不可不知的中国古代数学:从高斯算1 2 3 … 100谈起
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不可不知的中国古代数学:从高斯算1 2 3 … 100谈起。。。
中国古代数学究竟有多牛逼
编者按:本报告基于林开亮博士参加由《知识就是力量》杂志社主办的2016年度“全国中学生数学/物理/化学科普竞赛”数学科普讲座的通俗报告《从杨辉三角到李善兰垛积术》和他在西北农林科技大学做的通俗报告《从高斯算
1+2+3+...+100 谈起》。感谢林老师授权【超级数学建模】发表。
高斯的故事
我们的故事从德国大数学家高斯(Gauss)讲起:传说中的高斯解法:利用对称性首尾相加求和
事实上,高斯用的是数学归纳法;他证明了一个更一般的结果阿基米德的故事
不过高斯并不是最早得到公式(1)的人,至少古希腊的阿基米德就知道了(1),事实上,阿基米德还得到了下述平方和求和公式阿基米德有一句名言流传至今:给我一个(地球外)支点,我可以翘起整个地球!
你在开门时、用钳子夹核桃就已经应用了这个杠杆原理!
阿基米德与高斯之间数学家:朱世杰
一个自然的问题是:历史上第一个给出这类问题解法的,是元代数学家朱世杰。特别地,对上述问题,他给出了答案:
这比欧洲最早得到这个公式的德国数学家莱布尼茨早了300多年。今年恰逢莱布尼茨(1646-1716)逝世300周年。朱世杰:我们的主人公朱世杰就是我要讲的故事的主人公,我们不仅仅要介绍他是如何得到立方求和公式(3)的,还要介绍他的方法(裂项求和)如何可以求出一般的前n个数的p次方的和,即如何得到这样的公式:朱世杰现在对大家来说也许只是个陌生的名字,但我希望报告结束后你会得到这样的认识,他位列古代最伟大数学家的行列。
朱世杰生活的大时代
世界
中世纪(Middle Ages,大约500--1400 )的漫漫长夜长达近千年,代表事件分别是罗马帝国的灭亡与文艺复兴。中世纪的数学最辉煌的地域是中国(宋元四大家)、印度(婆罗摩笈多)、波斯(海亚姆)、意大利(斐波那契)。
翻译传播希腊与印度的数学和科学。
中国
宋元(960-1279-1368)四百年是中国古代数学的黄金时代,涌现出四位大数学家,人称“宋元四大家”:
南宋:李冶(1192-1279)、秦九韶(1202-1261)、杨辉(约1238 -1298)元:朱世杰(1249-1314)四人皆有著作,成就了中国古代数学的最高峰
评注1:美国著名科学史家萨顿(G. Sarton,1884-1956)
说过,秦九韶是“他那个民族,他那个时代最伟大的数学家之一。”这个评价同样适用于李冶和朱世杰。
评注2:“宋元四大家”中真正能称得上“大家”只有三位——秦九韶、李冶和朱世杰,而杨辉主要是数学教育家,把他算进来有点牵强。此外,在四人中,我们对杨辉的生平也是了解最少的。
宋元四大家
1、宋元四大家之秦九韶
秦九韶,字道古,生于安岳(今四川安岳县)。南宋数学家、官员。代表作《数书九章》18卷(我表示遗憾:北师大版高中数学教材必修5 第51页居然说成《数学九章》!)。
成就:①中国剩余定理(秦九韶定理),比西方的欧拉早500年。它包含在一个称为“大衍总数术”的巧妙算法中。②高次方程的数值解法,比西方的霍纳早500年。③三角形的海伦--秦九韶面积公式(据说这公式阿基米德也已经知道)
2、宋元四大家之李冶
李冶,字仁卿,栾城(今河北栾城县)人,南宋数学家、天文学家、历史学家,进士出身,曾有官职,后归隐封龙山收徒讲学。
著有《测圆海镜》、《益古演段》;
其贡献在于引入了名为“天元”(相当于“嫌疑人X”)的未知数概念,创立了利用未知数建立方程的方法(天元术),为几
何的代数化铺平了道路。
此外,李冶还与秦九韶各自独立地引进记号〇表示空位。至此,中国十进制完善了。
3、宋元四大家之杨辉
杨辉,字谦光,临安(今杭州)人,南宋数学家和数学教育家,曾担任地方官。
著有《详解九章算法》、《日用算法》、《杨辉算法》;
成就:发扬光大了沈括、贾宪的数学成就。此外,杨辉还是中国第一个系统研究幻方(Magic square)的人。最早的幻方也出自中国,洛书,又称九宫格。它也出现在金庸的《射雕英雄传》中,请看以下视频:①将沈括《梦溪笔谈》中的“隙积术”普及,作为特例,他不仅给出了阿基米德的求和公式(2),还给出了下述三角垛的求和公式沈括、杨辉所考虑的这类“堆垛”问题的推广,用现代术语来说即“高阶等差数列的求和”。这一问题后来被朱世杰所创立的“垛积招差术”彻底解决,他所依赖的工具之一就是杨辉的另一项成就。
②从贾宪(现已失传)的工作中发掘出二项式系数的“贾宪三角”关系,今人称之为“杨辉三角”,因为它出现在杨辉的《详解九章算法》中。西方称之为帕斯卡三角,事实上帕斯卡比杨辉都晚生了近400年。先后有许多数学家独立发现这一结果,都说明了,这是一个基本的发现。
杨辉三角最基本的性质是(杨辉恒等式):
*维基百科中的帕斯卡三角:
https:///wiki/Pascal%27s_triangle
4、宋元四大家之朱世杰
朱世杰,字汉卿,燕山(今北京)人,元代数学家、教育家,毕生从事数学教育。
著有《算学启蒙》、《四元玉鉴》;
当代著名数学家吴文俊(中科院院士、2000年国家最高科学技术奖得主)对《四元玉鉴》有高度评价:这本书标志着我国传统数学的顶峰。
吴文俊关于数学机械化的开创性工作,得益于朱世杰《四元玉鉴》求解多元多项式方程组的工作(“四元术”)以及20世纪美国数学家李特(J. F. Ritt)的工作。成就:①将李冶的天元术发展为四元术,用以求解多元多项式方程组。所谓四元即四个未知数的名称,称之为天、地、人、物。正是这项成就启发了吴文俊开创了数学机械化的工作。
小引:清代数学家李善兰将26个拉丁字母依次翻译为十天干(甲、乙、丙、丁、戊、己、庚、辛、壬、癸)、十二地支(子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥)和四元(天、地、人、物)。因此天、地、人、物恰好对应w,x,y,z,这几个字母常用来表示未知数。
Question1:在干支纪年中,今年(2016)是什么年?提示,你记得甲午战争是哪一年吗?或者你看过这个段子吗?