壳聚糖甲壳素应用
壳 聚 糖
农药载体和农药缓释剂
THANK YOU
最终确定了 chitin的化学结 构
甲壳素:又称甲壳质、几丁质,英文名 Chitin,是地球上第二大天然多糖,仅 次于纤维素
自然界中的甲壳素
甲壳素的结构
已知甲壳素是无毒、可生物降解、可食用 、 生物相容、热稳定,并具有抗氧化、抗微生 物和抗癌作用。
不溶于水和几乎所有常用的有机溶剂,它只 能溶于一些氟醇(六氟丙酮、六氟异丙醇),碱 性冰水混合物,CaCl2·2H2O 的饱和甲醇溶液, N,N-二甲基乙酰胺氯化锂 、 (LiCl-DMAc)和低 共熔溶剂以及咪唑基离子液体。
3):壳聚糖的有效基团NH3可以与细菌细胞膜上的类脂、蛋白质复合物反应, 使蛋白质变性,改变了微生物细胞膜的通透性,引起微生物细胞死亡。
4):壳聚糖作为一种螯合剂,能有选择性地螯合对微生物生长起关键作用的 金属离子,尤其是酶的辅助因子,从而抑制微生物的生长和繁殖。
壳聚糖在植保上的应用
植物生长调节剂 用来处理农作物或其种子,可激发种子提早萌芽,促进作物生长,提高产量 和品质。
1):高分子链密集于在微生物细胞表面,形成一层高分子膜,影响细菌对营 养物质的吸收,阻止代谢废物的排泄,导致菌体的新陈代谢紊乱,从而起到 杀菌和抑菌作用。
2):分子量小于5000的壳聚糖可以透过细胞膜,破坏细胞质中内含物的胶体 状态,使其絮凝、变性、无法进行正常的生理活动,导致微生物死亡。
壳聚糖抑菌机理
壳聚糖的结构
壳聚糖的一个糖基中,C3-OH与 相邻的糖基形成氢键
一个糖基的C3-OH与相邻的糖基 的呋喃环上的氧形成氢键
壳聚糖的结构
C3-OH也可以与相邻的另 一条壳聚糖分子链的糖基 形成氢键
甲壳素与壳聚糖
壳聚糖具有良好的水溶性、生物相容性和生物活性,能够 被生物体内的酶降解。
总结
甲壳素和壳聚糖在性质上的差异主要表现在水溶性和生物降解 性上,甲壳素不易溶于水且不易被生物降解,而壳聚糖具有良
好的水溶性和生物降解性。
应用比较
甲壳素
甲壳素在医学、环保、农业等领域有广泛应用,如制备人工皮肤、药物载体和生物材料 等。
食品工业
02
03
环保领域
甲壳素和壳聚糖在食品工业中的 应用将更加广泛,如食品添加剂、 保鲜剂、食品包装材料等。
甲壳素和壳聚糖在环保领域的应 用将得到发展,如污水处理、土 壤修复等。
甲壳素与壳聚糖的环境影响
减少环境污染
随着提取技术的发展,甲壳素和壳聚糖的生产过程将 更加环保,减少对环境的污染。
资源化利用
甲壳素和壳聚糖的废弃物将得到有效利用,实现资源 化利用,减少浪费。
生态平衡
合理利用甲壳素和壳聚糖资源将有助于维护生态平衡, 促进可
抗菌性
壳聚糖具有广谱抗菌活性,能够抑制多种细菌的 生长繁殖。
生物降解性
壳聚糖可被微生物分解为低分子物质,最终分解 为水和二氧化碳,具有良好的生物降解性。
壳聚糖的应用
食品添加剂
壳聚糖可用于食品保鲜、增稠、稳定等功能, 提高食品品质和口感。
医疗领域
壳聚糖在医疗领域可用于制作止血纱布、药 物载体、组织工程支架等。
02 壳聚糖简介
壳聚糖的来源
甲壳素
壳聚糖是甲壳素经过脱乙酰化反应后 得到的,甲壳素广泛存在于虾、蟹等 甲壳动物的外壳以及菌类、昆虫等节 肢动物的外骨骼中。
提取过程
通过酸碱处理、脱钙、脱蛋白等步骤 ,将甲壳素脱去乙酰基,得到壳聚糖 。
壳聚糖的改性研究进展及其应用
壳聚糖的改性研究进展及其应用壳聚糖是一种天然高分子材料,由于其具有良好的生物相容性、生物活性和生物降解性,因此在工业、生物医学等领域得到了广泛的应用。
然而,壳聚糖也存在一些不足之处,如水溶性差、稳定性低等,因此需要对壳聚糖进行改性研究,以提高其性能和应用范围。
壳聚糖的改性方法主要包括化学改性和物理改性。
化学改性是通过化学反应改变壳聚糖的分子结构,从而提高其性能。
例如,通过引入疏水基团可以改善壳聚糖的水溶性和生物相容性。
物理改性则是通过物理手段改变壳聚糖的形态、结构等因素,以达到提高性能的目的。
例如,通过球磨法可以制备壳聚糖纳米粒子,从而提高其在生物医学领域的应用效果。
目前,壳聚糖的改性研究已经取得了显著的进展。
然而,仍存在一些问题和挑战。
其中,如何保持壳聚糖的生物活性是改性过程中面临的重要问题。
改性后的壳聚糖可能会出现新的毒性问题,因此需要进行深入的毒性研究。
未来,随着壳聚糖改性技术的不断发展,相信这些问题将逐渐得到解决。
壳聚糖在工业、生物医学等领域有着广泛的应用。
在工业领域,壳聚糖可用于制备环保材料、化妆品添加剂、印染助剂等。
例如,通过接枝共聚将壳聚糖与聚丙烯酸制成高分子复合材料,可用于制备可生物降解的塑料袋等环保材料。
在生物医学领域,壳聚糖可用于药物传递、组织工程、生物传感器等方面。
例如,利用壳聚糖制备的药物载体能够实现药物的定向传递,提高药物的疗效并降低毒副作用。
在生物医学领域,壳聚糖还可用于组织工程。
通过将壳聚糖与胶原等生物活性物质结合,可以制备出具有良好生物相容性和生物活性的组织工程支架。
这些支架可为细胞生长提供适宜的微环境,促进组织的再生和修复。
壳聚糖还可用于制备生物传感器,用于检测生物分子和有害物质。
例如,将壳聚糖与酶或抗体结合制成生物传感器,可实现对血糖、胆固醇等生物分子和有害物质的快速、灵敏检测。
壳聚糖作为一种天然高分子材料,具有良好的生物相容性、生物活性和生物降解性,在工业、生物医学等领域得到了广泛的应用。
甲壳素与壳聚糖综述
二、壳聚糖的制备方法
二步碱液法 ( 传统法)
改进碱液法
该工艺具有制备周期短、节约能源; 节约烧碱用量, 降低成本, 省去漂白, 确保产品质量的优点。
微波法
该工艺的特点不仅作用时间短, 能耗低, 而且比常 规加热碱液处理效率提高 11 倍多, 同时反应重复性好。
三、甲壳素、壳聚糖的应用
功能 材料
存在状态:
甲壳素的结构因氢键类型不同而有 三种结晶体: ➢α-甲壳素,由两条反向平行的糖链组成 ➢β-甲壳素,由两条同向平行的糖链组成 ➢γ-甲壳素,由三条糖链组成,其中两条 同向,一条反向。
壳聚糖: 也称几丁聚糖(chitosan),它是由甲壳素在 碱性条件下加热,脱去N—乙酰基后生成的。其学名为(1, 4)—2—氨基—2—脱氧—β—D—葡聚糖。壳聚糖外观是 白色或淡黄色半透明状固体,略有珍珠光泽。
8.在功能材料中的应用
膜材料:
(1)反渗透膜:具有较高的脱盐率和透水率,还 具有强耐碱性,交链后的膜有耐酸性。 (2)渗透蒸发膜:用甲壳素制成的分离水和乙醇 的高性能功能分离膜,与蒸馏法分离水和乙醇相 比,能耗降低。 (3)超过滤膜:甲壳素制成的壳质膜,改变成膜 温度及用丙酮等有机溶剂浸处理,可调整分离膜 的强度及透过性能,可用作超过滤膜。
1.在农业上的应用
植物病害的防治:
壳聚糖可诱导植物产生广谱抗性, 增强植物自身的防卫能力,抑制多种 病源微生物的生长。
低聚壳聚糖可以诱导植物产生抗 性蛋白,具有明显的抗微生物活性, 在体外抑制真菌的生长。
2.在化妆品原料上的应用
1)洗发香波、头发调理剂:甲壳素粉沫比表面积 大,孔隙率高,吸收皮脂类油脂远大于淀粉或其 他活性物质,是洗发剂理想的活性物质。
一是通过电荷中和而使胶体颗粒脱稳并形成细小 的絮凝体;
甲壳素及壳聚糖的制备与利用
甲壳素及壳聚糖的制备与利用
甲壳素和壳聚糖是生物多糖,具有广泛的应用。
它们主要来源于海洋生物,如海藻、海参、单细胞藻类等,也可以从非海洋生物中分离纯化而来,如硅藻中的甲壳素,以及禾谷科植物的壳聚糖。
甲壳素和壳聚糖的制备方法包括离子交换法、溶剂萃取法、乳化-凝胶法、气相法、水解法等,但以水解法为主,因其简便性、成本低廉、效率高、成品纯度高等优势。
在水解中,一般采用酶进行水解,如α-葡萄糖苷酶、β-葡萄糖苷酶等,也可以采用酸性碱性溶液进行水解。
利用甲壳素和壳聚糖可以制备各种复合材料,如复合膜、复合无纺布、复合涂料等,具有良好的抗水蚀性能、抗紫外线性能、耐腐蚀性能等,可用于食品包装、水处理、生物医学等领域。
此外,它们还可以用于制备含有药物的纳米粒子、纳米复合材料、纳米纤维素以及药物输送体系等,以及制备生物活性物质、抗菌剂、抗炎剂、抗癌剂等。
甲壳素及壳聚糖在畜禽饲养业中的应用
壳聚糖也能渗进细菌细胞里和细菌细胞质通过絮凝作用从而搅扰细菌生理活动的进行杀死细菌14122壳聚糖可以调节畜禽体内脂肪代谢壳聚糖能降低畜禽的血脂胆固醇和甘油三酯其的铵离子可以结合带负电荷的胆汁酸阻挠胆汁酸参与乳化脂肪且它可抑制消化道内容物中脂肪酶的活性从而降低脂肪的消化吸收增加粪便中中脂肪的排出量减少畜禽产品体脂的沉积14123甲壳素及壳聚糖可以提高免疫功能甲壳素及其衍生物可以活化巨噬细胞提高巨噬细胞溶菌酶的活性使其吞噬能力增强并能活化t淋巴细胞促进其释放各种淋巴因子124甲壳素及壳聚糖能保护消化道粘膜甲壳素及其衍生物能够吸附氢离子h结合相当数量的酸性物质可抑制中和胃酸分泌从而保护胃黏膜
甲壳素∕壳聚糖及衍生物在水处理中的应用
甲壳素∕壳聚糖及衍生物在水处理中的应用摘要:甲壳素具吸附及螯合性,可以和重金属离子形成错合物,再加上其生物可分解特性,不致于造成二次公害,因此为一良好的环境友好型水处理材料。
本文主要介绍了甲壳素∕壳聚糖及衍生物在水处理中的应用研究进展。
关键词: 壳聚糖;螯合; 水处理一.壳聚糖简介甲壳质是1811年由法国学者布拉克诺(Braconno)发现,1823年由欧吉尔(odier)从甲壳动物外壳中提取,并命名为CHITIN,译名为几丁质。
外观及性质:淡米黄色至白色,溶于浓盐酸/磷酸/硫酸/乙酸,不溶于碱及其它有机溶剂,也不溶于水。
甲壳质的脱乙酰基衍生物(Chitosan derivatives)可溶于水。
甲壳素具有抗癌抑制癌、瘤细胞转移,提高人体免疫力及护肝解毒作用。
尤其适用于糖尿病、肝肾病、高血压、肥胖等症,有利于预防癌细胞病变和辅助放化疗治疗肿瘤疾病。
因此,甲壳素/壳聚糖越来越多地被国内外研究者所重视,对它的研究也日益深入,现在,甲壳素/壳聚糖的应用领域已覆盖环保、食品、生物医用材料、生物农药等诸多方面。
甲壳素的化学名称为(1,4)-2-乙酰氨基-2-脱氧-β-D-葡萄糖,是线型多糖类聚合物,简称为N-乙酰-D-葡糖胺。
二.1、壳聚糖的制备壳聚糖是许多低等动物,特别是节肢类动物(如昆虫、甲壳类动物等)外壳的主要成分,主要以无机盐及蛋白质结合形式存在.但其中尤以虾蟹壳中含量最高,因此通常以是虾蟹壳为原料。
(1)传统工艺[1]以虾蟹壳为原料,常温下用稀释盐酸分解无机盐,用稀碱脱除蛋白质得甲壳素,甲壳素再经浓碱脱乙酰基得壳聚糖。
其简易流程如下:虾蟹壳——清洗、去杂质、烘干(加稀HCL)——脱无机盐(加稀NaOH)——脱蛋白质(加浓NaOH)——脱乙酰基——烘干得壳聚糖壳聚糖的主要质量指标是粘度及胺基含量,在制备壳聚糖过程中,用稀盐酸分解虾蟹壳无机盐的同时,壳聚堂的链也会发生不同程度的水解作用,因此在分解无机盐的过程中盐酸的浓度、处理时间及温度对壳聚糖制品的粘度、胺基含量均有影响。
农用甲壳素的功效与作用
农用甲壳素的功效与作用农用甲壳素(chitosan),也被称为壳聚糖,是一种天然生物聚合物,由脱乙酰壳聚糖(chitin)经过酸碱处理而得到。
作为一种生物功能材料,农用甲壳素在农业领域发挥着重要的作用。
它具有多种功能,包括抗病虫害、提高植物抗逆性、增强植物生长、改善土壤质量等。
本文将对农用甲壳素的功效与作用进行介绍。
一、抗病虫害作用农用甲壳素具有良好的抗病虫害作用,可以用于预防和控制多种农作物病虫害。
研究表明,农用甲壳素可以通过调节植物自身抵御能力,提高植物对病原菌的抵抗性。
农用甲壳素对于多种病原真菌和细菌均具有抑制作用,例如对于大米纹枯病、水稻白叶枯病、黄瓜炭疽病等具有显著的防治效果。
此外,农用甲壳素还可以抑制多种昆虫、螨类等害虫的生长和繁殖,对于多种农作物害虫的防治也具有一定的效果。
二、提高植物抗逆性植物在生长发育过程中会受到各种逆境的影响,例如高温、低温、干旱、盐碱等。
农用甲壳素可以增加植物对逆境的耐受性,提高植物的生长和产量。
研究表明,农用甲壳素可以通过激活植物的防御系统,提高植物的抗逆性。
在高温胁迫下,农用甲壳素可以减轻植物叶片的损伤,提高光合作用效率,并降低氧化胁迫。
在干旱胁迫下,农用甲壳素可以增加植物根系的活力,提高植物对水分的利用效率。
在盐碱胁迫下,农用甲壳素可以降低土壤的盐碱度,改善土壤环境,从而提高植物对盐碱的适应性。
三、增强植物生长农用甲壳素可以促进植物的生长和发育,增加作物的产量和品质。
研究表明,农用甲壳素可以促进植物的根系和叶片的生长,增加植物的光合作用效率,提高植物对养分和水分的吸收利用效率。
此外,农用甲壳素还可以提高植物的免疫力,减少植物叶片的病害发生。
农用甲壳素还可以促进植物的开花结果,增加作物的花果实数量和质量。
四、改善土壤质量农用甲壳素可以改善土壤的物理性、化学性和生物性,提高土壤的保水保肥能力。
研究表明,农用甲壳素可以改善土壤的结构,增加土壤的团粒结构和渗透性,减少土壤的压实度和泥化度。
甲壳素与壳聚糖
(3)纺织整理剂:壳聚糖作用上浆料,使难上浆 材质易染色,对染料具有强亲和力,达到良好的 染色效果。
6.在食品工业中的应用
(1)抗菌剂 (2)保鲜剂:壳聚糖膜可阻碍大气中氧的渗入和 瓜果呼吸产生的二氧化碳的逸出,但可使乙烯气 体逸出,从而抑制好氧微生物的繁殖和延迟瓜果 成熟。 (3)抗氧化剂:壳聚糖与肉类的血红蛋白释放出 来的金属离子鳌合形成鳌合物,抑制金属离子的 催化活性,从而抑制氧化作用的形成。 (4)果汁的澄清剂 (5)食物防腐剂
8.在功能材料中的应用
膜材料:
(1)反渗透膜:具有较高的脱盐率和透水率,还 具有强耐碱性,交链后的膜有耐酸性。 (2)渗透蒸发膜:用甲壳素制成的分离水和乙醇 的高性能功能分离膜,与蒸馏法分离水和乙醇相 比,能耗降低。 (3)超过滤膜:甲壳素制成的壳质膜,改变成膜 温度及用丙酮等有机溶剂浸处理,可调整分离膜 的强度及透过性能,可用作超过滤膜。
8.在功能材料中的应用
吸附剂:
壳聚糖和甲壳素具有很好的吸附 作用,不仅无毒,且有抑菌、杀菌作 用,是食品饮料工业和饮用水净化的 理想吸附剂。
9.在水处理中的应用
壳聚糖絮凝剂属弱阳离子型高分子絮凝剂,由于 阳离子絮凝剂的絮凝性能可同时表现在两个方面: 一是通过电荷中和而使胶体颗粒脱稳并形成细小 的絮凝体; 二是通过高分子架桥作用使这些絮凝体形成大体 积的絮团。 因此,针对大部分废水中的颗粒都带负电荷的特 点,可知阳离子絮凝剂在废水处理中要比阴离子或非 离子型絮凝剂具有更多的优势,处理后的效果更好。
质层的一类天然高分子聚合物,它属于氨基多糖。
存在状态:
甲壳素的结构因氢键类型不同而有 三种结晶体: α-甲壳素,由两条反向平行的糖链组成 β-甲壳素,由两条同向平行的糖链组成 γ-甲壳素,由三条糖链组成,其中两条 同向,一条反向。
甲壳素壳聚糖生物学活性及应用
甲壳素/壳聚糖生物学活性及应用4.1 甲壳素/壳聚糖的生物学活性4.1.1 调节脂类代谢甲壳素、壳聚糖有脂粘连性的特殊功能,可降低动物血脂、胆固醇、甘油三脂含量,也可降低动物产品如鸡蛋中的胆固醇含量。
X加罗等(1996)试验表明,大鼠摄入一定剂量的壳聚糖能有效抑制血清总胆固醇升高(P<0.01),但能使高度密度脂蛋白胆固醇(HCL-C)升高(P<0.01);同时表明壳聚糖降低血清总胆固醇(TC)效应可能主要表现在降低密度脂蛋白(LDL-C)和极低密度脂蛋白胆固醇(VLDL-C)上,而对HDL-C有升高用。
另外,壳聚糖对食欲及体重影响不大,对脏器无明显的损害作用。
甲壳素、壳聚糖之所以具有此项功能大多数人认为是由于此类物质成分中的葡萄糖胺连带由4个铵离子,它具有较高的阴离子交换能力,与胆汁酸有很好的结合能力,可阻止胆肝汁酸的循环,降低脂肪的吸收,增加粪中脂肪的排出量。
另外甲壳素、壳聚糖也能与脂类化合物络合,形成不易被胃酸水解和消化系统吸收的络合物,降低机体对脂肪类物质的吸收。
4.1.2 抗微生物活性壳聚糖有较强的抑菌、杀菌能力。
脱乙酰化度为30%和70%的甲壳素(DAC-30及DAC-70)能提高宿主抗Sendai病毒及大肠杆菌感染的能力,提高静脉注射甲壳素的水有产物N-乙酰氨基葡萄糖六聚体(NACOS-6),对绿脓杆菌感染的大鼠有较强的保护作用。
Mnzzarelir(1987)对N-羧丁基壳聚糖的抗微生物活性作了研究,试验表明,浓度为4mg.ml-1、PH5.4-6.8的N-羧丁基壳聚糖-3,6-二硫酸酯对体外培养的金黄色葡萄球菌,链球菌、奇异变形菌、大肠杆菌、绿脓杆菌、肺炎杆菌和柠檬酸细菌有抑制作用(韩新燕等,2000)。
壳聚糖抗微生物的可能机理是此类物质的分子中所带的正电荷及其聚合分子结构可与病原菌表面的鞭毛及套膜吸附凝集,抑制病原菌繁殖,改进小肠代谢功能。
4.1.3 增强免疫、抗肿瘤活性雷朝亮等(1997)往小鼠腹腔注射2%甲壳素水溶液5、10、20ml,结果发现甲壳素可增加小鼠腹腔巨噬细胞及NK细胞的活性,对细胞免疫及体液免疫均有增强的作用。
甲壳素与壳聚糖
甲壳素和壳聚糖具有调节植物生长、增强植物抗逆性等作用,在农业领域具有潜在的应 用价值。
甲壳素与壳聚糖的未来展望
提高产量与质量
通过优化提取和制备工艺,提高甲壳素和 壳聚糖的产量与质量,以满足市场需求。
A 拓展应用领域
随着研究的深入,甲壳素和壳聚糖 的应用领域将进一步拓展,如在新 材料、新能源等领域的应用探索。
多元化提取
未来将开发出更多元化的提取方法,满足不同来源和性质的甲壳素 与壳聚糖的提取需求。
甲壳素与壳聚糖的应用领域拓展
生物医学领域
随着研究的深入,甲壳素与壳聚 糖在生物医学领域的应用将更加 广泛,如药物载体、组织工程、 生物材料等。
环保领域
由于甲壳素与壳聚糖具有优异的 生物降解性,未来在环保领域的 应用将更加广泛,如污水处理、 土壤修复等。
甲壳素和壳聚糖都具有抗菌、抗 炎、抗肿瘤等生物活性,可应用 于伤口愈合、抗炎治疗、抗肿瘤 药物载体等方面。
04 甲壳素与壳聚糖的未来发 展
甲壳素与壳聚糖的提取技术发展
高效提取
随着科技的不断进步,甲壳素与壳聚糖的提取技术将更加高效, 提高产量和纯度,降低生产成本。
环保提取
在提取过程中,将更加注重环保,减少对环境的污染,开发出更加 环保的提取方法。
循环利用
03
研究甲壳素与壳聚糖的循环利用技术,实现资源的有效利用,
降低生产成本和环境负担。
05 结论
甲壳素与壳聚糖的重要地位
生物医用材料
甲壳素和壳聚糖具有良好的生物相容性和生物降解性,在生物医用材料领域具有广泛的 应用前景,如药物载体、组织工程和创伤敷料等。
环保领域
甲壳素和壳聚糖可降解,对环境友好,可用于环保领域,如污水处理、重金属离子吸附 等。
甲壳素和壳聚糖的化学性质和应用
甲壳素和壳聚糖的化学性质和应用普拉迪普·库马尔·杜塔,乔伊迪普格杜塔和特里帕蒂阿拉哈巴德,莫逖尼赫鲁国家技术研究所,化学系211004。
甲壳素和壳聚糖是相当灵活和有前途的生物材料。
脱乙酰甲壳素和壳聚糖衍生物,更加有用和有趣的生物活性聚合物。
尽管它的生物降解性,它有许多反应性氨基酸侧链基团,其中提供化学修饰,形成了大量的各种有用的衍生物,是市售的可能性或者可以通过接枝反应和离子相互作用。
本研究着眼于当代研究甲壳素和壳聚糖对在各种工业和医学领域的应用。
关键词:甲壳素,生物降解性,壳聚糖,生物材料介绍甲壳素是第二个最普遍的物质,地球上仅次于纤维素和多糖:它是由(1→4)组成的联-2 - 乙酰氨基-2 - 脱氧- - glucose1(D-N-乙酰葡糖胺)(图1)。
它通常被认为是纤维素衍生物,甚至不会发生在生产纤维素的生物中。
它与纤维素结构上是相同的,但它在C-2位置上具有乙酰胺的组(NHCOCH3)。
同样的衍生物甲壳素,壳聚糖线型聚合物(1→4) - 连接的2 - 氨基-2 - 脱氧--D-吡喃葡萄糖,很容易推导出N-脱乙酰化,其特征在于,不同程度上的脱乙酰度,因此它是一个的N-乙酰葡糖胺和葡糖胺的共聚物(图2)。
估计甲壳素每年待产几乎与纤维素一样多。
它已成为极大的研究热点,不仅是一个可利用的资源,也可作为一个新的高功能的生物材料,潜在于各个领域中的最新进展,化学作用是相当显著的。
图1 - 甲壳素结构图2 - 部分脱乙酰甲壳素甲壳素是一种白色,坚硬,无弹性,在含氮多糖中的外骨骼中发现,以及在内部结构的无脊椎动物中发现。
这些天然聚合物表面的一个主要来源在沿海地区。
作为食品工业中获得的甲壳类的壳进行脱乙酰壳多糖的生产,在经济上是可行的,特别是如果它包括恢复类胡萝卜素。
贝壳含有相当数量的虾青素,迄今尚未合成,类胡萝卜素是作为鱼类食品添加剂销售水产养殖,特别是鲑鱼。
印度的平均降落的固体废物分数贝类介乎60,000至8万吨。
甲壳素及壳聚糖在纺织工业中的应用
甲壳素及壳聚糖在纺织工业中的应用1 概述甲壳素(Chitin)又名甲壳质、几丁质等,是一种丰富的自然资源,每年生物合成近10亿吨之多,是继纤维素之后地球上最丰富的天然有机物。
甲壳素的结构与纤维素极其相似,是一种天然多糖,可命名为(l,4)-2-乙酸氨基-2-脱氧-β-D-葡萄糖。
甲壳素兼有高等动物组织中胶原质和高等植物组织中纤维素两者的生物功能,对动、植物都具有良好的适应性,同时还具有生物可降解性和口服无毒性,因此近年来它已成为一种用途广泛的新型材料。
壳聚糖(Chitosan)是甲壳素脱乙酸化的产物,能溶于低酸度的水溶液中,因其含有游离氨基,能结合酸分子,故具有许多特殊的物理化学性质和生物功能。
壳聚精是甲壳素最重要的衍生物,是甲壳素脱乙酸度达到70%以上的产物,也是迄今为止发现的唯一天然碱性多糖,具有无毒性、可生物降解性、良好的生物兼容性等特性。
另外,壳聚糖分子中存有大量的氨基和羟基,可以通过化学反应在其上引入各种功能性基团进行化学修饰作为低等动物组织中的纤维成分,所以表现出了极高的应用价值和广泛的发展前景,是一种新型的多功能织物整理剂,在印染、抗折皱、防毡缩、抗菌和纤维滤嘴等方面应用广泛。
此外,将甲壳素或壳聚糖纺成纤维,进而加工成外科用的可吸收手术缝合线、伤口敷料、人造皮肤等医用材料则是近年来科学家们研究的重要课题。
2 在纺织领域中的应用壳聚糖具有许多天然的优良性质,如吸湿透气性、反应活性、生物活性、吸附性、粘合性、抗菌性等,人们利用这些性能来提高棉、毛、丝绸等天然纤维织物的染色、抗菌、防皱、防缩等性能,并可应用于纺织领域的污水处理。
2.1 手术缝合线用壳聚糖纤维制成的缝合线,在预定时间内有很强的抗张强度,在血清、尿、胆汁、胰液中能保持良好的强度,在体内有良好的适应性,尤其是经过一定时间,壳聚糖缝合线能被溶菌西每解,被人体自行吸收。
因此,当伤口愈合后,不必再拆线。
理想的外科缝合线应满足:愈合前与组织兼容;愈合时所有缝合线不拆除,逐渐被人体吸收而消失;缝合线不破坏愈合。
壳聚糖甲壳素及其在养鸡生产中的应用
一
白质、 脂肪、 、 糖 维生素 、 矿物质之后人体的第六 生命要素。19 年 甲壳素又通过 了条件苛刻 的 96
美国药品食品管理局和欧洲共同体的鉴定 , 获准
种 线 型 的高 分 子 多 糖 , 子 式 为 ( 。 , 分 C H。
N , O ) 分子量在几 十到几百万之间 , 其结构 与
一
1 一 4
中国饲料添加剂
20 0 6年第 5期( 总第 4 7期)
纤维素非常相似 , 故也被称为动物纤维素 , 为天 然 的中性粘多糖 。甲壳素若经化学反应或酶化 处理后 , 位碳上的乙酰氨基被脱 乙酰基而得到 2
壳 聚糖 , 理条件 下 为带正 电荷 的线 型分子 。生 生
Z a g a m n Z e rig Sn h un hn n ig hnEynl y A r u ueU ie i f ee, adn 0 10 ) C l g nm l c c n eho g , gi l r n r t o H biB oig 7 0 1 l f e o ct v sy
体是相对安全的, 这是甲壳素具有生物相容性和 产生各种生物活性的基础。它们具有无毒、 无刺 激性、 无免疫抗原性 , 是一种组织相容性 良好的 新的生物材料… 。动物试验表 明, 壳聚糖对小
鼠神 经 系统 及 大 鼠心 血 管 和 呼 吸 系 统 均 无 影 响 】 。其毒理学 研究 表 明 它对 小 鼠的胚 胎无 明
甲壳素的理化性质、 制备方法、 生理功能及其在养鸡生产 中的应用。
关键词: 壳聚糖; 甲壳素 ; 养鸡生产 ; 应用
T eC i sn a d C in a d T e p l aini hc e r d cin h ht a n ht n i A pi t C ik nP o u t o i h r c o n o
甲壳素与壳聚糖的应用
二、甲壳素及壳聚糖在农业领域 的应用
1、土壤改良
甲壳素和壳聚糖具有改善土壤物理性质、增加土壤保水能力的作用。将甲壳 素或壳聚糖添加到土壤中,可以增强土壤的团聚性,提高土壤的通气性和渗透性, 有利于土壤的改良和作物根系的生长。
2、植物生长促进剂
甲壳素和壳聚糖具有植物生长调节剂的作用。在农业生产中,通过合理使用 甲壳素或壳聚糖,可以促进植物种子的萌发、根系的发展以及叶片的生长。此外, 甲壳素和壳聚糖还能提高植物的抗病性和抗逆性,有助于作物健康生长。
3、生物防治剂
甲壳素和壳聚糖可以作为生物防治剂应用于农业。由于其具有生物活性,可 以用于诱导植物产生抗虫性和抗病性。同时,甲壳素和壳聚糖还具有抑制病原菌 生长的作用,可以作为生物防腐剂应用于农产品的储存和运输。
4、环保农业应用
甲壳素和壳聚糖可以用于农业废弃物的处理和资源化利用。例如,将甲壳素 或壳聚糖应用于农业残渣的降解,可以提高废弃物的生物可降解性,减轻环境压 力。此外,甲壳素和壳聚糖还可用于土地治理,例如重金属污染土壤的修复。
由于这些食品具有较高的营养价值且具有保健功能而备受消费者青睐。将甲 壳素衍生物与其他天然高分子物质复合制备成膜材料用于食品包装可以改善包装 材料的性能并延长食品的保质期。将甲壳素与甲基丙烯酸甘油酯―甲基丙烯酸 ―N―羟甲基丙烯酰胺三元共聚物结合制成可食性膜材料并应用于草莓汁澄清中 可以降低澄清成本并延长果汁的保质期。此外,甲壳素―胶原蛋白复合物可广泛 应用于保健品和化妆品中以提高产品的营养价值和功效。
5、节水农业应用
甲壳素和壳聚糖具有较好的保水性能,可以用于节水农业中。将甲壳素或壳 聚糖添加到土壤中,可以提高土壤的保水能力,减少水分蒸发,从而有效提高水 资源的利用效率。
三、前景与挑战
壳聚糖的抑菌作用及在农业中的应用
2.4 可降解壳聚糖地膜
使用地膜可以增加土壤温度, 保水保墒, 促进农作物早熟, 提高产量, 但 地膜使作物丰收的同时, 也造成了严重的环境污染, 残留在土壤中不能分解的 废膜, 导致土壤结构恶化, 土地透气性变差, 植物的生长和对水的吸收都受到阻 碍, “白色革命”附带来了“白色公害”, 利用壳聚糖的成膜性及生物可降解性, 可 制成具有良好粘附性、通透性和一定抗拉强度的农用地膜。代替现在广泛使 用的聚乙烯地膜, 这种地膜无污染、成本低、强度高, 并且具有改良土壤的作 用。研究发现, 壳聚糖应用在种衣剂中具有较好的成膜性能, 且通过优化助剂, 可以有效地降低药剂在水中的溶解淋失率, 提高药剂在种子表面的附着力。近 年来, 日本利用壳聚糖具有的良好成膜性能开发出壳聚糖塑料降解地膜、生物 可降解地膜, 壳聚糖的生物可降解性在工业上也具有广泛的应用前景, 如制作 可降解饭盒、包装材料等。
增强植物细胞壁
1.1 诱导植物抗性蛋白的产生
壳聚糖及其衍生物可诱导植物产生抵御病原物质的抗性蛋 白——致病相关蛋白PR(pathogenesis -related proteins) 。 壳聚糖所诱导的抗性蛋白主要为植物抗毒素(phtoalexin)、几 丁质酶(chitinase)、壳聚糖酶(chitosanase)和 1, 3一葡聚糖酶 ( l, 3一glucanase)等。许多研究都表明, 壳聚糖可诱导植株产 生几丁质酶、壳聚糖酶和 l, 3-葡聚糖酶, 这些酶的底物是真菌 细胞壁的主要组分, 几丁质酶特别是在与1, 3-葡聚糖酶的共同 作用下可在体外抑制真菌的生长。壳聚糖诱导出的几丁质酶、 壳聚糖酶和l, 3-葡聚糖酶彼此之间还有协同效应, 以致抗菌作 用更为明显。
壳聚糖的抑菌作用及在农 业中的应用
壳聚糖(chltosan)是甲壳素(chitin)的一种重要 衍生物,是甲壳素脱乙酰基转化而成的产物。甲壳素 来源于甲壳类动物,甲壳素(Chitin)也叫甲壳质、几 丁、几丁质、蟹壳素、明角壳蛋白、壳多糖,广泛存 在于低等动物(如甲壳纲、昆虫纲和蛛形纲等节肢动物 外壳)和低等植物(如真菌、藻类、酵母等)的细胞壁中。 是自然界中最丰富的天然高分子化合物之一(仅次于纤 维素)和第二大含氮化合物(仅次于蛋白质)。 据估计, 地球上每年由生物合成的甲壳素约有100亿吨,是一种 取之不尽、用之不竭的再生资源。人们利用和研究甲 壳素已有近百年的历史. 因为它的安全无毒性、可生 物降解性及生物相容性和独特的理化性质和生物活性。 应用范围扩展到化妆品、膜材料、纤维材料、催化剂、 混凝剂、酶和细胞的固定化载体、药物载体、吸附剂 等多个领域和农业、环境保护、食品工业、医药、分 析化学及轻纺工业 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
涂依
戊二醛为交联剂, 以涂覆的方法制备了壳聚糖 /羧甲基壳聚糖双层复合 膜, 羧甲基壳聚糖的分子量不同, 研究对比不同分子量羧甲基壳聚糖 双层复合膜的创伤修复效果。实验结果表明: 制备的双层复合膜对创伤 都有一定的修复效果,但是羧甲基壳聚糖的分子量越小,创伤修复效 果越好
余丕军
2021/3/10
通过观察胶原蛋白 - 壳聚糖( 80: 20) 复合纳米纤维膜修复 SD 大鼠背部全层皮
营养药物载体
针对壳聚糖微球作为药物载体的研究已经有很多,但其作为营养药物载体的研究则比较少。目前, 壳聚糖微球在营养物运送方面的研究主要是作为维生素载体。
2021/3/10
8
甲壳素生物质转化为高附加值化合物
随着全球石油、天然气等传统化石资源逐渐枯竭,人们正在努力寻求新的替代能源。生物质是 一种天然可再生资源,数量巨大,价格低廉,丰富的生物质资源有望成为未来获取燃料和高附加值 化学品的主要来源。新加坡国立大学的颜宁教授等提出了甲壳素生物质精炼的概念,同时指出甲壳 素生物质来源丰富,应该像纤维素生物质一样被充分利用,使其转化成为具有较高价值的化学品。
对骨损伤的修复
对神经干细胞的修复
对皮肤创面的修复
2021/3/10
3
1.对骨损伤的修复
将多碳纳米管通过冷冻干燥法与壳聚糖复合制成支架,实验表明有利于骨样细胞黏附 在支架上,加速细胞增殖并向成骨细胞分化。纳米羟基磷灰石/壳聚糖三维多孔支架植入到 大鼠颅顶骨缺损处,通过组织学观察,在2周时骨缺损区边缘及支架中心发现有新骨形成, 在5周时骨缺损区已有明显的新骨形成
通过化学改性的方法将琥珀酸引入到壳聚糖中合成水溶性壳聚糖衍生物 ( NSC),在 L929 细胞中研究NSC 的细胞毒性,并通过抑制区方法和细菌生 长曲线分析评价其抗菌活性。结果表明,与壳聚糖相比,NSC 的溶解度显着 提高,NSC 是无毒的,具有良好的抗菌性能。动物伤口愈合试验表明 NSC 相比壳聚糖可以显著减少愈合时间。
肤缺损创面的作用, 修复后14d 实验组创面已经基本对合; 而仅用油纱及干纱布
包扎并在创伤外缘打包固定的对照组创面对合不整齐, 创面较实验组大。证实
了胶原蛋白 - 壳聚糖复合纳米纤维膜具有优异的生物力学性能,比普通纱布能
更好的促进创伤修复、愈合。
6
壳聚糖微球在药物载体中的应用
壳聚糖因其具有良好的生物学特性而成为药物载体研究的热点。药物经壳聚糖负载后,不仅能够 达到缓释控释的目的,还能够改变药物的给药方式,降低药物不良反应,提高药物生物利用度。 其药物释放机制包括以下3种:表面释放、扩散释放、溶蚀释放,如图所示
软骨细胞通过组织工程技术的支架共同培养, 将构建软骨组织移植是目前有望治疗 受损软骨的方法。壳聚糖与其他材料复合制作组织工程支架可以促进细胞的黏附, 从而 使得软骨与骨的形成。
2021/3/10
石国华等在下颌骨缺损的家兔做动物实验,使用的是壳聚糖 /羟磷灰石纳米复合材料, 结果表明: 具有三维孔洞网络结构的壳聚糖 /羟磷灰石纳米聚合物可以与骨直接结合, 并且具有很好的生物相容性和骨引导能力, 可降解且降解后的产物无毒性,移植 10 周 便可完全修复骨缺损。
HMF 的最高产率达到 12.1%。
2021/3/10
SAVITRI 等在体积分数0.5%的低浓度乙酸溶 液中超声降解壳聚糖,发现原本部分溶解的壳聚 糖全部溶解在乙酸溶液中, 60℃条件下超声 30min 后,可溶性壳聚糖组分中检测到较高浓 度的 5-HMF。
11
甲壳素生物质转化为高附加值化合物
石国华等在下颌骨缺损的家兔做动物实验,使用的是壳聚糖 /羟磷灰石纳米复合材料,结果 表明: 具有三维孔洞网络结构的壳聚糖 /羟磷灰石纳米聚合物可以与骨直接结合, 并且具 有很好的生物相容性和骨引导能力, 可降解且降解后的产物无毒性,移植 10 周便可完全 修复骨缺损。
5
3.对皮肤创面的修复
Fengling Tang
4
2.对神经干细胞的修复
几年,利用组织工程化神经修复是科学家越来越重视的问题,由于神经系统的复 杂性, 要找到一种能够代替人体神经的材料是最需要解决的问题。壳聚糖及其化学改 性产物在组织工程化神经修复当中是研究得比较早, 也比较广泛的一种具有潜在发展 的人工神经导管材料
2021/3/10
通过引入壳聚糖膜到壳聚糖神经导管中, 可以增强缺损坐骨神经的轴突再生和功能恢复 能力。朱奇等在壳聚糖中插入聚乳酸羟基乙酸纤维制备神经导管, 发现再生神经当中伴 有新生的小血管和神经纤维,同时证实了该神经导管在体内具有生物活性、生物相容性, 降解产物与体内无不良反应, 可诱导神经细胞的生长。
表面释放
壳聚糖微球 溶蚀释放
2021/3/10
扩散释放
7
壳聚糖微球在药物载体中的应用
普通药物载体 壳聚糖微球作为普通药物的载 体,能提高药 物稳定性,保持药物长期活性。目前已有多种药物可通
过壳聚糖微球缓释,如四环素、奈普生、阿司匹林等。药物经过壳聚糖微球负载后缓释作用十分明显, 释放时间与原药相比都显著地延长。
壳聚糖、甲壳素应用
L/O/G/O
2021/3/10
1
一、壳聚糖在创伤修复中应用 二、壳聚糖微球在药物载体中的应用 三、甲壳素生物质转化为高附加值化合物
2021/3/10
2
壳聚糖在创伤修复中应用的研究进展
伤口感染可能产生许多有毒物质以阻止伤口的修复, 在严重的情况下,被感染的伤 口很有可能导致死亡。然而, 目前大多数市售的伤口敷料不具有活性抗菌剂的能力, 这将增加溃疡的形成和提高感染率。由于壳聚糖本身高效抗菌、快速止血、促进伤口愈 合和生物相容性好等优点, 因此被广泛应用血管支架、创伤敷料当中。目前壳聚糖在创 伤敷料中取得巨大成功,在医用和化妆品领域得到广泛应用
1.甲壳素生物质转化为含氮化合物
2021/3/10
甲壳素生物质转化为 3-乙酰氨基-5-乙酰基呋喃
9
甲壳素生物质转化为高附加值化合物
2021/3/10
10
甲壳素生物质转化为高附加值化合物
2.甲壳素生物质转化为不含氮呋喃衍生物
LEE 等在低温热液条件下催化转化天
然高分子壳聚糖,使用2.2%的H2SO4 作为 催化剂,174℃条件下反应 36.9min,5-
12
生物大分子药物载体 用 壳聚糖微球作为多肽、蛋白质类药物的载体,不仅可以保护药物免受消化道酶的破坏及pH值的
影响,还能将药物缓慢释放并靶向送达体内的作用部位,从而达到长效缓释和靶向目的。
抗癌药物的载体 壳聚糖是一种阳离子多糖材料,而通常肿瘤细胞具有比正常细 胞表面更多的负电荷,因此,壳聚糖
微球对肿瘤细胞表面具有选择性吸附和电中和作用,还具有一定的直接抑制肿瘤细胞的作用,通过活化 免疫系统显示具有抗癌活性,与现有的抗癌药物合用可增强药物的抗癌效果。
3.甲壳素生物质转化为有机酸
OMARI等0.24mmol SnCl4 5H2O 为催 化剂,4mL水为溶剂,在密闭体系中微波 加热壳聚糖溶液至200℃,反应 30min, 得到乙酰丙酸的产率为 23.9%。
2021/3/10
SAVITRI 等在体积分数0.5%的低浓度乙酸溶 液中超声降解壳聚糖,发现原本部分溶解的壳聚 糖全部溶解在乙酸溶液中, 60℃条件下超声 30min 后,在可溶性壳聚糖组分中检测到较高浓 度的 5-HMF。