(完整版)弹性力学第十一章弹性力学的变分原理

合集下载

弹性力学基础知识

弹性力学基础知识

06
弹性力学的有限元法
有限元法的基本概念
有限元法是一种数值分析方法,通过将复杂的 物理系统离散化为有限个简单元(或称为元素) 的组合,来近似求解复杂的物理问题。
这些简单元在节点处相互连接,形成一个离散 的系统,其行为可以通过物理定律和数学模型 进行描述。
有限元法的核心思想是将连续的求解域离散化, 将复杂的边界条件和应力状态转化为有限个单 元的组合。
弹性力学基础知识
• 弹性力学概述 • 弹性力学的基本假设 • 弹性力学的基本方程 • 弹性力学的基本问题 • 弹性力学的能量原理与变分原理 • 弹性力学的有限元法
01
弹性力学概述
定义与特点
定义
弹性力学是一门研究弹性物体在外力 作用下变形和内力的科学。
特点
弹性力学主要关注物体在受力后发生 的变形,以及这种变形如何影响物体 的内力和应力分布。
在声学领域,有限元法可以用于分析声音的传播、噪音的来源 等。
THANKS
感谢观看
有限元法的求解步骤
单元分析
对每个单元进行受力分析,建 立单元的刚度方程。
求解方程
使用数值方法(如直接法、迭 代法等)求解整体刚度方程, 得到节点的位移和应力。
分析模型建立
首先需要建立待分析系统的数 学模型,包括对系统进行离散 化、定义节点、建立方程等。
系统组装
将所有单元的刚度方程组装成 整体的刚度方程,同时引入边 界条件和载荷。
弹性力学的能量原理与变分原理
弹性力学的能量原理
总结词
弹性力学的能量原理是描述物体在外力 作用下能量变化的重要理论,它为解决 弹性力学问题提供了基础框架。
VS
详细描述
弹性力学的能量原理指出,一个弹性系统 在外力作用下,其能量变化等于外力所做 的功与物体形变所吸收的功之和。这个原 理在解决弹性力学问题时非常有用,因为 它可以将复杂的物理现象转化为数学上的 能量平衡问题。

弹性力学的变分解法

弹性力学的变分解法

七、弹性力学参量的下标表示法前面给出的力分量、应力分量、应变分量和位移分量,其表示方法引用的是记号法;这是一种公认的弹性力学参量表示方法。

下标表示法书写简洁,便于力学问题的理论推导。

1. 下标符号具有相同性质的一组物理量,可用一个带下标的字母表示:如:位移分量u, v, w 表示为u 1, u 2, u 3,缩写为u i (i =1,2,3)坐标x, y, z 表示为x 1, x 2, x 3,缩写为x i (i =1,2,3)单位矢量i, j, k 表示e i (i =1,2,3)。

体力分量X, Y, Z 表示为X 1, X 2, X 3,缩写为X i (i =1,2,3)应力分量:z zy zx yz y yxxz xy x 可表示为:333231232221131211 缩写为:)3,2,1;3,2,1( j i ij4. 克罗内克(Kroneker)符号具有如下性质 )cos(j i ij e ej i e eji ji ij 01 100010001333231232221131211 ij ij (1)3ii j i ij A A ij 也称换名算子同理:ijkj ik A a (2)选取可能位移:十、利用位移变分原理的近似解法m mm m mm mm m w C w w v B v v u A u u 000其中系数是完全任意的m m m C B A 、、1、瑞雷—里兹法(1)是在边界上满足位移边界条件的设定函数000w v u 、、(2)是在边界上为零的设定函数m m m w v u 、、可见,由(1)、(2)选取出来的是可能位移w v u 、、。

弹性力学-011第十一章--能量原理与变分法

弹性力学-011第十一章--能量原理与变分法
§11-4 位移变分法应用于平面问题 §11-5 应力变分方程 §11-6 应力变分法 §11-7 应力变分法应于平面问题
§11-8 应力变分法应于扭转问题 §11-9 解答的唯一性 §11-10 功的互等定理 §11-11 弹性力学的广义变分原理简介
§11-0 引 言
1. 弹性力学问题的微分提法及其解法:
U 1 2
xxyyz zyzy z zxzx xyxy d xd
若用张量表示:
(c)
形变比能:
U1 12ijij
整体形变势能: U12 ijijdxdydz
2.弹性体的形变势能的4种形式:
1. 一般形式
U 1 2
xxyyz zyzy z zxzx xyxy d xd
求解方法:
从研究微小单元体入手,考察其平衡、
变形、材料性质,建立基本方程:
(1)按位移求解
(1)平衡微分方程
基本方程: (a)以位移为基本未知量
ij,i Xj 0
的平衡微分方程;
(2)几何方程
(b)边界条件。
(2)按应力求解
定 解
ij 12(ui,j uj,i)
基本方程: (a)平衡微分方程;
问 (3)物理方程 题
O
l l
三向应力状态:
P
x
一点的应力状态:
x,y,z,y,zzx ,x y
zy xy
z zx yx y
xz yz
x
三向应力状态:
一点的应力状态: x,y,z, yz,zx,xy
由能量守恒原理,形变势能的值与弹性体受力的次序
zy xy
z zx yx y
无关,只取决于最终的状态。
假定所有应力分量与应变分量全部按同样的比例增加, 此时,单元体的形变比能:

弹性力学的变分原理和应用

弹性力学的变分原理和应用

弹性力学的变分原理和应用1. 弹性力学的基本原理•弹性力学是研究物体在受力后发生形变,但受力取消后又能恢复原状的力学学科。

•弹性力学的基本原理包括胡克定律、平衡条件和应变能最小原理。

1.1 胡克定律•胡克定律是描述弹性体材料内部应力和应变之间关系的基本规律。

•胡克定律表述为应力与应变之间成正比,且比例系数为弹性模量。

•弹性模量是衡量材料弹性性能的物理参数,常见的有杨氏模量、剪切模量等。

1.2 平衡条件•在弹性力学中,物体达到平衡时需要满足平衡条件。

•平衡条件包括力的平衡条件和力矩的平衡条件。

力的平衡条件要求合外力为零,力矩的平衡条件要求合外力矩为零。

1.3 应变能最小原理•应变能最小原理是变分法在弹性力学中的应用。

•应变能是描述物体变形程度的物理量,应变能最小原理认为在给定边界条件下,物体的平衡状态对应的应变能应该是极小值。

2. 弹性力学的变分原理•变分原理是弹性力学中一种重要的数学方法,用于研究力学系统的平衡和稳定性。

•弹性力学的变分原理主要有广义虚功原理和最小势能原理。

2.1 广义虚功原理•广义虚功原理是描述连续介质力学中变形对象平衡状态的数学表述。

•广义虚功原理要求在满足平衡条件的情况下,任意变形状态与原始状态之间的虚功总和等于零。

•广义虚功原理能够推导出弹性力学的基本方程,如平衡方程和边界条件。

2.2 最小势能原理•最小势能原理是应变能最小原理在弹性力学中的具体应用。

•最小势能原理认为在给定边界条件下,力学系统的平衡状态对应的势能应该是极小值。

•最小势能原理可以通过变分法推导出与广义虚功原理等价的弹性力学方程。

3. 弹性力学的应用•弹性力学在工程和科学研究中有广泛的应用,以下列举其中一些应用领域。

3.1 结构力学•弹性力学在结构力学领域中应用广泛,用于探索材料的力学性能和结构的稳定性。

•结构力学涉及材料的弹性性质、刚度、变形和应力分布等问题,借助弹性力学的原理可以进行合理的设计和分析。

3.2 地质力学•地质力学研究地球内部岩石和土壤的力学性质及其变形行为。

弹性力学 能量原理与变分法

弹性力学 能量原理与变分法

如果应力边界条件得到满足,则上式简化为
x x
xy y
zx z
X
u
y y
yz z
xy x
Y v
z z
zx x
yz y
Z wdxdydz
0
这就是位移分量满足位移边界条件及应力边界条件时,
位移变分所应满足的方程,称为伽辽金变分方程。
15
若取位移分量的表达式如下:
u u0 Amum , v v0 Bmvm , w w0 Cm wm
弹性理论问题需要解一系列偏微分方程组,并 满足边界条件,这在数学上往往遇到困难。因此需 要寻求近似的解法。变分法的近似解法是常用的一 种方法。在数学上,变分问题是求泛函的极限问题。 在弹性力学里,泛函就是弹性问题中的能量(功), 变分法是求能量(功)的极值,在求极值时得到弹 性问题的解,变分问题的直接法使我们比较方便地 得到近似解。

U V 0
该式的意义是:在给定的外力作用下,在满足位 移边界条件的各组位移中,实际存在的一组位移应使 总势能为最小。如果考虑二阶变分,进一步的分析证 明,对于稳定平衡状态,这个极值是极小值。因此, 该式又称为极小势能原理。
8
显然,实际存在的位移,除了满足位移边界 条件以外,还应当满足位移表示的平衡方程和应 力边界条件;现在又看到,实际存在的位移,除 了满足位移边界条件外,还满足位移变分方程。 而且,通过运算,还可以从位移变分方程导出用 位移表示的平衡微分方程和应力边界条件。于是 可见:位移变分方程可以代替平衡微分方程和应 力边界条件。
7
三 极小势能原理
由于虚位移是微小的,因此在虚位移的过程中,
外力的大小和方向可以当做保持不便,只是作用点有 了改变。利用变分的性质,位移变分方程可改写为:

弹性力学的变分原理及其应用pdf

弹性力学的变分原理及其应用pdf

弹性力学的变分原理及其应用弹性力学的基本概念•弹性力学是研究物体在外力作用下产生形变的力学学科。

•弹性力学主要关注物体的弹性变形,即物体在受到外力作用后可以恢复到原始形状的能力。

•弹性力学可以用数学模型来描述物体的变形行为,其中变分原理是一种重要的分析工具。

变分原理的概念•变分原理是数学中的一种重要方法,可以用来求解函数的极值问题。

•在弹性力学中,变分原理是用来求解物体的形变问题的一种方法。

•变分原理通过将弹性力学问题转化为一个变分问题,通过对变分方程进行求解,可以得到物体的形变情况。

弹性力学的变分原理•弹性力学的变分原理基于能量最小化的原理。

•变分原理假设物体的形变状态是能量最小的状态,通过对能量进行变分求解,可以求得物体的形变情况。

•变分原理可以用来推导出弹性力学中的重要方程,如弹性能量密度函数和应力-应变关系等。

变分原理的应用•变分原理在弹性力学中有着广泛的应用。

•变分原理可以用来推导出弹性力学中的基本方程,如胡克定律、拉梅定律和势能函数等。

•变分原理还可以用来求解复杂的边界值问题,如弹性体的静力平衡问题和弹性体的振动问题等。

弹性力学的变分原理应用案例•弹性体的静力平衡问题:通过变分原理可以求解弹性体在给定外力作用下的形变情况,并得到物体的位移场和应力场等信息。

•弹性体的振动问题:通过变分原理可以推导出物体的振动方程,并得到物体的共振频率和振动模态等信息。

•弹性体的材料参数求解:通过变分原理可以推导出物体材料的一些参数,如弹性模量和泊松比等。

总结弹性力学的变分原理是研究物体形变问题的重要方法,并且在弹性力学中有着广泛的应用。

通过对能量的变分求解,可以得到物体的形变情况和应力分布等重要信息。

变分原理不仅可以用来求解弹性体的静态问题,还可以用来求解弹性体的动态问题和材料参数等。

因此,掌握弹性力学的变分原理对于深入理解和应用弹性力学有着重要的意义。

弹性力学的基本方程和变分原理

弹性力学的基本方程和变分原理

3
0.1.3 平面问题中的变形表达 从图 0.1.3 可以看出,平面物体在受力后,其几何形状的改变主要在两个方面:沿各个方向上的 长度变化以及夹角的变化,下面给出具体的描述。 (1) 定义 x 方向的相对伸长量为
P′A′ − PA PA′ − PP′ − PA = PA PA ∂u dx + u + dx − u − dx PA + AA′ − PP′ − PA ∂u ∂x = = = ∂x PA dx = εx
0 ∂ ∂y 0 ∂ ∂x ∂ ∂z 0
0 0 ∂ ∂z T = [ A] 0 ∂ ∂y ∂ ∂x
(0.1.9)
对于各向同性的线弹性材料,用应力表示的本构方程
εx =
1 σ x − µ (σ y + σ z ) E
εy =
εz =
(0.1.11)
称为弹性矩阵。它完全取决于弹性体材料的弹性模量 E 和泊桑比ν 。 表征弹性体的弹性,也可以采用剪切弹性模量 G 和拉梅(Lam'e)常数 λ :
G=
注意到
E , 2 (1 + µ )
λ=
Eµ (1 + µ )(1 − 2µ )
E (1 − µ ) (1 + µ )(1 − 2µ )
σ x σ y σ z T σ σ σ τ τ τ {σ } = = x y z xy yz zx τ xy τ yz τ zx
(0.1.1)
弹性体在载荷作用下,还将产生位移和变形,即弹性体位置的移动和形状的改变。 弹性体内任一点的位移可由沿直角坐标轴方向的 3 个位移分量 u , v , w 来表示。它的矩阵形式是

弹性力学变分原理培训课件

弹性力学变分原理培训课件

弹性力学的基本方程
描述物体的物理性质与外 力的关系。
描述物体在变形过程中形 状的变化。
描述物体在力系作用下的 平衡状态。
平衡方程
几何方程
物理方程
02
变分原理概述
变分法的概念
最小作用量原理
在给定的约束条件下,物理系统的真实运动是使得作用量取极值的路径。
极值条件
在最小作用量原理中,物理系统的真实运动应满足欧拉方程和边界条件。
泛函与变分问题
泛函
泛函是一个函数,其值是另一个函数 在某个特定点上的值。
变分问题
变分问题是指求泛函的极值问题,即 在给定约束条件下,求泛函的极值。
欧拉方程与极值条件
欧拉方程
欧拉方程是变分问题的基本方程,它 描述了物理系统的运动规律。
极值条件
在求解欧拉方程时,需要满足极值条 件,即物理系统的运动应使得泛函取 极值。
实例解析
以有限元软件ANSYS为例,介绍如何使用有限元方法对弹 性问题进行建模、分析和求解。通过具体的实例操作,展 示如何将实际问题转化为有限元模型,并进行求解得到结 构的位移和应力分布。
THANKS
感谢观看
弹性力学变分原理培训课 件
• 弹性力学基础 • 变分原理概述 • 弹性力学中的变分原理 • 变分原理的应用 • 弹性力学变分原理的实例解析
01
弹性力学基础
弹性力学简介
弹性力学
一门研究弹性物体在外力作用下变形和内力的 学科。
弹性力学的重要性
为工程结构的设计、分析和优化提供理论基础。
弹性力学的发展历程
04
变分原理的应用
弹性力学问题的变分形式
弹性力学中的应力、应变和位移等物理量可以通过变分原理转换为对应的泛函极值 问题。

弹塑性力学第11章—变分原理及其应用

弹塑性力学第11章—变分原理及其应用
b
类似可得各阶泛函的变分为
δ J = ∫ δ k Fdx
k a
b
11.1 基本概念
(4)变分法
0 的自变函数 y ( x ),定义
在满足约束条件的容许函数中,求使泛函 J ( y ( x ) ) 取极值
ΔJ = J ( y ( x ) ) − J ( y 0 ( x ) )
J ( y 0 ( x ) ) 为极小值
δE k + δU = δW
11.1 基本概念 对于静力平衡问题,则有
δU = δW
因此,在静力变形计算时,弹性体应变能等于外力做功储存 在变形体中的能量。 弹性体内应变能的计算公式如下
U = ∫ U 0 dV
V
其中U 0是应变能密度
U 0 = ∫ σ ij dε ij
0
ε ij
在一维应力状态下,应变能密度等 于应力-应变关系曲线下方的阴影部分 面积。对线弹性材料,则有 1 U 0 = σ ijε ij 2
1 上式简写为 δε ij = (δ ui , j + δ u j ,i ) 2
虚位移还要满足位移边界条件
δu = 0 δv = 0 δ w = 0
(在Su上)
简写为 δ ui = 0
11.1 基本概念 由静力可能状态出发,我们可以得到虚应力的概念。所谓 虚应力,是指某一静力可能的应力状态变化到无限临近的另一 静力可能的应力状态,期间发生的微小应力变化,记作
1 ′ = σ ij ε ij U0 2
∂U 0 = σ ij ∂ε ij
′ U0
O
dεx
′ εx
εx
应变能密度和余能密度的一阶导数分别为
′ ∂U 0 = ε ij ∂σ ij

弹塑性力学能量原理与变分法

弹塑性力学能量原理与变分法

U = U ( y ( x) ) = y1 − y = δy
U max
δU = 0
1
函数 y 也有一增量: Δy 泛函 U 也有一增量:
(2)球下落问题 球从位置1下 落至位置2,所需 时间为T,
ΔU = U [ y1 ( x)] − U [ y ( x)] = δU
f ( x)
函数的增量δy 、泛函的增量 δU 等 称为变分。 研究自变函数的增量与泛函的增量 间关 系称为变分问题。 当
[
]
(e)
Vε = ∫∫∫ vε dxdydz
2 2 = 1 ∫∫∫ (σ x +σ y + σ z2 ) − 2 μ (σ xσ y + σ yσ z + σ zσ x ) 2E 2 2 2 + 2(1 + μ )(τ yz + τ zx + τ xy ) dxdydz
[
]
(11-1) 将式(e)分别对6 个应力分量求导,并将其结果与物理方程比较,得:
(a)以位移为基本未知量, 得到最小势(位)能原理等。—— 位移法 (b)以应力为基本未知量,得到最小余能原理等。 —— 力法
(c)同时以位移、应力、应变为未知量, 得到 广义(约束)变分原理。 求解方法: —— 混合法 里兹(Ritz)法,伽辽金(Galerkin )法, 加权残值( 余量)法等。 —— 有限单元法、边界元法、离散元法 等数值解法的理论基础。
§11-1 弹性体的形变势能
1. 形变势能的一般表达式
单向拉伸: 外力所做的功: P P l0
W = 1 PΔl 2
O
由于在静载(缓慢加载)条件下, 其它能量损失很小,所外力功全部转化 杆件的形变势能(变形能) Vε :

弹性力学-第十一章 弹性力学的变分原理

弹性力学-第十一章 弹性力学的变分原理
弹性力学 主讲
邹祖军 第十一章 弹性力学的变分原理
第十一章 弹性力学的变分原理
§11-1 最小势能原理
§11-2
§11-3 §11-4 §11-5
应用最小势能原理求近似解的方法
应用最小势能原理求近似解的例子 最小余能原理 用最小余能原理求近似解
第十一章 弹性力学的变分原理 §11-1 最小势能原理
(
V
ij , j
f i )ui dV (Ti ij n j )ui dS 0
ST
(a)
位移仍然假设为(11.8)

ui uimAim , (对i不求和)
m
(b)
将上式代入(a),因变分的独立性.f i )uim dV (Ti ij n j )uim dS 0, (i 1,2,3; m 1,2,)
yz ( x) y
1 1 2 2 U GL ( xz yz )dA GL 2 [( y )2 ( y)2 ]dA 2 2 x y A A
总势能为 1 GL 2 [( y)2 ( y)2 ]dA LM 2 x y A 令(11.5)变分 为零,并利用 格林公式得
V V ST
ui ui ui 1 2 (ui ) (ui ) 2
(e) (f) (g) (h)
2 Eijkl ij kl dV 2 W ( ij )dV
(ui ) 取极小值的充要条件 0 2 0
由应变能的正定,(g)自然满足
最小势能原理的主要作用:
推导平衡微分方程和边界条件 求解近似解答 基于最小势能原理的两种近似解法: 瑞利-李兹法(Rayleigh-Ritz) 伽辽金法(Гал ёрқин)

弹性力学ppt课件

弹性力学ppt课件

应变定义
物体在外力作用下产生的 形变,表示物体尺寸和形 状的变化。
应力与应变关系
应力与应变之间存在一一 对应关系,通过本构方程 来描述。
广义胡克定律及应用
1 2
广义胡克定律 又称作弹性本构关系,表示应力与应变之间的线 性关系。
广义胡克定律的应用 用于计算弹性体在复杂应力状态下的应力和应变, 是弹性力学中的重要基础。
弹性力学ppt课件
contents
目录
• 弹性力学概述 • 弹性力学基本原理 • 线性弹性力学问题求解方法 • 非线性弹性力学问题简介 • 弹性力学实验方法与技术应用 • 弹性力学在相关领域拓展应用
01 弹性力学概述
弹性力学定义与研究对象
弹性力学定义
弹性力学是研究弹性体在外力和其他 外界因素作用下产生的变形和内力, 从而在变形与外力之间建立一定关系 的科学。
有限元法在弹性力学中应用
有限元法基本原理
将连续体离散化为有限个单元,每个单元用简单的函数近似表示,通 过变分原理得到有限元方程。
有限元法求解过程
包括网格划分、单元分析、整体分析、边界条件处理和求解有限元方 程等步骤。
有限元法的优缺点
有限元法可以求解复杂几何形状、非均质材料和非线性问题,但存在 网格划分和计算精度等问题。
布。
弹性模量和泊松比测定实验
拉伸法
通过对标准试件进行拉伸实验,测量试件的应力和应变,从 而计算得到弹性模量和泊松比。
压缩法
通过对标准试件进行压缩实验,测量试件的应力和应变,进 而计算弹性模量和泊松比,适用于脆性材料的测量。
弯曲法
通过对梁式试件进行三点或四点弯曲实验,测量试件的挠度 和应力,从而推算出弹性模量,特别适用于细长构件的测量。

弹性力学变分原理性力学变分原理_v2

弹性力学变分原理性力学变分原理_v2

V ui ( ij, j fi )dV S ui ( ijn j fi )dS 0
(4.15)
因为虚位移ui 是真实位移的变分,这意味着它是连续可导的,同时在给定位移的边界
Su 上ui 0 。对上式体积分中的第一项进行分部积分
V ui ij, jdV V (ui ij ), j dV V ui, j ijdV
3
课件_ch04 弹性力学变分原理_v2
边界条件(边界上的几何方程)。
弹性力学的基本方程
在边界 S 上作用着已知表面力 fi ,在边界 Su 上的已知位移 ui 和具有已知的体积力 fi 的固体系统,处于弹性静力平衡状态时,待解函数(应力函数、应变函数、位移函 数)应满足下面四类基本方程:
平衡方程
B( ij )
1 2
Cijklij kl
在 ij Sijkl kl 0 成立时,弹性余能密度可表示为
B( ij )
ijij
A(ij )
1 2
Sijkl ij kl
(4.9) (4.10) (4.11) (4.12)
4.2 弹性力学古典变分原理
4.2.1 平衡方程和几何方程的等效积分“弱”形式——虚功原理
为了方便,我们使用张量符号推演,并将给出结果的矩阵表达形式。
虚位移原理
首先考虑平衡方程(体内的平衡)
ij, j fi 0 (在V 内)( i 1,2,3 ) 以及力的边界条件(边界上的平衡)
(4.13)
ijnj fi 0 (在 S 上)( i 1,2,3 )
(4.14)
利用虚位移ui 及其边界值(取负值)构造(4.13)和(4.14)式相当的等效积分
2
课件_ch04 弹性力学变分原理_v2

(完整版)弹性力学第十一章弹性力学的变分原理

(完整版)弹性力学第十一章弹性力学的变分原理

第十一章弹性力学的变分原理知识点静力可能的应力弹性体的功能关系功的互等定理弹性体的总势能虚应力应变余能函数应力变分方程最小余能原理的近似解法扭转问题最小余能近似解有限元原理与变分原理有限元原理的基本概念有限元整体分析几何可能的位移虚位移虚功原理最小势能原理瑞利-里茨(Rayleigh-Ritz)法伽辽金(Гапёркин)法最小余能原理平面问题最小余能近似解基于最小势能原理的近似计算方法基于最小余能原理的近似计算方法有限元单元分析一、内容介绍由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。

一般问题的求解是十分困难的,甚至是不可能的。

因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。

变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。

变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。

本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹性力学问题。

最后,将介绍有限元方法的基本概念。

本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。

二、重点1、几何可能的位移和静力可能的应力;2、弹性体的虚功原理;3、最小势能原理及其应用;4、最小余能原理及其应用;5、有限元原理的基本概念。

§11.1 弹性变形体的功能原理学习思路:本节讨论弹性体的功能原理。

能量原理为弹性力学开拓了新的求解思路,使得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。

而功能关系是能量原理的基础。

首先建立静力可能的应力和几何可能的位移概念;静力可能的应力和几何可能的位移可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章弹性力学的变分原理知识点静力可能的应力弹性体的功能关系功的互等定理弹性体的总势能虚应力应变余能函数应力变分方程最小余能原理的近似解法扭转问题最小余能近似解有限元原理与变分原理有限元原理的基本概念有限元整体分析几何可能的位移虚位移虚功原理最小势能原理瑞利-里茨(Rayleigh-Ritz)法伽辽金(Гапёркин)法最小余能原理平面问题最小余能近似解基于最小势能原理的近似计算方法基于最小余能原理的近似计算方法有限元单元分析一、内容介绍由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。

一般问题的求解是十分困难的,甚至是不可能的。

因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。

变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。

变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。

本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹性力学问题。

最后,将介绍有限元方法的基本概念。

本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。

二、重点1、几何可能的位移和静力可能的应力;2、弹性体的虚功原理;3、最小势能原理及其应用;4、最小余能原理及其应用;5、有限元原理的基本概念。

§11.1 弹性变形体的功能原理学习思路:本节讨论弹性体的功能原理。

能量原理为弹性力学开拓了新的求解思路,使得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。

而功能关系是能量原理的基础。

首先建立静力可能的应力和几何可能的位移概念;静力可能的应力和几何可能的位移可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。

建立弹性体的功能关系。

功能关系可以描述为:对于弹性体,外力在任意一组几何可能的位移上所做的功,等于任意一组静力可能的应力在与上述几何可能的位移对应的应变分量上所做的功。

学习要点:1、静力可能的应力;2、几何可能的位移;3、弹性体的功能关系;4、真实应力和位移分量表达的功能关系。

1、静力可能的应力假设弹性变形体的体积为V,包围此体积的表面积为S。

表面积为S可以分为两部分所组成:一部分是表面积的位移给定,称为S u;另外一部分是表面积的面力给定,称为Sσ 。

如图所示显然S=S u+Sσ假设有一组应力分量σij在弹性体内部满足平衡微分方程在面力已知的边界Sσ,满足面力边界条件这一组应力分量称为静力可能的应力。

静力可能的应力未必是真实的应力,因为真实的应力还必须满足应力表达的变形协调方程,但是真实的应力分量必然是静力可能的应力。

为了区别于真实的应力分量,我们用表示静力可能的应力分量。

2、几何可能的位移假设有一组位移分量u i和与其对应的应变分量εij,它们在弹性体内部满足几何方程在位移已知的边界S u上,满足位移边界条件这一组位移称为几何可能的位移。

几何可能的位移未必是真实的位移,因为真实的位移还必须在弹性体内部满足位移表示的平衡微分方程;在面力已知的边界Sσ上,必须满足以位移表示的面力边界条件。

但是,真实的位移必然是几何可能的。

为了区别于真实的位移,用表示几何可能的位移。

几何可能的位移产生的应变分量记作。

3、弹性体的功能关系对于上述的静力可能的应力、几何可能的位移以及其对应的应变分量,设F b i和F s i分别表示物体单位体积的体力和单位面积的面力(面力也包括在位移边界S u的约束反力)。

则不难证明,有以下恒等式证明:由于和满足几何方程,而且应力是对称的,所以将上式代入等式的右边,并且利用高斯积分公式,可得由于满足面力边界条件,上式的第一个积分为由于满足平衡微分方程,所以第二个积分为将上述结果回代,可以证明公式为恒等式。

4、真实应力和位移分量表达的功能关系公式揭示了弹性体的功能关系。

功能关系可以描述为:对于弹性体,外力在任意一组几何可能位移上所做的功,等于任意一组静力可能应力在上述几何可能位移对应的应变分量上所做的功。

这里需要强调指出的是:对于功能关系的证明,没有涉及材料的性质,因此适用于任何材料。

当然,证明时使用了小变形假设,因此必须是满足小变形条件。

其次,功能关系中,静力可能的应力、几何可能的位移以及其对应的应变分量,可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。

假如静力可能的应力和几何可能的应变分量满足材料本构方程时,则对应的静力可能的应力和几何可能的位移以及其对应的应变分量均成为真实的应力,位移和应变分量。

对于真实的应力,位移和应变分量,功能关系为显然这是应变能表达式。

不过在应变能公式中,假设外力,即体力和面力是由零缓慢地增加到最后的数值的,因此应变能关系式中有1/2。

而在功能关系公式的推导中,并没有这一加载限制。

功能关系是弹性力学中的一个普遍的能量关系,这一原理将用于推导其它的弹性力学变分原理。

§11.2 变形体的虚功原理学习思路:本节讨论的重点是弹性体的虚功原理。

首先定义虚位移概念,通过将几何可能的位移定义为真实位移与虚位移的和,可以确定虚位移是位移边界条件所容许的位移微小改变量。

对于虚位移所产生的虚应变,记作δεij。

根据弹性体的功能关系,可以得到虚功方程表达式δW =δU。

虚功方程的意义为:如果弹性体是处于静力平衡状态的,外力在虚位移上所做的虚功,等于真实应力分量在对应的虚应变上所做的虚功,即虚应变能。

这就是虚功原理。

虚功原理等价于平衡微分方程和面力边界条件,它满足了静力平衡的要求。

学习要点:1、虚位移与虚应变;2、虚功原理;3、虚功原理的意义。

1、虚位移与虚应变功是指力与力作用点处沿力方向位移的乘积。

显然,功包括力和位移两个基本量。

如果力或者应力在其自身引起的真实位移或者应变上作功,这种功称为实功;如果力或者应力在其他某种原因引起的微小位移或者应变上作功,这种功称为虚功。

设几何可能的位移为这里u i为真实位移,δ u i称为虚位移。

虚位移是位移边界条件所容许的位移的微小改变量。

由于几何可能的位移在边界S u上,应该满足位移边界条件,因此,边界S u,有δ u i=0将几何可能位移公式代入几何方程显然,上式右边的第一项是真实应变,而第二项是虚位移所产生的虚应变,记作δεij。

因此,上式可以写作几何可能的位移对应的应变可以用真实应变与虚位移所产生的虚应变之和表示。

2、虚功原理如果用虚位移表达的几何可能位移、和真实应力作为静力可能应力代入功能关系表达式,注意到真实应力和位移是满足功能关系的,因此可以得到用虚位移δ u i和虚应变δεij表达的虚功方程上式中应力分量为实际应力。

注意到在位移边界S u上,虚位移是恒等于零的,所以在上述面积分中仅需要在面力边界Sσ上完成。

就力学意义而言,虚功原理表达式的等号的左边为外力在虚位移中所做的功,称为外力虚功δ W;右边为应力分量在虚位移对应的虚应变上产生的应变能,称为虚应变能δ U。

即δ W =δU根据上述分析,可以得出结论:如果弹性体是处于静力平衡状态的,对于满足变形连续条件的虚位移及其虚应变而言,外力在虚位移上所做的虚功,等于真实应力分量在对应的虚应变上所做的虚功,即虚应变能。

这就是虚功原理。

3、虚功原理的意义对于虚功方程,其右边的积分可以写作上式在推导中应用了在位移边界S u上,δ u i=0的边界条件。

现在将上式回代到虚功方程,整理可得因为虚位移δ u i是任意的,因此上式的成立,要求在弹性体内在位移已知边界S u上,有显然,虚功原理等价于平衡微分方程和面力边界条件,它满足了静力平衡的要求。

应该指出:虚功原理的推导并没有涉及任何材料性质,因此适用于任何材料。

当然,由于使用了小变形假设,即线性的几何方程,因此虚功原理必须是在小变形条件下适用于任何材料。

除此以外应力和应变分量之间不需要满足任何关系。

§11.3 功的互等定理学习思路:本节讨论功的互等定理。

定理的证明比较简单,将功能方程应用于同一弹性体的两种不同的受力和变形状态,则可以得到功的互等定理。

它是弹性体功能原理的另一种应用形式。

功的互等定理可以描述为:作用在弹性体上的第一种状态的外力,包括体力和面力,在第二种状态外力对应的位移上所做的功为例,等于第二种状态的外力在第一种状态对应的位移上所做的功。

功的互等定理是一个十分重要的力学概念。

它的应用可以帮助我们推导和理解有关的有关的力学公式和概念,同时也可以直接用于求解某些弹性力学问题。

学习要点:1、功的互等定理1、功的互等定理如果将功能方程工科应用于同一弹性体的两种不同的受力和变形状态,则可以得到功的互等定理。

假设第一种状态的体力为,在面力边界S 上的面力为,在位移已知的边界S u的位移为,弹性体内部的应力,应变和位移分别为;第二种状态的体力,面力,应力,应变和位移分别为,,。

由于两种状态的应力和应变分量都是真实解,所以它们当然也就是静力可能的和几何可能的。

现在把第一种状态的应力作为静力可能的应力,而把第二种状态的位移和应变作为几何可能的位移和应变。

将上述两种状态的应力和位移分别代入功能方程,有同理,把第二种状态的应力取为静力可能的应力,而把第一种状态的位移和应变作为几何可能的位移和应变分别代入功能方程,有对于上述公式的右边,由于所以上式称为功的互等定理。

功的互等定理可以叙述为:作用在弹性体上的第一种状态的外力,包括体力和面力,在第二种状态对应的位移上所做的功等于第二种状态的外力在第一种状态对应的位移上所做的功。

功的互等定理是一个十分重要的力学概念。

主要用于推导有关的力学公式,也可以直接用于求解力学问题。

§11.4 位移变分方程--最小势能原理学习要点:本节讨论最小势能原理。

首先根据虚功原理推导应变能的一阶变分表达式,然后根据任意几何可能位移场与真实位移场的总势能的关系,得到真实位移场的总势能取最小值的结论。

最小势能原理用数学方程描述:总势能的一阶变分为零,而且二阶变分大于零。

最小势能原理等价于以位移表示的平衡微分方程和以位移表示的面力边界条件,所以,对于一些按实际情况简化后的弹性力学问题,可以通过最小势能原理推导出其对应的平衡微分方程和面力边界条件。

本节通过例题对此作了说明。

推导中设应变能密度函数是应变分量的函数,因此最小势能原理是位移解法在变分原理中的应用。

进入本节内容学习之前,应该首先学习有关泛函和变分的基础知识。

学习思路:1、总势能;2、总势能的变分;3、最小势能原理;4、最小势能原理推导弯曲问题的平衡微分方程和面力边界条件;5、最小势能原理推导扭转问题的平衡微分方程和面力边界条件。

相关文档
最新文档