高一数学集合课件
合集下载
高一数学必修一集合的基本运算课件PPT
③AB=A A____B
目标升华
回顾本节课你有什么收获? (1)两个定义:并集 A∪B={x|x∈A或x∈B}, 交集 A∩B={x|x∈A且x∈B}. (2)两种方法:数轴和Venn图. (3)几个性质:A∩A=A,A∪A=A,
A∩=,A∪=A; A∩B=B∩A,A∪B=B∪A.
当堂诊学
完成课本的P8-9页例4、5、6、7以及 P11页练习题1、2、3
1.我们之中的每个人都更 偏向于把心思花费在更能 影响自己切身利益的事情
上,你同意这个说法吗?
2.你曾经做过哪些努力,来让自己的教 学活动 显得对 学生有 意义?
3.在下面的教学活动中,你觉得哪种教 学方式 对学生 来说更 有意义
A.在课堂上,让学生在给定的句子里用下划线标记 出其中的名词
B.在课堂上,让学生自由造句,但不许在句子中出现 名词。
怎样的。 G.最后,让学生谈谈这个历史人物在历史上的作为
对我们现在的生活产生了哪些影响。 H.在课堂上,通过扔骰子给学生讲解概率论。
I.在课堂上,让学生利用概率论(和天气有关的)来规 划哪几个月的哪几周适合班级出游
03
现在,请写出四到五条你在当前教学中的实际经验。 写出五条你曾在课堂中使用过的教学方法,并努
图2
并集交集例题
例1.设集合A={x|-1<x<2},B={x|1<x<3}, 求AUB.A∩B
解:A B {x | 1 x 2}{x |1 x 3} x | 1 x 3
A B {x1 x 2}
可以在数轴上表示例2中的并集 交集,如 下图:
例2.已知x∈R,集合A={-3,x2,x+1},B={x-3,2x-1,
添加标题
5.理论上,这个会议的内容对你三十年 之后的 生活也 许会有 帮助。
目标升华
回顾本节课你有什么收获? (1)两个定义:并集 A∪B={x|x∈A或x∈B}, 交集 A∩B={x|x∈A且x∈B}. (2)两种方法:数轴和Venn图. (3)几个性质:A∩A=A,A∪A=A,
A∩=,A∪=A; A∩B=B∩A,A∪B=B∪A.
当堂诊学
完成课本的P8-9页例4、5、6、7以及 P11页练习题1、2、3
1.我们之中的每个人都更 偏向于把心思花费在更能 影响自己切身利益的事情
上,你同意这个说法吗?
2.你曾经做过哪些努力,来让自己的教 学活动 显得对 学生有 意义?
3.在下面的教学活动中,你觉得哪种教 学方式 对学生 来说更 有意义
A.在课堂上,让学生在给定的句子里用下划线标记 出其中的名词
B.在课堂上,让学生自由造句,但不许在句子中出现 名词。
怎样的。 G.最后,让学生谈谈这个历史人物在历史上的作为
对我们现在的生活产生了哪些影响。 H.在课堂上,通过扔骰子给学生讲解概率论。
I.在课堂上,让学生利用概率论(和天气有关的)来规 划哪几个月的哪几周适合班级出游
03
现在,请写出四到五条你在当前教学中的实际经验。 写出五条你曾在课堂中使用过的教学方法,并努
图2
并集交集例题
例1.设集合A={x|-1<x<2},B={x|1<x<3}, 求AUB.A∩B
解:A B {x | 1 x 2}{x |1 x 3} x | 1 x 3
A B {x1 x 2}
可以在数轴上表示例2中的并集 交集,如 下图:
例2.已知x∈R,集合A={-3,x2,x+1},B={x-3,2x-1,
添加标题
5.理论上,这个会议的内容对你三十年 之后的 生活也 许会有 帮助。
集合的概念课件-高一上学期数学人教A版(2019)必修第一册
(3)把不等式x − 3 > 0的解集表示为{x ∈R|x >3};
提示:偶数和
(4)奇数集表示为{x ∈Z|x =2k + 1, k∈Z};
奇数的共同特
(5)偶数集表示为{x ∈Z|x =2k, k∈Z}.
征是什么?
▲约定:若从上下文的关系看, x∈R是明确的,则可省略不写.
题型二
Hale Waihona Puke 描述法表示集合∈代表元素 代表元素
的范围
各位判官,辩一辩
{ x>1} {x∈Z|x=2m} {x∈A|P(x)}
代表元素的
共同特征
思维升华
用列举法表示集合应注意的两点
(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素.
(2)若集合中的元素是点时,则应将有序实数对用小括号括起来表示一个元素.
例2 用描述法表示下列集合:
【例2-1】 用描述法表示下列集合:
(1)正偶数集;
(2)被3除余2的正整数集合;
(3)平面直角坐标系中坐标轴上的点组成的集合.
解
(1)偶数可用式子x=2n,n∈Z表示,但此题要求为正偶数,
故限定n∈N+,所以正偶数可表示为{x|x=2n,n∈N+}.
(2)设被3除余2的数为x,则x=3n+2,n∈Z,但元素为正整数,故n∈N,
自然数集N可以表述为{0,1,2,...}
实数集能用描述法表述吗?
实数集可以写成 {实数}
但不能写成{实数集}{全体实数}{R}
但不建议!
二、
描述法
1.定义:
一般地,设A是一个集合,我们把集合A中所有具有的共同特征P(x)
的元素x所组成的集合表示为
∈∣
这种表示集合的方法称为描述法.
提示:偶数和
(4)奇数集表示为{x ∈Z|x =2k + 1, k∈Z};
奇数的共同特
(5)偶数集表示为{x ∈Z|x =2k, k∈Z}.
征是什么?
▲约定:若从上下文的关系看, x∈R是明确的,则可省略不写.
题型二
Hale Waihona Puke 描述法表示集合∈代表元素 代表元素
的范围
各位判官,辩一辩
{ x>1} {x∈Z|x=2m} {x∈A|P(x)}
代表元素的
共同特征
思维升华
用列举法表示集合应注意的两点
(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素.
(2)若集合中的元素是点时,则应将有序实数对用小括号括起来表示一个元素.
例2 用描述法表示下列集合:
【例2-1】 用描述法表示下列集合:
(1)正偶数集;
(2)被3除余2的正整数集合;
(3)平面直角坐标系中坐标轴上的点组成的集合.
解
(1)偶数可用式子x=2n,n∈Z表示,但此题要求为正偶数,
故限定n∈N+,所以正偶数可表示为{x|x=2n,n∈N+}.
(2)设被3除余2的数为x,则x=3n+2,n∈Z,但元素为正整数,故n∈N,
自然数集N可以表述为{0,1,2,...}
实数集能用描述法表述吗?
实数集可以写成 {实数}
但不能写成{实数集}{全体实数}{R}
但不建议!
二、
描述法
1.定义:
一般地,设A是一个集合,我们把集合A中所有具有的共同特征P(x)
的元素x所组成的集合表示为
∈∣
这种表示集合的方法称为描述法.
1.2集合间的基本关系-高一数学课件
符号语言:若A ⊆ B,且B ⊇ A,则A = B.
如果集合A ⊆ B,但存在元素x ∈ B,且x ∉ A,就称集合A是集合
B的真子集,记作A ⫋ B(或B
子集( A ⊆ B )
A).
真子集( A ⫋ B )
相等( A = B )
新知探究
问题3:方程 2 + 1 = 0的实数根组成集合是什么?它的元素有哪些?
求实数m的取值范围.
解:据题意得:A ≠ ∅.
所以,
m + 1 ≤ −2
2m − 1 ≥ 5
m ≤ −3
解得,
m≥3
∴ m无解,即m的解集为∅.
·
+1
·
−2
·
5
·
2 − 1
小结
对任意的 ∈ ,总有 ∈ ,则 ⊆
子集
B
A
或
B
真子集 集合A ⊆ B,但存在x ∈ B,且x ∉ A,则A ⫋ B
+ 1 ≤ 2 + 1
≥2
②当 ≠ ∅时,则 + 1 ≥ −2
即 ≥ −3
2 + 1 ≤ 5
≤3
解得:2 ≤ ≤ 3.
综上可得,实数的取值范围是:{| ≤ 3}
·
·
−2 + 1
·
2 − 1
·
5
练习巩固
变式4-1.已知集合A = {−2 ≤ x ≤ 5},B = {x|m + 1 ≤ x ≤ 2m − 1},若A ⊆ B,
复习导入
元素
研究对象
集合
元素组成的整体
含义
元素的性质
确定性、互异性、无序性
集合的概念
如果集合A ⊆ B,但存在元素x ∈ B,且x ∉ A,就称集合A是集合
B的真子集,记作A ⫋ B(或B
子集( A ⊆ B )
A).
真子集( A ⫋ B )
相等( A = B )
新知探究
问题3:方程 2 + 1 = 0的实数根组成集合是什么?它的元素有哪些?
求实数m的取值范围.
解:据题意得:A ≠ ∅.
所以,
m + 1 ≤ −2
2m − 1 ≥ 5
m ≤ −3
解得,
m≥3
∴ m无解,即m的解集为∅.
·
+1
·
−2
·
5
·
2 − 1
小结
对任意的 ∈ ,总有 ∈ ,则 ⊆
子集
B
A
或
B
真子集 集合A ⊆ B,但存在x ∈ B,且x ∉ A,则A ⫋ B
+ 1 ≤ 2 + 1
≥2
②当 ≠ ∅时,则 + 1 ≥ −2
即 ≥ −3
2 + 1 ≤ 5
≤3
解得:2 ≤ ≤ 3.
综上可得,实数的取值范围是:{| ≤ 3}
·
·
−2 + 1
·
2 − 1
·
5
练习巩固
变式4-1.已知集合A = {−2 ≤ x ≤ 5},B = {x|m + 1 ≤ x ≤ 2m − 1},若A ⊆ B,
复习导入
元素
研究对象
集合
元素组成的整体
含义
元素的性质
确定性、互异性、无序性
集合的概念
高一数学《集合》PPT课件
• 图示法:画一条封闭的曲线,用它的内部来表示一 个集合。 例子: 1,2,3,4,5
特定集合的表示
• N:全体非负整数的集合。 • Z:全体整数的集合。 • Q:全体有理数的集合。 • R:全体实数的集合。
集合的分类
有限集:含有有限个元素的集合。
例子:{1,2,3,4,5,6}
无限集:含有无限个元素的集合。 例子:自然数集。
1.1 集合
主讲人:六班六组
内容
• 集合的概念 • 元素与集合的关系 • 集合中元素的特性 • 集合的表示方法 • 特定集合的表示 • 集合的分类
集合的概念
• 概念:一般地,某些指定对象在一起就成 为一个集合。
• 例子(1)我校足球队员 (2)七大洲:亚洲,非洲,欧洲,北
美洲,南美洲,大洋洲,南极洲
元素与集合的关系
集合中元素的概念:集合中的每个对象叫做这个集合 的元素。 元素的表示方法:常用的小写拉丁字母表示。
集合与元素的关系:属于
不属于
集合中元素的特性
• 确定性 • 互异性 • 无序性
集合的表示方法
• 列举法:把集合中的元素一一列举出来的方法。 例子:A={1,2,3}
• 描述法:用确定的条件表示某些对象是否属于这个 集合的方法。 例子:{x R x 3 4}
特定集合的表示
• N:全体非负整数的集合。 • Z:全体整数的集合。 • Q:全体有理数的集合。 • R:全体实数的集合。
集合的分类
有限集:含有有限个元素的集合。
例子:{1,2,3,4,5,6}
无限集:含有无限个元素的集合。 例子:自然数集。
1.1 集合
主讲人:六班六组
内容
• 集合的概念 • 元素与集合的关系 • 集合中元素的特性 • 集合的表示方法 • 特定集合的表示 • 集合的分类
集合的概念
• 概念:一般地,某些指定对象在一起就成 为一个集合。
• 例子(1)我校足球队员 (2)七大洲:亚洲,非洲,欧洲,北
美洲,南美洲,大洋洲,南极洲
元素与集合的关系
集合中元素的概念:集合中的每个对象叫做这个集合 的元素。 元素的表示方法:常用的小写拉丁字母表示。
集合与元素的关系:属于
不属于
集合中元素的特性
• 确定性 • 互异性 • 无序性
集合的表示方法
• 列举法:把集合中的元素一一列举出来的方法。 例子:A={1,2,3}
• 描述法:用确定的条件表示某些对象是否属于这个 集合的方法。 例子:{x R x 3 4}
高一数学集合ppt课件
3. 如果A⊆B且B和C是两个互不相交的集 合(即B与C没有交集),那么A与C也是 互不相交的。
2. 如果A⊆B且B⊆C,那么A⊆C。
子集的性质
1. 任何一个集合都是其本身的子集,即 A⊆A。
真子集的定义与性质
真子集的定义:如果 一个集合A是集合B的 一个子集,并且A和B 中至少有一个元素不 相同,那么我们称A 是B的真子集,记为 A⊈B。
集合通常用大写字母 表示,如A、B、C等 。
集合的元素
元素是集合中的个体,可以用小 写字母表示,如a、b、c等。
一个元素可以属于一个或多个集 合,不同元素可以属于同一个集
合。
空集是指不含有任何元素的集合 。
集合的表示方法
列举法
图示法
把集合中的元素一一列举出来,用大 括号{}括起来。
用一条封闭的曲线表示集合,内部可 以填充颜色或点上小点表示元素。
如果一个集合不是另一个集合 的真子集,那么称它为该集合 的真超集。
04
集合的交集、并集、补集的图形 表示
交集的图形表示
总结词
交集是指两个或两个以上集合的公共 部分,可以用符号 "∩" 表示。
详细描述
在图形表示中,交集通常用两个或多 个集合的公共部分来表示。例如,在 两个圆的重叠部分中,重叠部分的元 素就是两个圆的交集。
集合的运算性质
01
02
03
交换律
若A、B是两个集合,则A 并B等于B并A,A交B等于 B交A。
结合律
三个集合的交集和并集, 等于这三个集合分别交、 并后再合并得到的交集和 并集。
分配律
两个集合的并集与另一个 集合的交集相等,等于这 两个集合分别与另一个集 合的交集的并集。
高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)
(2)列举法和描述法
列举法
描述法
把集合的元一素一列举
用集合所含元素的
_____________出来,并用
共同特征
概念
_______________表示集合的
花括号“{ }”括起来表示集
方法
合的方法
一般
形式 {a1,a2,a3,…,an}
{x∈I|p(x)}
1.判断:(正确的打“√”,错误的打“×”) (1)你班所有的姓氏能组成集合.( √ ) (2)高一·二班“数学成绩好的同学”能组成集合.( × ) (3)一个集合中可以找到两个相同的元素.( × ) (4)集合{x|x>3}与集合{t|t>3}表示的是同一集合.(√ )
2.元素与集合的关系
关系
语言描述
记法
读法
属于 a是集合A中的元素 a∈A a属于集合A
不属于 a不是集合A中的元素 a∉A a不属于集合A
3.常用的数集及其记法
常用的 自然数 数集 集 记法 N
正整数集 N*或N+
有理数
整数集
实数集
集
Z
QR
4.集合的表示法 (1)自然语言法 用文字叙述的形式描述集合的方法.使用此方法要注意叙述 清楚,如由所有正方形构成的集合,就是自然语言表示的, 不能叙述成“正方形”.
4.当{a,0,-1}={4,b,0}时,a=___4_____,b= __-__1____.
集合的概念 判断下列各组对象能否组成一个集合: (1)新华中学高一年级全体学生; (2)我国的大河流; (3)不大于 3 的所有自然数;
(4)平面直角坐标系中,和原点距离等于 1 的点.
(链接教材P3思考) [解] (1)能,(1)中的对象是确定的;(2)不能,“大”无明确标 准;(3)能,不大于 3 的所有自然数有 0、1、2、3,其对象是 确定的;(4)能,在平面直角坐标系中任给一点,可明确地判 断是不是“和原点的距离等于 1”,故能组成一个集合.
高一数学必修一集合的基本运算课件
1.1.3 集合的基本运算
考察下列各个集合你能说出集合C与集合AB之 间的关系吗
1 A={135} B={246} C={123456}
2 A={x|x是有理数}B={x|x是无理数} C={x|x是实数}.
1.并集
一般地由所有属于集合A或属于集合B的元素所 组成的集合称为集合A与B的并集记作A∪B读作A 并B.即
记 C U A 作 { x |x U ,且 x A }
补集可用Venn图表示为:
U A
CUA
例8 设U={x|x是小于9的正整数}A={123} B={3456}求CUACUB.
解:根据题意可知U={12345678} 所以 CUA={45678}
CUB={1278} .
例9 设全集U={x|x是三角形}A={x|x是锐角 三角形}B={x|x是钝角三角形}
(1) AA A (2) A A (3) ABBA (4) AAB,BAB, ABAB (5) AB则ABB
4.补集
一般地如果一个集合含有我们所研究问题中 所涉的所有元素那么就称这个集合为全集通常 记作U.
对于一个集合A由全集U中不属于A的所有元 素组成的集合称为集合A相对于全集U的补集简 称为集合A的补集.
3 .已 A { 知 x|x 2 3 x 2 0 }B , { x|x 2 a x a 1 0 } 若 A B A ,求a 的 实 . 值 数
4 .设A 集 {x| 2 合 x 1 } {x|x 1 }B , {x|axb } 若 A B {x|x 2 }A , B {x|1x3 }求 ,a ,b 的 . 值
A∪B={x|x∈A或x∈B}
例4 设A={4568} B={3578}求A∪B.
解: A∪B={4568} ∪ {3578} ={345678}
考察下列各个集合你能说出集合C与集合AB之 间的关系吗
1 A={135} B={246} C={123456}
2 A={x|x是有理数}B={x|x是无理数} C={x|x是实数}.
1.并集
一般地由所有属于集合A或属于集合B的元素所 组成的集合称为集合A与B的并集记作A∪B读作A 并B.即
记 C U A 作 { x |x U ,且 x A }
补集可用Venn图表示为:
U A
CUA
例8 设U={x|x是小于9的正整数}A={123} B={3456}求CUACUB.
解:根据题意可知U={12345678} 所以 CUA={45678}
CUB={1278} .
例9 设全集U={x|x是三角形}A={x|x是锐角 三角形}B={x|x是钝角三角形}
(1) AA A (2) A A (3) ABBA (4) AAB,BAB, ABAB (5) AB则ABB
4.补集
一般地如果一个集合含有我们所研究问题中 所涉的所有元素那么就称这个集合为全集通常 记作U.
对于一个集合A由全集U中不属于A的所有元 素组成的集合称为集合A相对于全集U的补集简 称为集合A的补集.
3 .已 A { 知 x|x 2 3 x 2 0 }B , { x|x 2 a x a 1 0 } 若 A B A ,求a 的 实 . 值 数
4 .设A 集 {x| 2 合 x 1 } {x|x 1 }B , {x|axb } 若 A B {x|x 2 }A , B {x|1x3 }求 ,a ,b 的 . 值
A∪B={x|x∈A或x∈B}
例4 设A={4568} B={3578}求A∪B.
解: A∪B={4568} ∪ {3578} ={345678}
集合的概念课件-高一上学期数学人教A版(2019)必修第一册
深入思考①
能用列举法表示不等式x-7<3的解集吗?为什么?
满足x<10的实数有无数个,无法一一列举
上述不等式的解集该如何表示?
解集中的元素都具有怎样的共同特征?
集合的表示方法
例:设不等式x-7<3的解集为A
课堂活动二
{0,3,6,9}
请用描述法表示下列集合
解:(1)设偶数集为集合A
(2)设数集{0,3,6,9}为集合B
平面内,
空间中,
所有到定点的距离等于定长的点组成一个球面
研究对象、研究范围不同,研究结论也会产生差异
明确研究对象、确定研究范围是研究数学问题的基础
集合的概念
你能指出下列例子中的研究对象和研究范围吗?
(1)1~10之间的所有偶数;(2)立德中学今年入学的全体高一学点;(5)方程 的所有实数根;(6)地球上的四大洋‘
集合的概念
元素:一般地,我们把研究对象统称为元素
集合:把一些元素组成的总体叫做集合,简称为集
思考:上述例(3)到例(6)也都能组成集合吗?它们的元素分别是什么?
集合元素的性质
构成两集合的元素一样,则称两集合相等;
集合的表示
我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合中的元素。
如何用数学的符号语言来描述元素、集合以及两者间的关系?
集合与元素间的关系:
元素与集合的关系
自然语言
符号语言
如果a是集合A中的元素
a属于集合A
如果a不是集合A中的元素
a不属于集合A
常用数集
课堂活动一:阅读教材第三页,将常用数集和符号表示进行连线
集合的表示方法
设:小于10的所有自然数组成的集合为A
能用列举法表示不等式x-7<3的解集吗?为什么?
满足x<10的实数有无数个,无法一一列举
上述不等式的解集该如何表示?
解集中的元素都具有怎样的共同特征?
集合的表示方法
例:设不等式x-7<3的解集为A
课堂活动二
{0,3,6,9}
请用描述法表示下列集合
解:(1)设偶数集为集合A
(2)设数集{0,3,6,9}为集合B
平面内,
空间中,
所有到定点的距离等于定长的点组成一个球面
研究对象、研究范围不同,研究结论也会产生差异
明确研究对象、确定研究范围是研究数学问题的基础
集合的概念
你能指出下列例子中的研究对象和研究范围吗?
(1)1~10之间的所有偶数;(2)立德中学今年入学的全体高一学点;(5)方程 的所有实数根;(6)地球上的四大洋‘
集合的概念
元素:一般地,我们把研究对象统称为元素
集合:把一些元素组成的总体叫做集合,简称为集
思考:上述例(3)到例(6)也都能组成集合吗?它们的元素分别是什么?
集合元素的性质
构成两集合的元素一样,则称两集合相等;
集合的表示
我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合中的元素。
如何用数学的符号语言来描述元素、集合以及两者间的关系?
集合与元素间的关系:
元素与集合的关系
自然语言
符号语言
如果a是集合A中的元素
a属于集合A
如果a不是集合A中的元素
a不属于集合A
常用数集
课堂活动一:阅读教材第三页,将常用数集和符号表示进行连线
集合的表示方法
设:小于10的所有自然数组成的集合为A
高一数学集合的概念PPT课件 图文
-P4回答下列问题 • 1.集合的概念 • 2.集合的表示法 • 3.元素和集合之间的关系 • 4.元素的性质 • 5.重要数集
观察下列对象:
(1) 2,4,6,8,10,12; (2)我校的篮球队员; (3)满足x-3>2 的实数; (4)我国古代四大发明; (5)抛物线y=x2上的点.
A={2,4成,6,8,10}, 其中集合中的2元,素4为,8,10
(2)所有直角三角形,可表示为 A={x/x是直角三角形}
注:“{}”本身包含“所有”“全体” 的意义,在{}内元素应去除“所 有”“全体”的字样.
33..集元合素元与集素合的之性间质的:关系
如果a是集合A的元素,就说a
属于集合A,记作a ∈ A;
1. 定 义
一般地, 把一些能够确定的 不同对象看成一个整体, 就说这个整体是由这些对 象的全体构成的 集合.
集合中每个对象叫做这个
集合的元素.
2. 集合的表示法
集合常用大写字母A,B, C...表示,且用“{}” 括起来.
元素则常用小写字母a,b, c,...表示.
例如 (1)2,4,6,8,10可表示
如果a不是集合A的元素,就
说a不属于集合A,记作a A.
例如:A={1,3,5,7},则
1∈ A,3∈ A,2 A
4.集合中元素的性质 (1)确定性:集合中的元素必须是 确定的.
(2)互异性:集合中的元素必须
是互不相同的.
(3)无序性:集合中的元素是无 先后顺序的. 集合中的任何两个 元素都可以交换位置.
例:判断下列说法是否正确
× 1.著名的科学家构成一个集合 × 2.很小的数构成一个集合 √ 3.身高超过1.80米的学生构成一个集合 × 4.{1,2,2,3}集合中有4个元素
观察下列对象:
(1) 2,4,6,8,10,12; (2)我校的篮球队员; (3)满足x-3>2 的实数; (4)我国古代四大发明; (5)抛物线y=x2上的点.
A={2,4成,6,8,10}, 其中集合中的2元,素4为,8,10
(2)所有直角三角形,可表示为 A={x/x是直角三角形}
注:“{}”本身包含“所有”“全体” 的意义,在{}内元素应去除“所 有”“全体”的字样.
33..集元合素元与集素合的之性间质的:关系
如果a是集合A的元素,就说a
属于集合A,记作a ∈ A;
1. 定 义
一般地, 把一些能够确定的 不同对象看成一个整体, 就说这个整体是由这些对 象的全体构成的 集合.
集合中每个对象叫做这个
集合的元素.
2. 集合的表示法
集合常用大写字母A,B, C...表示,且用“{}” 括起来.
元素则常用小写字母a,b, c,...表示.
例如 (1)2,4,6,8,10可表示
如果a不是集合A的元素,就
说a不属于集合A,记作a A.
例如:A={1,3,5,7},则
1∈ A,3∈ A,2 A
4.集合中元素的性质 (1)确定性:集合中的元素必须是 确定的.
(2)互异性:集合中的元素必须
是互不相同的.
(3)无序性:集合中的元素是无 先后顺序的. 集合中的任何两个 元素都可以交换位置.
例:判断下列说法是否正确
× 1.著名的科学家构成一个集合 × 2.很小的数构成一个集合 √ 3.身高超过1.80米的学生构成一个集合 × 4.{1,2,2,3}集合中有4个元素
高一数学必修一课件1.1.1集合的含义与表示
教材习题答案
1.(1) ,,,;(2) ; (3) ;(4) ,; 2.(1){-3, 3};(2){2, 3, 5, 7}; (3){(1, 4)};(4){x x < 2}.
注意
例7中的集都不 ( 1 )在不致混淆的情况下,可以省去竖线及 可以用列表法吗? 左边部分. 显然不是,那么何 如:{直角三角形 }、{大于104的实数}. 时用列举法,何时 用描述法更容易一 (2)错误表示法:{实数集}、{全体实数}. 些呢?
知识要 点
有些集合的公共属性不明显,难以概 括,不便用描述法表示,只能用列举法. 有些集合的元素不能无遗漏地一一列 举出来,或者不便于、不需要一一列举出 来,常用描述法.
(2)设不超过30的非负偶数为x,且满足
x 2n且0 x 30 用描述法表示为
A = {x x = 2n且0 x 30,n Z}.
(3)设方程 2x +1 = 9 的实数根为x,且满 足条件 2x2 +1 = 9,用描述法表示为
2
A = {x R 2x + 1 = 9}.
课堂练习
1.用符号“∊”或∉Байду номын сангаас填空:
(1)设 A为所有亚洲国家组成的集合,则中国 __ A. ∊ A;英国__ ∊ A;美国__ ∉A;印度__ ∉ (2)若A={方程x² =1的解}则 1__A ∊ ; (3)若B={方程x² +x-6=0的解}则2__B ∊ ; (4)若C={满足1≤x≤10的自然数}则8 __ ∊ C; 9.5 __ ∉ C.
4.{(x, y) | x + y = 6, x N, y N}
用列举法表示为
{(0,6),(1,5),(2,4),(3,3),(6,0),(5,1),(4,2)}
高一数学人教A版必修第一册1.3集合的基本运算课件
1.3 集合的基本运算
问题1 如何研究两个集合间的基本关系?
实数
≤
<
=
类比
⊆
集合
⫋
=
问题2 实数可以进行加减乘除等运算,那么集合是否有类似
的运算呢?
学校食堂1号的菜品集合记为A={清炒白菜,炒豆芽,家常豆腐,
油闷大虾,炸鸡腿,红烧鸡块},2号的菜品集合记为B={清炒白
菜,苦瓜炒蛋,红烧茄子,土豆牛腩,玉米排骨,辣子鸡丁}。
已知全集为R,集合A={x|x<a},B={x|1<x<2},且
A∪(∁RB)=R,则实数a的取值范围是
.
答案 {a|a≥2}
解析 ∵B={x|1<x<2},
∴∁RB={x|x≤1,或x≥2}.
又A={x|x<a},且A∪(∁RB)=R,利用如图所示的数轴可得a≥2.
能力提升
已知集合A={x|0≤x≤2},B={x|a≤x≤a+3}.
解:A∪B={3,4,5,6,7,8}
A
4
5
3
6
8
7
B
!!!在求并集时,两个集合中相同的元素只列举一次!!!
2. 设 集 合 = x − < ≤ , = x 1 < x ≤ 3 , 求 ∪
.解
:
-1
0
1
2
3 x
PART 2 交集
1. 定义:由所有属于集合A且属于集合B的元素组成的
且A∪B={x|x<1},如图2所示,
图2
∴数轴上点x=a在点x=-1和点x=1之间,不包含点x=-1,但包含点x=1.
∴{a|-1<a≤1}.
例3 集合的交集、并集性质的应用
问题1 如何研究两个集合间的基本关系?
实数
≤
<
=
类比
⊆
集合
⫋
=
问题2 实数可以进行加减乘除等运算,那么集合是否有类似
的运算呢?
学校食堂1号的菜品集合记为A={清炒白菜,炒豆芽,家常豆腐,
油闷大虾,炸鸡腿,红烧鸡块},2号的菜品集合记为B={清炒白
菜,苦瓜炒蛋,红烧茄子,土豆牛腩,玉米排骨,辣子鸡丁}。
已知全集为R,集合A={x|x<a},B={x|1<x<2},且
A∪(∁RB)=R,则实数a的取值范围是
.
答案 {a|a≥2}
解析 ∵B={x|1<x<2},
∴∁RB={x|x≤1,或x≥2}.
又A={x|x<a},且A∪(∁RB)=R,利用如图所示的数轴可得a≥2.
能力提升
已知集合A={x|0≤x≤2},B={x|a≤x≤a+3}.
解:A∪B={3,4,5,6,7,8}
A
4
5
3
6
8
7
B
!!!在求并集时,两个集合中相同的元素只列举一次!!!
2. 设 集 合 = x − < ≤ , = x 1 < x ≤ 3 , 求 ∪
.解
:
-1
0
1
2
3 x
PART 2 交集
1. 定义:由所有属于集合A且属于集合B的元素组成的
且A∪B={x|x<1},如图2所示,
图2
∴数轴上点x=a在点x=-1和点x=1之间,不包含点x=-1,但包含点x=1.
∴{a|-1<a≤1}.
例3 集合的交集、并集性质的应用
高一数学集合ppt课件最新版
05
02
解析
对于A,解方程(x-1)(x+2)=0得到x=1或x=2,所以A={1,-2};对于B,解方程x^2-2x3=0得到x=3或x=-1,所以B={3,-1}。
04
解析
1.5不是自然数,所以1.5∉N;√2是 无理数,所以√2∉Q;π是实数,所以 π∈R。
06
解析
解方程x^2-4=0得到x=2或x=-2,所以 A={2,-2},又B={-2,2},所以A=B。
03
不等式与区间表示法
一元一次不等式解法
03
移项法
将不等式中的常数项移至右侧,使左侧只 含有一个未知数。
系数化为1
将未知数的系数化为1,得到标准形式的 不等式。
求解集
根据不等式的性质,求解出未知数的取值 范围。
一元二次不等式解法
配方法
通过配方将一元二次不等 式转化为完全平方形式, 从而求解。
公式法
解析
(1)因为f(-x)=(-x)^2=x^2=f(x), 所以f(x)=x^2是偶函数;(2)因为 sin(-x)=-sinx=-f(x),所以f(x)=sinx 是奇函数;(3)因为|-x|=|x|=f(x), 所以f(x)=|x|是偶函数。
05
指数函数与对数函数
指数函数性质及应用
指数函数定义及图像特征 指数函数的值域和定义域
练习题与解析
解析
1. 由等差数列求和公式得 $S = frac{n}{2} times (a_1 + a_n)$,其中 $a_1 = 2, a_n = 29, n = 10$(因为 $29 = 2 + (n - 1) times 3$),所以 $S = frac{10}{2} times (2 + 29) = 155$。
高一数学 人教A版必修1 1-1 集合 课件
x≠3,
(2)①根据集合中元素的互异性,可知x≠x2-2x, 即 x2-2x≠3,
x≠0 且 x≠3 且 x≠-1. ②因为 x2-2x=(x-1)2-1≥-1,且-2∈A,所以 x=
-2.当 x=-2 时,x2-2x=8,此时三个元素为 3,-2,8, 满足集合的三个特性.
探究3 集合中元素的特性与集合相等 例 3 已知集合 A 有三个元素:a-3,2a-1,a2+1,集 合 B 也有三个元素 0,1,x. (1)若-3∈A,求 a 的值; (2)若 x2∈B,求实数 x 的值; (3)是否存在实数 a,x,使 A=B.
(2)∵6-6 x∈N,x∈N,∴6x≥-6 0x≥,0, 即6x≥-0x>,0, ∴0≤x<6,∴x=0,1,2,3,4,5. 当 x 分别为 0,3,4,5 时,6-6 x相应的值分别为 1,2,3,6, 也是自然数,故填 0,3,4,5.
拓展提升 1.常用数集之间的关系
集实R数有数 Q 理集整分数数集集Z自负然整数数集集N正 {0}整数集N*
无理数集
2.判断元素与集合关系的两种方法 (1)直接法:如果集合中的元素是直接给出的,只要判 断该元素在已知集合中是否出现即可,此时应先明确集合是 由哪些元素构成的. (2)推理法:对于某些不便直接表示的集合,只要判断 该元素是否满足集合中元素所具有的特征即可.此时应先明 确已知集合的元素具有什么特征,即该集合中元素要满足哪 些条件.
(3)显然 a2+1≠0.由集合元素的无序性,只可能 a-3 =0,或 2a-1=0.
若 a-3=0,则 a=3,A 中三个元素分别为 0,5,10. 若 2a-1=0,则 a=12,A 中三个元素分别为 0,-52, 54.所以 A≠B. 故不存在这样的实数 a,x.
集合的基本运算课件-高一上学期数学人教A版(2019)必修第一册
(2)若A∩B={x|3<x<4},求a的值;
(3)若A∩B=A,求a的取值范围.
若⋃ = ,则 ⊆ ;
若 ∩ = ,则 ⊆ .
变式1.已知集合A={x|2<x<4},B={x|a<x<3a,且a>0},若⋂ = ∅,求实数的
取值范围.
变式2.已知集合A={x|2 ≤x< + 3},B={x|x<−1,或x>5},求下列条件下实数的取
R ∪ ,R ∩ ,
∩ , ∪ .
训练2.(教材P13练习1)已知={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},求
∩ , ∩ , ∪ .
例3.设集合={|+ ≥ 0},={| − 2 < < 4},全集U=R,且( )∩B=∅,
1.并集:⋃ = | ∈ , 或 ∈ ;
2.交集:⋂ = | ∈ , 且 ∈ .
3.集合运算结果与集合间基本关系的互相转换:
⋃ = ⇔ ⋂பைடு நூலகம் = ⇔ ⊆
重要思想方法:数形结合(数轴、韦恩图)
第一章 集合与常用逻辑用语
1.3 集合的基本运算
(1) ∈ | − 2 2 − 3 = 0 = 2
例1.(1)已知集合={−1,1,3,5},={0,1,3,4,6},则 ∪ =______.
(2)已知集合={| − 3 < ≤ 5}, ={| < −2或 > 5},={| < −5或 > 4}
则�� ∪ ∪ =______________.
观察
观察下面的集合,说出集合与集合, 之间的关系吗?
(3)若A∩B=A,求a的取值范围.
若⋃ = ,则 ⊆ ;
若 ∩ = ,则 ⊆ .
变式1.已知集合A={x|2<x<4},B={x|a<x<3a,且a>0},若⋂ = ∅,求实数的
取值范围.
变式2.已知集合A={x|2 ≤x< + 3},B={x|x<−1,或x>5},求下列条件下实数的取
R ∪ ,R ∩ ,
∩ , ∪ .
训练2.(教材P13练习1)已知={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},求
∩ , ∩ , ∪ .
例3.设集合={|+ ≥ 0},={| − 2 < < 4},全集U=R,且( )∩B=∅,
1.并集:⋃ = | ∈ , 或 ∈ ;
2.交集:⋂ = | ∈ , 且 ∈ .
3.集合运算结果与集合间基本关系的互相转换:
⋃ = ⇔ ⋂பைடு நூலகம் = ⇔ ⊆
重要思想方法:数形结合(数轴、韦恩图)
第一章 集合与常用逻辑用语
1.3 集合的基本运算
(1) ∈ | − 2 2 − 3 = 0 = 2
例1.(1)已知集合={−1,1,3,5},={0,1,3,4,6},则 ∪ =______.
(2)已知集合={| − 3 < ≤ 5}, ={| < −2或 > 5},={| < −5或 > 4}
则�� ∪ ∪ =______________.
观察
观察下面的集合,说出集合与集合, 之间的关系吗?
高一数学课件:1.1 集合的含义与表示(新人教版必修1)
6.如果在集合I中,属于集合A的任意一个元素x都具有性质p(x), 而不属于集合A的元素都不具有性质p(x),则性质p(x)叫做集合 特征性质 A的 . 7.描述法的表示形式为 {x∈I|p(x)} .
返回
学点一 集合的概念 下列各组对象能否组成集合. (1)小于10的自然数:0,1,2,3,…,9; (2)满足3x-2>x+3的全体实数; (3)所有直角三角形;
所以x∈R且x≠±1且x≠0.
【评析】解决这类问题的主要依据是集合元素的性质特征—
互异性,列出两两元素的关系式求解,通常要用到分类讨论.
返回
集合{3,x,x2-2x}中,x应满足的条件是 【解析】 x≠3且x≠0且x≠-1根据构成集合的元素的 互异性,x应满足
.
x3 2 x 2x 3 x 2 2x x
(5)直角坐标平面上在直线x=1和x=-1的两侧的点所组成
的集合.
返回
(1)由
2 x 3 y 14 3x 2 y 8
得
x4 y 2
方程组的解集为{(4,-2)}. (2)1 000以内被3除余2的正整数可以表示为x=3k+2,k∈N的 形式. 故所求的集合为{x|x=3k+2,k∈N,且x<1 000}.
③因为N中最小元素为0,故当a∈N,b∈N时,a+b的最小值为0,故 错误.
返回
学点三
集合中元素的性质
已知由1,x,x2三个实数构成一个集合,求x应满足的条件. 【分析】1,x,x2是集合中的三个元素,则它们是互不相等的. 【解析】根据集合中元素的互异性,得
x 1 2 x 1 x x 2
1 1 1 1 a
高一数学课件:人教版高一数学上学期第一章第1.1节集合-(2).ppt(共13张PPT)
• 14.属于符号:∈ 如-1 ∈A、1 ∈A、34 ∈A
• 15.不属于符号: 如2 A、1.5 A
复习回顾
常用数集的字母符号
• 16.自然数集:N(全体自然数的集合) • 17.整数集:Z (全体整数的集合) • 18.有理数集:Q (全体有理数的集合) • 19.实数集:R (全体实数的集合) • 20. 复数集:C (全体复数的集合)
再见!
不知道自己缺点的人,一辈子都不会想要改善。成功的花,人们只惊慕她现时的明艳!然而当初她的芽儿,浸透了奋斗的泪泉,洒遍了牺牲的血雨。成功的条件在于勇气和 信乃是由健全的思想和健康的体魄而来。成功了自己笑一辈子,不成功被人笑一辈子。成功只有一个理由,失败却有一千种理由。从胜利学得少,从失败学得多。你生而有 前进,形如蝼蚁。你一天的爱心可能带来别人一生的感谢。逆风的方向,更适合飞翔。只有承担起旅途风雨,才能最终守得住彩虹满天只有创造,才是真正的享受,只有拚 活。知识玩转财富。志不立,天下无可成之事。竹笋虽然柔嫩,但它不怕重压,敢于奋斗、敢于冒尖。阻止你前行的,不是人生道路上的一百块石头,而是你鞋子里的那一 爱,不必呼天抢地,只是相顾无言。最值得欣赏的风景,是自己奋斗的足迹。爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。生活不可能像你想 不会像你想的那么糟。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。实现梦想往往是一个艰苦的坚持的 到位,立竿见影。那些成就卓越的人,几乎都在追求梦想的过程中表现出一种顽强的毅力。世界上唯一不变的字就是“变”字。事实胜于雄辩,百闻不如一见。思路决定出 细节决定成败,性格决定命运虽然你的思维相对于宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥 所有过不去的都会过去,要对时间有耐心。人总会遇到挫折,总会有低潮,会有不被人理解的时候。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希 个人不知道他要驶向哪个码头,那么任何风都不会是顺风。沙漠里的脚印很快就消逝了。一支支奋进歌却在跋涉者的心中长久激荡。上天完全是为了坚强你的意志,才在道 碍。拥有资源不能成功,善用资源才能成功。小成功靠自己,大成功靠团队。炫耀什么,缺少什么;掩饰什么,自卑什么。所谓正常人,只是自我防御比较好的人。真正的 防而又不受害。学习必须如蜜蜂一样,采过许多花,这才能酿出蜜来态度决定高度。外在压力增加时,就应增强内在的动力。我不是富二代,不能拼爹,但为了成功,我可 站在万人中央成为别人的光。人一辈子不长不短,走着走着,就进了坟墓,你是要轰轰烈烈地风光下葬,还是一把骨灰撒向河流山川。严于自律:不能成为自己本身之主人 他周围任何事物的主人。自律是完全拥有自己的内心并将其导向他所希望的目标的惟一正确的途径。生活对于智者永远是一首昂扬的歌,它的主旋律永远是奋斗。眼泪的存 伤不是一场幻觉。要不断提高自身的能力,才能益己及他。有能力办实事才不会毕竟空谈何益。故事的结束总是满载而归,就是金榜题名。一个人失败的最大原因,是对自 的信心,甚至以为自己必将失败无疑。一个人炫耀什么,说明内心缺少什么。一个人只有在全力以赴的时候才能发挥最大的潜能。我们的能力是有限的,有很多东西飘然于 之外。过去再优美,我们不能住进去;现在再艰险,我们也要走过去!即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。你的所有不甘和怨气来源于你 你可以平凡,但不能平庸。懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。平凡的脚步也可以走完伟大的行程。平静的湖面锻炼不出精 生活打造不出生活的强者。人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花人生不怕重来,就怕没有将来。人生的成败往往就在于一念之差。人生就像一 为你在看别人耍猴的时候,却不知自己也是猴子中的一员!人生如天气,可预料,但往往出乎意料。人生最大的改变就是去做自己害怕的事情。如果不想被打倒,只有增加 你向神求助,说明你相信神的能力;如果神没有帮助你,说明神相信你的能力。善待自己,不被别人左右,也不去左右别人,自信优雅。活是
• 15.不属于符号: 如2 A、1.5 A
复习回顾
常用数集的字母符号
• 16.自然数集:N(全体自然数的集合) • 17.整数集:Z (全体整数的集合) • 18.有理数集:Q (全体有理数的集合) • 19.实数集:R (全体实数的集合) • 20. 复数集:C (全体复数的集合)
再见!
不知道自己缺点的人,一辈子都不会想要改善。成功的花,人们只惊慕她现时的明艳!然而当初她的芽儿,浸透了奋斗的泪泉,洒遍了牺牲的血雨。成功的条件在于勇气和 信乃是由健全的思想和健康的体魄而来。成功了自己笑一辈子,不成功被人笑一辈子。成功只有一个理由,失败却有一千种理由。从胜利学得少,从失败学得多。你生而有 前进,形如蝼蚁。你一天的爱心可能带来别人一生的感谢。逆风的方向,更适合飞翔。只有承担起旅途风雨,才能最终守得住彩虹满天只有创造,才是真正的享受,只有拚 活。知识玩转财富。志不立,天下无可成之事。竹笋虽然柔嫩,但它不怕重压,敢于奋斗、敢于冒尖。阻止你前行的,不是人生道路上的一百块石头,而是你鞋子里的那一 爱,不必呼天抢地,只是相顾无言。最值得欣赏的风景,是自己奋斗的足迹。爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。生活不可能像你想 不会像你想的那么糟。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。实现梦想往往是一个艰苦的坚持的 到位,立竿见影。那些成就卓越的人,几乎都在追求梦想的过程中表现出一种顽强的毅力。世界上唯一不变的字就是“变”字。事实胜于雄辩,百闻不如一见。思路决定出 细节决定成败,性格决定命运虽然你的思维相对于宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥 所有过不去的都会过去,要对时间有耐心。人总会遇到挫折,总会有低潮,会有不被人理解的时候。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希 个人不知道他要驶向哪个码头,那么任何风都不会是顺风。沙漠里的脚印很快就消逝了。一支支奋进歌却在跋涉者的心中长久激荡。上天完全是为了坚强你的意志,才在道 碍。拥有资源不能成功,善用资源才能成功。小成功靠自己,大成功靠团队。炫耀什么,缺少什么;掩饰什么,自卑什么。所谓正常人,只是自我防御比较好的人。真正的 防而又不受害。学习必须如蜜蜂一样,采过许多花,这才能酿出蜜来态度决定高度。外在压力增加时,就应增强内在的动力。我不是富二代,不能拼爹,但为了成功,我可 站在万人中央成为别人的光。人一辈子不长不短,走着走着,就进了坟墓,你是要轰轰烈烈地风光下葬,还是一把骨灰撒向河流山川。严于自律:不能成为自己本身之主人 他周围任何事物的主人。自律是完全拥有自己的内心并将其导向他所希望的目标的惟一正确的途径。生活对于智者永远是一首昂扬的歌,它的主旋律永远是奋斗。眼泪的存 伤不是一场幻觉。要不断提高自身的能力,才能益己及他。有能力办实事才不会毕竟空谈何益。故事的结束总是满载而归,就是金榜题名。一个人失败的最大原因,是对自 的信心,甚至以为自己必将失败无疑。一个人炫耀什么,说明内心缺少什么。一个人只有在全力以赴的时候才能发挥最大的潜能。我们的能力是有限的,有很多东西飘然于 之外。过去再优美,我们不能住进去;现在再艰险,我们也要走过去!即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。你的所有不甘和怨气来源于你 你可以平凡,但不能平庸。懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。平凡的脚步也可以走完伟大的行程。平静的湖面锻炼不出精 生活打造不出生活的强者。人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花人生不怕重来,就怕没有将来。人生的成败往往就在于一念之差。人生就像一 为你在看别人耍猴的时候,却不知自己也是猴子中的一员!人生如天气,可预料,但往往出乎意料。人生最大的改变就是去做自己害怕的事情。如果不想被打倒,只有增加 你向神求助,说明你相信神的能力;如果神没有帮助你,说明神相信你的能力。善待自己,不被别人左右,也不去左右别人,自信优雅。活是
高一数学必修一集合ppt课件精选全文
(即柯西序列)定义无理数的实数理论,并初步提出以高阶导出集的性质作为
对无穷集合的分类准则。函数论研究引起他进一步探索无穷集和超穷序数的兴
趣和要求。
1872年康托尔在瑞士结识了J.W.R.戴德金,此后时常往来并通信讨论。
1873年他估计,虽然全体正有理数可以和正整数建立一一对应,但全体正实数
似乎不能。他在1874年的论文《关于一切实代数数的一个性质》中证明了他的
则实数 a为( )
(A) 2 (B)0或3 (C) 3 (D)0,2,3均可
ppt课件
12
(3)下列四个集合中,不同于另外三个的是:
A.﹛y︱y=2﹜
B. ﹛x=2﹜
C. ﹛2﹜
D. ﹛x︱x2-4x+4=0﹜
(4) 由实数x, -x, x2 , |x| 所组成的集合 中,最 多含有的元素的个数为( )
他的著作有:《G.康托尔全集》1卷及《康托尔-戴德金通信集》等。
康托尔是德国数学家,集合论的创始者。1845年3月3日生于圣彼得堡,1918年1 月6日病逝于哈雷。
康托尔11岁时移居德国,在德国读中学。1862年17岁时入瑞士苏黎世大学,翌年 入柏林大学,主修数学,1866年曾去格丁根学习一学期。1867年以数论方面的论文获 博士学位。1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教 授,1879年任教授。
1867年在库默尔指导下以数论方面的论文获博士学位。1869年在哈雷大学通过讲 师资格考试,后即在该大学任讲师,1872年任副教授,1879年任教授。
大学期间康托尔主修数论,但受外尔斯特拉斯的影响,对数学推导的严格性和
数学分析感兴趣。哈雷大学教授H.E.海涅鼓励他研究函数论。他于1870、1871
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.(2009·漳州模拟)设全集U=R,集合M={x| x = x2 -2 , x∈R},N={x| x+1 ≤2,x∈R},则( M)∩N等于( ) (A){2} (B){x|-1≤x≤3} (C){x|x<2或2<x<3} (D){x|-1≤x<2或2<x≤3}
【解析】选D.由 x=
x=x2-2 x得2 -2 x≥0 ,
①当B= 时,2a≥a2+1,∴a=1, 此时A={x|2<x<4},B A符合题意.
②若B≠ ,方程(x-2)[x-(3a+1)]=0
的两根为x1=2,x2=3a+1.
当3a+1>2,即a>1 时,
3
2a≥2
a≥1
a2+1≤3a+1 0≤a≤3
2a<a2+1
a≠1
当3a+1<2,即a1< 时, 3
问题
北京·T1·选择·5分 四川·T1·选择·5分 陕西·T1·选择·5分 湖北·T13·填空·5分
福建·T1·选择·5分
1.(2009·全国Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9}, 全集U=A∪B,则集合 U(A∩B)中元素共有( ) (A)3个 (B)4个 (C)5个 (D)6个 【解析】选A.方法一:因为U=A∪B={3,4,5,7,8,9}, A∩B={4,7,9}, 所以 U(A∩B)={3,5,8}. 所以 U(A∩B)中共有3个元素.
方法二:如图,设同时参加数学和化学小组的有x人,
由图知20-x+x+9-x+4+6+5=36, 解得x=8. 答案:8
1.已知U=R,A={x|x>0},B={x|x≤-1},则(A∩ B)∪
(B∩ A)=( )
Hale Waihona Puke (A)(C){x|x>-1}
(B){x|x≤0} (D){x|x>0或x≤-1}
【解析】选D.∵ B={x|x>-1},A∩ B={x|x>0},
【思路探究】首先求出集合A、B,再根据条件确定b、c的值.
理解“(A∪B)∩C= ”以及“(A∪B)∪C=R”是解题的关键.
【标准解答】由题意,A= {x|-2≤x≤1},B={x|1<x ≤3}, ……………….4分 ∴A∪B={x|-2≤x≤3},
由(A∪B)∩C= ,(A∪B)∪C=R得,
(B){x|-1<x≤3}
(C){x|3≤x<4}
(D){x|-2≤x<-1}
【解析】选D.利用数轴易得A∩B={x|-2≤x<-1}.
3.(2009·北京高考)设A是整数集的一个非空子集,对于
k∈A,如果k-1A且k+1A,那么k是A的一个“孤立元”,给定
S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有 集合中,不含“孤立元”的集合共有个______. 【解析】本题主要考查阅读与理解能力、信息迁移能力以及 学生的学习潜力,属于创新题型.依题意可知,所谓“孤立元” 是指在集合中没有与k相邻的元素.所以,不含“孤立元”的集 合中有与k相邻的元素,故符合题意的集合是:{1,2,3},{2, 3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个. 答案:6
【例2】已知集合A={x|0<ax+1≤5},集合B={x|- 1 <x≤2}. 2
(1)若A B,求实数a的取值范围; (2)若B A,求实数a的取值范围;
(3)A、B能否相等?若能,求出a的值;若不能,试说明理由.
【思路探究】
【自主解答】A中不等式的解集应分三种情况讨论:
【例3】若集合A={x|x2-2x-8<0},B={x|x-m<0}.
(D){x|-1<x<2}
【解析】选A.画出数轴,易知A∪B={x|x>-2}.
2.若集合A={0,3,4},B={x|x=a·b,a∈A,b∈A,a≠b}, 则B的子集的个数为( ) (A)2 (B)4 (C)6 (D)8 【解析】选B.由题意可知B={0,12},所以B的子集的个数 为4.
3.设全集U=R,A={x|2x(x-2)<1},B={x|y=ln(1-x)},则图中 阴影部分表示的集合为( )
A={x|x≤0},B∩ A={x|x≤-1},
∴(A∩ B)∪(B∩ A)={x|x>0或x≤-1}.
2.定义集合运算:A*B={z|z=xy,x∈A,y∈B},设A={1,2}, B={0,2},则集合A*B的所有元素之和为( ) (A)0 (B)2 (C)3 (D)6 【 解 析 】 选 D. 因 为 A*B={z|z=xy,x∈A,y∈B} , 通 过 分 析 可 知A*B=B*A,故从B中选0与A中各元素相乘都为0,同理从 B中选2,与A中各元素相乘为2,4.所以A*B中元素为0,2,4. 故A*B的所有元素之和为6.故选D.
高一数学 1.1集合
此文档只供网友学习交流之用 集合的定义 集合的表示法 集合的特征 重点:空集 空集是任何集合的子集 空集是任何非空集合的真子集
1.设集合A={x|x>-1},B={x|-2<x<2},则A∪B等于( )
(A){x|x>-2}
(B){x|x>-1}
(C){x|-2<x<-1}
2a≥3a+1 a≤-1
1<a≤3.
a2+1≤2 -1≤a≤1 a=-1.
2a<a2+1
a≠1
∴a的取值范围为[1,3]∪{-1}.
(1)若m=3,全集U=A∪B,试求A∩( UB);
(2)若A∩B= ,求实数m的取值范围;
(3)若A∩B=A,求实数m的取值范围;
【思路探究】
【自主解答】(1)由x2-2x-8<0,得-2<x<4, ∴A={x|-2<x<4}. 当m=3时,由x-m<0,得x<3,∴B={x|x<3}, ∴U=A∪B={x|x<4}, UB={x|3≤x<4}. ∴A∩( UB)={x|3≤x<4}. (2)∵A={x|-2<x<4},B={x|x<m},
(a+b)2 009的值为_______________.
【解析】易知a≠0,∴a+b=0,∴(a+b)2 009=0.
答案:0
5.设集合A={x|x= 6 ,x,y∈N+},则集合A的子集的个数是
6-y
________________. 【解析】∵x,y∈N+,∴y=3,4,5,此时对应的x值分别为2,3,6, ∴集合A的子集的个数是23=8. 答案:8
【 解 析 】 选 A.M={1,2,3,4,5},N={2,3,6}, 则 N-M={x|x∈N
且
x M}={6},故选A.
6.(2009·石家庄模拟)已知集合A={x|x2-2x+a>0},且
1 A,则实数a的取值范围是( )
(A)(-∞,1](B)[1,+∞) (C)[0,+∞)(D)(-∞,1)
【例1】已知A={a+2,(a+1)2,a2+3a+3},若1∈A, 求实数a的值.
【思路解答】
【自主解答】∵1∈A,∴a+2=1,或(a+1)2=1,或 a2+3a+3=1. (1)若a+2=1,则a=-1, 当a=-1时,a+2=a2+3a+3=1, ∴a=-1不符合题意. (2)若(a+1)2=1,则a=0,或a=-2. 当a=0时,a+2=2,(a+1)2=1,a2+3a+3=3,符合题意; 当a=-2时,(a+1)2=a2+3a+3=1, ∴a=-2不符合题意; (3)若a2+3a+3=1,则a=-1,或a=-2, 由(1)(2)可知,a=-1,a=-2都不符合题意. 综上可知,实数a的值为0.
x2-2≥0
∴x=2,∴M={2}.
由 x≤+12得
x+1≤4 x+1≥0,
∴-1≤x≤3,N={x|-1≤x≤3}.
∴ M={x|x<2或x>2},
∴( M)∩N={x|-1≤x<2或2<x≤3}.
4. ( 2009· 朝 阳 模 拟 ) 已 知 集 合 P={x||x-2|≤1,x∈R} ,
Q={x|x∈N},则P∩Q等于( )
(A){x|x≥1} (C){x|0<x≤1}
(B){x|1≤x<2} (D){x|x≤1}
【解析】选B.依题意A={x|2x(x-2)<1}={x|0<x<2}, B={x|y=ln(1-x)}={x|x<1},所以图中阴影部分表 示的集合为A∩ UB={x|1≤x<2}.
4.设a,b∈R,集合{1,a+b,a}={0, b ,b},则 a
(A)[1,3] (B){1,2}
(C){2,3}
(D){1,2,3}
【解析】选D.P={x||x-2|≤1,x∈R}={x|1≤x≤3,x∈R},
P∩Q={1,2,3}.
5.(2009·汕头模拟)定义A-B={x|x∈A且x B},
若M={1,2,3,4,5},N={2,3,6},则N-M=( ) (A){6} (B){1,4,5} (C)M (D)N
4.(2009·陕西高考)某班有36名同学参加数学、物理、化学 课外探究小组,每名同学至多参加两个小组,已知参加数学、 物理、化学小组的人数分别为26,15,13,同时参加数学和 物理小组的有6人,同时参加物理和化学小组的有4人,则同 时参加数学和化学小组的有______人. 【解析】方法一:由题意知共有(26+15+13)-36=18名 同学同时参加两个小组,因为没有人同时参加三个小组,于 是同时参加数学和化学小组的有18-(6+4)=8(人).