快速成型制造技术(RPM)
快速成型制造技术(0002)
SLS产品
熔融沉积成形的基本原理
• 将热熔性材料(ABS、尼龙或蜡) 通过喷头加热器熔化;喷头沿 零件截面轮廓和填充轨迹运动, 同时将熔化的材料挤出;材料 迅速凝固冷却后,与周围的材 料凝结形成一个层面;然后将 第二个层面用同样的方法建造 出来,并与前一个层面熔结在 一起,如此层层堆积而获得一 个三维实体。
照相机激光树脂原型 光鼠 树标 脂外 原壳 型激
选择性层片粘接的基本原理
采用激光或刀具对片材进行切割。 首先切割出工艺边框和原型的边缘 轮廓线,而后将不属于原型的材料 切割成网格状。片材表面事先涂覆 上一层热熔胶。通过升降平台的移 动和箔材的送给,并利用热压辊辗 压将后铺的箔材与先前的层片粘接 在一起,再切割出的层片。这样层 层迭加后得到下一个块状物,最后 将不属于原型的材料小块剥除,就 获得所需的三维实体。
选择性层片粘接(LOM)
LOM产品的特点
1. 由于LOM工艺只须在片材上切割出零件截面的轮廓, 而不用扫描整个截面,因此工艺简单,成型速度 快,易于制造大型零件; 2. 工艺过程中不存在材料相变,因此不易引起翘曲 变形,零件的精度较高,激光切割为0.1mm,刀具 切割为0.15mm; 3. 工件外框与截面轮廓之间的多余材料在加工中起 到了支撑作用,所以LOM工艺无需加支撑; 4. 材料广泛,成本低,用纸制原料还有利于环保; 5. 力学性能差,只适合做外形检查。
反求工程与 RPM 卫
星 遥 球感 三地 表 维高 快程 速数 原据 型重 构 的 地
下一页
NC与RPM
RP技术就是数控技术最新应用的领域 之一。RP技术要求将材料精确地堆积,并 长时间保持较高的定位精度,防止错层。 如果没有高可靠性、高精度的数控系统是 无法实现的。数控技术的应用,是RP技术 能够产生并发展成熟必不可少的条件。
模具的快速成型及快速制模技术
第6章模具的快速成型及快速制模技术随着生产技术的进步,新材料和先进设备的出现,使市场竞争日趋激烈。
各个生产厂家为缩短产品的研发、生产周期,降低生产成本和风险,使得快速成型及快速制模技术在生产中逐步得到了应用。
快速制模技术包括传统的低熔点合金模、电铸模具的制造技术和以快速成型技术(Rapid Prototrping,RP)为基础的快速制模技术。
这里介绍后种快速制模技术。
快速成型技术问世不到十年,已实现了相当大的市场,发展非常迅速。
人们对材料逐层添加法这种新的制造技术已逐步适应。
制造业利用这种现代化制造手段与传统制造技术的接轨的工作也进展顺利。
有效地结合数控加工、铸造、金属冷喷涂、硅胶模等制造手段,使快速成型技术已成为现代模型、模具和零件制造的强有力手段。
在航空航天、汽车摩托车、家电、医疗器械等领域得到了广泛应用。
6.1快速成型制造技术的基本原理与特点6.1.1快速成型制造技术的基本原理1.快速成型制造技术的概念快速成型制造技术(Rapid Prototyping & Manufacturing,RPM),在20世纪80年代中期由欧美、日本等发达工业国家提出,旨在解决常规机械加工或手工无法解决的问题。
快速成型制造技术是多学科、技术的交叉产物,融合了机械工程、材料科学、计算机技术、数控原理、光学技术等前沿技术。
全世界大约有数百家专门研究机构进行这方面的研究。
快速成型制造技术可以实现低成本、高生产率和短周期的生产特点。
同时,从设计和工程的角度出发可以设计形状复杂的零件,无需受时间、成本、可制造性方面的限制,如图6.1.1所示。
图6.1.1快速成型技术制造的产品根据材料的分离形式把快速成型分为两类:1)材料去除成形多余的材料(工艺余料)从基体上分离出去从而得到想要加工的模型形状,它是当前的主要加工方式,也是用得最为广泛的加工方法。
2)材料堆积成形将材料通过合理的工艺方法堆积出想要加工模型。
该模型的堆积过程是在计算机的控制下完成的,因此成型的模型形状在理论上可以任意复杂。
快速成型技术简介
立体光固化成形(SLA)
• 是目前最为成熟和广泛应用的一种快速成型制造 工艺。这种工艺以液态光敏树脂为原材料,在计 算机控制下的紫外激光按预定零件各分层截面的 轮廓轨迹对液态树脂逐点扫描,使被扫描区的树 脂薄层产生光聚合(固化)反应,从而形成零件的 一个薄层截面。完成一个扫描区域的液态光敏树 脂固化层后,工作台下降一个层厚,使固化好的 树脂表面再敷上一层新的液态树脂然后重复扫描、 固化,新固化的一层牢固地粘接在一层上,如此 反复直至完成整个零件的固化成型。
• LOM工艺是将单面涂有热溶胶的纸片通过 加热辊加热粘接在一起,位于上方的激光 切割器按照CAD分层模型所获数据,用激 光束将纸切割成所制零件的内外轮廓,然 后新的一层纸再叠加在上面,通过热压装 置和下面已切割层粘合在一起,激光束再 次切割,如此反复逐层切割、粘合、切 割……直至整个模型制作完成 。
• 是通过将丝状材料如热塑性塑料、蜡或金 属的熔丝从加热的喷嘴挤出,按照零件每 一层的预定轨迹,以固定的速率进行熔体 沉积。每完成一层,工作台下降一个层厚 进行迭加沉积新的一层,如此反复最终实 现零件的沉积成型。
(5)三维印刷法(3DP,Three Dimensional Printing )
• 利用喷墨打印头逐点喷射粘合剂来粘结粉 末材料的方法制造原型。3DP的成型过程与 SLS相似,只是将SLS中的激光变成喷墨打 印机喷射结合剂。
成型过程示意图
• 快速成型工艺的优势:
------使模型或模具的制造时间缩短数倍甚至数十倍,大大缩 短新产品研制周期; ------使复杂模型的直接制造成为可能,提高了制造复杂零件 的能力; ------可以及时发现产品设计的错误,做到早找错、早更改, 避免更改后续工序所造成的大量损失,显著提高新产品 投产的一次成功率; ------使设计、交流和评估更加形象化,使新产品设计、样品 制造、市场定货、生产准备、等工作能并行进行,支持 同步(并行)工程的实施; ------节省了大量的开模费用,成倍降低新产品研发成本。
快速成型制造实训报告册
一、实训背景随着科技的不断发展,制造业正面临着转型升级的关键时期。
快速成型制造技术(Rapid Prototyping Manufacturing,RPM)作为一种新兴的制造技术,具有高效、灵活、精确等优点,在我国制造业中得到了广泛应用。
为了提高学生的实践能力,本实训课程旨在让学生了解快速成型制造技术的基本原理、操作方法及应用领域,培养学生的创新思维和动手能力。
二、实训目的1. 了解快速成型制造技术的基本原理和发展现状;2. 掌握快速成型设备的使用方法和操作技巧;3. 学会快速成型技术的应用,提高学生的创新能力和实践能力;4. 培养学生的团队协作精神和沟通能力。
三、实训内容1. 快速成型制造技术简介(1)快速成型制造技术定义:根据零件的三维模型数据,迅速而精确地制造出该零件的一种先进制造技术。
(2)快速成型制造技术特点:高效、灵活、精确、可重复性好。
(3)快速成型制造技术分类:立体光固化(SLA)、立体印刷(SLS)、熔融沉积建模(FDM)等。
2. 快速成型设备操作(1)SLA设备操作:介绍SLA设备的结构、工作原理、操作步骤及注意事项。
(2)SLS设备操作:介绍SLS设备的结构、工作原理、操作步骤及注意事项。
(3)FDM设备操作:介绍FDM设备的结构、工作原理、操作步骤及注意事项。
3. 快速成型技术应用(1)新产品开发:利用快速成型技术制作产品原型,进行外观、结构及功能验证。
(2)模具制造:利用快速成型技术制作模具,提高模具设计及制造效率。
(3)航空航天:利用快速成型技术制造航空航天零件,提高制造精度和效率。
(4)医疗领域:利用快速成型技术制造医疗模型、手术器械等,提高医疗水平。
4. 快速成型实训项目(1)项目一:SLA设备操作及模型制作(2)项目二:SLS设备操作及模型制作(3)项目三:FDM设备操作及模型制作(4)项目四:快速成型技术在产品开发中的应用四、实训总结通过本次实训,学生们对快速成型制造技术有了全面的认识,掌握了快速成型设备的操作方法,熟悉了快速成型技术的应用领域。
快速成型技术原理及应用
快速成型技术原理及应用快速成型技术又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近20年来制造领域的一个重大成果。
成型原理:基于离散-叠加原理而实现快速加工原型或零件特点:不需机加工设备或者模具即可快速制造形状极为复杂的工件简介:(Rapid Prototyping&Manufacturing, 缩写为RP)是二十世纪八十年代末九十年代初兴起并迅速发展起来的新的先进制造技术. 其特点是可以不需机加工设备或者模具即可快速制造形状极为复杂的工件, 从而在小批量产品生产或新产品试制时节省时间和初始投资.这里所说的快速加工原型是指能代表一切性质和功能的实验件,一般数量较少,常用来在新产品试制时作评价之用. 而这里所说的快速成型零件是指最终产品,已经具有最佳的特性,功能和经济性.快速成型技术(RP)的成型过程: 首先建立目标件的三维计算机辅助设计(CAD 3D)模型, 然后对该实体模型在计算机内进行模拟切片分层,沿同一方向(比如Z轴)将CAD 实体模型离散为一片片很薄的平行平面; 把这些薄平面的数据信息传输给快速成型系统中的工作执行部件,将控制成型系统所用的成型原材料有规律地一层层复现原来的薄平面, 并层层堆积形成实际的三维实体,最后经过处理成为实际零件.经过20多年的发展, 快速成型技术(RP)有较大发展, 应用非常广泛,尤其在汽车制造,航天航空,建筑,家电,卫生医疗及娱乐等领域有强大的应用.目前基于快速成型技术(RP)开发的工艺种类较多, 可以分别按所用材料划分, 成型方法划分等.1) 利用激光或其它光源的成型工艺的成型:---(SL)---(简称LOM)---(简称SLS)---形状层积技术(简称SDM);2) 利用原材料喷射工艺的成型:---(简称FDM)---三维印刷技术(简称3DP)其它类型工艺有:---树脂热固化成型 (LTP)---实体掩模成型 (SGC)---弹射颗粒成型 (BFM)---空间成型 (SF)---实体薄片成型 (SFP)应用:RPM技术的发展水平而言,在国内主要是应用于新产品(包括产品的更新换代)开发的设计验证和模拟样品的试制上,即完成从产品的概念设计(或改型设计),造型设计,结构设计,基本功能评估,模拟样件试制这段开发过程。
快速成型技术
18
②选择性激光烧结(SLS)产品的特点
1. 材料适应面广,不仅能制造塑料零件,还能制造陶瓷、蜡等材料 的零件。特别是可以制造出能直接使用的金属零件。这使SLS 工艺颇具吸引力。 2. SLS工艺不需加支撑,因为没有烧结的粉末起到了支撑的作用。 3. 精度不高。平均精度为±0.15--±0.2mm,表面粗糙度不好,不 宜做薄壁件。
14
2.选择性层片粘接
以色列Solidimension公司 ——SD300三维打印机
②分层实体制造(LOM)产品的特点
⑴ 由于LOM工艺只须在片材上切割出零件截面的轮廓,而不用扫描整 个截面,因此工艺简单,成型速度快,易于制造大型零件;
⑵ 工艺过程中不存在材料相变,因此不易引起翘曲变形,零件的精度较 高,激光切割为0.1mm,刀具切割为0.15mm,控制激光的光强和切 割速度,可保证良好的切口质量和切割深度; ⑶ 工件外框与截面轮廓之间的多余材料在加工中起到了支撑作用,所 以LOM工艺无需加支撑;
2
一、快速成型制造的基本概念与原理
2、原理
三维CAD 模型设计
CAD模型 的近似处理
对STL文件 切片处理
逐 层 制 造
3
二、快速成型技术的特点
1.数字化制造。 2.高度柔性和适应性。 3.快速。 4.材料类型丰富多样。
4
三、快速成型制造的主要方法
RP工艺分类
液体材料 粉状材料 片状材料
液体树 脂固化
17
3. 选择性粉末熔结/粘接
①基本原理
选择性粉末熔结/粘接是利用粉末 状材料成形的。先在工作台上铺 上一层有很好密实度和平整度的 粉末,用高强度的 CO2 激光器在 上面扫描出零件截面,有选择地 将粉末熔化或粘接,形成一个层 面,利用滚子铺粉压实,再熔结 或粘接成另一个层面并与原层面 熔结或粘接,如此层层叠加为一 个三维实体。成型后,将多余粉 末去除。
快速成形技术
4.2.3 选择性激光烧结
1986年,美国Texas大学的研究生C.Deckard提出了选择性烧 结(Selected Laser Sintering,SLS)的思想,稍后组建了DTM 公司,于1992年推出SLS成形机。 选择性激光烧结 的成形过程是:由CAD模型各层切片的平面 几何信息生成X-Y激光扫描器在 每层粉末上的数控运动指令,铺 粉器将粉末一层一层地撒在工作台上,再用滚筒将粉末滚平、压 实,每层粉末的厚度均对应于CAD模型的切片厚度。各层铺粉二 氧化碳激光器选择性烧结到基体上,而未被激光扫描、烧结的粉 末仍留在原处起支撑作用,直至烧结出整个零件。
利用分层技术制造了金属冲裁 模、成形模和注塑模
20世纪70年代末到80年代初,美国3M公司的Alan J. Hebert(1978年)、日本的小玉秀男(1983年) 、美国UVP公司的Charles W. Hull(1982年)和日 本的丸谷洋二(1983年)各自独立的首次提出了RP 的概念
Chares W.Hull在UVP地资助下,完成了第一个RP 系统——Stereolithography Apparatus(SLA) 1986年该系统获得专利,这是RP发展的一个里程碑
(5)制造原型的复制性、互换性高;
(6)加工周期短、成本低,成本与产品复杂程度无关,一般 制造费用降低50% ,加工周期节约70%以上;
(7)加工过程中无振动、噪声和切削废料;
4.2 RP技术的主要工艺方法
快速成形技术经过20年左右的发展,其工艺已经逐步完善, 发展了许多成熟的加工工艺及成形系统。快速成形技术发展至今 以其技术的高集成性、高柔性、高速性而得到了迅速发展。目前 快速成形的工艺方法已有几十种之多,其中主要工艺有五种基本 类型:光固化成型法、分层实体制造法、选择性激光烧结法和熔 融沉积制造法,三维印刷工艺。
快速成型专业技术及原理
RP技术简介快速原型制造技术,又叫快速成形技术,(简称RP技术);英文:RAPID PROTOTYPING(简称RP技术),或RAPID PROTOTYPING MANUFACTUREING,简称RPM。
快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。
自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。
但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。
形象地讲,快速成形系统就像是一台"立体打印机"。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。
快速成型机的工艺立体光刻成型sla层合实体制造lom熔融沉积快速成型fdm激光选区烧结法SLS多相喷射固化mjs多孔喷射成型mjm直接壳法产品铸造dspc激光工程净成型lens选域黏着及热压成型SAHP层铣工艺lmp分层实体制造som自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。
快速成型制造的几种典型工艺与后处理
应用
汽车、建筑等领域。
选择性激光烧结(SLS)工艺
原理
01
选择性激光烧结技术采用粉末材料作为原料,通过计算机控制
激光束对材料进行选择性烧结,最终得到三维实体。
特点
02
选择性激光烧结技术适合制作金属零件,具有较高的强度和硬
度。
应用
03
航空航天、汽车等领域。
三维打印(3DP)工艺
原理
三维打印技术采用粉末或液体材料作为原料,通过计算机控制喷嘴 将材料逐层喷射到成型区,最终得到三维实体。
用于制造轻量化结构件和复杂 零部件。
新产品开发
用于制造产品原型,方便进行 设计验证和功能测试。
医疗器械制造
用于制造医疗设备和器械,如 手术器械、假肢等。
教育领域
用于教学和实验,让学生更好 地理解产品设计、制造和材料 科学等方面的知识。
02
几种典型的快速成型工艺
立体光刻(SL)工艺
原理
立体光刻技术采用光敏树脂作为 原料,通过计算机控制紫外激光 束照射到光敏树脂表面,逐层固
在汽车制造领域,快速成型制造技术可以用于生产汽车设计原型,这些原型可以用于测试、修改等。
应用案例四:文化创意领域
艺术品
快速成型制造技术可以用于生产艺术品,如雕塑、装置艺术等。
玩具
在文化创意领域,快速成型制造技术可以用于生产玩具,这些玩具可以用于娱乐、教育等。
THANKS。
应用案例二:医疗领域
医疗器械
快速成型制造技术可以用于生产医疗器械,如手术器械、牙 科器械等。
人体模型
在医疗领域,快速成型制造技术可以用于生产人体模型,这 些模型可以用于手术模拟、康复训练等。
应用案例三:汽车制造领域
快速原型制造
快速原型制造快速原型制造( RPM : Rapid Prototyping Manufacturing )技术,又叫快速成形技术,简称 RP 技术,是 90 年代初发展起来的新兴技术, RPM 是 CAD 技术、数控技术、激光技术和材料技术等现代科技成果,被认为是近年来制造技术领域的一次重大突破,融合了机械工程、 CAD 技术、激光技术、数控技术和材料技术等,可以直接、自动、快速地将设计师的设计思想物化为具有一定功能的原型或直接制造零件,从而可以对产品设计进行快速评价、修改及功能验证,有效地缩短了产品的研发周期,为企业的新产品开发和创新提供了技术支持。
1.RPM技术产生背景随着全球市场一体化的形成,制造业的竞争十分激烈,产品的开发速度日益成为市场竞争的主要矛盾。
在这种情况下,自主快速产品开发的能力(周期和成本)成为制造业全球竞争的实力与基础。
同时,制造业为满足日益变化的用户需求,又要求制造技术有较强的灵活性,能够以小批量甚至单件生产而不大幅度增加产品的成本。
因此,产品开发的速度和制造技术的柔性就变的十分关键了。
RPM 技术就是在这种社会背景下,于 80 年代后期产生于美国,并很快扩展到日本及欧洲,是近 20 年来制造技术领域的一项重大突破。
RPM 技术问世不到十年,已实现了相当大的市场,发展非常迅速,在短短不到十年的时间里已实现了近五亿美元的市场。
人们对材料逐层添加法这种新的制造方法已逐步适应。
制造行业的工作人员都想方设法利用这种现代化手段,与传统制造技术的接轨工作也进展顺利。
人们用其长避其短,效益非凡。
与数控加工、铸造、金属冷喷涂、硅胶模等制造手段一起,快速成型已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。
2.RPM技术的原理及主要方法RPM技术,是由CAD模型直接驱动的快速制造任意复杂形状三维实体和技术总称。
RPM技术采用离散/堆积成型原理,其过程是:先由三维CAD软件设计出所需要零件的计算机三维曲面或实体模型;然后根据工艺要求,将其按一定厚度进行分层,使原来的三维电子模型变成二维平面信息(截面信息),加入加工参数,产生数控代码;微机控制下,数控系统以平面加工方式,有序地连续加工出每个薄层,并使它们自动粘接而成形,这就是材料堆积的过程。
《快速成型技术》
学院:机械工程学院专业:机电信息工程姓名:骆科鹏学号: 1108030443年级:机信118班快速成型技术摘要:快速成形技术(Rapid Prototyping;RP)又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近20年来制造领域的一个重大成果。
它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。
一、快速成型技术产生需求背景(1)随着全球市场一体化的形成,制造业的竞争十分激烈,产品的开发速度日益成为主要矛盾。
在这种情况下,自主快速产品开发的能力成为制造业全球竞争的实力基础。
(2)制造业为满足日益变化的用户需求,要求制造技术有较强的灵活性,能够以小批量甚至单件生产而不增加产品的成本。
因此,产品的开发速度和制造技术的柔性就十分关键。
(3)从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及为新的制造技术的产生奠定了技术物质基础。
二、快速成型技术的特点(1) 制造原型所用的材料不限,各种金属和非金属材料均可使用;(2) 原型的复制性、互换性高;(3) 制造工艺与制造原型的几何形状无关,在加工复杂曲面时更显优越;(4) 加工周期短,成本低,成本与产品复杂程度无关,一般制造费用降低50%,加工周期节约70%以上;(5) 高度技术集成,可实现了设计制造一体化;三、快速成型技术工艺过程首先利用三维造型软件创建三维实体造型,再将设计出的实体造型通过快速成型设备的处理软件进行离散与分层,然后将处理过的数据输入设备进行制造,最后还需要进行一定的后处理以得到最终的成品。
实体造型的构建:使用快速成型技术的前提是拥有相应模型的CAD数据,这可以利用计算机辅助设计软件如Pro/E、SolidWorks、Unigraphics、AutoCAD等创建,或者通过其他方式如激光扫描、电脑断层扫描,得到点云数据后,也得创建相应的三维实体造型。
快速成型技术
6、BPM
它用一个压电喷射(头)系统来沉积熔化了的热塑性 塑料的微小颗粒(如图)。BPM的喷头安装在一个5轴的 运动机构上,对于零件中悬臂部分,可以不加支撑。 而“不联通”的部分还要加支撑。
LOM工艺采用薄片材料,如纸、塑料薄膜等。片材 表面事先涂覆上一层热熔胶。加工时,热压辊热压片 材,使之与下面已成形的工件粘接;用CO2激光器在刚 粘接的新层上切割出零件截面轮廓和工件外框,并在 截面轮廓与外框之间多余的区域内切割出上下对齐的 网格;激光切割完成后,工作台带动已成形的工件下 降,与带状片材(料带)分离;供料机构转动收料轴和供 料轴,带动料带移动,使新层移到加工区域;工作台 上升到加工平面;热压辊热压,工件的层数增加一层, 高度增加一个料厚;再在新层上切割截面轮廓。如此 反复直至零件的所有截面粘接、切割完,得到分层制 造的实体零件。
液槽中盛满液态光固化树脂,激光束在偏转镜作用 下, 能在液态表面上扫描, 扫描的轨迹及光线的有无均 由计算机控制, 光点打到的地方, 液体就固化。成型开 始时,工作平台在液面下一个确定的深度,聚焦后的 光斑在液面上按计算机的指令逐点扫描,即逐点固化。 当一层扫描完成后,未被照射的地方仍是液态树脂。 然后升降台带动平台下降一层高度,已成型的层面上 又布满一层树脂,刮平器将粘度较大的树脂液面刮平, 然后再进行下二层的扫描,新固化的一层牢固地粘在 前一层上,如此重复直到整个零件制造完毕, 得到一 个三维实体模型。
• 快速原型制造技术就是在这样的社会背景下产生的。八 十年代后期,RP技术在美国首先产生并商品化。从那时 起,RP技术一直以离散堆积原理为基础和特征。简单的 说,将零件的电子模型(如CAD模型)方式离散,成为 可加工的离散面、离散线和离散点,而后采用多种手段, 将这些离散的面、线段和点堆积形成零件的整体形状。 由于工艺过程无需专用工具,工艺规划步骤简单,总的 来说,制造速度比传统方法快的多。也有人因该技术高 度的柔性而称之为“自由成形制造”。
(整理)快速成型技术的应用与发展前景
快速成型技术的应用与发展前景一.什么是快速成型技术快速成形技术又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近20年来制造领域的一个重大成果。
它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。
即,快速成形技术就是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。
二.快速成型技术的产生背景(1)随着全球市场一体化的形成,制造业的竞争十分激烈,产品的开发速度日益成为主要矛盾。
在这种情况下,自主快速产品开发(快速设计和快速工模具)的能力(周期和成本)成为制造业全球竞争的实力基础。
(2)制造业为满足日益变化的用户需求,要求制造技术有较强的灵活性,能够以小批量甚至单件生产而不增加产品的成本。
因此,产品的开发速度和制造技术的柔性就十分关键。
(3)从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及为新的制造技术的产生奠定了技术物质基础。
三.快速成形技术的特点快速成型技术具有以下几个重要特征:l )可以制造任意复杂的三维几何实体。
由于采用离散/堆积成型的原理.它将一个十分复杂的三维制造过程简化为二维过程的叠加,可实现对任意复杂形状零件的加工。
越是复杂的零件越能显示出 RP 技术的优越性此外, RP 技术特别适合于复杂型腔、复杂型面等传统方法难以制造甚至无法制造的零件。
2 )快速性。
通过对一个 CAD 模型的修改或重组就可获得一个新零件的设计和加工信息。
从几个小时到几十个小时就可制造出零件,具有快速制造的突出特点。
3 )高度柔性。
无需任何专用夹具或工具即可完成复杂的制造过程,快速制造工模具、原型或零件。
快速成型技术
快速成型技术快速成型技术(Rapid Prototyping Technology)是一种通过计算机辅助设计(CAD)或三维扫描等手段,直接将数字模型转换成实体模型的技术。
这种技术在制造业中应用广泛,特别是在产品设计和开发阶段。
它的出现极大地加快了产品开发的速度,提高了产品质量,降低了开发成本。
快速成型技术最早出现在20世纪80年代末期,当时它被称为快速成型制造(Rapid Prototyping Manufacturing,RPM)。
最初,这项技术主要用于制造模型和原型,以便用于产品的验收、检测和展示。
随着科技的不断进步,快速成型技术逐渐应用于大批量生产,成为了现代制造业中不可或缺的部分。
快速成型技术的原理是将数字模型切片,在计算机控制下,通过一层层的积累堆积物料(如塑料或金属粉末),最终形成实体模型。
常见的快速成型技术有激光烧结成型法(Selective Laser Sintering,SLS)、光固化成型法(Stereolithography,SLA)和熔融沉积成型法(Fused Deposition Modeling,FDM)等。
快速成型技术的优点之一是节省了时间。
在传统的制造工艺中,产品开发需要制作模具,然后进行注塑、冲压等工艺,这些过程非常繁琐且耗时。
而快速成型技术可以直接从数字模型生成实体模型,省去了制造模具的步骤,大大缩短了开发时间。
设计师可以通过快速成型技术轻松地进行多次迭代,使产品的设计更加完善,提高了开发效率。
此外,快速成型技术还能够降低产品开发的成本。
由于快速成型技术可以直接从数字模型制作实体模型,省去了制造模具的费用,尤其是在小批量生产或个性化定制的情况下,可以大大降低成本。
另外,由于快速成型技术可以提供高质量的产品样品,从而减少了开发过程中的重大错误和返工次数,并降低了产品开发的风险。
快速成型技术也在产品设计中起到了重要的作用。
通过快速成型技术,设计师可以将虚拟的设计概念转变为实际的实体模型,以便进行物理实验、形态研究和外观评估。
快速成型制造技术
快速成型制造技术特种加工技术是先进制造技术的重要组成部分,是衡量一个国家制造技术水平和能力的重要标志,在我国的许多关键制造业中发挥着不可替代的作用。
采用特种加工技术可以加工特殊材料,且加工中无切削力,能够进行微细加工及复杂的空间曲面成形,所以能够解决航空航天、军工、汽车、模具、冶金、机械等工业中的关键技术难题,从而逐步形成新兴的特种加工行业。
特种加工技术主要包括电加工技术、高能束流加工技术、快速成型制造技术等,其中以快速成型制造技术对现代制造业的影响最为重大。
快速成型制造技术(Rapid Prototyping Manufac?turing,RPM),就是根据零件的三维模型数据,迅速而精确地制造出该零件。
它是在20世纪80年代后期发展起来的,被认为是最近20年来制造领域的一次重大突破,是目前先进制造领域研究的热点之一。
快速成型制造技术是集CAD技术、数控技术、激光加工、新材料科学、机械电子工程等多学科、多技术为一体的新技术。
传统的零件制造过程往往需要车、钳、铣、磨等多种机加工设备和各种夹具、刀具、模具,制造成本高,周期长,对于一个比较复杂的零件,其加工周期甚至以月计,很难适应低成本、高效率的加工要求。
快速成型制造技术能够适应这种要求,是现代制造技术的一次重大变革。
快速成型产品随着CAD建模和光、机、电一体化技术的发展,快速成型技术的工艺方法发展很快。
目前已有光固法(SLA)、层叠法(LOM)、激光选区烧结法(SLS)、熔融沉积法(FDM)、掩模固化法(SGC)、三维印刷法(TDP)、喷粒法(BPM)等10余种。
1、光固化立体造型(Stereolithography,SLA)该技术以光敏树脂为原料,将计算机控制下的紫外激光,以预定零件各分层截面的轮廓为轨迹,对液态树脂逐点扫描,由点到线到面,使被扫描区的树脂薄层产生聚合反应,从而形成零件的一个薄层截面。
当一层固化完毕,升降工作台移动一个层片厚度的距离,在原先固化好的树脂表面再覆盖一层新的液态脂以便进行新一层扫描固化。
快速成型技术的特点和应用是什么
快速成型技术的特点和应用是什么快速成形制造技术是目前国际上成型工艺中备受关注的焦点。
铸造作为一项传统的工艺,制造成本低、工艺灵活性大,可以获得复杂形状和大型的铸件。
充分发挥两者的特点和优势,可以在新产品试制中取得客观的经济效益。
快速成形制造技术又称为快速原型制造技术(RapidPrototypingManufacturing,简称RPM),是一项高科技成果。
它包括SLS、SLA、SLM等成型方法,集成了CAD技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。
与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件,所以又称为材料添加制造法(MaterialAdditiveManufacturing或MaterialIncreaseManufacturing)。
由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下几乎能够生成任意复杂形状的零部件,极大地提高了生产效率和制造柔性。
与数控加工、铸造、金属冷喷涂、硅胶模等制造手段一起,快速自动成型已成为现代模型、模具和零件制造的强有力手段,是目前适合我国国情的实现金属零件的单件或小批量敏捷制造的有效方法,在航空航天、汽车摩托车、家电等领域得到了广泛应用。
快速成型技术能够快捷地提供精密铸造所需的蜡模或可消失熔模以及用于砂型铸造的木模或砂模,解决了传统铸造中蜡模或木模等制备周期长、投入大和难以制作曲面等复杂构件的难题。
而精密铸造技术(包括石膏型铸造)和砂型铸造技术,在我国是非常成熟的技术,这两种技术的有机结合,实现了生产的低成本和高效益,达到了快速制造的目的。
RPM技术的特点快速成型的过程是首先生成一个产品的三维CAD实体模型或曲面模型文件,将其转换成特定的文件格式,再用相应的软件从文件中“切”出设定厚度的一系列片层,或者直接从CAD文件切出一系列的片层。
快速成型制造技术(RPM)
IM
PRM技术的特点
仅需改变CAD模型,重 新调整和设置参数即可 生产出不同形状的零件 模型。
•从CAD数模或实体反求获 得的数据到制成原形,一 般仅需要数小时或十几小 时,速度比传统成型加工 方法快的多
高柔性
快速性
自由成型性
设计制造一体 化
快速模具(RT )制造主要用于 制造铸造模具和 塑料模具。 分为:间接制模 和直接制模 .
RPM技术的发展趋势
新工艺与 装备的开 发
新型材料 的研究
成型 材料
成型材料的系 列化标准化
成型工 艺及软 件
第三方软 件的开发
成型精度 的研究
LOGO LOGO
•CAD模型直接驱动, 设计制造高度一体化
• 无需使用模具,夹具
• 能够制造任意复杂原型
精度不如传统加工:数据模型分层处理时不可避免的一些数据丢失外加 分层制造必然产生台阶误差,堆积成形的相变和凝固过程产生的内应 力也会引起翘曲变形,这从根本上决定了RP造型的精度极限
PRM技术的常用工艺
典型快速成型工艺
国际上首台快速成形机于1987年诞生于美 国,是由美国3DSystems公司制造的快速 成形系统SLA-1,采用立体光刻法的快速成 形制造系统(RPMS)。
Step 2
Step 1
RPM技术的原理
快速成形制造技术
名词解释
它是一种基于离散 堆积成形思想的新型 成形技术,是综合利 用CAD技术、数控技 术、激光加工技术和 材料技术实现从零件 设计到三维实体原型 制造一体化的系统技 术
RPM的 工艺 RPM 的特点 RPM原理
PRM技术的发展
快速成型
快速成型技术的类型 目前,快速成形的工艺方法已有几十种 之多,其中主要工艺有五种基本类型:光 固化成型法、分层实体制造法、选择性激 光烧结法、熔融沉积制造法和三维印刷法 等 光固化成型法 五种类型 分层实体制造法 选择性激光烧结法 熔融沉积制造法 三维印刷法
快速成型技术的类型 1. 光固化成形
也称光造型、立体光刻及立体印刷,其工艺过程是以液 态光敏树脂为材料充满液槽,由计算机控制激光束跟踪层状 截面轨迹,并照射到液槽中的液体树脂,而使这一层树脂固 化,之后升降台下降一层高度,已成型的层面上又布满一层 树脂,然后再进行新一层的扫描,新固化的一层牢固地粘在 前一层上,如此重复直到整个零件制造完毕,得到1个三维实 体模型。该工艺的特点是:原型件精度高,零件强度和硬度 好,可制出形状特别复杂的空心零件,生产的模型柔性化好, 可随意拆装,是间接制模的理想方法。缺点是需要支撑,树 脂收缩会导致精度下降,另外光固化树脂有一定的毒性而不 符合绿色制造发展趋势等。该工艺适合比较复杂的中小型零 件的制作。
快速成型的发展方向 RP技术已经在许多领域里得到了应用, 其应用范围主要在设计检验、市场预测、 工程测试(应力分析、风道等)、装配测试、 模具制造、医学、美学等方面。
快速成型技 术未来会怎 样
?
快速成型的发展方向 RP技术在制造工业中应用最多(达到 67%),说明RP技术对改善产品的设计和制 造水平具有巨大的作用。 目前快速成形 技术还存在许多不足,下一步研究开发工 作主要在以下几方面: (1)改善快速成形系统的可靠性、生产 率和制作大件能力,尤其是提高快速成形 系统的制作精度; (2)开发经济型的快速成形系统;
快速成型技术的起源
而采用全新的“增长”加工法——用一层层的小毛坯 逐步叠加成大工件,将复杂的三维加工分解成简单的二维加 工的组合,因此,它不必采用传统的加工机床和模具,只需传 统加工方法的10%~30%的工时和20%~35%的成本,就能直 接制造出产品样品或模具。 。 由于快速成形具有上述突出的优势,所以近年来发展 迅速,已成为现代先进制造技术中的一项支柱技术,实现并 行工程(Concurrent Engineering,简称CE)必不可少的手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论 机械制造工艺中的成型技术 2.受迫成形
它是利用材料的可成形性(如塑性等),在特 定外围约束(边界约束或外力约束)下成形的方 法。 铸造、锻压和粉末冶金等均属于受迫成形。受 迫成形多用于毛坯成形和特种材料成形等。
内涵 分 层 增 加 材 料
RPM技术不是使用一 般意义上的模具或刀具, 而是利用光、热、电 等物理手段实现材料的 转移与堆积
RPM的技术原理
RPM技术的原理
RPM技术的不同称谓
实体自由成形制造
MIM
SFF
RPM 制造 技术
LM
DCM
(Solid Freeform Fabrication, SFF) 直接CAD制造(Direct CAD Manufacturing,DCM) 即时制造(Instant Manufacturing,IM) 分层制造(Layered Manufacturing,LM) 材料添加制造(Material
1 立体光刻(SLA) 分层实体制造(LOM) 选择性激光烧结(SLS)
2
3
4
熔融沉积成形(FDM)
RPM技术的应用
快速模具 制造 反求工 程
在RPM技术中 的反求,就是要 在现有实物的基 础上求出三维的 CAD模型。通过 反求工程可以快 速、准确地测 量RPM原型, 找出产品设计中 的不足,重新设 计
快速模具(RT )制造主要用于 制造铸造模具和 塑料模具。 分为:间接制模 和直接制模 .
RPM技术的发展趋势
新工艺与 装备的开 发
新型材料 的研究
成型 材料
成型材料的系 列化标准化
成型工 艺及软 件
第三方软 件的开发
成型精度 的研究
LOGO LOGO
绪论 机械制造工艺中的成型技术 3.堆积成形
它是运用合并与连接的办法,把材料(气、液、 固相)有序地合并堆积起来的成形方法。 快速原型制造(RPM)即属于堆积成形,其过 程是在计算机控制下完成的,最大特点是不受成 形零件复杂程度的限制,广义地讲,焊接也属堆
积成表范畴。。
绪论 机械制造工艺中的成型技术 4.生成成形
•CAD模型直接驱动, 设计制造高度一体化
• 无需使用模具,夹具
• 能够制造任意复杂原型
精度不如传统加工:数据模型分层处理时不可避免的一些数据丢失外加 分层制造必然产生台阶误差,堆积成形的相变和凝固过程产生的内应 力也会引起翘曲变形,这从根本上决定了RP造型快速成型工艺
快速制 造金属 零件
RPM技术与铸 造技术相结合是 由RPM原型转 化为金属零件的 最佳途径。 方法:RPM原 型翻制压型、直 接复制铸模或烧 失型铸造熔模
医学中 用于器 官模型 制作
以数字成像技术为 基础的CT(断层 成像)、MRI(核 磁共振)等诊断方 法与RPM系统相 结合,即把所获得 的人体扫描的分层 截面图像,经计算 机三维重建后的数 据提供给RPM系 统,得到人体局部 或内脏器官。.
它是利用材料的活性进行成形的方法。自然系 统中生物个体发育均属于生成成形。 目前人为系统中还没有此种成形方式,但随着 活性材料、仿生学、生物化学、生命科学的发展, 人们也可能会运用这种成形方式进行人为成形。
快速成型制造技术(RPM)
RPM 的发展 趋势
RPM 的应 用
RPM的发展
快速成型 制造技术 RPM
Increase Manufacturing, MIM)
IM
PRM技术的特点
仅需改变CAD模型,重 新调整和设置参数即可 生产出不同形状的零件 模型。
•从CAD数模或实体反求获 得的数据到制成原形,一 般仅需要数小时或十几小 时,速度比传统成型加工 方法快的多
高柔性
快速性
自由成型性
设计制造一体 化
RPM的 工艺 RPM 的特点 RPM原理
PRM技术的发展
Step 3 清华大学现已开发出“M-RPMS-II”型 多功能快速成形制造系统,这是我国 自主知识产权的世界唯一拥有两种 RPM工艺的系统。 1998年在我国上海举行的第七届 国际模具技术和设备展览会上, 美国、日本、德国、新加坡等国 都展出了RPM设备。
LOGO LOGO
快速成型制造技 术(RPM)
绪论 机械制造工艺中的成型技术
机械制造工艺是成型工艺,即是在成形学指导下,研究与 开发产品制造的技术、方法和程序,依据现代成形学的观 点从物质的组织方式上,可把成形方式分为如下四类:
1 2
去除成型 受迫成型
3
4
堆积成型
生成成型
绪论 机械制造工艺中的成型技术 1.去除成型
国际上首台快速成形机于1987年诞生于美 国,是由美国3DSystems公司制造的快速 成形系统SLA-1,采用立体光刻法的快速成 形制造系统(RPMS)。
Step 2
Step 1
RPM技术的原理
快速成形制造技术
名词解释
它是一种基于离散 堆积成形思想的新型 成形技术,是综合利 用CAD技术、数控技 术、激光加工技术和 材料技术实现从零件 设计到三维实体原型 制造一体化的系统技 术