 在一 次试验中, 当且仅当这一子集中的一个样本点出现时, 称 这一事件发生.
基本事件: 由一个样本点组成的单点集. 如:{H},{T}.
复合事件: 由两个或两个以上的基本事件复合而成的事件 为复合事件. 如:E3中{出现正面次数为奇数}.
必然事件: 样本空间S是自身的子集,在每次试验中总是 发生的,称为必然事件。
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即 10 对于每一 B有 个 , 1 事 P(件 |B A)0.
20 P (|SA) 1.
30 设B1,B2,两两互不,则 相容
P ( Bi |A)P(Bi |A.)
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
P(A 1)P(A 2)P(A n).(有限)可
性3质 . 若 AB,则有 P(BA)P(B)P(A);
3
随机试验:
(1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的结 果; (3) 一次试验前不能确定会出现哪个结果.
4
§2. 样本空间与随机事件
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
5
(二) 随机事件
定义 样本空间S的子集称为随机事件, 简称事件. 在一 次试验中, 当且仅当这一子集中的一个样本点出现时, 称 这一事件发生.
基本事件: 由一个样本点组成的单点集. 如:{H},{T}.
复合事件: 由两个或两个以上的基本事件复合而成的事件 为复合事件. 如:E3中{出现正面次数为奇数}.
必然事件: 样本空间S是自身的子集,在每次试验中总是 发生的,称为必然事件。
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即 10 对于每一 B有 个 , 1 事 P(件 |B A)0.
20 P (|SA) 1.
30 设B1,B2,两两互不,则 相容
P ( Bi |A)P(Bi |A.)
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
P(A 1)P(A 2)P(A n).(有限)可
性3质 . 若 AB,则有 P(BA)P(B)P(A);
概率论与数理统计数学PPT课件
![概率论与数理统计数学PPT课件](https://img.taocdn.com/s3/m/12b2c43bcd7931b765ce0508763231126edb77a4.png)
i 1
i 1
且 fn (A) 随n的增大渐趋稳定,记稳定值为p.
13
(二) 概率
定义1:fn ( A)的稳定值p定义为A的概率,记为P(A)=p
定义2:将概率视为测度,且满足:
1。 0 P( A) 1
2。 P(S) 1
k
k
3。 若A1, A2,…,Ak两两互不相容,则 P( Ai ) P( Ai )
3
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性:
1. 可以在相同条件下重复进行 2. 事先知道可能出现的结果 3. 进行试验前并不知道哪个试验结果会发生
例:
✓ ✓ ✓ ✓
抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
①,②,…,n
Ak
)
a n
a
a},Ak
b
{ ①,②,…,a
}
无关,且与 a, b都无关,若a =0呢?对吗?
为什么?
不 是 等 可 能 概
记第k次摸到的球的颜色为一样本点:
型
S={红色,白色},Ak {红色} P( Ak ) 1 2 22
例7:某接待站在某一周曾接待12次来访,已知所有这12次 接待都是在周二和周四进行的,问是否可以推断接待时间是 有规定的?
----------与k无关
21
解2:
视哪几次摸到红球为一样本点
, , ,, 12 k n
总样本点数为
Cna
,每点出现的概率相等,而其中有
C a1 n 1
个
样本点使 Ak
发生,
P( Ak )
概率论与数理统计基本概念及抽样分布PPT课件
![概率论与数理统计基本概念及抽样分布PPT课件](https://img.taocdn.com/s3/m/1b879c8751e2524de518964bcf84b9d528ea2ca7.png)
~
2 (n1 ),
2 2
~
2 (n2 ), 且它们相互独立,
则
2 1
2 2
~
2 (n1
n2 )
《概率统计》
返回
下页
结束
4. 2分布的百分位点
对给定的α(0<α<1)
(1)称满足
P{ 2
2
(n)}
,即
f ( y)dy
x2 ( n)
的点为 2分布的上100α百分位点。
f(y)
(2)称满足
注:在研究中,往往关心每个个体的一个(或几个)数量指标和 该数量指标在总体中的分布情况. 这时,每个个体具有的数量 指标的全体就是总体.
或,总体:研究对象的某项数量指标的值的全体.
《概率统计》
某批 灯泡的 寿命
该批灯泡寿命的 全体就是总体
返回
下页
结束
为推断总体分布及各种特征,按一定规则从总体中抽取若 干个体进行观察试验,以获得有关总体的信息,这一抽取过程 为 “抽样”.
( x)
(1)称满足条件 P{X>Xα} =α,
α
即
( x)dx
X
的点Xα为N(0,1)分布的上100α百分位点.
X1-α
0
由于 P{X X } 1 记 -Xα= X1-α
(2)称满足条件 P {| X | X }
2
2
的点 X 为N(0,1)分布的双侧100α百分位点.
X
2
则
E(X )
E(1 n
n i 1
Xi)
1 n
n i 1
E(Xi )
1 n
n
D(X ) D(1 n
n i1
Xi)
概率论与数理统计书ppt课件
![概率论与数理统计书ppt课件](https://img.taocdn.com/s3/m/fb98faafafaad1f34693daef5ef7ba0d4a736ddd.png)
条件概率与独立性
CHAPTER
随机变量及其分布
02
随机变量的概念与性质
定义随机变量为在样本空间中的实值函数,其取值依赖于随机试验的结果。
随机变量
讨论随机变量的可数性、可加性、正态性等性质。
随机变量的性质
离散型随机变量的概念
定义离散型随机变量为只能取可数个值的随机变量。
离散型随机变量的分布
讨论离散型随机变量的概率分布,如二项分布、泊松分布等。
应用
中心极限定理及其应用
CHAPTER
贝叶斯推断与决策分析
07
贝叶斯推断的基本原理
金融风险管理
贝叶斯推断在金融风险管理领域有着广泛的应用,如信用风险评估、投资组合优化等。
医疗诊断
贝叶斯推断在医疗诊断方面也有着重要的应用,如疾病诊断、预后评估等。
机器学习与人工智能
贝叶斯推断在机器学习算法和人工智能领域中也有着广泛的应用,如朴素贝叶斯分类器、高斯混合模型等。
参数估计与置信区间
01
点估计
用单一的数值估计参数的值。
02
区间估计
给出参数的一个估计区间,通常包括一个置信水平。
比较两个或多个组的均值差异,确定因素对结果的影响。
方差分析
检验两个或多个组的方差是否相等。
方差齐性检验
研究变量之间的关系,并预测结果。
回归分析
假设检验与方差分析
CHAPTER
回归分析与线性模型
应用
在现实生活中,大数定律被广泛应用于保险、赌博、金融等领域,通过统计数据来预测未来的趋势和风险。
大数定律及其应用
在独立随机变量序列中,它们的和的分布近似于正态分布,即中心极限定理。这意味着,当样本量足够大时,样本均值近似于正态分布。
概率论与数理统计ppt课件(完整版)
![概率论与数理统计ppt课件(完整版)](https://img.taocdn.com/s3/m/bf19277da9114431b90d6c85ec3a87c240288a2c.png)
*
几何概型的概率的性质
对任一事件A ,有
三.统计定义:
(一) 频率
在相同的条件下, 共进行了n次试验,事件A发生的次数nA, 称为A的频数, nA/n称为事件A发生的频率, 记为fn(A).
频率的特性: 波动性和稳定性.
*
四.概率公理化定义:
定义: 设S是样本空间, E是随机试验. 对于E的每个事件A对应一个实数P(A), 称为事件 A的概率, 其中集合函数P(.)满足下列条件: 对任一事件A,有P(A)≥0; (非负性) P(S)=1;(规范性) 设A1,A2,…是两两互不相容的事件,则有 P(A1 A2 …)=P(A1)+P(A2)+… (可列可加性)
2. 样本空间与随机事件
(一) 样本空间: 定义 随机试验E的所有可能结果组成的集合称为 E的样本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等.
2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
*
(二) 乘法公式:
P(AB)>0, 则有 P(ABC)=P(A)P(B|A)P(C|AB).
一般, 设A1, A2, …,An是n个事件,(n≥2), P(A1A2 ...An-1)>0, 则有乘法公式:
P(A1A2…An)=P(A1)P(A2|A1)…P(An-1|A1A2…An-2) P(An|A1A2…An-1).
*
B
A
S
2.和事件:
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,即事件A与B同时发生. A B 可简记为AB.
类似地, 事件 为可列个事件A1, A2, ...的积事件.
几何概型的概率的性质
对任一事件A ,有
三.统计定义:
(一) 频率
在相同的条件下, 共进行了n次试验,事件A发生的次数nA, 称为A的频数, nA/n称为事件A发生的频率, 记为fn(A).
频率的特性: 波动性和稳定性.
*
四.概率公理化定义:
定义: 设S是样本空间, E是随机试验. 对于E的每个事件A对应一个实数P(A), 称为事件 A的概率, 其中集合函数P(.)满足下列条件: 对任一事件A,有P(A)≥0; (非负性) P(S)=1;(规范性) 设A1,A2,…是两两互不相容的事件,则有 P(A1 A2 …)=P(A1)+P(A2)+… (可列可加性)
2. 样本空间与随机事件
(一) 样本空间: 定义 随机试验E的所有可能结果组成的集合称为 E的样本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等.
2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
*
(二) 乘法公式:
P(AB)>0, 则有 P(ABC)=P(A)P(B|A)P(C|AB).
一般, 设A1, A2, …,An是n个事件,(n≥2), P(A1A2 ...An-1)>0, 则有乘法公式:
P(A1A2…An)=P(A1)P(A2|A1)…P(An-1|A1A2…An-2) P(An|A1A2…An-1).
*
B
A
S
2.和事件:
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,即事件A与B同时发生. A B 可简记为AB.
类似地, 事件 为可列个事件A1, A2, ...的积事件.
概率论与数理统计教程ppt课件
![概率论与数理统计教程ppt课件](https://img.taocdn.com/s3/m/17d80ee527d3240c8547ef2b.png)
1. 确定性现象
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
16 March 2020
华东师范大学
第一章 随机事件与概率
第3页
1.1.1 随机现象
• 随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
16 March 2020
华东师范大学
第一章 随机事件与概率
例1.2.1 六根草,头两两相接、
尾两两相接。求成环的概率.
解:用乘法原则直接计算 所求概率为
644221 8 6 5 4 3 2 1 15
第30页
16 March 2020
华东师范大学
第一章 随机事件与概率
3. 若 AnF ,n=1, 2, …, 则
UFA.n
n 1
16 March 2020
华东师范大学
第一章 随机事件与概率
第21页
§1.2 概率的定义及其确定方法
• 直观定义 —— 事件A 出现的可能性大小.
• 统计定义 —— 事件A 在大量重复试验下 出现的频率的稳定值称为该事件的概率.
2. 样本点 —— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
16 March 2020
华东师范大学
第一章 随机事件与概率
第5页
1.1.3 随机事件
华东师范大学
第一章 随机事件与概率
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
16 March 2020
华东师范大学
第一章 随机事件与概率
第3页
1.1.1 随机现象
• 随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
16 March 2020
华东师范大学
第一章 随机事件与概率
例1.2.1 六根草,头两两相接、
尾两两相接。求成环的概率.
解:用乘法原则直接计算 所求概率为
644221 8 6 5 4 3 2 1 15
第30页
16 March 2020
华东师范大学
第一章 随机事件与概率
3. 若 AnF ,n=1, 2, …, 则
UFA.n
n 1
16 March 2020
华东师范大学
第一章 随机事件与概率
第21页
§1.2 概率的定义及其确定方法
• 直观定义 —— 事件A 出现的可能性大小.
• 统计定义 —— 事件A 在大量重复试验下 出现的频率的稳定值称为该事件的概率.
2. 样本点 —— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
16 March 2020
华东师范大学
第一章 随机事件与概率
第5页
1.1.3 随机事件
华东师范大学
第一章 随机事件与概率
概率论与数理统计ppt课件
![概率论与数理统计ppt课件](https://img.taocdn.com/s3/m/84be0264c850ad02de804148.png)
注:P( A) 0不能 A ; P( B) 1不能 B S .
2。 A1 , A2 ,...,An , Ai Aj , i j, P( P(
n n i 1
Ai ) P( Ai )
i 1
n
证:令 Ank (k 1, 2,...), Ai Aj , i j, i, j 1, 2,....
•
5.1 大数定律 5.2 中心极限定理
•
第六章 数理统计的基本概念
• • 6.1 总体和样本 6.2 常用的分布
4
第七章 参数估计
• • • 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计
第八章 假设检验
• • • • • • • 8.1 8.2 8.3 8.4 8.5 8.6 8.7 假设检验 正态总体均值的假设检验 正态总体方差的假设检验 置信区间与假设检验之间的关系 样本容量的选取 分布拟合检验 秩和检验
A B 2 A=B B A
B A
S
例: 记A={明天天晴},B={明天无雨} B A
记A={至少有10人候车},B={至少有5人候车} B
A
一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}
BA
13
事件的运算
A与B的和事件,记为 A B
8
§1 随机试验
确定性现象
自然界与社会Βιβλιοθήκη 活中的两类现象不确定性现象
确定性现象:结果确定 不确定性现象:结果不确定
例:
向上抛出的物体会掉落到地上 ——确定 ——不确定 明天天气状况 ——不确定 买了彩票会中奖
概率论与数理统计(最新完整版)ppt课件
![概率论与数理统计(最新完整版)ppt课件](https://img.taocdn.com/s3/m/fd64ce87a6c30c2258019e05.png)
(1) 试验可以在相同的条件下重复地进行;
.
(2) 试验的所有可能结果:
正面,反面; (3) 进行一次试验之前不能
确定哪一个结果会出现.
故为随机试验.
同理可知下列试验都为随机试验
1.“抛掷一枚骰子,观察出现的点数”.
2.“从一批产品中,依次任选三件, 记 录出现正品与次品的件数”.
.
3. 记录某公共汽车站 某日上午某时刻的等 车人 数.
(3)分 配 律
A(BC)(A B)(AC)AB AC ,
A (BC)AB AC
( A B ) C ( A C ) ( B C ) ( A C ) B C ( )
(对 4律 ):偶 A B A B ,A B A B .
n
n
Ai Ai,
i1
i1
.
n
n
Ai Ai
i1
i1
三 完备事件组
4. 考察某地区 10 月 份的平均气温.
5. 从一批灯泡中任取 一只,测试其寿命.
.
四、概率的统计定义
1、随机事件:在试验的结果中,可能发生、也可能不发 生的事件。比如,抛硬币试验中,”徽花向上”是随机事 件;掷一枚骰子中,”出现奇数点”是一个随机事件等。
2、频率:设A为实验E中的一个随机事件,将E重复n次, A发生m次,称f(A)=m/n为事件A的频率. 随着实验次数n的增加,频率将处于稳定状态.比如投 硬币实验,频率将稳定在1/2附近.
B A
.
6. 事件的互逆(对立)
若事件 A 、B 满足 A B 且 A B .
则称 A 与B 为互逆(或对立)事件. A 的逆记作 A .
实例 “骰子出现1点”对立 “骰子不出现1点”
.
(2) 试验的所有可能结果:
正面,反面; (3) 进行一次试验之前不能
确定哪一个结果会出现.
故为随机试验.
同理可知下列试验都为随机试验
1.“抛掷一枚骰子,观察出现的点数”.
2.“从一批产品中,依次任选三件, 记 录出现正品与次品的件数”.
.
3. 记录某公共汽车站 某日上午某时刻的等 车人 数.
(3)分 配 律
A(BC)(A B)(AC)AB AC ,
A (BC)AB AC
( A B ) C ( A C ) ( B C ) ( A C ) B C ( )
(对 4律 ):偶 A B A B ,A B A B .
n
n
Ai Ai,
i1
i1
.
n
n
Ai Ai
i1
i1
三 完备事件组
4. 考察某地区 10 月 份的平均气温.
5. 从一批灯泡中任取 一只,测试其寿命.
.
四、概率的统计定义
1、随机事件:在试验的结果中,可能发生、也可能不发 生的事件。比如,抛硬币试验中,”徽花向上”是随机事 件;掷一枚骰子中,”出现奇数点”是一个随机事件等。
2、频率:设A为实验E中的一个随机事件,将E重复n次, A发生m次,称f(A)=m/n为事件A的频率. 随着实验次数n的增加,频率将处于稳定状态.比如投 硬币实验,频率将稳定在1/2附近.
B A
.
6. 事件的互逆(对立)
若事件 A 、B 满足 A B 且 A B .
则称 A 与B 为互逆(或对立)事件. A 的逆记作 A .
实例 “骰子出现1点”对立 “骰子不出现1点”
《概率论于数理统计》PPT课件
![《概率论于数理统计》PPT课件](https://img.taocdn.com/s3/m/0c4ba775182e453610661ed9ad51f01dc2815792.png)
这里固然有把哪个假设作为原假设从而引起检验结果不同这一原因;除此外还有一个根本的原因,即样本容量不够大.
若样本容量足够大,则不论把哪个假设作为原假设所得检验结果基本上应该是一样的.否则假设检验便无意义了!
由于假设检验是控制犯第一类错误的概率, 使得拒绝原假设 H0 的决策变得比较慎重, 也就是 H0 得到特别的保护. 因而, 通常把有把握的, 经验的结论作为原假设, 或者尽量使后果严重的错误成为第一类错误.
查表得 F0.05( 17, 12 ) = 2.59,
F0.95( 17, 12 ) =
拒绝外,故接受原假设, 即认为内径的稳定程度相同.
8.2.4 样本容量的选取
虽然当样本容量 n 固定时, 我们不能同时控制犯两类错误的概率, 但可以适当选取 n 的值, 使犯取伪错误的概率 控制在预先给定的限度内.
8.2 正态总体的参数检验
8.2.1 单个正态总体情况
1. 方差 已知,关于 的检验(u检验法)
(2) 选取检验统计量
~ N(0,1)
(1)
(3) 对给定的显著性水平 ,可以在N(0,1)表中查到分位点的值 ,使
得拒绝域为
W:
(4) 由样本观察值算出统计量的实测值
假设检验与置信区间对照
接受域
置信区间
检验统计量及其在 H0为真时的分布
枢轴量及其分布
0
0
( 2 已知)
( 2 已知)
原假设 H0
备择假设 H1
待估参数
接受域
置信区间
检验统计量及其在 H0为真时的分布
枢轴量及其分布
原假设 H0
备择假设 H1
待估参数
0
0
0
0
0
若样本容量足够大,则不论把哪个假设作为原假设所得检验结果基本上应该是一样的.否则假设检验便无意义了!
由于假设检验是控制犯第一类错误的概率, 使得拒绝原假设 H0 的决策变得比较慎重, 也就是 H0 得到特别的保护. 因而, 通常把有把握的, 经验的结论作为原假设, 或者尽量使后果严重的错误成为第一类错误.
查表得 F0.05( 17, 12 ) = 2.59,
F0.95( 17, 12 ) =
拒绝外,故接受原假设, 即认为内径的稳定程度相同.
8.2.4 样本容量的选取
虽然当样本容量 n 固定时, 我们不能同时控制犯两类错误的概率, 但可以适当选取 n 的值, 使犯取伪错误的概率 控制在预先给定的限度内.
8.2 正态总体的参数检验
8.2.1 单个正态总体情况
1. 方差 已知,关于 的检验(u检验法)
(2) 选取检验统计量
~ N(0,1)
(1)
(3) 对给定的显著性水平 ,可以在N(0,1)表中查到分位点的值 ,使
得拒绝域为
W:
(4) 由样本观察值算出统计量的实测值
假设检验与置信区间对照
接受域
置信区间
检验统计量及其在 H0为真时的分布
枢轴量及其分布
0
0
( 2 已知)
( 2 已知)
原假设 H0
备择假设 H1
待估参数
接受域
置信区间
检验统计量及其在 H0为真时的分布
枢轴量及其分布
原假设 H0
备择假设 H1
待估参数
0
0
0
0
0
《概率论与数理统计》课件
![《概率论与数理统计》课件](https://img.taocdn.com/s3/m/6b034da2e109581b6bd97f19227916888486b9dc.png)
条件概率与独立性
条件概率
在某个事件B已经发生的条件下,另 一事件A发生的概率,记为P(A|B)。
独立性
两个事件A和B如果满足 P(A∩B)=P(A)P(B),则称事件A和B是 独立的。
随机变量及其分布
01
随机变量
随机变量是定义在样本空间上的 一个实值函数,表示随机试验的 结果。
02
离散型随机变量
03
连续型随机变量
离散型随机变量的取值可以一一 列举出来,其概率分布可以用概 率质量函数或概率函数表示。
连续型随机变量的取值范围是一 个区间或半开区间,其概率分布 可以用概率密度函数表示。
数理统计初步
02
统计数据的描述
01
统计数据的收集
描述如何通过调查、试验或观测 等方法,获取用于统计分析的数
据。
03
夫链
随机过程的基本概念
随机过程
随机过程是一组随机变量,每个随机 变量对应于时间或空间的一个点。
有限维分布
描述随机过程在有限个时间点上的联 合分布。
独立性
如果随机过程在不相交的时间区间上 的随机变量是独立的,则该随机过程
是独立的。
马尔科夫链及其性质
马尔科夫性
在已知现在状态下,未来与过去独立,即“未来 只取决于现在”。
03
数据的可视化
介绍如何使用图表(如直方图、 散点图等)将数据可视化,以便 更直观地理解数据分布和关系。
02
数据的整理
介绍如何对数据进行分类、排序 和分组,以便更好地理解和分析
。
04
数据的数字特征
介绍如何使用均值、中位数、众 数、方差等统计量来描述数据的
中心趋势和离散程度。
参数估计与置信区间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章连பைடு நூலகம்型随机 变量
3.1连续型随机变量理论简介 3.2应用案例分析
第3章连续 型随机变量
3.1连续型随机变量理论简 介
0 1 3.1.1连续型随机变量及其概率密度 函数
02
3.1.2连续型随机变量的分布函 数
03
3.1.3连续型随机变量函数的分 布
0 4 3.1.4二维连续型随机变量及其概率 密度
题
第1章事件及其概率
1.2应用案例分析
01 1.2.13 猜卡片数字
问题
02 1.2.14 鱼塘中鱼数
03 1.2.四桥形系统的
量的估计
可靠性问题
04 1.2.16 产品检验
05 1.2.17 小概率事件
part one
03 第 2 章 离 散 型 随 机 变 量
第2章离散型随机变量
2.1离散型随机变量理论简介 2.2应用案例分析
概率论与数理统计应用 案例分析(徐小平主编)
演讲人
202x-11-11
part one
01 前
言
前言
part one
02 第 1 章 事 件 及 其 概 率
第1章事件及其概 率
1.1事件及其概率理论简介 1.2应用案例分析
第1章事件及其概率
1.1事件及其概率理论简 介
1.1.1事 件
1.1.2事 件的概率
4.1大数定律及中心极限定理理论 简介
4.1.1切比雪 夫不等式
4.1.2大数定 律
4.1.3中心极 限定理
第4章大数定律及中心极限定理
4.2应用案例分析
01 4.2.1 复杂数学等式 02 4.2.2数学中极限的
的证明
求解
03 4.2.3 保险中的相关 04 4.2.4学生家长会的
问题
参会人数
05 4.2.5 商业管理中的 06 4.2.6伯努利场合下
验的模拟
03 2 . 2 . 3 遗传学中 的一
些概率计算
04 2 . 2 . 4 α 粒子的计数
05 2 . 2 . 5 饮用水中 的细
菌数
06 2 . 2 . 6 航空安全 问题
第2章离散型随机变量
2.2应用案例分析
0 1
2.2.7交通事故
概率的计算
0 2
2.2.8企业考核
问题
0 3
2.2.9赌注问题
第2章离散 型随机变量
2.1离散型随机变量理论简 介
01 2 .1 .1 离散型随 机变 02 2 .1 .2 随机变量 的分
量基本概念
布函数
03 2 .1 .3 离散型随 机变 04 2 .1 .4 多维随机 变量
量画数的分布
05 2 .1 .5 二维离散 型随 06 2 .1 .6 二维离散 型随
0 5 3.1.5二维连续型随机变量的条件分 布
0 6 3.1.6二维连续型随机变量的独立性
第3章连续型随机变量
3.1连续型随机变量理论简介
0 1 3.1.7二维连续型随机变量函数的分 布
02
3.1.8连续型随机变量的数学期 望
0 3 3.1.9其他
第3章连续型随机变量
3.2应用案例分析
01 3 . 2 . 1 身高分布
机变量的分布
机变量的条件分布
第2章离散型随机变量
2.1离散型随机变量理论简介
2.1.7随机变量的独立 性
2.1.9数学期望
2.1.11协方差与相关系 数
2.1.8二维离散型随机 变量和的分布
2.1.10方差
第2章离散型随机变量
2.2应用案例分析
01 2 . 2 . 1 新药的治 疗效
果问题
02 2 . 2 . 2 高尔顿钉 板试
3.2.17轧钢问题
3.2.14数学期望在商业 管理中的应用
3.2.16商质量产品的生 产问题,
3.2.18足球门前的危险 区域
part one
05
第4章大数定律及中心极限定理
第4章大数定律及 中心极限定理
4.1大数定律及中心极限定理理 论简介 4.2应用案例分析
第4章大数定律 及中心极限定理
0 4
2.2.10婴儿出
生问题
0 5
2.2.11出海捕
鱼问题
0 6
2.2.四球员比
赛问题
第2章离散型 随机变量
2.2应用案例分析
2.2.13免费 抽奖的本质
2.2.四窃贼 问题
2.2.14节约 化验费的方 案
2.2.16投资 中的收益和 风险问题
part one
04 第 3 章 连 续 型 随 机 变 量
相关问题
的问题
第4章大数定律及中心极限定理
4.2应用案例分析
4.2.7数值计算的近似求解问题
06 part one 第 5 章 参 数 估 计
第5章参数估计
5.1参数估计理论简介 5.2应用案例分析
第5章参数估计
5.1参数估计理论简介
5.1.1矩估计法
1
5.1.5两个正态总体
的均值差与方差比的
1.1.4独 立性
1.1.3条 件概率与 乘法公式
第1章事件及其概率
1.2应用案例分析
01 1 .2 .1 彩票问题
02 1 .2 .2 试题库容 量问
题
03 1 .2 .3 划拳游珑 的公 04 1 .2 .4 抽签结果 与顺
平性问题
序
05 1 .2 .5 车辆颜色 相关 06 1 .2 .6 白化病与 猫叫
题
03 3 .2 .9 犯罪分子 的身 04 3 .2 .1 0 弹着 点的分
高估计
布
05 3 .2 .1 1 连续 型随机 06 3 .2 . 四 卖报的盈 亏问
变量数学期望的本质
题
第3章连续型随机变量
3.2应用案例分析
3.2.13数学期望在农业 生产中的应用
3.2.四用概率论方法求 解组数和积分
02 3 . 2 . 2 供电量不 足的
概率计算
03 3 . 2 . 3 弱信号的 提取
04 3 . 2 . 4 招聘问题
05 3 . 2 . 5 交通线路 选择
问题
06 3 . 2 . 6 公变革门 高度
的设计
第3章连续型随机变量
3.2应用案例分析
01 3 .2 .7 包装机工 作问 02 3 .2 .8 轮船停泊 问题
问题
综合征关联性问题
第1章事件及其概率
1.2应用案例分析
01 1 . 2 . 7 体检结果 问题
02 1 . 2 . 8 赛制的制 定问
题
03 1 . 2 . 9 生日相同 问题
04 1 . 2 . 1 0 运用 概率方
法证明不等式
05 1 . 2 . 1 1 运用 概率方
法证明组合等式
06 1 . 2 . 四 考试运气 问
5
区间估计
5.1.4一个正态总体 参数的区间估计
4
2
5.1.2极大似然估计 法
3
5.1.3置信区间的概 念
第5章参数估计
5.2应用案例分析
01 5 .2 .1 购货方的 决策 02 5 .2 .2 极大似然 估计
在风险估测中的应用