人教版高中数学【选修2-1】[知识点整理及重点题型梳理]_命题及其关系_基础
高二数学选修2-1知识点总结(完整版)
高二数学选修2-1知识点总结(完整版) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高二数学选修2-1知识点1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”. 6、四种命题的真假性:原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 真 假 假 假 假 四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.11、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 12、椭圆的几何性质: 焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程 ()222210x ya b a b+=>> ()222210y x a b a b+=>> 范围 a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A()10,b B -、()20,b B ()10,a A -、()20,a A()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称离心率 )22101c b e e a a==-<<准线方程2a x c=±2a y c=±13、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.14、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.15、双曲线的几何性质: 焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程 ()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率 )2211c b e e a a==+>准线方程 2a x c =±2a y c =±渐近线方程b y x a=±a y x b=±16、实轴和虚轴等长的双曲线称为等轴双曲线.17、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.18、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.19、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 20、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02p F x P =+;若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02p F x P =-+; 若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02p F y P =+; 若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02pF y P =-+.21、抛物线的几何性质: 标准方程 22y px =()0p > 22y px =-()0p > 22x py =()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫ ⎪⎝⎭,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2p x =2p y =-2p y =离心率 1e =范围 0x ≥ 0x ≤0y ≥ 0y ≤22、空间向量的概念:()1在空间,具有大小和方向的量称为空间向量.()2向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.()3向量AB 的大小称为向量的模(或长度),记作AB .()4模(或长度)为0的向量称为零向量;模为1的向量称为单位向量.()5与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -. ()6方向相同且模相等的向量称为相等向量.23、空间向量的加法和减法:()1求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则.()2求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =,b OB =,则a b BA =-.24、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.25、设λ,μ为实数,a ,b 是空间任意两个向量,则数乘运算满足分配律及结合律.分配律:()a b a b λλλ+=+;结合律:()()a a λμλμ=.26、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.27、向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.28、平行于同一个平面的向量称为共面向量.29、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB +A ;或对空间任一定点O ,有x y C OP =OA +AB +A ;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA+OB+O ++=.30、已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈.31、对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.32、已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0.33、a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos ,b a b 〈〉的乘积. 34、若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a =⋅; ()4cos ,a b a b a b⋅〈〉=;()5a b a b ⋅≤.35、向量数乘积的运算律:()1a b b a ⋅=⋅;()2()()()a b a b a b λλλ⋅=⋅=⋅;()3()a b c a c b c +⋅=⋅+⋅.36、若i ,j ,k 是空间三个两两垂直的向量,则对空间任一向量p ,存在有序实数组{},,x y z ,使得p xi yj zk =++,称xi ,yj ,zk 为向量p 在i ,j ,k 上的分量.37、空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.38、若三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈.这个集合可看作是由向量a ,b ,c 生成的,{},,a b c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.39、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .40、设()111,,a x y z =,()222,,b x y z =,则()1()121212,,a b x x y y z z +=+++.()2()121212,,a b x x y y z z -=---. ()3()111,,a x y z λλλλ=. ()4121212a b x x y y z z ⋅=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=. ()6若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===. ()721a a a x =⋅=+()821cos ,a b a b a bx ⋅〈〉==+()9()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =41、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP 来表示.向量OP 称为点P 的位置向量.42、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向向量,则对于直线l 上的任意一点P ,有ta AP =,这样点A 和向量a 不仅可以确定直线l 的位置,还可以具体表示出直线l 上的任意一点.43、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a ,b .P 为平面α上任意一点,存在有序实数对(),x y ,使得xa yb OP =+,这样点O 与向量a ,b 就确定了平面α的位置.44、直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量. 45、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b ⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅=.46、若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔0a n a n ⇔⊥⇔⋅=,//a a a n a n ααλ⊥⇔⊥⇔⇔=. 47、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ=,0a b a b αβ⊥⇔⊥⇔⋅=.48、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.49、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.50、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.51、点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算. 52、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.53、点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.。
高中数学选修2-1知识点总结
数学选修2-1第一章:命题与逻辑结构 知识点:1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题。
若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。
其中一个命题称为原命题,另一个称为原命题的逆否命题。
若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”。
6、四种命题的真假性:原命题 逆命题 否命题 逆否命题真 真 真 真 真 假 假 真 假 真 真 假 假 假假假四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题. 用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题. 对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示.含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示.含有存在量词的命题称为特称命题. 特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝。
(完整版)高中数学选修2-1知识点总结.docx
数学选修 2-1第一章:命题与逻辑结构知识点:1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则 q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题. 其中一个命题称为原命题,另一个称为原命题的逆命题。
若原命题为“若p ,则 q ”,它的逆命题为“若q ,则 p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题. 中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则 q ”,则它的否命题为“若p ,则q ”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。
其中一个命题称为原命题,另一个称为原命题的逆否命题。
若原命题为“若p ,则 q ”,则它的否命题为“若q ,则p ”。
6、四种命题的真假性:原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假四种命题的真假性之间的关系:1 2两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ,则 p 是 q 的充分条件, q 是 p 的必要条件.若 p q ,则 p 是 q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题 q 联结起来,得到一个新命题,记作p q.当 p 、 q 都是真命题时, p q 是真命题;当p 、 q 两个命题中有一个命题是假命题时, p q是假命题.用联结词“或”把命题p 和命题 q 联结起来,得到一个新命题,记作p q.当 p 、 q 两个命题中有一个命题是真命题时,p q 是真命题;当p 、q两个命题都是假命题时,p q 是假命题.对一个命题 p 全盘否定,得到一个新命题,记作p .若 p 是真命题,则p 必是假命题;若p 是假命题,则p 必是真命题.9、短语“对所有的” 、“对任意一个”在逻辑中通常称为全称量词,用“”表示.含有全称量词的命题称为全称命题.全称命题“对中任意一个 x ,有p x 成立”,记作“x, p x ”.短语“存在一个” 、“至少有一个”在逻辑中通常称为存在量词,用“”表示.含有存在量词的命题称为特称命题.特称命题“存在中的一个 x ,使p x成立”,记作“x, p x ”.10、全称命题p :x, p x ,它的否定p :x,p x 。
高中数学选修2-1知识点笔记
数学选修2-1第一章:命题与逻辑结构1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.2、真命题:判断为真的语句.假命题:判断为假的语句.3、若原命题为“若p,则q”,它的逆命题为“若q,则p”.若原命题为“若p,则q”,则它的否命题为“若p⌝”.⌝,则q若原命题为“若p,则q”,则它的否命题为“若q⌝”。
⌝,则p4、四种命题的真假性:5、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)如果要判断一命题的真假,可以转化为其逆否命题的真假性.6、若p q⇒,则p是q的充分条件,q是p的必要条件.若p q⇔,则p是q的充要条件(充分必要条件).7、逻辑连接词(1)用联结词“且”把命题p和命题q联结起来,得到一个新命题,记作p q∧.当p、q都是真命题时,p q∧是真命题;当p、q两个命题中有一个命题是假命题时,p q∧是假命题.(2)用联结词“或”把命题p和命题q联结起来,得到一个新命题,记作p q∨.∨是真命题;当p、q两当p、q两个命题中有一个命题是真命题时,p q个命题都是假命题时,p q ∨是假命题.(3)对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题. 8、全称量词与特称量词(1)短语“所有的”、“任意一个”、“每一个”在逻辑中通常称为全称量词,用“∀”表示.(2)短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示.9、全称命题与特称命题(1)含有全称量词的命题称为全称命题. (2)含有存在量词的命题称为特称命题. 10、全称命题与特称命题的否定(1)全称命题的否定:p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝。
全称命题的否定是特称命题。
(2)特称命题的否定p :x ∃∈M ,()p x ,它的否定p ⌝:x ∀∈M ,()p x ⌝。
高中数学人教版选修2-1第一章基本逻辑语用知识点最完全精炼总结 (1)
高二数学 选修2-1第一章 常用逻辑用语1.四种命题及相互关系:2.充分条件、必要条件、充要条件若p ,则q 是真命题 p 是q 充分条件(不唯一)q 是p 必要条件(理解: 没有q 就没有p )从集合的观点理解: 若p ,则q 是假命题 p 不是q 充分条件 q 不是p 必要条件若q ,则p 是真命题 q 是p 充分条件(不唯一)p 是q 必要条件(理解:没有p 就没有q )若q ,则p 是假命题 q 不是p 充分条件 p 不是q 必要条件 p 是q 充要条件 且 p 是q 充分条件:充要条件:A B =充分不必要条件:A B ⊂ p 是q 必要条件:充要条件:A B =必要不充分条件:B A ⊂ 3.逻辑联结词原命题 若p 则q逆命题 若q 则p否命题 若﹁ p 则﹁ q逆否命题 若﹁ q 则﹁p互为逆否 同真同假互逆命题 真假无关互逆命题 真假无关互否命题真假无关互否命题真假无关p q⇔⇒⇔⇔A B⊆{()},{()}A x x p x B x x q x =∈=∈p q ⇔⇒⇔⇔q p⇔⇒⇔⇔q p ⇔⇒⇔⇔p q ⇔⇔B A⊆B A⊆B A A B ⊆⇔=A B ⊆原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有n个至多有(n-1)个小于大于或等于至多有n个至少有(n+1)个对所有x,成立存在某x,不成立p或q ⌝p且⌝q对任何x,不成立存在某x,成立p且q ⌝p或⌝q4.全称命题:∀x∈M,p(x)全称命题否定:∃x0∈M,⌝p(x0)特称命题:∃x0∈M,p(x0)特称命题否定:∀x∈M,⌝p(x)全称命题的否定是特称命题,特称命题的否定是全称命题.。
高中数学选修2-1知识点总结(考前复习必备)
高二数学选修2-1知识点1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”.6、四种命题的真假性:四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.11、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 12、椭圆的几何性质: 焦点的位置 焦点在x 轴上焦点在y 轴上图形标准方程 ()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围 a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率 ()22101c b e e a a==-<<准线方程2a x c=±2a y c=±13、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,原命题 逆命题 否命题 逆否命题真 真 真 真 真 假 假 真 假 真 真 真 假 假 假 假则1212F F e d d M M ==.14、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.15、双曲线的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程 ()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率 ()2211c b e e a a==+>准线方程2a x c=±2a y c=±渐近线方程b y x a=±a y x b=±16、实轴和虚轴等长的双曲线称为等轴双曲线.17、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.18、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.19、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 20、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02p F x P =+; 若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02pF x P =-+;若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02p F y P =+;若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02p F y P =-+.21、抛物线的几何性质: 标准方程22y px = ()0p>22y px =-()0p >22x py =()0p >22x py =- ()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫ ⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭ 0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2px =2p y =-2p y =离心率1e =范围0x ≥ 0x ≤0y ≥0y ≤22、空间向量的概念:()1在空间,具有大小和方向的量称为空间向量.()2向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.()3向量AB的大小称为向量的模(或长度),记作AB . ()4模(或长度)为0的向量称为零向量;模为1的向量称为单位向量. ()5与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -. ()6方向相同且模相等的向量称为相等向量.23、空间向量的加法和减法:()1求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a 、b为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b的和,这种求向量和的方法,称为向量加法的平行四边形法则.()2求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a O A= ,b OB =,则a b BA =- .24、实数λ与空间向量a 的乘积a λ 是一个向量,称为向量的数乘运算.当0λ>时,a λ 与a方向相同;当0λ<时,a λ 与a 方向相反;当0λ=时,a λ 为零向量,记为0 .a λ 的长度是a的长度的λ倍.25、设λ,μ为实数,a ,b是空间任意两个向量,则数乘运算满足分配律及结合律.分配律:()a b a b λλλ+=+ ;结合律:()()a a λμλμ=.26、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.27、向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠ ,//a b的充要条件是存在实数λ,使a b λ=.28、平行于同一个平面的向量称为共面向量.29、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB +A ;或对空间任一定点O ,有x y C O P=O A+A B+A;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA +OB +O ++=.30、已知两个非零向量a 和b,在空间任取一点O ,作a OA = ,b OB = ,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈ .31、对于两个非零向量a 和b ,若,2a b π〈〉= ,则向量a ,b互相垂直,记作a b ⊥.32、已知两个非零向量a 和b ,则cos,a b a b 〈〉 称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0.33、a b ⋅ 等于a 的长度a 与b 在a的方向上的投影cos ,b a b 〈〉 的乘积. 34、若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉 ;()20a b a b ⊥⇔⋅= ;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅= ,a a a =⋅ ; ()4cos ,a b a b a b⋅〈〉=;()5a b a b ⋅≤ .35、向量数乘积的运算律:()1a b b a ⋅=⋅;()2()()()a b a b a b λλλ⋅=⋅=⋅ ;()3()a b c a c b c +⋅=⋅+⋅ .36、若i ,j ,k 是空间三个两两垂直的向量,则对空间任一向量p ,存在有序实数组{},,x y z ,使得p xi yj zk =++,称xi ,yj ,zk 为向量p 在i ,j ,k 上的分量.37、空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p,存在实数组{},,x y z ,使得p xa yb zc =++.38、若三个向量a ,b ,c不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈ .这个集合可看作是由向量a ,b ,c生成的,{},,a b c 称为空间的一个基底,a ,b ,c称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.39、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP = .存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z = .此时,向量p的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .40、设()111,,a x y z = ,()222,,b x y z = ,则()1()121212,,a b x x y y z z +=+++. ()2()121212,,a b x x y y z z -=---.()3()111,,a x y z λλλλ=.()4121212a b x x y y z z ⋅=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=.()6若0b ≠ ,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===.()7222111a a a x y z =⋅=++ . ()8121212222222111222cos ,x x y y z z a b a b a b x y z x y z ++⋅〈〉==++⋅++. ()9()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z z AB=AB =-+-+- .41、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP来表示.向量OP称为点P 的位置向量.42、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a表示直线l 的方向向量,则对于直线l 上的任意一点P ,有ta AP = ,这样点A 和向量a不仅可以确定直线l 的位置,还可以具体表示出直线l 上的任意一点.43、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a,b .P 为平面α上任意一点,存在有序实数对(),x y ,使得xa yb OP =+,这样点O 与向量a ,b 就确定了平面α的位置.44、直线l 垂直α,取直线l 的方向向量a ,则向量a称为平面α的法向量.45、若空间不重合两条直线a ,b 的方向向量分别为a ,b,则////a b a b ⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅= .46、若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔0a n a n ⇔⊥⇔⋅= ,//a a a n a n ααλ⊥⇔⊥⇔⇔= .47、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ= ,0a b a b αβ⊥⇔⊥⇔⋅=.48、设异面直线a ,b 的夹角为θ,方向向量为a ,b,其夹角为ϕ,则有cos cos a ba bθϕ⋅== .49、设直线l 的方向向量为l ,平面α的法向量为n,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l nl nθϕ⋅== .50、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅= .51、点A 与点B 之间的距离可以转化为两点对应向量AB的模AB 计算.52、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n,则定点A 到直线l 的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.53、点P 是平面α外一点,A 是平面α内的一定点,n为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.。
人教版高中数学【选修2-1】[知识点整理及重点题型梳理]_常用逻辑用语 全章复习与巩固
人教版高中数学选修2-1知识点梳理重点题型(常考知识点)巩固练习《常用逻辑用语》全章复习与巩固【学习目标】1. 理解命题的概念;了解逻辑联结词“或”、“且”、“非”的含义.2.了解命题“若p,则q”的形式及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3. 理解必要条件、充分条件与充要条件的意义.4. 理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定.【知识网络】【要点梳理】要点一:命题(1)命题的概念:可以真假的语句叫做命题. 一般可以用小写英文字母表示. 其中判断为真的语句叫真命题,判断为假的语句叫假命题.(2)全称量词与全称命题全称量词:在指定范围内,表示整体或者全部的含义的量词称为全称量词.如“所有的”、“任意一个”、“每一个”、“一切”、“任给”等.全称命题:含有全称量词的命题,叫做全称命题. 符号表示为x M ∀∈,()p x (3)存在量词与存在性命题存在量词:表示个别或一部分的含义的量词称为存在量词.如“有一个”,“存在一个”,“至少有一个”,“有的”,“有些”等.存在性命题:含有存在量词的命题,叫做存在性命题. 符号表示为x M ∃∈,()q x . 要点二:基本逻辑联结词基本逻辑联结词有“或”、“且”、“非”.(1)p q ∧:用“且”把命题p 和q 联结起来,得到的新命题,读作“p 且q ”,相当于集合中的交集.(2)p q ∨:用“或”把命题p 和q 联结起来,得到的新命题,读作“p 或q ”,相当于集合中的并集.(3)p ⌝:对命题p 加以否定,得到的新命题,读作“非p ”或“p 的否定”,相当于集合中的补集.要点三:充分条件、必要条件、充要条件 对于“若p 则q ”形式的命题:①若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;②若p ⇒q ,但q ⇒/p ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件; ③若既有p ⇒q ,又有q ⇒p ,记作p ⇔q ,则p 是q 的充分必要条件(充要条件). 判断命题充要条件的三种方法 (1)定义法:(2)等价法:由于原命题与它的逆否命题等价,否命题与逆命题等价,因此,如果原命题与逆命题真假不好判断时,还可以转化为逆否命题与否命题来判断.即利用A B ⇒与B A ⌝⌝⇒;B A ⇒与A B ⌝⌝⇒;A B ⇔与B A ⌝⌝⇔的等价关系,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法.(3)利用集合间的包含关系判断,比如A ⊆B 可判断为A ⇒B ;A=B 可判断为A ⇒B ,且B ⇒A ,即A ⇔B.如图:“A B ”⇔“x A ∈⇒x B ∈,且x B ∈⇒/x A ∈”⇔x A ∈是x B ∈的充分不必要条件.“A B =”⇔“x A ∈⇔x B ∈”⇔x A ∈是x B ∈的充分必要条件.要点诠释:(1)在判断充分条件与必要条件时,首先要分清哪是条件,哪是结论;然后用条件推结论,再用结论推条件,最后进行判断.(2)充要条件即等价条件,也是完成命题转化的理论依据.“当且仅当”.“有且仅有”.“必须且只须”.“等价于”“…反过来也成立”等均为充要条件的同义词语.要点四:四种命题及相互关系如果用p 和q 分别表示原命题的条件和结论,用⌝p 和⌝q 分别表示p 和q 的否定,则命题的四种形式为:原命题:若p 则q ; 逆命题:若q 则p ; 否命题:若⌝p 则⌝q ; 逆否命题:若⌝q 则⌝p. 四种命题的关系①原命题⇔逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一. ②逆命题⇔否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径.除①、②之外,四种命题中其它两个命题的真伪无必然联系. 要点五:命题真假的判断方法(1)对于一般的命题,结合所学知识经过推理论证或举反例来判断; (2)对于含有逻辑联结词的命题的真假判断,可参考下表(真值表): 命题的真假判断(利用真值表):pq非pp q 或 p q 且互逆⌝⌝否命题若p 则q原命题若p 则q逆命题若q 则p⌝⌝逆否命题若q 则p互逆互逆否为互逆否为否否互互(3)对于“若,则”型的命题,因为原命题与逆否命题同真或同假,故可以利用其逆否命题的真假来判断.要点诠释:①当p 、q 同时为假时,“p 或q ”为假,其它情况时为真,可简称为“一真必真”; ②当p 、q 同时为真时,“p 且q ”为真,其它情况时为假,可简称为“一假必假”; ③“p ⌝”与p 的真假相反. 要点六:量词与全称命题、特称命题 全称量词与存在量词(1)全称量词及表示:表示全体的量词称为全称量词。
高中数学选修2-1知识点总结
ur ze3
.把
x
,
y
,
z
称作向量
pr
在单位正交基底
ur e1
,
uur e2
,
ur e3
下的坐标,记作
pr
x,
y,
z .此时,向量
pr
的坐标是点
在空间直角坐标系
xyz 中的坐标 x, y, z .
18、设
ar
x1,
y1,
z1
,
r b
x2 ,
y2 ,
z2
,则
(1)
ar
r b
x1
x2 ,
y1
y2 ,
z1
F1 c, 0、 F2 c, 0
A1 0, a、 A2 0, a、 1 b, 0、 2 b, 0
长轴的长 2a F1 0, c、 F2 0, c
焦距
F1F2 2c c2 a2 b2 ,a 最大
对称性
关于 x 轴、 y 轴对称,关于原点中心对称
离心率
e c a
1
b2 a2
0
e
1
准线方程
3、椭圆的几何性质:
焦点的位置
焦点在 x 轴上
焦点在 y 轴上
图形
标准方程 范围
x2 a2
y2 b2
1a
b
0
a x a 且 b y b
y2 x2 1a b 0
a2 b2
b x b 且 a y a
顶点 轴长 焦点
A1 a, 0、 A2 a, 0、 1 0, b、 2 0,b
短轴的长 2b
(6)方向相同且模相等的向量称为相等向量.
2、空间向量的加法和减法:
数学选修2-1知识点总结
数学选修2-1知识点总结第一章:命题与逻辑构造知识点:1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“假设p ,那么q 〞形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题。
假设原命题为“假设p ,那么q 〞,它的逆命题为“假设q ,那么p 〞.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否认和结论的否认,那么这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.假设原命题为“假设p ,那么q 〞,那么它的否命题为“假设p ⌝,那么q ⌝〞.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否认和条件的否认,那么这两个命题称为互为逆否命题。
其中一个命题称为原命题,另一个称为原命题的逆否命题。
假设原命题为“假设p ,那么q 〞,那么它的否命题为“假设q ⌝,那么p ⌝〞。
6、四种命题的真假性: 原命题 逆命题 否命题 逆否命题真 真 真 真 真 假 假 真 假 真 真 假 假假假假()1两个命题互为逆否命题,它们有一样的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、假设p q ⇒,那么p 是q 的充分条件,q 是p 的必要条件.假设p q ⇔,那么p 是q 的充要条件〔充分必要条件〕.8、用联结词“且〞把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或〞把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否认,得到一个新命题,记作p ⌝.假设p 是真命题,那么p ⌝必是假命题;假设p是假命题,那么p ⌝必是真命题.9、短语“对所有的〞、“对任意一个〞在逻辑中通常称为全称量词,用“∀〞表示.含有全称量词的命题称为全称命题. 全称命题“对M 中任意一个x ,有()p x 成立〞,记作“x ∀∈M ,()p x 〞.短语“存在一个〞、“至少有一个〞在逻辑中通常称为存在量词,用“∃〞表示.含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立〞,记作“x ∃∈M ,()p x 〞.10、全称命题p :x ∀∈M ,()p x ,它的否认p ⌝:x ∃∈M ,()p x ⌝。
人教版高中数学【选修2-1】[知识点整理及重点题型梳理]_《空间向量与立体几何》全章复习与巩固_基础
人教版高中数学选修2-1知识点梳理重点题型(常考知识点)巩固练习《空间向量与立体几何》全章复习与巩固【学习目标】1.了解空间向量的概念,空间向量的基本定理及其意义,掌握空间向量的正交分解、线性运算、数量积及其坐标表示;2.运用向量的数量积判断向量的共线与垂直,理解直线的方向向量与平面的法向量;3.能用向量方法证明有关线、面位置关系的一些定理及问题;4.能用向量方法解决线线、线面、面面的夹角的计算问题及一些简单的距离问题.【知识网络】【要点梳理】要点一:空间向量的有关概念空间向量:空间中,既有大小又有方向的量;空间向量的表示:一种是用有向线段AB 表示,A 叫作起点,B 叫作终点;一种是用小写字母a (印刷体)表示,也可以用a (而手写体)表示.向量的长度(模):表示空间向量的有向线段的长度叫做向量的长度或模,记作||AB 或||a .向量的夹角:过空间任意一点O 作向量a b ,的相等向量OA 和OB ,则∠AOB 叫作向量a b ,的夹角,记作〈〉,a b ,规定0π≤〈〉≤,a b .如图:空间向量与立体几何空间向量及其运算空间向量在立体几何中的应用空间向量的线性运算空间向量的基本定理两个向量的数量积空间向量的直角坐标运算共线向量定理共面向量定理空间向量分解定理平行与垂直的条件直线的方向向量与直线的向量方程平面的法向量与平面的向量表示直线与平面的夹角 二面角及其度量 距离零向量:长度为0或者说起点和终点重合的向量,记为0.规定:0与任意向量平行. 单位向量:长度为1的空间向量,即||1a =. 相等向量:方向相同且模相等的向量. 相反向量:方向相反但模相等的向量.共线向量(平行向量):如果表示空间向量的有向线段所在的直线互相平行或重合.a 平行于b 记作b a//,此时.a b 〈〉,=0或a b 〈〉,=π. 共面向量:平行于同一个平面的向量,叫做共面向量. 要点诠释:(1)数学中讨论的向量是自由向量,即与向量的起点无关,只与大小和方向有关. 只要不改变大小和方向,空间向量可在空间内任意平移;(2)当我们说向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线可能是同一直线,也可能是平行直线.(3)对于任意一个非零向量a,我们把a a叫作向量a 的单位向量,记作0a .0a 与a同向.(4)当a b 〈〉,=0或π时,向量a 平行于b ,记作b a //;当 a b 〈〉,=2π时,向量a b ,垂直,记作a b ⊥. 要点二:空间向量的基本运算 空间向量的基本运算: 运算类型几何方法运算性质向 量 的 加 法1平行四边形法则:OC OA ABa b=+=+加法交换率:.a b b a +=+加法结合率: ()()a b c a b c ++=++()a b a b -=+-AB BC=AC + 0AB BA=+2三角形法则:OB OA AB a b=+=+向 量 的 减 法 三角形法则: BA OA OB a b=-=-AB OA OB =-向 量 的 乘 法 a λ是一个向量,满足:λ>0时,a λ与a 同向; λ<0时,a λ与a 异向;λ=0时, a λ=0()()a a λμλμ=()a a a λμλμ+=+()a b a b λλλ+=+a ∥b a b λ⇔=向 量 的 数 量 积1.a b 是一个数:||||cos()a b a b a b =,;2.0a =,0b=或a b ⊥⇔b a •=0.a b b a =()()()a b a b a b λλλ==()a b c a c b c +=+22||a a =||||||a b a b ≤要点三:空间向量基本定理共线定理:两个空间向量a 、b (b ≠0 ),a //b 的充要条件是存在唯一的实数λ,使b aλ=.共面向量定理:如果两个向量,a b 不共线,则向量p 与向量,a b 共面的充要条件是存在唯一的一对实数,x y ,使p xa yb =+.要点诠释:(1)可以用共线定理来判定两条直线平行(进而证线面平行)或证明三点共线. (2)可以用共面向量定理证明线面平行(进而证面面平行)或证明四点共面. 空间向量分解定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++.要点诠释:(1)空间任意三个不共面的向量都可以作为空间向量的一个基底;(2)由于零向量可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含着它们都不是零向量0.(3)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同概念. 要点四:空间向量的直角坐标运算 空间两点的距离公式若111(,,)A x y z ,222(,,)B x y z ,则①222111212121(,,)(,,)(,,)AB OB OA x y z x y z x x y y z z =-=-=---; ②2222212121||()()()AB AB x x y y z z ==-+-+-;③ AB 的中点坐标为121212222x +x y +y z +z ⎛⎫⎪⎝⎭,,.空间向量运算的的坐标运算设111(,,)a x y z =,222(,,)b x y z =,则 ① 121212(,,)a b x x y y z z +=+++; ② 121212(,,)a b x x y y z z -=---; ③ 111(,,)()a x y z R λλλλλ=∈; ④ 121212a b x x y y z z ⋅=++;⑤ 222111a a a x y z ==++,222222b b b x y z ==++;⑥ ()121212222222111222cos 00x x y y z z a b a b a b a bx y zx y z++==≠≠++++,,.空间向量平行和垂直的条件若111(,,)a x y z =,222(,,)b x y z =,则①12//a b a b x x λλ⇔=⇔=,12y y λ=,12()z z R λλ=∈⇔111222x y z x y z ==222(0)x y z ≠; ②12121200a b a b x x y y z z ⊥⇔⋅=⇔++=. 要点诠释:(1)空间任一点P 的坐标的确定:过P 作面xOy 的垂线,垂足为'P ,在面xOy 中,过'P 分别作x 轴、y 轴的垂线,垂足分别为A C 、,则|'|||||x P C y AP z PP ===,,''.如图: (2)夹角公式可以根据数量积的定义推出:a ba b |a ||b|cos a b cos a b |a ||b|⋅⋅=<⋅>⇒<⋅>=⋅,其中θ的范围是[0,]π.(3)0与任意空间向量平行或垂直. 要点五:用向量方法讨论垂直与平行图示向量证明方法线线平行 (a //b )a //b(a b ,分别为直线a b ,的方向向量)线线垂直 (a b ⊥)⊥a b(a b ,分别为直线a b ,的方向向量)线面平行 (l //α)⊥a n ,即0=⋅a n(a 是直线l 的方向向量,n 是平面α的法向量).线面垂直 (l α⊥)a //n(a 是直线l 的方向向量,n 是平面α的法向量)面面平行 (α//β)//u v(u v ,分别是平面α,β的法向量)面面垂直 (αβ⊥)⊥u v ,即0=u v(u ,v 分别是平面α,β的法向量)要点诠释:(1)直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量:已知平面α,直线l α⊥,取l 的方向向量a ,有α⊥a ,则称为a 为平面α的法向量. 一个平面的法向量不是唯一的.要点六:用向量方法求角图示向量证明方法异面直线所成的角||cos ||||AC BD AC BD θ⋅=⋅(A ,C 是直线a 上不同的两点,B ,D 是直线b 上不同的两点)直线和平面的夹角||sin |cos |||||θϕ⋅==⋅a u a u(其中直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的角为ϕ)二面角cos θ(平面α与β的法向量分别为1n 和2n ,平面α与β的夹角为θ)要点诠释:①当法向量1n 与2n 的方向分别指向二面角的内侧与外侧时,二面角θ的大小等于1n ,2n 的夹角12,〈〉n n 的大小。
人教版高中数学选修部分知识点总结(理科)
高二数学选修2-1知识点第一章 常用逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”.6、四种命题的真假性:四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表原命题 逆命题 否命题 逆否命题 真 真 真真 真 假 假 真 假 真 真 真 假 假 假 假示.含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.第二章 圆锥曲线与方程11、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 12、椭圆的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程 ()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围 a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率 ()22101c b e e a a==-<<准线方程2a x c=±2a y c=±13、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.14、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.15、双曲线的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程 ()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 范围 x a ≤-或x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>准线方程 2a x c =± 2a y c =±渐近线方程b y x a =± a y x b=± 16、实轴和虚轴等长的双曲线称为等轴双曲线.17、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.18、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.19、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 20、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02pF x P =+; 若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02pF x P =-+;若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02pF y P =+;若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02p F y P =-+. 21、抛物线的几何性质:标准方程22y px =()0p > 22y px =- ()0p >22x py = ()0p >22x py =- ()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫ ⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭ 0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2px =2p y =-2p y =离心率 1e =范围 0x ≥ 0x ≤0y ≥ 0y ≤第三章 空间向量与立体几何22、空间向量的概念:()1在空间,具有大小和方向的量称为空间向量.()2向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.()3向量AB的大小称为向量的模(或长度),记作AB . ()4模(或长度)为0的向量称为零向量;模为1的向量称为单位向量. ()5与向量a长度相等且方向相反的向量称为a的相反向量,记作a -. ()6方向相同且模相等的向量称为相等向量.23、空间向量的加法和减法:()1求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a 、b为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则.()2求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA = ,b OB = ,则a b BA =- .24、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ 与a 方向相同;当0λ<时,a λ 与a 方向相反;当0λ=时,a λ为零向量,记为0 .a λ 的长度是a的长度的λ倍.25、设λ,μ为实数,a ,b是空间任意两个向量,则数乘运算满足分配律及结合律.分配律:()a b a b λλλ+=+ ;结合律:()()a a λμλμ=.26、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.27、向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.28、平行于同一个平面的向量称为共面向量. 29、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB+A ;或对空间任一定点O ,有x y C OP =OA +AB +A ;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA +OB +O ++=. 30、已知两个非零向量a 和b ,在空间任取一点O ,作a O A = ,b OB =,则∠A OB 称为向量a ,b 的夹角,记作,a b 〈〉 .两个向量夹角的取值范围是:[],0,a b π〈〉∈.31、对于两个非零向量a 和b ,若,2a b π〈〉= ,则向量a ,b 互相垂直,记作a b ⊥.32、已知两个非零向量a 和b ,则c o s ,a b ab 〈〉 称为a ,b的数量积,记作a b ⋅ .即c o s ,a b a b ab ⋅=〈〉.零向量与任何向量的数量积为0.33、a b ⋅ 等于a 的长度a与b 在a 的方向上的投影cos ,b a b 〈〉 的乘积.34、若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅= ;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅= ,a a a =⋅; ()4cos ,a b a b a b⋅〈〉= ;()5a b a b ⋅≤.35、向量数乘积的运算律:()1a b b a ⋅=⋅;()2()()()a b a b a b λλλ⋅=⋅=⋅ ;()3()a b c a c b c +⋅=⋅+⋅ .36、若i ,j ,k 是空间三个两两垂直的向量,则对空间任一向量p,存在有序实数组{},,x y z ,使得p xi yj zk =++,称xi ,yj ,zk 为向量p 在i ,j ,k 上的分量.37、空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p,存在实数组{},,x y z ,使得p xa yb zc =++.38、若三个向量a,b ,c 不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈ .这个集合可看作是由向量a,b ,c 生成的,{},,a b c 称为空间的一个基底,a ,b ,c称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.39、设1e ,2e ,3e为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e的方向为x轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .40、设()111,,a x y z = ,()222,,b x y z = ,则()1()121212,,a b x x y y z z +=+++. ()2()121212,,a b x x y y z z -=---. ()3()111,,a x y z λλλλ= . ()4121212a b x x y y z z ⋅=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=. ()6若0b ≠ ,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===.()7222111a a a x y z =⋅=++.()8121212222222111222cos ,x x y y z z a b a b a b x y z x y z ++⋅〈〉==++⋅++.()9()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z z AB =AB =-+-+-.41、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP 来表示.向量OP称为点P 的位置向量.42、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a表示直线l 的方向向量,则对于直线l 上的任意一点P ,有ta AP = ,这样点A 和向量a不仅可以确定直线l 的位置,还可以具体表示出直线l 上的任意一点. 43、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a,b .P 为平面α上任意一点,存在有序实数对(),x y ,使得xa yb OP =+,这样点O 与向量a ,b 就确定了平面α的位置. 44、直线l 垂直α,取直线l 的方向向量a ,则向量a称为平面α的法向量.45、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b ⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅= .46、若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔0a n a n ⇔⊥⇔⋅= ,//a a a n a n ααλ⊥⇔⊥⇔⇔= .47、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ= ,0a b a b αβ⊥⇔⊥⇔⋅=.48、设异面直线a ,b 的夹角为θ,方向向量为a,b ,其夹角为ϕ,则有cos cos a ba bθϕ⋅== .49、设直线l 的方向向量为l ,平面α的法向量为n,l 与α所成的角为θ,l 与n的夹角为ϕ,则有sin cos l nl nθϕ⋅== .50、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅= .51、点A 与点B 之间的距离可以转化为两点对应向量AB的模AB 计算.52、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n,则定点A 到直线l 的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.53、点P 是平面α外一点,A 是平面α内的一定点,n为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n n PA⋅=PA 〈PA 〉=.数学选修2-2知识点总结一、导数1.函数的平均变化率为=∆∆=∆∆x fx y xx f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,可正,可负,可零。
人教版高中数学【选修2-1】[知识点整理及重点题型梳理]_抛物线的方程与性质_基础
人教版高中数学选修2-1知识点梳理重点题型(常考知识点)巩固练习抛物线的方程与性质【学习目标】1.掌握抛物线的定义 、几何图形和标准方程.2.理解抛物线的简单性质(范围、对称性、顶点、离心率). 3.能用抛物线的方程与性质解决与抛物线有关的简单问题. 4. 进一步体会数形结合的思想方法. 【要点梳理】要点一、抛物线的定义定义:平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.要点二、抛物线的标准方程 标准方程的推导如图,以过F 且垂直于 l 的直线为x 轴,垂足为K.以F,K 的中点O 为坐标原点建立直角坐标系xoy. 设|KF|=p(p >0),那么焦点F 的坐标为(,0)2p ,准线l 的方程为2p x =-. 设点M (x,y )是抛物线上任意一点,点M 到l 的距离为d.由抛物线的定义,抛物线就是集合}|||{d MF M P ==..|2|)2(|,2|,)2(||2222p x y p x px d y p x MF +=+-∴+=+-=将上式两边平方并化简,得22(0)y px p =>. ①方程①叫抛物线的标准方程,它表示的抛物线的焦点在x 轴的正半轴上,坐标是(,0)2p它的准线方程是2p x =-. 抛物线标准方程的四种形式:根据抛物线焦点所在半轴的不同可得抛物线方程的的四种形式22y px =,22y px =-,22x py =,22x py =-(0)p >。
要点诠释:①只有当抛物线的顶点是原点,对称轴是坐标轴时,才能得到抛物线的标准方程;②抛物线的焦点在标准方程中一次项对应的坐标轴上,且开口方向与一次项的系数的正负一致,比如抛物线220x y =-的一次项为20y -,故其焦点在y 轴上,且开口向负方向(向下)③抛物线标准方程中一次项的系数是焦点的对应坐标的4倍,比如抛物线220x y =-的一次项20y -的系数为20-,故其焦点坐标是(0,5)-。
高中数学知识点总结(选修2-1)
高中数学知识点总结—数学选修2-1第一章:命题与逻辑结构1.命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2.“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3.对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题。
若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4.对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5.对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。
其中一个命题称为原命题,另一个称为原命题的逆否命题。
若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”。
6.四种命题的真假性:原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7.若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件.若p q ⇔,则p 是q 的充要条件(充分必要条件).8.用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9.短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示.含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”.短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示.含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.10.全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学选修2-1知识点梳理)巩固练习重点题型(常考知识点命题及其关系【学习目标】1.了解命题、真命题、假命题的概念,能够指出一个命题的条件和结论;2.了解原命题、逆命题、否命题、逆否命题,会分析四种命题的相互关系,能判断四种命题的真假;3.能熟练判断命题的真假性.【要点梳理】要点一、命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.要点诠释:1.不是任何语句都是命题,不能确定真假的语句不是命题,如“x>2”,“2不一定大于3”.2.只有能够判断真假的陈述句才是命题.祈使句,疑问句,感叹句都不是命题,例如:“起立”、“π是有理数吗?”、“今天天气真好!”等.3.语句能否确定真假是判断其是否是命题的关键.一个命题要么是真,要么是假,不能既真又假,模棱两可.命题陈述了我们所思考的对象具有某种属性,或者不具有某种属性,这类似于集合中元素的确定性.要点二、命题的结构命题可以改写成“若p,则q”的形式,或“如果p,那么q”的形式.其中p是命题的条件,q是命题的结论.要点诠释:1.一般地,命题“若p则q”中的p为命题的条件q为命题的结论.2.有些问题中需要明确指出条件p和q各是什么,因此需要将命题改写为“若p则q”的形式.要点三、四种命题原命题:“若p,则q”;逆命题:“若q,则p”;实质是将原命题的条件和结论互相交换位置;. 否命题:“若非 p ,则非 q ”,或“若 ⌝p ,则 ⌝q ”;实质是将原命题的条件和结论两者分别否定;逆否命题:“若非 q ,则非 p ”,或“若 ⌝q ,则 ⌝p ”;实质是将原命题的条件和结论两者分别否定后再换位或将原命题的条件和结论换位后再分别否定.要点诠释:对于一般的数学命题,要先将其改写为“若 p ,则 q ”的形式,然后才方便写出其他形式的命题.要点四、四种命题之间的关系四种命题之间的构成关系原 命题若p 则q互互 互 逆为 逆否逆命题 若q 则p互 否否 命 题互为逆否否逆 否命 题若⌝p 则⌝q四种命题之间的真值关系互 逆若⌝q 则⌝p原命题真真 假假逆命题真假 真假否命题真假 真假逆否命题真真 假假要点诠释:(1)互为逆否命题的两个命题同真同假;(2)互为逆命题或互为否命题的两个命题的真假无必然联系.【典型例题】类型一:命题的概念例 1.判断下列语句中哪些是命题,是命题的判断其是真命题还是假命题(1)末位是 0 的整数能被 5 整除;(2)平行四边形的对角线相等且互相平分;(3)两直线平行,则斜率相等;(△4)ABC中,若∠A=∠B,则sinA=sinB;(5)余弦函数是周期函数吗?【思路点拨】依据命题的定义判断。
【解析】(1)是命题,真命题;(2)是命题,假命题;(3)是命题,假命题;(4)是命题,真命题;(5)不是命题.这是一个疑问句,没有做出判断.【总结升华】对于命题真假的判断应根据已学习过的已有定义、定理、公理及已有结论等进行.举一反三:【变式1】判断下列语句是否为命题?若是,判断其真假.(1)x>1;(2)当x=0时,x>1;(3)你是男生吗?(4)求证:π是无理数.【答案】(1)不是命题;由于无法确定变量x的值,所以无法确定其真假.(2)是命题;假命题.(3)不是命题;这是一个疑问句,没有做出判断.(4)不是命题;这是一个祈使句,没有做出判断.【变式2】下列语句中是命题的是()A.|x+a|B.{0}∈N C.元素与集合D.真子集【答案】B【变式3】判断下列语句是否是命题.(1)这是一棵大树;(2)sin30︒=1 2;(3)x2+1>0;(4)梯形是平行四边形.【答案】(1)不是,无法确定“大”;(2)是;(3)是;(4)是.类型二:命题的结构例2.指出下面命题的条件和结论.(1)对顶角相等;(2)四边相等的四边形是菱形.【思路点拨】命题都是一定的条件下推出的一定的结果,所以据此确定哪是条件,哪是结论。
【解析】(1)原命题写成:若两个角是对顶角,则这两个角相等.条件:两个角是对顶角;结论:这两个角相等.(2)原命题可写成:如果一个四边形的四边相等,则这个四边形是菱形.条件:一个四边形的四边相等;结论:这个四边形是菱形.【总结升华】要写出一个命题的条件和结论,一般是把一个命题改写成“如果p,那么q”的形式,其中p是条件,q是结论.举一反三:【变式】指出下列命题的条件p和结论q.(1)若空间四边形为正四面体,则顶点在底面上的射影为底面的中心;(2)若两条直线a和b都和直线c平行,则直线a和直线b平行.【答案】(1)条件p:空间四边形为正四面体;结论q:顶点在底面上的射影为底面的中心.(2)条件p:两直线a、b都和直线c平行;结论q:直线a和b平行.【命题及其关系394803例3】例3.将下列命题改写为“若p,则q”的形式,并判断其真假.(1)垂直于同一条直线的两个平面互相平行;(2)对角线相等的平面四边形是矩形.【解析】(1)“若两个平面垂直于同一条直线,则这两个平面平行”真命题.(2)“若一个平面四边形的两条对角线相等,则这个四边形是矩形”假命题.【总结升华】有一些命题虽然表面上不是“若p,则q”的形式,但适当的改写后可以写成“若p,则q”的形式,那么就能很清楚地看出其条件和结论.举一反三:“【变式1】把命题“6是12和24的公约数”写成若p则q的形式.【答案】若一个数等于6,则这个数是12和24的公约数.【变式2】将下列命题改写成“若p则q”的形式,并判断真假.(1)偶数能被2整除;(2)奇函数的图象关于原点对称;. . ..(3)同弧所对的圆周角不相等.【答案】(1)若一个数是偶数,则它能被 2 整除;真命题.(2)若一个函数是奇函数,则它的图象关于原点对称;真命题 (3)若两个角为同弧所对的圆周角,则它们不相等;假命题类型三:命题的四种形式【命题及其关系 394803 例 5】例 4.写出下列命题的逆命题、否命题、逆否命题,并判断四种命题的真假(1)若 ab = 0 ,则 a 2 + b 2 = 0 ;(2)若 x = 1 ,则 x 2 - 3x + 2 = 0 ;(3)若一个三角形有两条边相等,则这个三角形有两个角相等【思路点拨】由原命题写出逆命题,否命题和逆否命题时注意规律: ①交换原命题的条件和结论.所得命题就是逆命题.②同时否定原命题的条件和结论所得命题就是否命题.③交换原命题的条件和结论并且同时否定.所得命题就是逆否命题.【解析】(1)原命题:若 ab = 0 ,则 a 2 + b 2 = 0 ;假命题逆命题:若 a 2 + b 2 = 0 ,则 ab = 0 ;真命题否命题:若 ab ≠ 0 ,则 a 2 + b 2 ≠ 0 ;真命题逆否命题:若 a 2 + b 2 ≠ 0 ,则 ab ≠ 0 .假命题(2)原命题:若 x = 1 ,则 x 2 - 3x + 2 = 0 ;真命题逆命题:若 x 2 - 3x + 2 = 0 ,则 x = 1 ;假命题否命题:若 x ≠ 1 ,则 x 2 - 3x + 2 ≠ 0 ;假命题逆否命题:若 x 2 - 3x + 2 ≠ 0 ,则 x ≠ 1 .真命题(3)原命题:若一个三角形有两条边相等,则这个三角形有两个角相等;真命题 逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等;真命题. n +1 < a ,n ∈N +,则{a }为递减数列”,关于其逆命题,否 n +1 < a ⇔a n +1<a n ,n ∈N ,∴{a n }为递减数列,命题是真命题; n +1 ≥a ,n ∈N +,则{a }不是递减数列,是真命题; ; ; ;否命题:若一个三角形没有两条边相等,则这个三角形没有两个角相等;真命题逆否命题:若一个三角形没有两个角相等,则这个三角形没有两条边相等 真命题【总结升华】①一般地,先将命题改写成“若…,则…”的形式,再写出其他命题形式;某些命题存在大前提,写其它命题时应注意保留.②互为逆否命题的两个命题是等价的,同为真或同为假,因此在判定真假时,只需判定二者中的一个.举一反三:a + a 【变式 1】原命题为“若 n2n n命题,逆否命题真假性的判断依次如下,正确的是( ) A . 真、真、真 B .假、假、真 C .真、真、假【答案】D .假、假、假a + a ∵ n2n+a + a 其否命题是:若 n 2n n又命题与其逆否命题同真同假,命题的否命题与逆命题是互为逆否命题, ∴命题的逆命题,逆否命题都是真命题. 故选:A .【变式 2】写出下列的命题的逆命题,否命题和逆否命题,并判断它们的真假.(1)对顶角相等;(2)空集 A 是非空集合 B 的真子集; 【答案】 (1)原命题:如果两角是对顶角,那么这两角相等(真命题) 逆命题:如果两角相等,那么两角是对顶角(假命题) 否命题:如果两角不是对顶角,那么这两角不相等(假命题) 逆否命题:如果两角不相等,那么这两角不是对顶角(真命题). (2)原命题:若 A 是空集,则 A 是非空集合 B 的真子集(真命题); 逆命题:若 A 是非空集合 B 的真子集,则 A 是空集(假命题); 否命题:若 A 不是空集,则 A 不是非空集合 B 的真子集(假命题); 逆否命题:若 A 不是非空集合 B 的真子集,则 A 不是空集(真命题).【变式 3】(2016 吉林校级一模)给出下列四命题,其中真命题有________。
①“若 xy=1,则 x ,y 互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若 m ≤1,则 x2-2x+m=0 有实数解”的逆否命题;④“若事件 A 发生的概率为 0,则事件 A 是不可能事件”的逆否命题。
【答案】①的逆命题为“若 x ,y 互为倒数,则 xy=1”,是真命题;②逆命题“全等三角形的面积相等”为真命题,故否命题是真命题; ③是真命题,所以它的逆否命题也是真命题;④是假命题,因为在几何概型中随机事件的概率可是 0,所以它的逆否命题也是假命题。
故答案为:①②③。
例 5.设命题: 若 m > 0 ,则关于 x 的方程 x 2 + x - m = 0 有实数根.试写出它的逆命题,否命题和逆否命题,并分别判断其真假.【思路点拨】判断原命题,逆命题,否命题,逆否命题的真假时,只要判断原命题与逆命题的真假, 就可知道其它两个命题的真假,不必一一判断.【解析】逆命题:若关于 x 的方程 x 2 + x - m = 0 有实数根,则 m > 0 .否命题:若 m ≤ 0 ,则关于 x 的方程 x 2 + x - m = 0 无实数根.逆否命题:若关于 x 的方程 x 2 + x - m = 0 无实数根,则 m ≤ 0 .①先判断原命题和逆否命题的真假. 1 ∵ ∆ = 1 + 4m , ∴ 当 m ≥ -时,方程有实数根.4∵当 m > 0 时, m ≥ - 1 4成立,∴ 方程有实数根,∴原命题为真,逆否命题也为真.②判断逆命题和否命题的真假当方程有实数根,即 m ≥ - 1 4时,推不出 m > 0 ,∴逆命题为假,否命题也为假.【总结升华】先将命题中的条件等价转化,然后关于不等式的集合的命题可以借助于集合的韦恩图解决.举一反三:【变式 1】试写出下列命题的逆命题,否命题和逆否命题,并分别判断其真假.(1)当集合 A = {1,2,3,5,6} , B = {1,2,5} 时,若 x ∈ A ,则 x ∈ B .(2)若 x > 3 ,则 x > 2 , (3)若 x 2 - 6 x + 5 = 0 ,则 x = 5【答案】(1)/ ; / ; / / “原命题:当集合 A = {1,2,3,5,6} , B = {1,2,5} 时,若 x ∈ A ,则 x ∈ B (假命题);逆命题:当集合 A = {1,2,3,5,6} , B = {1,2,5} 时,若 x ∈ B ,则 x ∈ A (真命题);否命题:当集合 A = {1,2,3,5,6} , B = {1,2,5} 时,若 x ∈ A ,则 x ∈/ B (真命题)逆否命题:当集合 A = {1,2,3,5,6} , B = {1,2,5} 时,若 x ∈/ B ,则 x ∈/ A (假命题).(2)原命题:若 x > 3 ,则 x > 2 (真命题); 逆命题:若 x > 2 ,则 x > 3 (假命题); 否命题:若 x ≤ 3 ,则 x ≤ 2 (假命题); 逆否命题:若 x ≤ 2 ,则 x ≤ 3 (真命题). (3)原命题:若 x 2 - 6 x + 5 = 0 ,则 x = 5 (假命题);逆命题:若 x = 5 ,则 x 2 - 6 x + 5 = 0 (真命题);否命题:若 x 2 - 6 x + 5 = 0 ,则 x =/ 5 (真命题)逆否命题:若 x = 5 ,则 x 2 - 6 x + 5 = 0 (假命题).【变式 2】已知命题: 如果 | a |≤ 1 ,那么关于 x 的不等式 (a 2 - 4) x 2 + (a + 2) x - 1 ≥ 0的解集是空集”,写出它的逆命题,否命题,逆否命题,并判断它们的真假.【答案】逆命题:如果关于 x 的不等式 (a 2 - 4) x 2 + (a + 2) x - 1 ≥ 0 的解集是空集,那么 | a |≤ 1 ;否命题:如果 | a |> 1 ,那么关于 x 的不等式 (a 2 - 4) x 2 + (a + 2) x - 1 ≥ 0 的解集不是空集;逆否命题:如果关于 x 的不等式 (a 2 - 4) x 2 + (a + 2) x - 1 ≥ 0 的解集不是空集,那么| a |> 1.①判断原命题的真假. 当 | a |≤ 1 时, a 2 - 4 < 0 ,2 4 2 4∆ = (a + 2)2 + 4(a 2 - 4) = 5(a + )2 - - 12 ≤ 5(1+ )2 - - 12 < 0 ,5 5 5 5故 (a 2 - 4) x 2 + (a + 2) x - 1 ≥ 0 的解集为 x ∈∅ ,故原命题为真,则逆否命题亦真.②对于逆命题,当(a2-4)x2+(a+2)x-1≥0的解为空集时,先研究a2-4=0得a=-2,满足题意,这样a=-2与|a|≤1矛盾,故命题为假,而否命题与逆命题互为逆否命题,故否命题亦为假.。