第四章 因式分解 复习

合集下载

第四章因式分解复习课件北师大版数学八年级下册

第四章因式分解复习课件北师大版数学八年级下册
把多项式ma+mb+mc分解成两个因式的乘积的情
势,其中一个因式是各项的公因式m,而另一个因式
是(a+b+c),即ma+mab+mc=m(a+b+c),而
(a+b+c)正好是ma+mb+mc除以m所得的商,提
公因式法分解因式实际上是逆用乘法分配律.
6.多项式15m3n2+5m2n-20m2n3中各项的公因式是 C
2.下列各式从左到右的变形,正确的是( C )
A.﹣x﹣y=﹣(x﹣y)
B.﹣a+b=﹣(a+b)
C.(y﹣x)2=(x﹣y)2
D.(a﹣b)3=(b﹣a)3
二、因式分解的实质
与整式的乘法互为逆运算
整式乘法
因式分解
3、下列各式从左到右的变形是分解因式的是( C )
.A.a(a-b)=a2-ab; B.a2-2a+1=a(a-2)+1C.x2
B.①③
C.②④
D.②③
16.因式分解(2x+3)2-x2的结果是( D )A.3(x2+4x+3)
B.3(x2+2x+3)
C.(3x+3)(x+3)
D.3(x+1)(x+3)
17.已知多项式x2+a能用平方差公式在有理数范围内分
解因式,那么在下列四个数中a可以等于( C )A.9
B.4
C.-1
D.-2
13.因式分解:
(3)x(x2-xy)-(4x2-4xy).
解: 原式=x(x2-xy)-4(x2-xy)
=(x2-xy)(x-4)
=x(x-y)(x-4)

第四章 因式分解复习

第四章 因式分解复习
因式分解的一般步骤:
第一步:先看多项式各项有无公因式,
如有公因式则要先提取公因式; 第二步:再看有几项,
如两项,则考虑用平方差公式;
如三项,则考虑用完全平方公式;
第三步:最后看各因式能否再分解,
如能分解,应分解到不能再分解为止。
公式法
用平方差公式分解因式的关键:多项式是否
能看成两个数的平方的差;
2 2 (x+y-2) (x+y) -4(x+y)+4=____________.
(x-2)(3x+1) 3x(x-2)-(2-x)=__________
选一选:
1. 下列多项式能分解因式的是( A. x2-y B. x2+1
x2+y+y 2
D
)
C. D. x2-4x+4 2. 下列多项式中,能用提取公因式分解因式的是( 2+2x 2-y x x A. B. C.
2

5, c 2
B、b
5, c 2
5, c 2
D、b
5, c 2
练一练:
1、把下列多项式分解因式:
a(a-b) a2-ab=_________. 3ab(a+3b) 3a2b+9ab2=__________. (a-2)2 a2-4a+4=__________.
2
(x+2y)(x-2y) x2-4y2=__________.
( x 3) x2-2 3x+3=__________.
( a b) 14( a b) 49
2
[(a b) 7]
2
2、将下列各式分解因式: (1)18a2c-8b2c

第四章因式分解的复习与巩固

第四章因式分解的复习与巩固
温馨提示:所求代数式能不能进行因式分解,分解 解:原式=xy(a2-2ab+b2) 成含有xy,和a-b的样子。然后代入求值。 =xy(a-b)2 当xy=5,a-b=6时 原式=5×62 =180
知识点②
与因式分解有关的开发题
1 1 1、给出三个多项式: x2+2x-1, x2+4x+1, 2 2 1
=(1-2)+(2-3)+…+(999-1000) =1-1000
=-999
今天我们的收 获

知识点①
巧用整体思想因式分解
1、因式分解:(x+2)(x+4)+x2-4
温馨提示:全部展开计算费事哦,能不能把某些 解原式=(x+2)(x+4)+(x+2)(x-2) 部分看成一个整体呢? =(x+2)(x+4+x-2)
=(x+2)(2x+2) =2(x+2)(x+1)
2、已知xy=5,a-b=6,求xya2+xyb2-2abxy的值
第四章因式分解
复习与巩固
执教:桐林中学曾志谋
要点归纳
一、因式分解
1、因式分解:把一个多项式化成几个整式 乘积 的形 式叫做因式分解。 2、因式分解的方 法:(1) 提公因式法 ;(2) 运用公式法
.
3、因式分解的一般步骤:
(1)如果一个多项式各项有公因式,一般应 先 。 提公因式
(2)如果一个多项式各项没有公因式,一般应先 考虑 运用公式法 ; 如果多项式有两项应考虑 用 平方差公式 应考虑用 完全平择你喜欢的两个多项式进行加法 x 2 运算,并把结果因式分解。

北师大版八年级数学下册第四章因式分解小结与复习课件

北师大版八年级数学下册第四章因式分解小结与复习课件

⑸(2x+y)2-2(2x+y)+1
(6) (x-y)2 - 6x +6y+9
解:原式=(2x+y-1)2
解:原式=(x-y)2-6(x-y)+9 =(x-y-3)2
(8) (x+1)(x+5)+4
解:原式=(x-y)2-6(x-y)+9 =(x-y-3)2
2. 若 100x2-kxy+49y2 是一个完全平方式, 则k= ( ±140)
3.计算(-2)101+(-2)100
解:原式=(-2)(-2)100+ (-2)100
=(-2)100(-2+1) =2100·(-1)=-2100
4.已知:2x-3=0,求代数式x(x2-x)+x2(5-x)-9的值
解:原式=x3-x2+5x2-x39
=4x2-9 =(2x+3)(2x-3) 又∵ 2x-3=0, ∴ 原式=0
三分 ③再考虑分组分解法
四查 ④检查:特别看看多项式因式 是否分解彻底
课堂小结
因 式 分 解
概念
与整式乘法的关系
提公因式法
方法 公式法
平方差公式
完全平方差公式
提:公因式 步骤 运:运用公式
查:检测结果是否彻底
首页
随堂训练
1.把下列各式分解因式:
(1) 4x2-16y2
(2) x2+xy+ y2.
第四章 因式分解
小结与复习
知识 归纳
复习点一 (一)分解因式的概念:
把一个多项式化成几个整式的积的情势, 叫做多项式的分解因式。也叫做因式分解。
即:一个多项式 →几个整式的积

北师大版八年级数学下册第四章因式分解章末复习课件(共42张)

北师大版八年级数学下册第四章因式分解章末复习课件(共42张)
答案 C
章末复习
母题2 (教材P104复习题第1题) 把下列各式因式分解: (1)7x2-63; (2)a3-a; (3)3a2-3b2; (4)y2-9(x+y)2; (5)a(x-y)-b(y-x)+c(x-y); (6)x(m+n)-y(n+m)+(m+n); (7)(x+y)2-16(x-y)2; (8)a2(a-b)2-b2(a-b)2; (9)(x+y+z)2-(x-y-z)2; (10)(x+y)2-14(x+y)+49.
章末复习
相关题1 把下列各式分解因式: (1)5x2-15xy+10xy2; (2)a(x-2)+(2-x)2; (3)2x2y-8xy+8y; (4)(m2+n2)2-4m2n2.
章末复习
解:(1)原式=5x(x-3y+2y2). (2)原式=(x-2)(a+x-2). (3)原式=2y(x2-4x+4)=2y(x-2)2. (4)原式=(m2+n2+2mn)(m2+n2-2mn)=(m+n)2·(m-n)2.
相关题3 求证:不论x取何实数, 多项式-2x4-12x3-18x2的值都不会是 正数.
证明:原式=-2x2(x2+6x+9)=-2x2(x+3)2. ∵-2x2≤0,(x+3)2≥0, ∴-2x2(x+3)2≤0, ∴不论 x 取何实数,原式的值都不会是正数.
章末复习
专题四 因式分解的应用
【要点指点】 因式分解不仅在数值计算、代数式的化简求值等方 面有广泛的应用, 在解决实际问题时也同样重要.通过学习和应用 因式分解, 能使我们的视察能力、运算能力、逻辑思维能力、探究 能力得到提高.

第四章《因式分解》复习课件—北师大版数学八年级下册

第四章《因式分解》复习课件—北师大版数学八年级下册

C
A.mn
B.m2n
)
C.6mn
D.3mn
4.下列因式分解错误的是( D )
A.x2-9=(x+3)(x-3)
B.x2+4x+4=(x+2)2
C.a2b-ab2=ab(a-b)
D.3x(x-3)+(3-x)=(x-3)(3x+1)
5.因式分解:2ab-8b=
2b(a-4)
.
6.因式分解:(x-3)-2x(x-3)=
【例8】将下列各式因式分解:
(1)a2-6ab+9b2=
(a-3b)2
(2)(a+b)2+8(a+b)+16=
;
(a+b+4)2 .
8.将下列各式因式分解:
2

(1)a +a+ =

2

+

(2)(x+y) -2(x+y)+1=

;
(x+y-1)2
.
知识要点7 提公因式法与完全平方公式法的综合
知识要点9 利用因式分解化简求值
【例11】(1)已知a+b=5,ab=6,则a2b+ab2的值为
30
;
(2)先因式分解,再求值:(2x+3y)2-(2x-3y)2,其中x=2,y=5.
解:原式 = ( + ) + ( − ) ( + ) − ( − )
=4x·6y=24xy,
7
9
13
解:因为817-279-913=( ) − ( ) − ( )
=328-327-326=326×32-326×3-326×1

北师大版八年级下册数学--第四章 因式分解复习课件

北师大版八年级下册数学--第四章 因式分解复习课件
注:1.定系数;2.定字母;3.定指数
典例分析
例2:1.找出下列各多项式中各项的相同因式:
(1)2ab2+ 4abc
2ab
(2)-m2n3 -3n2m3
-m2n2
(3)2x(x+y)+6x2(x+y)2 2x(x+y)
2.用提公因式法分解因式
8a3b2-12ab3c
=4ab2 ∙2a2 - 4ab2 ∙ 3bc
m(a+b+c) 互逆
典例分析 一
例1 . 下列变形中是因式分解的是(D ).
A. x2+3x+4=(x+1)(x+2)+2 × 不是乘积形式 B . (3x-2)(2x+1)=6x2-x-2 × 是整式乘法 C . 6x2y3=3xy ·2xy2 × 单项式
D . 4ab+2ac=2a(2b+c)√
例7. 因式分解: (1) (a+b)(a-b)-a-b
解 = (a+b)(a-b)-(a+b) = (a+b)(a-b-1)
(3)(x—1)(x—3)+1
解 = (x2-4x+3)+1 = x2-4x+4 = (x-2)2
(2) (x—y)2-4(x—y—1)
解 = (x—y)2-4(x—y)+4 = (x-y-2)2
解 = (a-b)2(a2 -b2)
=(a2-ab-ab+b2)(a2-ab+ab-b2)
=(a-b)2(a-b)(a+b)
=(a2-2ab+b2)(a2-b2)
=(a-b)3(a+b)
=(a-b)2(a-b)(a+b) =(a-b)3(a+b)

【数学课件】七年级数学下册第四章因式分解复习

【数学课件】七年级数学下册第四章因式分解复习

(a b)(a b)
因式 分解
整式乘法
(a b)2
a2 2ab b2
(a b)2
是互逆的关系.一定是恒等变形
下列变形是否是因式分解?为什么?
(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2; (3)xn(x2-x+1)=xn+2-xn+1+xn.
(-a-b)n = -(a+b)n (n是奇数)
例1 用提公因式法将下列各式因式分解. 4p(1-q)3+2(q-1)2
2. 公式法
(1)平方差公式:a2-b2=(a+b)(a-b).
例如:4x2-9=(2x)2-32=(2x+3)(2x-3). (2)完全平方公式:a2±2ab+b2=(a±b)2 其中,a2±2ab+b2叫做完全平方式.
例如:4x2-12xy+9y2 =(2x)2-2·2x·3y+(3y)2=(2x-3y)2.
例2 把下列各式分解因式.
(1)x²y²-4xy+4 (2) m4-1 (3) 3x³+6x²y+3xy² (4) (a+ b+c)2-(a+b-c)2
因式分解常用方法
提公因式法
公式法
平方差公式 完全平方公式
1、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之毁灭。——卢梭
好好学习,天天向上。 2、教育人就是要形成人的性格。——欧文
3、自我教育需要有非常重要而强有力的促进因素——自尊心、自我尊重感、上进心。——苏霍姆林斯基 4、追求理想是一个人进行自我教育的最初的动力,而没有自我教育就不能想象会有完美的精神生活。我认为,教会学生自己教育自己,这是一种

第四章-因式分解(复习课)教学设计精选全文完整版

第四章-因式分解(复习课)教学设计精选全文完整版

可编辑修改精选全文完整版
第四章因式分解(复习课)教学设计
【教学目标】
1.进一步理解因式分解的概念和意义,了解因式分解和整式乘法的关系——方向相反的恒等变形;
2.复习提公因式法、公式法因式分解的过程,会综合运用提公因式法、公式法分解因式;
【教学重点】综合运用提公因式法、公式法分解因式.
【教学难点】根据题目的结构特点,选择合理的方法进行因式分解.
【教学思路】情境导入→知识回顾→例题讲解→练习巩固→中考链接→小结→作业布置
【教学过程】
环节一:情境导入
环节三:例题讲解
1.本单元复习题。

浙教版七年级数学下册 第四章 因式分解复习教案

浙教版七年级数学下册 第四章 因式分解复习教案

第四章 因式分解一、提公因式法.知识点1:分解因式的定义1.分解因式:把一个多项式化成几个_整式的乘的积,这种变形叫做分解因式,它与整式的 乘法互为逆运算。

分解因式需知;(1)只有多项式才能够分解因式,单项式不能分解因式(2)结果必须是整式,不能有分式出现(3)结果必须是积的形式【经典例题】判断下列从左边到右边的变形是否为分解因式:①8)3)(3(892+-+=+-x x x x ( ) ②)49)(49(4922y x y x y x -+=- ( )③ 9)3)(3(2-=-+x x x ( ) ④)2(222y x xy xy xy y x -=+- ( )知识点2:公因式公因式: 定义:我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式。

公因式的确定:(1)符号: 若第一项是负号则先把负号提出来(提出负号后括号里每一项都要变号)(2)系数:取系数的最大公约数;(3)字母:取字母(或多项式)的指数最低的;(4)所有这些因式的乘积即为公因式;【经典例题】:1错误!未指定书签。

.的公因式是多项式 963ab - aby abx -+_________2错误!未指定书签。

.多项式3223281624a b c a b ab c -+-分解因式时,应提取的公因式是( )A .24ab c -B .38ab -C .32abD .3324a b c3. 342)()()(n m m n y n m x +++-+的公因式是__________知识点3:用提公因式法分解因式提公因式法分解因式:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成几个因式的乘积,这种分解因式的方法叫做提公因式法。

1可以直接提公因式的类型:(1)3442231269b a b a b a +-=________________; (2)11n n n a a a +--+=___________(3)(3)542)()()(b a b a y b a x -+---=_____________(4)不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x y x y x x y +-++的值2.式子的第一项为负号的类型:(1)①33222864y x y x y x -+- =_______________②243)(12)(8)(4n m n m n m +++-+-=_______(2)若被分解的因式只有两项且第一项为负,则直接交换他们的位置再分解(特别是用到平方差公式时)如: 22188y x +- 【变式练习】1.多项式:aby abx ab 24186++-的一个因式是ab 6-,那么另一个因式是( )y x A 431..+-- y x B 431..-+ C y x 431--- D..y x 431--2.分解因式-5(y -x)3-10y(y -x)33. 公因式只相差符号的类型:公因式相差符号的,要先确定取哪个因式为公因式,然后把另外的只相差符号的因式的负号提出来,使其统一于之前确定的那个公因式。

北师大版八年级下册数学第四章因式分解复习课件(WPS打开)

北师大版八年级下册数学第四章因式分解复习课件(WPS打开)

=x(2+x)(2-x).
答案:x(2+x)(2-x)
【中考集训】
1.因式分解:2a2-8=
.
【解析】2a2-8=2(a2-4)
=2(a+2)(a-2).
答案:2(a+2)(a-2)
2.因式分解:4-a2=
.
【解析】4-a2=(2+a)(2-a).
答案:(2+a)(2-a)
3.因式分解:x2y-y=
=(m-n)2-2(m-n)
=(m-n)(m-n-2).
因为m-n=-1,
所以原式=(-1)×(-1-2)=3.
3.若a2+2a=1,则2a2+4a+1=
.
【解析】2a2+4a+1
=(2a2+4a)+1
=2(a2+2a)+1
=2×1+1
=3.
答案:3
4.已知a+b=4,a-b=3,则a2-b2=
答案:m(m-5)
【中考集训】
1.因式分解:x2+xy=
.
【解析】x2+xy=x·x+x·y
=x(x+y).
答案:x(x+y)
2.因式分解:m2-2m=
.
【解析】m2-2m=m(m-2).
答案:m(m-2)
3.多项式ax2-a与多项式x2-2x+1的公因式是
.
【解析】ax2-a=a(x+1)(x-1);
x2-2x+1=(x-1)2,
则公因式为x-1.
答案:x-1
4.因式分解:2xy-4x2=
.
【解析】原式=2x(y-2x).

北师大版数学八年级下册第四章 因式分解 复习课件(共19张PPT)

北师大版数学八年级下册第四章 因式分解 复习课件(共19张PPT)
解(1)32014 - 32013 = 32013×(3 - 1) = 2×32013; (2)(-2)101 + (-2)100+299 = -299(22-2-1)= -299.
6.如图,某农场修建一座小型水库,需要 一种空心混凝土管道,它的规格是内径 d = 45 cm,外径 D =75 cm,长 l =300 cm.利用因式 分解计算浇制一节这样的管道约需多少立方 米的混凝土(π取3.14,结果精确到0.01 m3).
Dd l
Dd
l
解:[π·(
D 2
)2 -
π·(
d 2
)2]·l
=
πl 4
(D2 -
d2)
=
πl 4
(D
+
d)(D
-
d).
当d=45 cm,D=75 cm,l=300 cm时,
体积 = 847 800(cm3) ≈ 0.85(m3).
第四章 因式分解
北师版 八年级下册
因式分解的定义
把一个多项式化成几__个__整__式__的_积____的 形式,这种变形叫做把这个多项式因式分 解,也叫做把这个多项式分解因式.
因式分解与整式乘法的关系
因式分解 多项式 整式乘法 几个整式的积
因式分解与整式乘法为互逆变形
因式分解的方法
1.提公因式法 如果一个多项式的各项含有公因式,那
4 3
,y
=

-1 时,
2
原式= 9.
(2)
a
+ 2
b
2
-
a-b 2
2
,其中a
=
-1 8
,
b
=
2;
解:原式

第四章因式分解复习

第四章因式分解复习

第四章 因式分解学习目标:知道因式分解的意义。

明白因式分解与整式乘法的关系。

会用提取公因式法分解因式。

清楚添括号法则。

会用平方差公式分解因式。

会用完全平方公式分解因式。

初步会综合运用因式分解知识解决一些简单的数学问题。

重点与难点:重难点:会综合运用因式分解知识解决数学问题。

知识点1 基本概念把一个多项式化成 的形式,这种变形叫做把这个多项式 ,也叫做把这个多项式 。

如:·提公因式法多项式ma+mb+mc 中的各项都有一个公共的因式 ,我们把这个因式 叫做这个多项式的公因式.ma+mb+mc= 就是把ma+mb+mc 分解成两个因式乘积的形式,其中一个因式是各项的公因式 ,另一个因式 是ma+mb+mc 除以m 所得的商,像这种分解因式的方法叫做提公因式法.例如:x 2 – x = x ( ),8a 2b-4ab+2a = 2a( )·公式法(1)平方差公式:a 2-b 2=( )( ).例如:4x 2-9=( )2-( )2=( )( ).(2)完全平方公式:a 2±2ab+b 2=( )2例如:4x 2-12xy+9y 2=( )2A 层练习1.下列由左到右的变形哪些是因式分解,哪些不是(是的打“∨”,•不是的打“×”):ma+mb+mc m(a+b+c)( )( )(1)(x+3)(x-3)=x 2-9; ( ); (2)x 2+2x+2=(x+1)2+1;( )(3)x 2-x-12=(x+3)(x-4);( ); (4)x 2+3xy+2y 2=(x+2y )(x+y );( )(5)1-21x =(1+1x )(1-1x );( ); (6)m 2+1m +2=(m+1m )2;( )(7)a 3-b 3=(a-b )(a 2+ab+b 2).( )B 层练习2、检验下列因式分解是否正确?(1)2ab 2+8ab 3=2ab 2 (1 + 4b) ( )(2) 2x 2-9= (2x+3)(2x-3) ( )(3) x 2-2x-3=(x-3)(x+1) ( )(4) 36a 2-12a-1= (6a-1) 2 ( )C 层练习1.若 x 2+mx-n 能分解成(x-2)(x-5),则m= ,n= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 因式分解
学习目标:
知道因式分解的意义。

明白因式分解与整式乘法的关系。

会用提取公因式
法分解因式。

清楚添括号法则。

会用平方差公式分解因式。

会用完全平方公式分
解因式。

初步会综合运用因式分解知识解决一些简单的数学问题。

重点与难点:
重难点:会综合运用因式分解知识解决数学问题。

知识点1 基本概念
把一个多项式化成 的形式,这种变形叫做把这个
多项式 ,也叫做把这个多项式 。

如:
·提公因式法
多项式ma+mb+mc 中的各项都有一个公共的因式 ,我们把这个因式
叫做这个多项式的公因式.ma+mb+mc= 就是把ma+mb+mc 分解成两个
因式乘积的形式,其中一个因式是各项的公因式 ,另一个因式 是ma+mb+mc 除以m 所得的商,像这种分解因式的方法叫做提公因式法.
例如:x 2 – x = x ( ),
8a 2b-4ab+2a = 2a( )
·公式法
(1)平方差公式:a 2-b 2=( )( ).
例如:4x 2-9=( )2-( )2=( )( ).
(2)完全平方公式:a 2±2ab+b 2=( )2
例如:4x 2-12xy+9y 2=( )2
A 层练习
ma+mb+mc m(a+b+c)
( )
( )
1.下列由左到右的变形哪些是因式分解,哪些不是(是的打“∨”,•不是的打
“×”):
(1)(x+3)(x-3)=x 2-9; ( ); (2)x 2+2x+2=(x+1)2+1;( )
(3)x 2-x-12=(x+3)(x-4);( ); (4)x 2+3xy+2y 2=(x+2y )(x+y );( )
(5)1-21x =(1+1x )(1-1x );( ); (6)m 2+1m +2=(m+1m
)2;( ) (7)a 3-b 3=(a-b )(a 2+ab+b 2).( )
B 层练习
2、检验下列因式分解是否正确?
(1)2ab 2+8ab 3=2ab 2 (1 + 4b) ( )
(2) 2x 2-9= (2x+3)(2x-3) ( )
(3) x 2-2x-3=(x-3)(x+1) ( )
(4) 36a 2-12a-1= (6a-1) 2 ( )
C 层练习
1.若 x 2+mx-n 能分解成(x-2)(x-5),则m= ,n= 。

2.x 2-8x+m=(x-4)( ),且m= 。

知识点2 基本方法
因式分解的方法:1、
2、 ○
1 ○
2 3、
1.公因式确定
系数、字母、相同字母指数
2.变形规律:
(1)x-y= (y-x) (2) -x-y= (x+y)
(3) (x-y)2= (y-x)2 (4) (x-y)3= (y-x)3
知识点3 一般步骤
(1)确定应提取的公因式;
(2)多项式除以公因式,所得的商作为另一个因式;
(3)把多项式写成这两个因式的积的形式。

挑战自我
将下列各式分解因式:
(1) 3am²-3an²
(2) 3x³+6x²y+3xy²
(3) 18a²c-8b²c
(4) m4- 81n4
知识点4 拓展应用
1.简化计算
(1)562+56×44 (2)1012 - 992
2.解方程
x³-9x=0
3.多项式的除法
(2mp-3mq+4mr) ÷(2p-3q+4r)=
变式:20052+2005能被2006整除吗?
课堂小结:
通过这节课的复习你有哪些新的收获与感受?说出来与大家一起分
享!
达标检测
1、因式分解
(1) -24x3–12x2 +28x (2) m(a-3)+2(3-a)
(3) 4x2-9y2(4) 1-x2+2xy-y2
2.多项式x2n-x n提取公因式x n后另一个因式是()
A.x n-1 B.x n C.x2n-1-1 D.x2n-1
3.若(2x)n-81=(4x2+9)(2x+3)(2x-3),则n=( )
A.2
B.4
C.6
D.8
4.计算:210+(-2)11的结果是()
A.210B.-210C.2 D.-2
5.如果2x2+mx-2可因式分解为(2x+1)(x-2),那么m的值是() A.-1 B.1 C.-3 D.3
6.计算:7.6×199.8+4.3×199.8-1.9×199.8
7.计算:9992+999.
8.已知x=56,y=44,求代数式1
2
x2+xy+
1
2
y2的值.
9.(拔高题)已知x+y=1,xy=-1,则x2+y2=_______
已知x-y=1,xy=2,则 x3y-2x2y2+xy3=_______.。

相关文档
最新文档