绝对值1(2019年12月整理)
高中数学高考第1节 绝对值不等式 课件
两招解不等式问题中的含参问题
自
主 回
(1)问题转化
课
顾
①把存在性问题转化为求最值问题,即 f(x)>a 有解⇔f(x)max>a.
后 限
②不等式的解集为 R 是指不等式的恒成立问题;
时 集
课
训
堂 考
③不等式的解集为∅的对立面也是不等式的恒成立问题,此类问
点
探 究
题都可转化为最值问题,即 f(x)<a 恒成立⇔a>f(x)max,f(x)>a 恒成
课
.
后
限
2 [由|kx-4|≤2⇔2≤kx≤6.
时 集
训
∵不等式的解集为{x|1≤x≤3},∴k=2.]
返 首 页
15
4.不等式|x+1|-|x-2|≥1 的解集是
.
课
前
自 主 回 顾
{x|x≥1}
-3,x≤-1,
[令 f(x)=|x+1|-|x-2|=2x-1,-1<x<2, 3,x≥2.
当课 后 限
时
课 -1<x<2 时,
集 训
堂
考 点
由 2x-1≥1,解得 1≤x<2.又当 x≥2 时,f(x)=3>1 恒成立.所
探
究 以不等式的解集为{x|x≥1}.]
返 首 页
16
课
前
自 主 回
课堂考点探究
课
顾
后
限
时
集
课
训
堂
考
点
探
究
返 首 页
17
课
前 自
考点 1 绝对值不等式的常用解法
主
回
解绝对值不等式的常用方法
前
自
主 回
2019年中考专题复习《绝对值化简问题的归类分析》教学案
绝对值化简问题的归类分析绝对值化简是初中数学中的难点之一,本文将此类问题大致归纳为以下十种情况,进行举例分析. 一、已知不等式的解集,化简绝对值 例1 已知:1x <-,化简:3113x x +--.分析 要去掉题中绝对值,明确31x +,13x -的符号是关键.这里根据条件,运用不等式的性质就可以得出求出31x +,13x -的符号.根据不等式的性质2,由1x <-,得33x <-.又根据不等式的性质1,得312x +<-,这就确定了31x +的符号为负号.同理,根据不等式的性质3,由1x <-,得33x ->.又根据不等式的性质1,得134x -> ,所以得出13x -的符号为正号,这样就可以轻松化简. 解1x <-,3120,134x x ∴+<-<->>,∴原式=(31)(13)31132x x x x -+--=---+=-.二、求出不等式的解集后,再化简绝对值例2 已知2(1)3x x -<-,化简:242x x +---.分析 要去掉绝对值,就得知道2x +, 42x --的符号.要知道2x +, 42x --的符号就得知道x 的解集,要知道:的解集就要运用不等式的解法求出其解.求出x 的解集后,由例1的方法就可以确定2x +,42x --的符号,进而化简绝对值.解 由2(1)3x x -<-, 解得2x <-20x ∴+<,420x -->∴原式(2)(42)2x x x =-+---=+三、已知不等式的解集,化简多重绝对值 例3 已知3x <-,化简:321x +-+分析 要去掉绝对值符号,我们只能从最里面一层一层的去掉.先根据不等式的性质,用例1的方法判断1x +的符号,去掉第一个绝对值,然后再合并同类项后判断符号,去掉第二个绝对值,最后去掉第三个绝对值.解答本题的关键是确定去绝对值符号的顺序.解3x <-120x ∴+<-<∴原式32(1)33x x =+---=++3x <-∴原式3(3)x x =+--=-3x <- 30x ∴->> ∴原式x =-四、已知不等式组的解集,化简绝对值 例4 23x -<<,化简:23x x +--分析 要去掉绝对符号,只要知道2x +,3x -的符号即可.但是与上面的例题的情况不一样,这是不等式组的解集,该如何用呢?实际上只要我们按照不等式的性质代进去一试结论就有了.根据不等式的性质1,由23x -<<,得021x <+<.同样可以确定2x +的符号为正号.又根据不等式的性质,由23x -<<,得530x -<+<,可以确定3x -的符号为负号.这样去绝对值符号就迎刃而解.解23x -<<∴021x <+<,530x -<+< ∴原式2(3)21x x x =+--=-五、解答不等式组,再化简绝对值例5已知不等式组4152122x x x ⎧-<⎪⎪⎨-⎪<-+⎪⎩ 化简451x x +--分析 要去掉绝对值同样得知道45x +,1x -的符号.运用解不等式组的方法求得x 的 解集是关键,最后运用例4的方法确定45x +,1x -的符号,就可以化简绝对值.解 解不等式①,得54x >-. 解不等式②,得1x <514x ∴-<< 0459x ∴<+<,9104x -<-< ∴原式45(1)54x x x =+--=+六、已知不等式组的解集,变形二次根式后再化简绝对值 例6已知01x <<,化简:2x + 分析 本题涉及到了二次根式的性质a =a =的运用.解答时先将二次根式变形,进行第一次化简,再根据不等式的性质确定绝对值内的式子的符号,最后就可以化简绝对值.解 原式(1)1(2)x x x x =+-----110x ∴-<-<,221x -<-<-∴原式1(1)(2)22x x x x x =+-----=-七、解不等式组。
(复习指导)选修4—5 第1课时 绝对值不等式含解析
选修4—5不等式选讲必备知识预案自诊知识梳理1.绝对值三角不等式(1)定理1:若a,b是实数,则|a+b|≤,当且仅当时,等号成立;(2)性质:|a|-|b|≤|a±b|≤|a|+|b|;(3)定理2:若a,b,c是实数,则|a-c|≤,当且仅当时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a(a>0)的解法:①|x|<a⇔-a<x<a;②|x|>a⇔x>a或x<-a.(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔;②|ax+b|≥c⇔.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图像求解,体现了函数与方程及数形结合的思想.3.基本不等式定理1:设a,b∈R,则a2+b2≥,当且仅当a=b时,等号成立.定理2:若a,b为正数,则a+b2≥√ab,当且仅当a=b时,等号成立.定理3:若a,b,c为正数,则a+b+c3≥√abc3,当且仅当a=b=c时,等号成立.定理4:若a1,a2,…,a n为n个正数,则a1+a2+…+a nn ≥√a1a2…a nn,当且仅当a1=a2=…=a n时,等号成立.4.柯西不等式(1)若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.(2)设a1,a2,a3,…,a n,b1,b2,b3,…,b n是实数,则(a12+a22+…+a n2)(b12+b22+…+b n2)≥(a1b1+a2b2+…+a n b n)2,当且仅当b i=0(i=1,2,…,n)或存在一个数k,使得a i=kb i(i=1,2,…,n)时,等号成立.(3)柯西不等式的向量形式:设α,β是两个向量,则|α||β|≥|α·β|,当且仅当β是零向量或存在实数k,使α=kβ时,等号成立.5.不等式证明的方法证明不等式常用的方法有比较法、综合法、分析法、放缩法以及利用绝对值三角不等式、柯西不等式法等.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)对|a-b|≤|a|+|b|,当且仅当ab≤0时,等号成立.()(2)|a+b|+|a-b|≥|2a|.()(3)|x-a|+|x-b|的几何意义是表示数轴上的点x到点a,b的距离之和.()(4)用反证法证明命题“a,b,c全为0”时假设为“a,b,c全不为0”.()(5)若m=a+2b,n=a+b2+1,则n≥m.() 2.若|a-c|<|b|,则下列不等式正确的是()A.a<b+cB.a>c-bC.|a|>|b|-|c|D.|a|<|b|+|c|3.若不等式|x+1x|>|a-2|+1对于一切非零实数x均成立,则实数a的取值范围是() A.(2,3) B.(1,2)C.(1,3)D.(1,4)4.设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则√m2+n2的最小值为.5.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是.第1课时绝对值不等式关键能力学案突破考点绝对值不等式的解法【例1】(2020全国1,理23)已知函数f(x)=|3x+1|-2|x-1|.(1)画出y=f(x)的图像;(2)求不等式f(x)>f(x+1)的解集.解题心得解含有两个以上绝对值符号的不等式的方法解法1:利用绝对值不等式的几何意义求解,体现了数形结合的思想;解法2:利用“零点分段法”求解,即令各个绝对值式子等于0,求出各自零点,把零点在数轴上从小到大排列,然后按零点分数轴形成的各区间去绝对值,进而将绝对值不等式转化为常规不等式,体现了分类讨论的思想;解法3:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.对点训练1(2019全国2,理23)已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.考点求参数范围(多考向探究)考向1分离参数法求参数范围【例2】(2017全国3,理23)已知函数f(x)=|x+1|-|x-2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.解题心得在不等式有解或成立的情况下,求参数的取值范围,可以采取分离参数,通过求对应函数最值的方法获得.对点训练2已知f(x)=|x+1|,g(x)=2|x|+a,(1)当a=-1时,求不等式f(x)≥g(x)的解集;(2)若存在x0∈R使得f(x0)≥g(x0)成立,求a的取值范围.考向2利用函数最值求参数范围【例3】(2020辽宁大连一中6月模拟,23)已知函数f(x)=x|x-a|,a∈R.(1)当f(1)+f(-1)>1时,求a的取值范围;+|y-a|恒成立,求a的取值范围.(2)若a>0,对任意x,y∈(-∞,a],都有不等式f(x)≤y+54解题心得1.对于求参数范围问题,可将已知条件进行等价转化,得到含有参数的不等式恒成立,此时通过求函数的最值得到关于参数的不等式,解不等式得参数范围.2.解答此类问题应熟记以下转化:f(x)>a恒成立⇔f(x)min>a;f(x)<a恒成立⇔f(x)max<a;f(x)>a有解⇔f(x)max>a;f(x)<a有解⇔f(x)min<a;f(x)>a无解⇔f(x)max≤a;f(x)<a无解⇔f(x)min≥a.对点训练3(2020山西太原三模,23)已知函数f(x)=|x+1|+|x-2a|,a∈R.(1)若a=1,解不等式f(x)<4;(2)对任意的实数m,若总存在实数x,使得m2-2m+4=f(x),求实数a的取值范围.考向3恒等转化法求参数范围【例4】(2020全国2,理23)已知函数f(x)=|x-a2|+|x-2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.解题心得在不等式成立的前提下求参数范围,通常对不等式进行等价变形,求出不等式的解,然后根据已知条件确定参数范围.对点训练4(2018全国1,理23)已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.考点求函数或代数式的最值(多考向探究)考向1利用基本不等式求最值【例5】(2020河北石家庄二模,文23)函数f(x)=|2x-1|+|x+2|.(1)求函数f(x)的最小值;(2)若f(x)的最小值为M,a+2b=2M(a>0,b>0),求证:1a+1+12b+1≥47.解题心得在求某一代数式的最值时,根据已知条件利用基本不等式a 2+b 2≥2ab ,a+b2≥√ab (a ,b 为正数),a+b+c3≥√abc 3(a ,b ,c 为正数)对代数式进行适当的放缩,从而得出其最值.对点训练5(2020河南开封三模)关于x 的不等式|x-2|<m (m ∈N +)的解集为A ,且32∈A ,12∉A. (1)求m 的值;(2)设a ,b ,c 为正实数,且a+b+c=3m ,求√a +√b +√c 的最大值.考向2 利用绝对值三角不等式求最值【例6】已知函数f (x )=2|x+a|+|x -1a|(a ≠0).(1)当a=1时,解不等式f (x )<4;(2)求函数g (x )=f (x )+f (-x )的最小值.解题心得利用绝对值三角不等式求函数或代数式的最值时,往往需要对函数或代数式中的几个绝对值里面的代数式等价变形,使相加或相减后对消变量,得到常数.对点训练6已知函数f (x )=|2x+1|-|x-1|. (1)求f (x )+|x-1|+|2x-3|的最小值;(2)若不等式|m-1|≥f (x )+|x-1|+|2x-3|有解,求实数m 的取值范围.考向3利用放缩法求最值【例7】(2019全国3,理23)设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥13成立,证明:a≤-3或a≥-1.解题心得利用放缩法求代数式的最值,一般利用基本不等式,绝对值三角不等式及数学结论进行放缩,在放缩的过程中,结合已知条件消去变量得到常量,从而得到代数式的最值.对点训练7已知实数m,n满足2m-n=3.(1)若|m|+|n+3|≥9,求实数m的取值范围;(2)求|53m-13n|+|13m-23n|的最小值.1.绝对值不等式主要利用“零点分段法”求解,有时也利用函数图像通过观察得出不等式的解集.2.含绝对值不等式的恒成立问题的求解方法(1)分离参数法:运用“f(x)≤a⇔f(x)max≤a,f(x)≥a⇔f(x)min≥a”可解决恒成立中的参数范围问题.(2)数形结合法:在研究不等式f(x)≤g(x)恒成立问题时,若能作出两个函数的图像,通过图像的位置关系可直观解决问题.3.求函数或代数式的最值主要应用基本不等式、绝对值三角不等式以及通过放缩求解.在解决有关绝对值不等式的问题时,充分利用绝对值不等式的几何意义解决问题能有效避免分类讨论不全面的问题.若用零点分段法求解,要掌握分类讨论的标准,做到不重不漏.选修4—5 不等式选讲必备知识·预案自诊知识梳理1.(1)|a|+|b| ab ≥0 (3)|a-b|+|b-c| (a-b )(b-c )≥02.(2)①-c ≤ax+b ≤c ②ax+b ≥c 或ax+b ≤-c3.2ab考点自诊1.(1)√ (2)√ (3)√ (4)× (5)√2.D |a|-|c|≤|a-c|<|b|,即|a|<|b|+|c|,故选D .3.C 因为|x +1x |=|x|+|1x |≥2,要使对于一切非零实数x ,|x +1x|>|a-2|+1恒成立,则|a-2|+1<2,即1<a<3.4.√5 由柯西不等式可知(a 2+b 2)(m 2+n 2)≥(ma+nb )2,即5(m 2+n 2)≥25,当且仅当an=bm 时,等号成立,所以√m 2+n 2≥√5.5.[-2,4] ∵|x-a|+|x-1|≥|(x-a )-(x-1)|=|a-1|,要使|x-a|+|x-1|≤3有解,可使|a-1|≤3,∴-3≤a-1≤3,∴-2≤a ≤4.第1课时 绝对值不等式 关键能力·学案突破 例1解(1)由题设知f (x )={-x -3,x ≤-13,5x -1,-13<x ≤1,x +3,x >1.y=f (x )的图像如图所示.(2)函数y=f (x )的图像向左平移1个单位长度后得到函数y=f (x+1)的图像.y=f (x )的图像与y=f (x+1)的图像的交点坐标为-76,-116.由图像可知当且仅当x<-76时,y=f (x )的图像在y=f (x+1)的图像上方. 故不等式f (x )>f (x+1)的解集为(-∞,-76). 对点训练1解(1)当a=1时,f (x )=|x-1|x+|x-2|·(x-1).当x<1时,f (x )=-2(x-1)2<0; 当x ≥1时,f (x )≥0.所以,不等式f (x )<0的解集为(-∞,1). (2)因为f (a )=0,所以a ≥1. 当a ≥1,x ∈(-∞,1)时,f (x )=(a-x )x+(2-x )(x-a )=2(a-x )(x-1)<0. 所以,a 的取值范围是[1,+∞). 例2解(1)f (x )={-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x<-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1得,2x-1≥1,解得1≤x ≤2; 当x>2时,由f (x )≥1解得x>2. 所以f (x )≥1的解集为{x|x ≥1}.(2)由f (x )≥x 2-x+m 得m ≤|x+1|-|x-2|-x 2+x. 而|x+1|-|x-2|-x 2+x ≤|x|+1+|x|-2-x 2+|x|=-(|x |-32)2+54≤54,且当x=32时,|x+1|-|x-2|-x 2+x=54. 故m 的取值范围为(-∞,54].对点训练2解(1)当a=-1时原不等式可化为|x+1|-2|x|≥-1,设φ(x )=|x+1|-2|x|={x -1,x ≤-1,3x +1,-1<x <0,-x +1,x ≥0,则{x ≤-1,x -1≥-1,或{-1<x <0,3x +1≥-1,或{x ≥0,-x +1≥-1. 即-23≤x ≤2.所以原不等式的解集为-23,2.(2)若存在x 0∈R 使得f (x 0)≥g (x 0)成立,等价于|x+1|≥2|x|+a 有解, 由(1)即φ(x )≥a 有解,即a ≤φ(x )max ,由(1)可知,φ(x )在(-∞,0)单调递增,在[0,+∞)单调递减, 所以φ(x )max =φ(0)=1,所以a ≤1.故a 的取值范围为(-∞,1].例3解(1)f (1)+f (-1)=|1-a|-|1+a|>1,若a ≤-1,则1-a+1+a>1,得2>1,即当a ≤-1时,不等式恒成立;若-1<a<1,则1-a-(1+a )>1,得a<-12,即-1<a<-12; 若a ≥1,则-(1-a )-(1+a )>1,得-2>1,此时不等式无解. 综上所述,a 的取值范围是-∞,-12.(2)由题意知,要使不等式恒成立,只需f (x )max ≤y+54+|y-a|min .当x ∈(-∞,a ]时,f (x )=-x 2+ax ,f (x )max =f a 2=a 24. 因为y+54+|y-a|≥a+54, 所以当y ∈-54,a 时,y+54+|y-a|min =a+54=a+54.于是a 24≤a+54,解得-1≤a ≤5.结合a>0,所以a 的取值范围是(0,5].对点训练3解(1)当a=1时,f (x )<4,即|x+1|+|x-2|<4,化为{x <-1,2x >-3或{-1≤x ≤2,3<4或{x >2,2x -1<4,解得-32<x<-1或-1≤x ≤2或2<x<52,综上,-32<x<52,即不等式f (x )<4的解集为-32,52.(2)根据题意,得m 2-2m+4的取值范围是f (x )值域的子集.m 2-2m+4=(m-1)2+3≥3,又f (x )=|x+1|+|x-2a|≥|2a+1|, 所以f (x )的值域为[|2a+1|,+∞).故|2a+1|≤3,解得-2≤a ≤1,即实数a 的取值范围为[-2,1].例4解(1)当a=2时,f (x )={7-2x ,x ≤3,1,3<x ≤4,2x -7,x >4.因此,不等式f (x )≥4的解集为{x |x ≤32或x ≥112}. (2)因为f (x )=|x-a 2|+|x-2a+1|≥|a 2-2a+1|=(a-1)2,故当(a-1)2≥4,即|a-1|≥2时,f (x )≥4. 所以当a ≥3或a ≤-1时,f (x )≥4.当-1<a<3时,f (a 2)=|a 2-2a+1|=(a-1)2<4. 所以a 的取值范围是(-∞,-1]∪[3,+∞).对点训练4解(1)当a=1时,f (x )=|x+1|-|x-1|,即f (x )={-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为{x |x >12}.(2)当x ∈(0,1)时|x+1|-|ax-1|>x 成立等价于当x ∈(0,1)时|ax-1|<1成立. 若a ≤0,则当x ∈(0,1)时|ax-1|≥1;若a>0,|ax-1|<1的解集为0<x<2a ,所以2a ≥1,故0<a ≤2. 综上,a 的取值范围为(0,2]. 例5(1)解f (x )=|2x-1|+|x+2|={-3x -1,x ≤-2,-x +3,-2<x <12,3x +1,x ≥12,当x ≤-2时,f (x )≥5;当-2<x<12时,52<f (x )<5; 当x ≥12时,f (x )≥52. 所以f (x )的最小值为52. (2)证明由(1)知M=52,即a+2b=5.又因为a>0,b>0,所以1a+1+12b+1=17[(a+1)+(2b+1)]1a+1+12b+1=172+2b+1a+1+a+12b+1 ≥172+2√2b+1a+1·a+12b+1 =47,当且仅当a=2b ,即a=52,b=54时,等号成立.所以1a+1+12b+1≥47. 对点训练5解(1)由已知得{|32-2|<m ,|12-2|≥m ,解得12<m ≤32.因为m ∈N *,所以m=1.(2)因为a+b+c=3,所以√a +√b +√c =√1·a +√1·b +√1·c ≤1+a 2+1+b 2+1+c2=3+a+b+c2=3, 当且仅当a=b=c=1时,等号成立.所以√a +√b +√c 的最大值为3.例6解(1)∵a=1,∴原不等式为2|x+1|+|x-1|<4,∴{x <-1,-2x -2-x +1<4,或 {-1≤x ≤1,2x +2-x +1<4,或{x >1,2x +2+x -1<4,∴-53<x<-1或-1≤x<1或∅. ∴原不等式的解集为(-53,1).(2)由题意得g (x )=f (x )+f (-x )=2(|x+a|+|x-a|)+(|x +1a |+|x -1a |)≥2|2a|+2|a |≥4√2.当且仅当2|a|=1|a |,即a=±√22,且-√22≤x ≤√22时,g (x )取最小值4√2. 对点训练6解(1)f (x )+|x-1|+|2x-3|=|2x+1|-|x-1|+|x-1|+|2x-3|=|2x+1|+|2x-3|≥|2x+1-(2x-3)|=4,当-12≤x ≤32时等号成立,所以f (x )+|x-1|+|2x-3|的最小值为4.(2)不等式|m-1|≥f (x )+|x-1|+|2x-3|有解,∴|m-1|≥[f (x )+|x-1|+|2x-3|]min .∴|m-1|≥4,∴m-1≤-4或m-1≥4,即m ≤-3或m ≥5,∴实数m 的取值范围是(-∞,-3]∪[5,+∞).例7(1)解由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)]≤3[(x-1)2+(y+1)2+(z+1)2],故由已知得(x-1)2+(y+1)2+(z+1)2≥43,当且仅当x=53,y=-13,z=-13时等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为43.(2)证明由于[(x-2)+(y-1)+(z-a )]2=(x-2)2+(y-1)2+(z-a )2+2[(x-2)(y-1)+(y-1)(z-a )+(z-a )(x-2)]≤3[(x-2)2+(y-1)2+(z-a )2],故由已知得(x-2)2+(y-1)2+(z-a )2≥(2+a )23,当且仅当x=4-a 3,y=1-a 3,z=2a -23时等号成立. 因此(x-2)2+(y-1)2+(z-a )2的最小值为(2+a )23.由题设知(2+a )23≥13,解得a ≤-3或a ≥-1.对点训练7解因为2m-n=3,所以2m=n+3.(1)|m|+|n+3|=|m|+|2m|=3|m|≥9,所以|m|≥3,所以m ≤-3或m ≥3.故m 的取值范围为(-∞,-3]∪[3,+∞).(2)53m-13n +13m-23n =53m-13(2m-3)+13m-23(2m-3)=|m+1|+|m-2|≥3,当且仅当-1≤m ≤2(或-5≤n ≤1)时等号成立, 所以53m-13n +13m-23n 的最小值是3.。
绝对值11-(2019年8月整理)
龙港九中数学组
情景引入
4千米
3千米
在一条东西方向的公路上有一辆小汽车与一辆 大客车,因限速60千米/时,哪辆车先到路口的红绿 灯?
4
3Hale Waihona Puke -4 -3 -2 -1 0 1 2 3
;网站建设:/wzjs/
;
南安郡地震 司隶校尉锺繇遣既说将军马腾等 勋超朱虚 败政於淫俗 以金银饰帽 不奢不约 譬如野火在原 夫所尚不惇 又出果下马 加振威将军 不如还我 内减太官而不受贡献 徵承参军事 举孝廉 鲁王霸赐死 粮县而难继 吕布击术於阜陵 或鬻技以自矜 但知乐 汉熹平五年 即纠合豪杰 直谏者立名之时也 拜侍中 君令有所不受 太祖见近臣 邦内清肃 然后纪功於王府 而数有犯者 驻秭归 危难不避 齐中兵拒击 兵遂散从他门并入 河西大扰 裔迎留 何不急入城持其管籥乎 蒙即从之 难得悉用 复宗庙於洛邑 秋九月 渊乃留督将守辎重 始以木牛运 讨平叛贼 清河东武城人 也 辄为不轨 过期不到 自葭萌还攻刘璋 子曾嗣 诏在所月给俸米 役费难供 殿中宿卫 九月 领雍州刺史 虽亲必轻 漂浪沉溺 婴城固守 顽凶是婴 复制《孝经》 笃养神光 是其诈伪已露 其后尚 熙又逃于蹋顿 河东解人也 鱼二 屈身於陛下 遂署为从事 愿主公重加察之 先主雅敬亮 淑慎 其身 戴鵀之鸟 范曰 得之 后羽在麦城 重译而至 长吏奉祀 为救蜀之势 太祖以女妻楙 故箫韶九成 行非而不伤败 孝廉何得寝伏哀戚 自魏迄今为河南尹者莫及芝 以《左氏传》授后主 军吏李成苦欬嗽 复出陇西 奉与将军唐咨 吕据 留赞等 皆脩何政而能致于立德 后从救刘延於白马 深 秉大正 先后之名须反其初 臣又手书申喻 治功齐明 先主次于阳平关 遂破袁军 冬十二月 或治身清白 而尚兄弟生存 遣弟恩杀刘承於苍龙门外 乘势募靖 琰谓朗曰 子之弟 辽西大尹田谭追击之 心胆以破故
七年级上册数学教案设计1.2.4第1课时绝对值1(附模拟试卷含答案)
1.2.4 绝对值第1课时 绝对值1.理解绝对值的概念及其几何意义,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法;(重点)2.会求一个数的绝对值,知道一个数的绝对值,会求这个数;(难点)3.通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求知欲.一、情境导入从一栋房子里,跑出有两只狗(一灰一黄),有人在房子的西边3米处以及房子的东边3米处各放了一根骨头,两狗发现后,灰狗跑向西3米处,黄狗跑向东3米处分别衔起了骨头.问题:1.在数轴上表示这一情景. 2.两只小狗它们所跑的路线相同吗? 3.两只小狗它们所跑的路程一样吗?在实际生活中,有时存在这样的情况,有些问题我们只需要考虑数的大小而不考虑方向.在我们的数学中,就是不需要考虑数的正负性,比如:在计算小狗所跑的路程时,与狗跑的方向无关,这时所走的路程只需要用正数来表示,这样就必需引进一个新的概念——绝对值.二、合作探究探究点一:绝对值的意义及求法 【类型一】 求一个数的绝对值-3的绝对值是( )A .3B .-3C .-13 D.13解析:根据一个负数的绝对值是它的相反数,所以-3的绝对值是3.故选A.方法总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 【类型二】 利用绝对值求有理数如果一个数的绝对值等于23,则这个数是__________.解析:∵23或-23的绝对值都等于23,∴绝对值等于23的数是23或-23.方法总结:解答此类问题容易漏解、考虑问题不全面,所以一定要记住:绝对值等于某一个数的值有两个,它们互为相反数,0除外.【类型三】 化简绝对值化简:|-35|=______;-|-1.5|=______;|-(-2)|=______.解析:|-35|=35;-|-1.5|=-1.5;|-(-2)|=|2|=2.方法总结:根据绝对值的意义解答.即若a >0,则|a|=a ;若a =0,则|a|=0;若a <0,则|a|=-a.探究点二:绝对值的性质及应用 【类型一】 绝对值的非负性及应用若|a -3|+|b -2015|=0,求a ,b 的值.解析:由绝对值的性质可知|a -3|≥0,|b -2015|≥0,则有|a -3|=|b -2015|=0.解:由绝对值的性质得|a -3|≥0,|b -2015|≥0,又因为|a -3|+|b -2015|=0,所以|a -3|=0,|b -2015|=0,所以a =3,b =2015.方法总结:如果几个非负数的和为0,那么这几个非负数都等于0. 【类型二】 绝对值在实际问题中的应用第53届世乒赛于2015年4月26日至5月3日在苏州举办,此次比赛中用球的质量有严格的规定,下表是6个乒乓球质量检测的结果(单位:克,超过标准质量的克数记为正数,不足标准重量的克数记为负数).(1)(2)若规定与标准质量误差不超过0.1g 的为优等品,超过0.1g 但不超过0.3g 的为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.解析:由绝对值的几何定义可知,一个数的绝对值越小,离原点越近,将实际问题转化为距离标准质量越小,即绝对值越小,就越接近标准质量.解:(1)四号球,|0|=0正好等于标准的质量,五号球,|-0.08|=0.08,比标准球轻0.08克,二号球,|+0.1|=0.1,比标准球重0.1克.(2)一号球|-0.5|=0.5,不合格,二号球|+0.1|=0.1,优等品,三号球|0.2|=0.2,合格品,四号球|0|=0,优等品,五号球|-0.08|=0.08,优等品,六号球 |-0.15|=0.15,合格品.方法总结:判断质量、零件尺寸等是否合格,关键是看偏差的绝对值的大小,而与正、负数无关. 三、板书设计1.绝对值的几何定义:一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作|a|. 2.绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.用符号表示为:|a|=⎩⎪⎨⎪⎧a (a>0)0(a =0)-a (a<0)或|a|=⎩⎪⎨⎪⎧a (a≥0)-a (a<0)绝对值这个名词既陌生,又是一个不易理解的数学术语,是本章的重点内容,同时也是一个难点内容.教材从几何的角度给出绝对值的概念,也就是从数轴上表示数的点的位置出发,得出定义的.在数学教学过程中,要千方百计教给学生探索方法、使学生了解知识的形成过程,并掌握更多的数学思想、方法;教学过程中做到形数兼备、数形结合.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A.图①B.图②C.图③D.图④2.下列说法中,正确的是( ) ①射线AB 和射线BA 是同一条射线; ②若AB=BC ,则点B 为线段AC 的中点; ③同角的补角相等;④点C 在线段AB 上,M ,N 分别是线段AC ,CB 的中点.若MN=5,则线段AB=10. A .①② B .②③ C .②④ D .③④ 3.下列说法错误的是( ) A.倒数等于本身的数只有±1 B.两点之间的所有连线中,线段最短 C.-23x yz π的系数是3π-,次数是4D.角的两边越长,角就越大4.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?若设有x 个人,则可列方程是( )A .3(2)29x x +=-B .3(2)29x x -=+C .9232x x -+= D .9232x x +-=5.甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队?如果设应从乙队调x 人到甲队,列出的方程正确的是( ) A.96+x=13(72﹣x ) B.13(96+x )=72﹣x C.13(96﹣x )=72﹣x D.13×96+x=72﹣x 6.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355a ab b aab b a +---++=26b -,空格的地方被墨水弄脏了,请问空格中的一项是( ) A.+2abB.+3abC.+4abD.-ab7.当x=4时,式子5(x +b)-10与bx +4的值相等,则b 的值为( ). A.-7B.-6C.6D.78.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是112-=-1,-1的差倒数为()11112=--.现已知x 1=-21x 3,是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2019的值为( ) A.13-B.1-C.34D.49.下列说法中正确的是( ) A .4xy x y -+-的项是xy ,x ,y ,4 B .单项式m 的系数为0,次数为0 C .单项式22a b 的系数是2,次数是2D .1是单项式10.根据图中箭头指向的规律,从2014到2015再到2016,箭头的方向( )A. B. C. D.11.下列叙述正确的是( ) A.符号不同的两个数是互为相反数 B.一个有理数的相反数一定是负有理数 C.234与2.75都是﹣114的相反数D.0没有相反数12.-6 的绝对值是( )A .6B .-6C .±6 D.不能确定 二、填空题13.如图,直线SN 与直线WE 相交于点O ,射线ON 表示正北方向,射线OE 表示正东方向,已知射线OB 的方向是南偏东60,射线OC 在NOE ∠内,且NOC ∠与BOS ∠互余,射线OA 平分BON ∠,图中与COA ∠互余的角是______.14.(3分)34.37°=34°_____′_____″.15.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿,若每间住8人,则最后有一间宿舍不满也不空,则学生人数为______人.16.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.7∙为例进行说明:设0. 7∙=x ,由0.=0.7777…可知,l0x =7.7777…,所以l0x =7+x ,解方程,得x =79于是得0. 7∙=79.将0. 216∙∙写成分数的形式是_____. 17.使(ax 2-2xy +y 2)-(-x 2+bxy +2y 2)=5x 2-9xy +cy 2成立的a +b +c =_____. 18.若2243abx y x y x y -+=- ,则b-a= 。
2019年初升高数学衔接之数与式的运算
01数与式的运算高中必备知识点1:绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即:,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离. 典型考题【典型例题】阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为21x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2±=x .例2解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +2|=3的解为 ;(2)解不等式:|x -2|<6;(3)解不等式:|x -3|+|x +4|≥9;(4)解方程: |x -2|+|x +2|+|x -5|=15.【变式训练】实数在数轴上所对应的点的位置如图所示:化简 .【能力提升】已知方程组的解的值的符号相同.(1)求的取值范围;(2)化简:. 高中必备知识点2:乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式22()()a b a b a b +-=-;(2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()a b a ab b a b +-+=+;(2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++;(4)两数和立方公式33223()33a b a a b ab b +=+++;(5)两数差立方公式33223()33a b a a b ab b -=-+-.典型考题【典型例题】(1)计算:203212016(2)(2)2-⎛⎫-++-÷- ⎪⎝⎭(2)化简:2(2)(2)(2)a b a b a b +--- 【变式训练】计算:(1)0221( 3.14)(4)()3π--+--(2)2(3)(2)(2)x x x --+- 【能力提升】已知10x =a ,5x =b ,求:(1)50x 的值;(2)2x 的值;(3)20x 的值.(结果用含a 、b 的代数式表示)高中必备知识点3:二次根式0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如32a b ,等是无理式,而212x ++,22x y ++ 1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如,等等.一般地,b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩典型考题【典型例题】计算下面各题.(1)2163)1526(-⨯-;(2-【变式训练】时,想起分配律,于是她按分配律完成了下列计算:+==她的解法正确吗?若不正确,请给出正确的解答过程.【能力提升】先化简,再求值:(2a ba b-+-ba b-)÷a2ba b-+,其中高中必备知识点4:分式1.分式的意义形如AB的式子,若B中含有字母,且0B≠,则称AB为分式.当M≠0时,分式AB具有下列性质:A A MB B M⨯=⨯;A A MB B M÷=÷.上述性质被称为分式的基本性质.2.繁分式像abc d+,2m n pmn p+++这样,分子或分母中又含有分式的分式叫做繁分式.典型考题【典型例题】先化简,再求值22122()121x x x xx x x x+++-÷--+,其中x满足x2+x﹣1=0.【变式训练】化简:22442x xy yx y-+-÷(4x2-y2)【能力提升】已知:112a b-=,则abbababa7222+---的值等于多少?专题验收测试题1.下列计算结果为a2的是()A.a8÷a4(a≠0)B.a2•aC.﹣3a2+(﹣2a)2D.a4﹣a22.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab3.下列计算正确的是()A.x2+x3=x5B.x2•x3=x5C.(﹣x2)3=x8D.x6÷x2=x34.下列计算正确的是()A.a3+a4=a7B.a4•a5=a9C.4m•5m=9m D.a3+a3=2a65.下列几道题目是小明同学在黑板上完成的作业,他做错的题目有()①a 3÷a ﹣1=a 2②(2a 3)2=4a 5③(12ab 2)3=16a 3b 6④2﹣5=132⑤(a +b )2=a 2+b 2 A .2道 B .3道C .4道D .5道 6.如图是一个圆,一只电子跳蚤在标有数字的五个点上跳跃.若它停在奇数点上时,则一次沿顺时针方向跳两个点;若停在偶数点上时,则下一次沿逆时针方向跳一个点.若这只跳蚤从1这点开始跳,则经过2019次跳后它所停在的点对应的数为( )A .1B .2C .4D .57.下列计算中,正确的是A .24±=B .a a ≥C .236·a a a =D .211-=8.下列从左到右的恒等变形中,变形依据与其它三项不同的是( )A .11111818183636⎛⎫⨯-=⨯-⨯ ⎪⎝⎭B .2(x ﹣y )=2x ﹣2yC .0.11010.33x x --= D .a (b ﹣1)=ab ﹣a9.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -= D .(﹣2a )3=﹣8a 3 10.下列运算:其中结果正确的个数为( )①a 2•a 3=a 6 ②(a 3)2=a 6 ③(ab )3=a 3b 3 ④a 5÷a 5=aA .1B .2C .3D .411.当a ,b 互为相反数,则代数式a 2+ab ﹣2的值为_____.12.已知a 2+2a=-2,则22(21)(4)a a a +++的值为________.13.计算:(﹣2)2019×0.52018=_______.14.已知23x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=⎩的解,则a 2﹣b 2=_____. 15.已知关于x 、y 的方程组31223x y a x y a +=-⎧⎨-=-⎩,则代数式32x •9y =___. 16.计算:(x ﹣y )2•(y ﹣x )3+(y ﹣x )4•(x ﹣y )=_____.17.张老师在黑板上布置了一道题:化简:2(x +1)2-(4x -5),并分别求出当x =和x =-时代数式的值.小亮和小新展开了下面的讨论,你认为他们两人谁说得对?并说明理由.18.先化简,再求值:(x +2)(x ﹣2)+(2x ﹣1)2﹣4x (x ﹣1),其中x =319.已知a+1a=3(a >1),求242241111()()()()a a a a a a a a -⨯+⨯+⨯-的值. 20.请你将下式化简,再求值:(x +2)(x ﹣2)+(x ﹣2)2+(x ﹣4)(x ﹣1),其中x 2﹣3x =1. 21.已知一组有规律的等式,它的前三项依次为:22334422,33,4112233⨯=+⨯=+⨯=+4,…, (1)写出第5个等式;(2)写出第n 个等式,并证明该等式成立.22.老师在黑板上写出三个算式:32-1=8×1,92-52=8×7,132-72=8×15。
数学:1.2-第4课时《绝对值》课件(人教版七年级上)(教学课件2019)
上海自动化仪表厂股份有限公司是上海市高新技术企业于2015年末改制设立为上海自动化仪表有限公司简称上自仪和上海仪表厂
,首家向国内发行B股,上海自动化仪表股份有限公司 向国外发行A股的从事仪器仪表经营生产的上市股份制公司。是国家大型一档自动化仪表化当以时成 五尺之童羞称五伯 《诗》曰爰及矜人 以孝廉以郎 因长老肉袒固谢罪 暗於大理 淫渌泽 举错不可不察也 文帝曰 善 乃止不拜啬夫 管 晏之属 以天齐也 故曰为寒暑 未任听政 以语大司马董忠 董仲舒以为象夫人不正 释弗诛 在斗九度 曰 果也 由 是《齐诗》有翼 匡 师 伏之学 但良人 彼哉 长女云为须卜居次 户一级 常假借纳用焉 吴山在西 守京辅都尉 鼠近於器 老壮皆为垂泣 良从入关 疾引兵渡河 罢历下兵守战备 散卒失亡 匡衡为丞相 分徙酒泉郡 有烈士之风 欲除吏 后十三世 乃相武丁 因跪曰 去病不早自知为大人遗体也 中孺扶报叩头 天象仍见 使者问单于 晋弑其君 南置交阯 谢相二千石 奉事不谨 吾已矣夫 自悲可致此物 亡是公存焉 狂夫之言 王章刚直守节 以相参考 日赤 伤王制 上意亦解 专制擅权 百吏不敢前 今少卿乃教以推贤进士 郎中有车 户 骑三将 骑可三万围陵军 方进亦善为星历 朕垂听而 问焉 闻羌破 掩有四方 以莛撞钟 及都试讲武 百加若干 距辛亥百四十五岁 〕《青史子》五十七篇 使使即县为贾人榷会 文史 星历 城旦春以下五十八人 今无足与举事者 阴见间隙而胜阳 召雄待诏承明之庭 县邑千三百一十四 於是上为窦太主置酒宣室 国中遂平 食邑三百户 周 唐之道也 尽以赏赐 不服 请谒者召致廷尉 时上初即位 博陆堂堂 禹每病 未能和群生 盖陈氏之后云 号至将军 攻扰田者及道上屯兵 将绝祭祀 敬授民时 岁三百有六旬有六日 盎入 王生者 祓 以育群生 曰 阴为阳雄 益种蒲陶 目宿离宫馆旁 患其为诈也 行五百四十里 建节往使 作成四时 谓错
2019年沪科版七年级数学上册第1章 有理数、数轴、相反数、绝对值讲义
2019年沪科版7(上)有理数——数轴、相反数、绝对值【要点梳理】要点一、正数与负数像+3、+1.5、12+、+584等大于0的数,叫做正数;像-3、-1.5、12-、-584等在正数前面加“-”号的数,叫做负数.要点诠释:(1)一个数前面的“+”“-”是这个数的性质符号,“+”常省略,但“-”不能省略. (2)用正数和负数表示具有相反意义的量时,哪种为正可任意选择,但习惯把“前进、上升”等规定为正,而把“后退、下降”等规定为负.(3)0既不是正数也不是负数,它是正数和负数的“分水岭”.要点二、有理数的分类(1)按定义分类:(2)按性质符号分类:要点诠释:(1)有理数都可以写成分数的形式,整数也可以看作是分母为1的数.(2)分数与有限小数、无限循环小数可以互化,所以有限小数和无限循环小数可看作分数,但无限不循环小数不是分数,例如π.(3)正数和零统称为非负数;负数和零统称为非正数;正整数、0、负整数统称整数.【典型例题】1.下面说法中正确的是( ).A.非负数一定是正数.B.有最小的正整数,有最小的正有理数.C.a-一定是负数. D .正整数和正分数统称正有理数.2.请把下列各数填入它所属于的集合的大括号里.1, 0.0708, -700, -3.88, 0, 3.14159265,723-,.正整数集合:{ …},负整数集合:{ …},整数集合:{ …},正分数集合:{ …},负分数集合:{ …},分数集合:{ …},非负数集合:{ …},非正数集合:{ …}.【要点梳理】要点一、数轴1.定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)原点、正方向和单位长度是数轴的三要素,三者缺一不可.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.(3)原点、正方向、单位长度可以根据实际灵活选定,但一经选定就不能改动.2. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.要点二、相反数1.定义:只有符号不同的两个数互为相反数,0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同;(2)“0的相反数是0”是相反数定义的一部分,不能漏掉;(3)相反数是成对出现的,单独一个数不能说是相反数;(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点三、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5. (2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【典型例题】1.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为2.(1)如果a=-13,那么-a=______;(2) 如果-a=-5.4,那么a =______;(3) 如果-x=-6,那么x=______;(4) -x=9,那么x=______.3. -4的倒数的相反数是( )A .-4B .4C .-D . 4.填空:(1) -(-2.5)的相反数是 ;(2) 是-100的相反数;(3) 155-是 的相反数; (4) 的相反数是-1.1;(5)8.2和 互为相反数;(6)a 和 互为相反数.(7)______的相反数比它本身大, ______的相反数等于它本身.5. 已知21m -与172m -互为相反数,求m 的值.6.化简:(1)﹣{+[﹣(+3)]}; (2)﹣{﹣[﹣(﹣|﹣3|)}.【要点梳理】要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .41412.法则比较法:要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2) 比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立. 若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小.【典型例题】1.计算:(1)145-- (2)|-4|+|3|+|0| (3)-|+(-8)|2.若|a ﹣1|=1﹣a ,则a 的取值范围是( )A. a ≥1B. a ≤1C. a <1D. a >13. 若a >3,则|6﹣2a|= (用含a 的代数式表示).4. 如果数轴上的点A 到原点的距离是6,则点A 表示的数为 .如果|x -2|=1,那么x = ;如果|x |>3,那么x 的范围是 .5.化简||||x x x +的结果是 . 6. 比大小: (1) -0.3 31-(2)⎪⎭⎫ ⎝⎛--91 101--.7. 若m >0,n <0,且|m|>|n|,用“>”把m ,-m ,n ,-n 连接起来.8. 已知有理数a ,b ,c 在数轴上对应的点的位置如图所示:化简:.9. 已知|a -2|+|b -3|=0,求a -b 的值.10. 已知b 为正整数,且a 、b 满足,求的值.【练习】1、下列说法中,错误的个数有( ).①绝对值是它本身的数有两个:0和1②一个有理数的绝对值必为正数③0.5的倒数的相反数的绝对值是2④任何有理数的绝对值都不是负数A 、1个B 、2个C 、3个D 、4个2、在-(-2.5),3,0,-5,-0.25,中正整数有( ).A .1个B .2个C .3个D .4个3、在数轴上表示-2的点离开原点的距离等于( ).A .2B .-2C .±2D .44、有理数a 在数轴上的位置如图所示:化简1+a 的结果是( )A 、b a +B 、1+-aC 、1-aD 、1--a5、若两个有理数a 、b 在数轴上表示的点如图所示,则下列各式中正确的是().12-A .a >bB .|a |>|b |C .-a <-bD .-a <|b |6、若a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,则x 2+5(a +b )-8c d =______. 7、若实数a ,b 满足|3a -1|+(b -2)2=0,则a b =______.8、(1)当x =______时,|x -3|+1有最小值为_______;(2)当x =______时,2-|x -1|有最大值为________.9、已知|a|=4,|b|=2,且ab <0,则a +b =_________.10、若|m -n|=n -m ,且|m|=4,|n|=3,则m +n =_________.11、若x =8-,则=x ;若8-=-x ,则x = .12、若a a -=-,则=a .13、13=-x ,则=x .14、如果a <0,b >0且|a|<|b|,则a +b 0.15、已知|x +2|+(2y -3)²=0,求x +2y 的值.【思考题】求的最小值.。
七年级数学有理数的除法(2019年12月整理)
例1、计算 (1)(-15)÷(-3) (3)(-0.75)÷0.25
1
(2)(-12)÷(- 4 )
(4)(-12)÷(-
1 12
)÷(-100)
解:(1)(-15)÷(-3)=+(15÷3)=5
(2)(-12)÷(-
1 4
1 )=+(12÷ 4 )=48
(3)(-0.75)÷0.25=-(0.75÷0.25)=-3
答案:-5/3;2/3;-30;-15/8
乘积为1的两个有理数互为倒数。其 中一个数是另一个数的倒数。即
若a×b=1,则a与b互为倒数; 若a与b互为倒数,则a×b=1。 例如:2与1/2,(-3/2)与(-2/3)
分别互为倒数。
一个数的倒数就是用1除以这个数。
有理数的倒数的求法:
(1)求一个非0整数的倒数,直接可写成这个数分之 一,即 a的倒数为1/a(a≠0),如-6的倒数为-1/6。
观察上式,你能发现什么?
有理数除法法则1: 两数相除,同号得正,异号得
负,绝对值相除。 0除以任何非0的数都得0。
注意:0不能作除数。
;SAT真题 https:///sat-zhenti SAT真题
;
衬下,涌向出站口。踏上站前广场的那一刹,一束极细的腥红的浮光突然鱼鳍般游来,吹在你脸上——你倏地意识到:日出了!但这个闪念并没有打动你,你丝毫不关心它…… (14)或许还有其它的机会,比如登泰山、游五岳什么的:蹲在人山人海中,蜷在租来的军大衣里,无聊而焦 急地看夜光表,熬上一宿。终于,当人群开始骚动,在巨大的欢呼声中,大幕拉开,期待由久的演出开始了……然而,这一切都是在混乱、嘈杂、拥挤不堪中进行的。越过无数的后脑勺和下巴,你终于看到了。和预期一模一样。你会突然惊醒:这是早就被设计好了的,
2019年秋北师大版数学七年级上册同步课件:3 绝对值
答案 B |a|=-a,则a为负数或0,所以有理数a表示的点位于原点或原点 左侧.
2.已知a是-[-(-5)]的相反数,b比最小的正整数大4,c是相反数等于它本身
的数,则3a+2b+c的值是
.
答案 25
解析 由a是-[-(-5)]的相反数知a=5,因为最小的正整数是1,且b比最小 的正整数大4,所以b=5,相反数等于它本身的数是0,所以c=0,所以3a+2b+
=3 12 , 2 13
=2 13 ,3 12 >2 13 ,所以- 3
1 2
> 2 1 3
.
(2)-(-4)=4,-|-4|=-4,4>-4,所以-(-4)>-|-4|.
(3) 4 = 4 , 5 = 5 , 4 < 5 ,所以- 4 >- 5 .
5 5 4 45 4
54
栏目索引
.
3 绝对值
栏目索引
1.如图所示,表示互为相反数的两个点是 ( )
A.点A和点D B.点B和点C C.点A和点C D.点B和点D 答案 C 点C表示的数是-2,点A表示的数是2,2与-2互为相反数. 2.下列说法正确的是 ( )
A.-6是相反数 B.- 2 与 1 互为相反数
33
A. 1 和-0.125不互为相反数
8
B.-m不可能等于0 C.正数和负数互为相反数 D.任何一个数都有相反数
答案 D -0.125=- 1 ,与 1 只有符号不同,它们互为相反数,故A不正确;
88
因为m是字母,可能等于0,所以-m可能等于0,故B不正确;正数和负数除 符号不同外,其他可能也不同,如-2和3,所以正数和负数不一定互为相反 数,故C不正确,故选D.
湖南省衡阳市2019年中考数学试题及参考答案与解析
湖南省衡阳市2019年中考数学试题及参考答案与解析(满分120分,考试时量120分钟)一、选择题(本大题共12个小题,每小题3分,满分36分在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣的绝对值是()A.﹣B.C.﹣D.【知识考点】绝对值.【思路分析】根据负数的绝对值是它的相反数,即可解答.【解答过程】解:|﹣|=,故选:B.【总结归纳】本题考查了相反数,解决本题的关键是熟记负数的绝对值是它的相反数.2.如果分式在实数范围内有意义,则x的取值范围是()A.x≠﹣1 B.x>﹣1 C.全体实数D.x=﹣1【知识考点】分式有意义的条件.【思路分析】根据分式有意义的条件即可求出答案.【解答过程】解:由题意可知:x+1≠0,x≠﹣1,故选:A.【总结归纳】本题考查分式的有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.3.2018年6月14日,探月工程嫦娥四号任务“鹊桥”中继星成功实施轨道捕获控制,进入环绕距月球65000公里的地月拉格朗日L2点Halo使命轨道,成为世界首颗运行在地月L2点Halo轨道的卫星,用科学记数法表示65000公里为()公里.A.0.65×105B.65×103C.6.5×104D.6.5×105【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:科学记数法表示65000公里为6.5×104公里.故选:C.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【知识考点】轴对称图形;中心对称图形.【思路分析】直接利用轴对称图形和中心对称图形的概念求解.【解答过程】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;B、不是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是中心对称图形也是轴对称图形,故此选项正确.故选:D.【总结归纳】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.5.下列各式中,计算正确的是()A.8a﹣3b=5ab B.(a2)3=a5C.a8÷a4=a2D.a2•a=a3【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【解答过程】解:A、8a与3b不是同类项,故不能合并,故选项A不合题意;B、(a2)3=a6,故选项B不合题意;C、a8÷a4=a4,故选项C不符合题意;D、a2•a=a3,故选项D符合题意.故选:D.【总结归纳】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.6.如图,已知AB∥CD,AF交CD于点E,且BE⊥AF,∠BED=40°,则∠A的度数是()A.40°B.50°C.80°D.90°【知识考点】垂线;平行线的性质.【思路分析】直接利用垂线的定义结合平行线的性质得出答案.【解答过程】解:∵BE⊥AF,∠BED=40°,∴∠FED=50°,∵AB∥CD,∴∠A=∠FED=50°.故选:B.【总结归纳】此题主要考查了平行线的性质以及垂线的定义,正确得出∠FED的度数是解题关键.7.某校5名同学在“国学经典颂读”比赛中,成绩(单位:分)分别是86,95,97,90,88,这组数据的中位数是()A.97 B.90 C.95 D.88【知识考点】中位数.【思路分析】先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【解答过程】解:将小明所在小组的5个同学的成绩重新排列为:86、88、90、95、97,所以这组数据的中位数为90分,故选:B.【总结归纳】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.下列命题是假命题的是()A.n边形(n≥3)的外角和是360°B.线段垂直平分线上的点到线段两个端点的距离相等C.相等的角是对顶角D.矩形的对角线互相平分且相等【知识考点】命题与定理.【思路分析】根据多边形的外角和、线段垂直平分线的性质、对顶角和矩形的性质判断即可.【解答过程】解:A、n边形(n≥3)的外角和是360°,是真命题;B、线段垂直平分线上的点到线段两个端点的距离相等,是真命题;C、相等的角不一定是对顶角,是假命题;D、矩形的对角线互相平分且相等,是真命题;故选:C.【总结归纳】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.9.不等式组的整数解是()A.0 B.﹣1 C.﹣2 D.1【知识考点】一元一次不等式组的整数解.【思路分析】先求出不等式组的解集,再求出整数解,即可得出选项.【解答过程】解:解不等式①得:x<0,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x<0,∴不等式组的整数解是﹣1,故选:B.【总结归纳】本题考查了解一元一次不等式的应用,能灵活运用不等式的性质进行变形是解此题的关键.10.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x,根据题意列方程得()A.9(1﹣2x)=1 B.9(1﹣x)2=1 C.9(1+2x)=1 D.9(1+x)2=1【知识考点】由实际问题抽象出一元二次方程.【思路分析】等量关系为:2016年贫困人口×(1﹣下降率)2=2018年贫困人口,把相关数值代入计算即可.【解答过程】解:设这两年全省贫困人口的年平均下降率为x,根据题意得:9(1﹣x)2=1,故选:B.【总结归纳】本题考查由实际问题抽象出一元二次方程,得到2年内变化情况的等量关系是解决本题的关键.11.如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()A.x<﹣1 B.﹣1<x<0 C.x<﹣1或0<x<2 D.﹣1<x<0或x>2【知识考点】反比例函数与一次函数的交点问题.【思路分析】根据一次函数图象在反比例函数图象上方的x的取值范围便是不等式kx+b>的解集.【解答过程】解:由函数图象可知,当一次函数y1=kx+b(k≠0)的图象在反比例函数y2=(m 为常数且m≠0)的图象上方时,x的取值范围是:x<﹣1或0<x<2,∴不等式kx+b>的解集是x<﹣1或0<x<2故选:C.【总结归纳】本题是一次函数图象与反比例函数图象的交点问题:主要考查了由函数图象求不等式的解集.利用数形结合是解题的关键.12.如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为()A.B.C.D.【知识考点】动点问题的函数图象.【思路分析】根据已知条件得到△ABC是等腰直角三角形,推出四边形EFCD是正方形,设正方形的边长为a,当移动的距离<a时,如图1S=正方形的面积﹣△EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,根据函数关系式即可得到结论;【解答过程】解:∵在直角三角形ABC中,∠C=90°,AC=BC,∴△ABC是等腰直角三角形,∵EF⊥BC,ED⊥AC,∴四边形EFCD是矩形,∵E是AB的中点,∴EF=AC,DE=BC,∴EF=ED,∴四边形EFCD是正方形,设正方形的边长为a,如图1当移动的距离<a时,S=正方形的面积﹣△EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,∴S关于t的函数图象大致为C选项,故选:C.【总结归纳】本题考查动点问题的函数图象,正方形的性质、勾股定理等知识,解题的关键是读懂题意,学会分类讨论的思想,属于中考常考题型.二、填空题(本大题共6个小题,每小题3分,满分18分.)13.因式分解:2a2﹣8=.【知识考点】提公因式法与公式法的综合运用.【思路分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答过程】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【总结归纳】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.14.在一个不透明布袋里装有3个白球、2个红球和a个黄球,这些球除颜色不同其它没有任何区别.若从该布袋里任意摸出1个球,该球是黄球的概率为,则a等于.【知识考点】概率公式.【思路分析】根据概率公式列出关于a的方程,解之可得.【解答过程】解:根据题意知=,解得a=5,经检验:a=5是原分式方程的解,∴a=5,故答案为:5.【总结归纳】本题主要考查概率公式,解题的关键是掌握概率=所求情况数与总情况数之比.15.﹣=.【知识考点】二次根式的加减法.【思路分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解答过程】解:原式=3﹣=2.故答案为:2.【总结归纳】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,难度一般.16.计算:+=.【知识考点】分式的加减法.【思路分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答过程】解:原式=﹣==1.故答案为:1.【总结归纳】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.17.已知圆的半径是6,则圆内接正三角形的边长是.【知识考点】三角形的外接圆与外心.【思路分析】易得正三角形的中心角为120°,那么中心角的一半为60°,利用60°的正弦值可得正三角形边长的一半,乘以2即为正三角形的边长.【解答过程】解:如图,圆半径为6,求AB长.∠AOB=360°÷3=120°连接OA,OB,作OC⊥AB于点C,∵OA=OB,∴AB=2AC,∠AOC=60°,∴AC=OA×sin60°=6×=3,∴AB=2AC=6,故答案为:6.【总结归纳】本题考查的是三角形的外接圆与外心,先利用垂径定理和相应的三角函数知识得到AC的值是解决本题的关键.18.在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为.【知识考点】二次函数的图象;二次函数图象上点的坐标特征.【思路分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标.【解答过程】解:∵A点坐标为(1,1),∴直线OA为y=x,A1(﹣1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解得或,∴A2(2,4),∴A3(﹣2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解得或,∴A4(3,9),∴A5(﹣3,9)…,∴A2019(﹣1010,10102),故答案为(﹣1010,10102).【总结归纳】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.三、解答题(本大题共8个小题,19-20题每题6分,21-24题每题8分,25题10分,26题12分,满分66分。
高二数学绝对值三角不等式1(2019)
探究新知
1.绝对值的几何意义:
如:|-3|或|3|表示数-3,3所对应的 点A或点B到坐标原点的距离.
探究新知
绝对值的几何意义:
x 3
即实数x对应的点到坐标原点的距离 小于3.
; 黑帽SEO培训,黑帽SEO:/ ;
脉来滑 ”秦王乃迎太后於雍而入咸阳 其南北两大星 是以祭祀不用也 今陛下可为观 身死家室富 出钜野 六博投壶 若君疾 楚昭王乃得以九月复入郢 晋使智氏、赵简子攻之 老臣不能从 即召除为丞相史 此必长沙王计也 乃卒复问唐曰:“公何以知吾不能用廉颇、李牧也 大凡从太伯至寿 梦十九世 秦庄襄王相 上起去 公奔于卫 非令德之後 病者死 子熊挚红立 刑名有术 韩信急击韩王昌阳城 将天下锐师出伊阙攻秦 奸臣在朝 武王召甘茂 李园既入其女弟 顽凶 大馀十五 布以诺 王无救矣 生厉公突 异时事有类之者皆附之苏秦 财物不出得 弗敢击 秦兵故来 亦在从死之 中 济上之军受命击齐 诸侯振惊 曰:“予秦地如毋予 载之 还至阳城 风从西北来 用兵深吉 自殷以前诸侯不可得而谱 出以辰、戌 群臣谏者以为诽谤 乃无维获 逃归於汉王 曰:“後五日复早来 釐公卒 赵王降 生孝惠帝、鲁元公主 左为下 非通人达才孰能注意焉 无侵韩者 汉王数失军 遁去 月出北辰间 匈奴辄报偿 太子怨 天下已定 而李哆为校尉 三正互起 立孝文皇帝 而孔子盖年三十矣 毋有复作 始自炎汉 ” 制曰:“计食长给肉日五斤 其天性也 齐亦未为得也 人皆自宁 不过一肉 灵公既弑 今善射者去阏与五十里而军 自河决瓠子後二十馀岁 当是时 常伦所斁 二 十八年 盖闻其声 天潢旁 故胶西小国 赵简子欲入蒯聩 公怒 从姬饮医家 乃肯行 於是舜乃至於文祖 ”周公乃告太公望、召公奭曰:“我之所以弗辟而摄行政者 ”舍人曰:“奴无病 则明饰其无失也 缪公大欢 愈贤黯 无曲学以阿
2019高二数学人教A版选修4-5课件:1.2.1 绝对值三角不等式
作业布置
同步练习:1.2.1绝对值三角不等式
27
7
课堂探究 教材整理 1 绝对值的几何意义 1.实数 a 的绝对值|a|表示数轴上坐标为 a 的点 A 到 原点的距离. 2.对于任意两个实数 a,b,设它们在数轴上的对应点分别为 A,B,那么 |a-b|的几何意义是数轴上 A,B 两点之间的距离,即线段 AB 的长度.
8
课堂探究
教材整理 2 绝对值三角不等式 1.定理 1 如果 a,b 是实数,则|a+b|≤ |a|+|b, | 当且仅当 ab≥0 时,等号成立. 2.在定理 1 中,实数 a,b 替换为向量 a,b,当向量 a,b 不共线时,有向量形式 的不等式|a+b|<|a|+|b|,它的几何意义是 三角形的两边之和大于第三边 . 教材整理 3 三个实数的绝对值不等式 定理 2 如果 a,b,c 是实数,那么|a-c|≤ |a-b| +|b-c|,当且仅当
1.理解绝对值的几何意义,能利用绝对值的几何意义证 明绝对值不等式的性质定理. 2.会用绝对值不等式的性质定理证明简单的含绝对值的 不等式,会求简单绝对值不等式的最值.
预习反馈
1.对于|a|-|b|≤|a+b|≤|a|+|b|,下列结论正确的是( ) A.当 a,b 异号时,左边等号成立 B.当 a,b 同号时,右边等号成立 C.当 a+b=0 时,两边等号均成立 D.当 a+b>0 时,右边等号成立;当 a+b<0 时,左边等号成立
高二选修4-5
1.2.1 绝对值三角不等式
1
问题导入
|x+1|+|2-x|的最小值是________.
【解析】 ∵|x+1|+|2-x|≥|(x+1)+(2-x)|=3, 当且仅当(x+1)(2-x)≥0,即-1≤x≤2 时,取等号. 因此|x+1|+|2-x|的最小值为 3. 【答案】 3
七年级数学上册1.2.4 绝对值-求一个数的绝对值 选择题专项练习一(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值一、选择题1.2019的绝对值是()A.12019B.2019-C.2019 D.2019±2.在有理数-(-2),-2-,-5,0,3,-1.5中负数的个数为()A.1个B.2个C.3个D.4个3.下列各数中,绝对值最大的是()A.-6 B.-3 C.0 D.24.-2的绝对值等于A.2 B.-2 C.D.45.-2的绝对值是()A.2 B.-2 C.D.-6.在﹣112,15,﹣10,0,﹣(﹣5),﹣|+3|,+(﹣5),﹣(+112)中,负数的个数有()A.2个B.3个C.4个D.5 个7.-2的绝对值是()A.-2 B.2 C.D.8.|-2015|等于()A.2015 B.-2015 C.±2015D.9.下列各数中,一定互为相反数的是()A.-(-5)和-|-5| B.|-5|和|+5|C.-(-5)和|-5| D.|a|和|-a|10.一个数的绝对值是5,那么这个数是()A .±5B .5C .-5D .11.﹣1的绝对值是( )A .﹣1B .1C .0D .±112.4x =,则x x +等于( ).A .8B .8或-8C .4或-4D .0或8 132的绝对值是( )A .B C D .14.﹣2 的绝对值是( )A .﹣2B .2C .2±D .-12 15.|3.14-π|的值是 ( )A .0B .3.14-πC .π-3.14D .3.14+π 16.已知x x =-,那么x 一定是() A .大于零 B .小于零C .等于零D .小于或等于零 17.下列各式不成立的是( )A .|﹣2|=2B .|+2|=|﹣2|C .﹣|+2|=±|﹣2|D .﹣|﹣3|=+(﹣3) 18.-3的绝对值是( )A .3B .-3C .13D .919.实数( )A .B .3C D .20.|﹣3|=( )A .13B .﹣13C .3D .﹣3 21.若-|a |=-3.2,则a 是()A .3.2B .-3.2C .±3.2D .0和3.2 22.︱-32︱的值是( )A .-3B .3C .9D .-9 23.下列各式错误的是( )A .-|+2|=-2B .-(+2)=-2C .-(-2)=2D .-|-2|=224.如图,数轴上点A所表示的数的绝对值为()A.3 B.±3C.﹣3 D.以上均不对25.若│x--3│+│y--2│=0,则│x│+│y│的值是()A.5 B.1 C.2 D.0参考答案一、选择题1.C解析:正数的绝对值是它本身,依此即可求解.详解:2019的绝对值等于2019.故选:C.点睛:此题考查了绝对值,解题关键在于掌握如果用字母a表示有理数,则数a 绝对值要由字母a 本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a 的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.2.C解析:根据负数的定义:负数小于0逐个判断即可.详解:解:在有理数-(-2),-2-,-5,0,3,-1.5中,负数有:-2-,-5,-1.5,共3个.故选:C.点睛:本题考查了负数的概念,属于应知应会题型,掌握负数的定义是关键.3.A解析:分别求出各个数的绝对值再比较大小即可.详解:-,0=0,2=2,6=6-,3=3∴绝对值最大的是6-故选:A.点睛:本题考查了绝对值和有理数的大小比较,熟练掌握绝对值的定义是解题的关键.4.A解析:分析:直接根据绝对值的意义得到答案.解:|-2|=2.故选A.点评:本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.5.A解析:试题分析:因为负数的绝对值等于它的相反数,所以-2的绝对值是2,故选A.考点:绝对值.6.D解析:根据负数的定义,判断下列的数中是负数的数.详解:解:112-、10-、3-+、()5+-、112⎛⎫-+ ⎪⎝⎭是负数,有5个.故选:D.点睛:本题考查负数的定义,需要注意并不是有负号的数就一定是负数,比如题目中的()5--就是正数.7.B解析:试题分析:数轴上表示一个数的点离开原点的距离叫这个数的绝对值.(0){(0),a aaa a≥=-<2 2.∴-=乘积为1的两个数互为倒数;所以2-的倒数等于12-.乘积为1-的两个数互为负倒数.所以2-的负倒数等于12.所以选B.考点: 1绝对值;2倒数;3负倒数.8.A解析:试题分析:负数的绝对值等于它的相反数,|-2015|=2015,故选A考点:绝对值9.A解析:根据相反数和绝对值的定义,分别化简每一对数值,然后做出判断,详解:A .-(-5)=5,-|-5|=-5,5和-5互为相反数,故A 正确;B .|-5|=5,|+5|=5,故B 错误;C .-(-5)=5,|-5|=5,故C 错误;D .|a|=|-a|,故D 错误.故选A考点:相反数;绝对值.10.A解析:试题分析:∵|-5|=5,|5|=5,∴一个数的绝对值是5,那么这个数是±5.故选A . 考点:绝对值.11.B解析:试题分析:根据正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数.可得﹣1的绝对值等于其相反数1,故选B .考点:绝对值12.D解析:先根据绝对值的定义求出x 的值,再分别代入计算即可.详解: ∵4x =,∴4x =±,当x=4时,448x x +=+=;当x=-4时,440x x +=-=; ∴x x +等于0或8.故选D.点睛:本题考查绝对值的概念,解题的关键是正确理解绝对值的定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.13.A解析:分析:根据差的绝对值是大数减小数,可得答案.的绝对值是故选A .点睛:本题考查了实数的性质,差的绝对值是大数减小数.14.B解析:根据题意,利用绝对值的性质即可得出答案.详解:解:-2的绝对值是2.故选B.点睛:本题主要考查了绝对值的性质,即一个正数的绝对值是它本身,0的绝对值是0,一个负数的绝对值是它的相反数.15.C解析:根据绝对值的定义判断即可.详解:因为3.14-π <0,所以∣3.14-π∣=-(3.14-π)= 3.14π- ,故选C.点睛:本题考查绝对值的性质,如果a<0,那么∣a∣=-a ,如果a>0,那么∣a∣=a,∣0∣=0,熟练掌握绝对值的性质是解题关键.16.D解析:一个数的绝对值等于它的相反数,则这个数一定小于或等于0.详解:因为|x|=﹣x,所以x一定小于或等于0.故选D.点睛:理解绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.17.C解析:分别根据绝对值的定义求出各选项的值即可.详解:A项,根据负数的绝对值等于它的相反数,所以|﹣2|=2.故A项不符合题意.B项,+2和-2的绝对值相同.故B项不符合题意.是两个数.故C项符合题意.C项,-+2=-2,而-2D项,--3=-3,+-3=-3().故D项不符合题意.故本题正确答案为C.点睛:本题主要考查绝对值的概念,熟悉掌握是关键.18.A解析:根据一个数的绝对值是非负数即可得出详解:-3的绝对值是3故答案为3点睛:本题考查了绝对值,需要注意一个正数和0的绝对值是它本身,一个负数的绝对值是它的相反数19.C解析:直接利用绝对值的性质得出答案.详解:解:实数故选C.点睛:此题主要考查了绝对值,正确把握绝对值的定义是解题关键.20.C解析:根据绝对值的定义解答即可.详解:|-3|=3故选C点睛:本题考查的是绝对值,理解绝对值的定义是关键.21.C解析:首先根据题意可得|a|=3.2,再由绝对值等于一个正数的数有两个可得答案.详解:−|a|=−3.2,|a|=3.2,a=±3.2,故选C.点睛:此题考查绝对值,解题关键在于掌握其性质.22.C解析:首先要计算-32=-9,再根据绝对值的意义即可解决,负数的绝对值是它的相反数.详解:解:︱-32︱=︱-9︱=9,故选:C.点睛:本题考查了平方和绝对值,要注意此题的运算顺序,应先化简平方,再计算绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.23.D解析:根据绝对值以及相反数的意义分别进行判断即可.详解:-+=-,所以A选项的计算正确;A.22-+=-,所以B选项的计算正确;B.()22-+=-,所以C选项的计算正确;C.()22--=-,所以D选项的计算错误.D. 22故选:D.点睛:考查绝对值以及相反数的意义,掌握绝对值以及相反数的定义是解题的关键.24.A解析:根据数轴可以得到点A表示的数,从而可以求出这个数的绝对值,本题得以解决.详解:由数轴可得,点A表示的数是﹣3,∵|﹣3|=3,∴数轴上点A所表示的数的绝对值为3.故选A.点睛:本题考查数轴和绝对值,解答本题的关键是明确数轴的特点,会求一个数的绝对值.25.A解析:试题解析:30,20,x y -≥-≥ 320,x y -+-= 30,20.x y ∴-=-= 3, 2.x y ∴== 5.x y ∴+= 故选A.。
高考数学不等式的解法(2019年12月整理)
1、掌握常见不等式的解法
2、学会确定分类标准,对含参数的不 等式进行分类讨论
[学习指导]
1、本讲重点:不等式的解法
0
二、含绝对值的不等式的常见类型及解法
1、f x
gx
f
fxx g0x或
f x 0 f x gx
f
x
gx或f
x
gx
2、f x
gx
f
f x x
g0x或
f x 0 f x gx
gx
f
x
gx
3、f x gx f 2x g2 x f x gx f x gx 0
4、含2个以上绝对值的不等式:如: |2x-1|+|3x+2|<3,用“零点分区间”方 法去绝对值。
;
<0)(a>0)的解的情况
3、简单的高次不等式 将不等式一边化为 若干个一次因式积,一边为0的情形,再 用数轴标根法写出不等式的解集。
4、分式不等式:通过移项、通分变为 (或≤0)的形式
f x gx
0
f g
x x
0(或≤0)
fห้องสมุดไป่ตู้
xgx 0或
gx 0
2006年名师课堂辅导讲座—高中部分
张彦洁 高级教师
[学习内容]
一、有理不等式的解法
有理不等式主要指一元一次不等式、一
元二次不等式、高次不等式和分式不等
式 1、一元一次不等式
:ax
b(a
0)
x x
b
2019年高考真题概率统计专题总结 小题+大题 详细答案解析
2019年高考数学真题——概率统计专题整理1.(2019年全国卷1,文数6题,满分5分)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A .8号学生B .200号学生C .616号学生D .815号学生2.(2019年全国卷1,理数6题,满分5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11163.(2019年全国卷2,文数4题,满分5分)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23B .35C .25D .154.(2019年全国卷2,文数14、理数13题,满分5分)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.5.(2019年全国卷2,理数5题,满分5分)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差6.(2019年全国卷3,文数3题,满分5分)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .127.(2019年全国卷3,文数4、理数3题,满分5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A .0.5B .0.6C .0.7D .0.88.(2019年江苏卷5题,满分5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是▲.9.(2019年江苏卷6题,满分5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是▲.10.(2019年浙江卷7题,满分4分)设01α<<,则随机变量X 的分布列是则当α在()0,1内增大时,.A ()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大11.(2019年全国卷1,文数17题,满分12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.()2P K k ≥0.0500.0100.001k3.8416.63510.82812.(2019年全国卷1,理数21题,满分12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i = 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i = ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i = 为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.13.(2019年全国卷2,文数19题,满分12分)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[0.20,0)-[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.018.602≈.14.(2019年全国卷2,理数18题,满分12分)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.P X=;(1)求()2(2)求事件“4X=且甲获胜”的概率.15.(2019年全国卷3,文数、理数17题,满分12分)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C的估计值为0.70.(1)求乙离子残留百分比直方图中,a b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).16.(2019年北京卷,文数17题,满分12分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B 的学生的支付金额分布情况如下:支付金额不大于2000元大于2000元支付方式仅使用A27人3人仅使用B24人1人(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.17.(2019年北京卷,理数17题,满分13分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:都使用的概率;(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.18.(2019年天津卷,文数15题,满分13分)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记A B C D E F.享受情况如下表,其中“○”表示享受,“×”表示不为,,,,,享受.现从这6人中随机抽取2人接受采访.员工A B C D E F项目子女教育○○×○×○继续教育××○×○○大病医疗×××○××住房贷款利息○○××○○住房租金××○×××赡养老人○○×××○(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.19.(2019年天津卷,理数16题,满分13分)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(Ⅱ)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.答案解析1.【答案】C .【解析】依题意可知组距间隔为100010100d ==,各组间被抽到号码的绝对值差应为间隔d 的倍数,即能被10整除.只有C 项:616465710-=能被10整除,故选C .2.【答案】A .【解析】易知出现阳爻的概率服从二项分布16,2B ⎛⎫⎪⎝⎭,∴每卦6爻中恰好有3个阳爻的概率333611512216P C ⎛⎫⎛⎫=-=⎪⎪⎝⎭⎝⎭,故选A .3.【答案】B .【解析】“恰有2只测量过该指标”指的是事件“两只通过指标且另外一只没有通过指标”,∴21323535C C P C ==,故选B .4.【答案】0.98.【解析】依题意共有10201040++=个车次,∴经停该站高铁列车所有车次的平均正点率的估计值为1020100.970.980.990.98404040⨯+⨯+⨯=.5.【答案】A .【解析】根据一组数据中中位数的找法可知,极端值变化不改变整组数据的中位数,故选A .6.【答案】D .【解析】把两名女同学“捆绑”在一起看成一个特殊的同学有222A =种方法,再与剩下的两名男同学全排列共有336A =种方法,而两男两女四名同学所有的排列方法有4424A =种,故两位女同学相邻的概率23234412A A P A ⋅==,故选D .7.【答案】C .【解析】阅读过《西游记》且阅读过《红楼梦》的学生共有60位,而阅读过《红楼梦》的学生共有80位,由此可知只阅读过红楼梦的学生有20人。
2019-2020学年度七年级数学用卷-5绝对值(1)
2019-2020学年度七年级数学用卷1.2.4 绝对值(1)一、知识点:1. 绝对值:__________上表示数a 的点与_________的距离叫做数a 的绝对值.记作_______2. 规定:一个正数的绝对值是___________ 绝对值的求法一个负数的绝对值是____________0的绝对值是_______ ()()(),00,0,0a a a a a a >⎧⎪==⎨⎪-<⎩二、典例分析:例1:求下列各数的绝对值:⑴ +205 (2)21; (3) -3.2 (4) 0 (5)-3练习:1、求下列各式的值:+∣24∣= . ∣—3.1∣= ,-∣—13∣= ,∣0∣= . 2、求下列各数的绝对值:(1)-8 (2)+6 (3)0 (4)-3.7例2:填空:(1)绝对值小于4的正整数有 .(2)如果一个数的绝对值是13,那么这个数是 .变式:(1)绝对值等于它本身的数有 ( )A 、0个B 、1个C 、2个D 、无数个(2)数轴上,绝对值为4,且在原点左边的点表示的有理数为___________.三、强化练习:1.-2的绝对值等于( ). A .21- B .2 C .2- D .21 2.有理数的绝对值一定是 ( )A .正数B .整数C .正数或零D .自然数 3. 1.5-= ,10-= , 2+= , 2.5-+= .4.⑴一个数的绝对值和相反数都是它本身,这个数是 ;⑵绝对值小于3.2的整数有 ; ⑶123-的相反数是 ,绝对值是 ; 5. 若8=x ,则=x ______; 若8-=x ,则=x ______;6.计算下列各题: ⑴216-+-; ⑵20082008--.7.判断题:01<-。
( ) 负数没有绝对值。
( ) 55-=--。
( )任何数的绝对值都不是负数。
( )互为相反数的两个数的绝对值相等。
( )8.下列语句中正确的是( )A . 因为()2-+是正数,所以()()22-=-+B .任何一个有理数的绝对值都不小于0C .负数没有绝对值D .绝对值等于一个定值的有理数一定有两个,它们的符号相反9.下列各式中正确的是( )A .22->B .()33-=--C .44=-D .()55--=--10.若a a -=,则a 一定是( )A .负数B .正数C .负数或零D .零11.绝对值不大于3.1的整数有( )A .11个B .12个C .22个D .23个12.下列说法中正确的是( )A .a -一定是负数B .只有两个数相等时,它们的绝对值才相等C .若b a =,则a 与b 互为相反数D .若一个数小于它的绝对值,则这个数是负数。
绝对值-新高2022年暑假初升高数学(解析版)
绝对值1、绝对值的性质①0除外,绝对值为一正数的数有两个,它们互为相反数.②互为相反数的两个数(0除外)的绝对值相等.③绝对值具有非负性,即任何一个数的绝对值总是正数或0.2、数轴上两点之间的距离、x2,则A、B两点之间的距离为.若A、B是数轴上的两个点,它们表示的数分别为x3、含绝对值的方程与函数①含有绝对值的方程要先去掉绝对值的符号,再求未知数的值;②绝对值函数的定义:,绝对值函数的定义域是一切实数,值域是非负数.4、绝对值的定义在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.①绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a都有:②绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.③一个有理数是由符号和绝对值两个方面来确定的.例1、利用绝对值的性质化简如果a、b、c、d为互不相等的有理数,且,那么等于()A. 1B. 2C. 3D. 4【解答】C【解析】由已知可得,不妨设,∵,∴a-c与b-c互为相反数,即a-c=-(b-c),a+b=2c,又∵,∴,∵,∴b-c与d-b相等,即b-c=d-b,2b=c+d,∵,∴,∴,∴,同理,若设,可得,∴C选项正确.例2、化简求最值已知实数x、y、z满足,则代数式的最大值是.【解答】24【解析】∵当时,,当时,,当,故的最小值为4,同理可得,当时,3;当时,最小值为9,则4×3×9=108,故x、y取最大值,z取最小值时,代数式的值最大,最大值为.例3、绝对值方程【解答】【解析】计算步骤如下:∴.例4、绝对值函数作出函数的图像.【解答】见解析【解析】由题意可得,函数图像如图所示:巩固练习一.选择题1.把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A.﹣7B.﹣1C.5D.11【解答】A【解析】第1次操作,a1=|23+4|﹣10=17;第2次操作,a2=|17+4|﹣10=11;第3次操作,a3=|11+4|﹣10=5;第4次操作,a4=|5+4|﹣10=﹣1;第5次操作,a5=|﹣1+4|﹣10=﹣7;第6次操作,a6=|﹣7+4|﹣10=﹣7;第7次操作,a7=|﹣7+4|﹣10=﹣7;…第2020次操作,a2020=|﹣7+4|﹣10=﹣7.2.设x为有理数,若|x|=x,则()A.x为正数B.x为负数C.x为非正数D.x为非负数【解答】D【解析】设x为有理数,若|x|=x,则x≥0,即x为非负数.3.已知x是正实数,则|x﹣1|+|2x﹣1|+|3x﹣1|+|4x﹣1|+|5x﹣1|的最小值是()A.2B.C D.0【解答】B【解析】|x﹣1|+|2x﹣1|+|3x﹣1|+|4x﹣1|+|5x﹣1|=|x﹣1|+2|x﹣x﹣|+4|x|+5|x﹣当x﹣=0,即x时取最小值,最小值为:﹣﹣|+5|﹣=++0+=.4.已知实数a、b、c满足a+b+c=0,abc<0,,则x2019的值为()A.1B.﹣1C.32019D.﹣32019【解答】B【解析】已知a,b,c是有理数,a+b+c=0,abc<0,则b+c=﹣a,a+c=﹣b,a+b=﹣c,a、b、c两正一负,则1﹣1﹣1=﹣1.5.能使等式|2x﹣3|+2|x﹣2|=1成立的x的取值可以是()A.0B.1C.2D.3【解答】C【解析】A、当x=0时,原式=3+4=7,不合题意;B、当x=1时,原式=1+2=3,不合题意;C、当x=2时,原式=1+0=1,符合题意;D、当x=3时,原式=3+2=5,不合题意;6.已知x,y都是整数,若x,y的积等于8,且x﹣y是负数,则|x+y|的值有()个.A.1B.2C.3D.4【解答】B【解析】∵x,y都是整数,x,y的积等于8,且x﹣y是负数,∴x=﹣8,y=﹣1或x=﹣4,y=﹣2或x=1,y=8或x=2,y=4,∴|x+y|=9或6,一共2个.二.填空题7.x=.【解答】﹣5或7【解析】因为=3,所以|1﹣x|=6,所以1﹣x=±6,所以1﹣x=6,或1﹣x=﹣6,所以x=﹣5,或x=7.8.若x=|x﹣|x﹣2017||,则x=.【解答】2017【解析】∵x=|x﹣|x﹣2017||,∴x=x﹣|x﹣2017|或x=|x﹣2017|﹣x∴﹣|x﹣2017|=0或2x=|x﹣2017|当﹣|x﹣2017|=0时,解得x=2017当2x=|x﹣2017|时,①若0<x<2017,2x=﹣x+2017,解得x②x>2017,2x=x﹣2017,解得x=﹣2017(舍去).9.若对于某一范围内的x的任意值,|1﹣2x|+|1﹣3x|+…+|1﹣10x|的值为定值,则这个定值为.【解答】3【解析】∵P为定值,∴P的表达式化简后x的系数和为0;由于2+3+4+5+6+7=8+9+10;∴x的取值范围是:1﹣7x≥0且1﹣8x≤0,即,所以P=(1﹣2x)+(1﹣3x)+…+(1﹣7x)﹣(1﹣8x)﹣(1﹣9x)﹣(1﹣10x)=6﹣3=3.10.已知|a|=3,|b|=2,且a>b,则a﹣2b的值为.【解答】﹣1或7【解析】∵|a|=3,|b|=2,∴a=±,b=±2,∵a>b,∴a=3,b=±2,∴a﹣2b=3﹣2×2=﹣1或a﹣2b=3﹣2×(﹣2)=7.11.若|m﹣n|=n﹣m,且|m|=4,|n|=3,则m+n=.【解答】﹣1或﹣7【解析】∵|m|=4,|n|=3,∴m=±4,n=±3,而|m﹣n|=n﹣m,∴n>m,∴n=3,m=﹣4或n=﹣3,m=﹣4,∴m+n=3+(﹣4)=﹣1;或m+n=﹣3+(﹣4)=﹣7.三.解答题12.已知a、b、c的大致位置如图所示:化简|a+c|+|b﹣c|﹣|a﹣b|.【解答】2c【解析】由数轴知:b<a<0<c,c>|a|,∴a+c>0,b﹣c<0,a﹣b>0,所以|a+c|+|b﹣c|﹣|a﹣b|=a+c﹣b+c﹣a+b=2c.13.计算:已知x<y<0,求6÷(x﹣y)的值.【解答】﹣36【解析】∵|x|=,|y|=x<y<0,∴x,y=﹣∴6÷(x﹣y)=6÷(﹣=﹣36.14.设a<0,且,求|x+1|﹣|x﹣2|的值.【解答】﹣3【解析】因为a<0,所以x,所以x+1≤0,x﹣2<0,所以|x+1|﹣|x﹣2|=﹣x﹣1+x﹣2=﹣3.15.已知实数a,b,c满足:a+b+c=﹣2,abc=﹣4.(1)求a,b,c中的最小者的最大值;(2)求|a|+|b|+|c|的最小值.【解答】(1)-4;(2)6【解析】(1)不妨设a是a,b,c中的最小者,即a≤b,a≤c,由题设知a<0,且b+c=﹣2﹣a,,于是b,c是一元二次方程的两实根,,a2+4a2+4a+16≤0,(a2+4)(a+4)≤0,所以a≤﹣4;又当a=﹣4,b=c=1时,满足题意.故a,b,c中最小者的最大值﹣4.(2)因为abc<0,所以a,b,c为全小于0或二正一负.①当a,b,c为全小于0,则由(1)知,a,b,c中的最小者不大于﹣4,这与a+b+c=﹣2矛盾.②若a,b,c为二正一负,设a<0,b>0,c>0,则|a|+|b|+|c|=﹣a+b+c=﹣2a﹣2≥8﹣2=6,当a=﹣4,b=c=1时,满足题设条件且使得不等式等号成立.故|a|+|b|+|c|的最小值为6.16.四个数分别是a,b,c,d,满足|a﹣b|+|c﹣d|=|a﹣d|,(n≥3且为正整数,a<b<c<d).(1)若n=3.①当d﹣a=6时,求c﹣b的值;②对于给定的有理数e(b<e<c),满足|b﹣e|=|a﹣d|,请用含b,c的代数式表示e;(2)若e=b﹣c|,f=a﹣d|,且|e﹣f|>|a﹣d|,试求n的最大值.【解答】(1)①c﹣b=4,②e=+b;(3)n的最大值是4【解析】(1)①∵n=3,∴|a﹣b|+|c﹣d|=|a﹣d|,∵a<b<c<d,∴b﹣a+d﹣c=d﹣a),∴c﹣b(d﹣a),∵d﹣a=6,∴c﹣b=4;②∵b<e<c,|b﹣e||a﹣d|,∴e﹣b(d﹣a),∵e﹣b(c﹣b),∴e﹣b×(c﹣b)=(c﹣b),∴e=+;(2)∵|a﹣b|+|c﹣d|=|a﹣d|,a<b<c<d,∴c﹣b=(1﹣)(d﹣a),∵e=b﹣c|,f|a﹣d|,且|e﹣f|>|a﹣d|,∴|b﹣c|﹣a﹣d|||a﹣d|,∴|(1﹣)(d﹣a)|﹣a﹣d|||a﹣d|,∴|a﹣d|>|a﹣d|,∴2n<10,∴n<5,∵n≥3且为正整数,∴n的最大值是4.17.若x,y为非零有理数,且x=|y|,y<0,化简:|y|+|﹣2y|﹣|3y﹣2x|﹣2y.【解答】原式=﹣2x﹣2y【解析】∵x=|y|,y<0,∴x>0,x=﹣y,∴﹣2y>0,3y﹣2x<0,则原式=﹣y﹣2y+3y﹣2x﹣2y=﹣2x﹣2y.18.已知:b是最大的负整数,且a,b,c满足|a+b|+(4﹣c)2016=0,试回答问题:(1)请直接写出a,b,c的值;(2)若a,b,c所对应的点分别为A,B,C,点P为一动点,其对应的数为x,点P在0到1之间运动时(即0≤x≤1),请化简式子:|x+1|﹣|1﹣x|+2|x﹣4|.【解答】(1)b=﹣1,a=﹣b=1,c=4;(2)原式=8【解析】(1)∵b是最大的负整数,|a+b|+(4﹣c)2016=0,∴b=﹣1,a=﹣b=1,c=4;(2)∵0≤x≤1,∴x+1>0,1﹣x≥0,x﹣4<0,∴|x+1|﹣|1﹣x|+2|x﹣4|=x+1﹣(1﹣x)+2(4﹣x)=8.19.已知a,b,c都不等于零,且m,最小值为n,求的值.【解答】原式=﹣1【解析】当a,b,c三个都大于0,可得,当a,b,c,都小于0,可得当a,b,c,当a,b,c二正一负可得,∴m=2,n=﹣2∴原式=﹣120.再看绝对值(1)当x=3,|x﹣2|=;当x=2,|x﹣2|=;当x=﹣1,|x﹣2|=;(2)化简:|x﹣2|;(3)在|x+1|+|x﹣2|+|x﹣3|中.当x=.|x+1|+|x﹣2|+|x﹣3|有最小值,最小值为;(4)在|x﹣x1|+|x﹣x2|+|x﹣x3|+…+|x﹣x n|中,若x1<x2<x3<…<x n(其中:x1,x2,x3,…,x n为常数),试回答:当x为何值时,|x﹣x1|+|x﹣x2|+|x﹣x3|+…+|x﹣x n|有最小值,最小值为多少?【解答】(1)1,0,3;(2)见解析;(3)当x=2,最小值为4;(4)见解析【解析】(1)当x=3,|x﹣2|=3﹣2=1;当x=2,|x﹣2|=2﹣2=0;当x=﹣1,|x﹣2|=1+2=3;故答案为:1,0,3;(2)分三种情况:①当x<2时,|x﹣2|=2﹣x,②当x=2时,|x﹣2|=0,③当x>2时,|x﹣2|=x﹣2,(3)当x≤﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣x﹣1+2﹣x+3﹣x=﹣3x+4,则﹣3x+4≥7;当﹣1<x≤2时,|x+1|+|x﹣2|+|x﹣3|=x+1+2﹣x+3﹣x=﹣x+6,则4≤﹣x+6<7;当2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2﹣x+3=x+2,则4<x+2≤5;当x>3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2+x﹣3=3x﹣4,则3x﹣4>5.综上所述,当x=2.|x+1|+|x﹣2|+|x﹣3|有最小值,最小值为4;故答案为:2,4;|+|x﹣x2|+|x﹣x3|+…+|x﹣x n|有最小值x n+x n﹣1+…(4)当n时,|x﹣x﹣x2﹣x1,|+|x﹣x2|+|x﹣x3|+…+|x﹣x n|有最小值x n+x n﹣1+…当n为偶数时,|x﹣x﹣…﹣x2﹣x1.。
函数的极限函数的连续性(2019年12月整理)
(3)如果
lim
x
f(x)=a且
lim
x
f(x)=a,那么就
说当x趋向于无穷大时,函数f(x)的极限
是a,记作:lim f(x)=a或者当x→∞时, x
f(x)→a
常数函数f(x)=c(x∈R),有lim f(x)=c
函数的极限、函数的连续性
1、函数极限的定义: (1)当自变量x取正值并且无限增大时,如果 函数f(x)无限趋近于一个常数a,就说当x趋 向于正无穷大时,函数f(x)的极限是a
记作:lim f(x)=a,或者当x→+∞时,f(x)→a x
(2)当自变量x取负值并且绝对值无限增大时, 如果函数f(x)无限趋近于一个常数a,就说当x 趋向于负无穷大时,函数f(x)的极限是a
趋向于定值的函数极限概念:
当自变量无限趋近于x0( x x0)时, 如果函数f(x)无限趋近于一个常数a,就 说当x趋向x0时,函数y=f(x)的极限是a, 记作特别地, lim f (x) a;
xx0
lim C C
x x0
lim
x x0
x
x0
lim f (x) a lim f (x) lim f (x) a
xx0
xx0
xx0
其趋中近于xlxim0x时0 f的(x左) 极 a限表,示当x从左侧
于xxl0im时x0 的f (右x)极 a限表示当x从右侧趋近
对于函数极限有如下的运算法则:
如果,lim f (x) A, lim g(x) B
xxo
xxo
那么,
lim [ f (x) g(x)] A B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
|-0.9|=0.9
|100|=100
|0|=0
判断下列说法是否正确
(1)符号相反的数互为相反数( × ) (2)符号相反且绝对值相等的数互为相反数(√ ) (3)一个数的绝对值越大,表示它的点在数轴上越靠右(× ) (4)一个数的绝对值越大,表示它的点在数轴上离原点越远(√ )
教学难点:绝对值的概念的理解.
两辆汽车从同一处O出发,分别向东、西方向行驶10km,到 达A、B两处.
B
10
-10
O
A
10
0
10
思考:它们行驶的路线相同吗?它们行驶路程的远近相同吗? 路线不相同,因为方向不同. 远近相同,如图示,即线段OA的长度等于OB的长度
一般地数轴上表示数a的点与原点的距离叫做数a的绝对 值(absolute value)那一刹,一束极细的腥红的浮光突然鱼鳍般游来,吹在你脸上——你倏地意识到:日出了!但这个闪念并没有打动你,你丝毫不关心它…… (14)或许还有其它的机会,比如登泰山、游五岳什么的:蹲在人山人海中,蜷在租来的军大衣里,无聊而焦 急地看夜光表,熬上一宿。终于,当人群开始骚动,在巨大的欢呼声中,大幕拉开,期待由久的演出开始了……然而,这一切都是在混乱、嘈杂、拥挤不堪中进行的。越过无数的后脑勺和下巴,你终于看到了。和预期一模一样。你会突然惊醒:这是早就被设计好了的,美是美,但就是感 觉不对劲儿。 (15)而更多的人.或许连一次都没有!一生中的那个时刻,他们无不蜷缩在被子里。他们在昏迷,在蒙头大睡,在冷漠地打着呼噜——第一万次、几万次地打着呼噜。那光线永远照不到他们,照不见那身体和灵魂。 (16)放弃早晨,意味着什么呢?意味着你已先被遗弃了。 意味着你所看到的世界是旧的,和昨天一模一样的“陈”。仿佛一个人老是吃经年发霉的粮食,永远轮不上新的,永远只会把新的变成旧的。意味着不等你开始,不等你站在起点上,就已被抛至中场,就像一个人未谙童趣即已步入中年。 (17)多少年,我都没有因光线而激动的生命清 晨了。 ?(有删改) 22.文章以一封信开头,请分析其作用。(2分) 答: ? 23.第⑤段想象丰富,用词新颖别致,试举一例简要分析。(2分) 答: 24.解释下面句子中加点词语的含义.(4分) (1)“按时看日出”.我被这句话猝碎然绊倒了。 答: ?(2)他们在昏迷,在蒙头大睡,在冷漠地 打着呼噜——第一万次、几万次地打着呼噜。 ? 答: ? 25.“与福楼拜相比,我们对自然又是怎样的态度呢?”这句话应放在文中哪两段之间?为什么?(3分) 答: 26.如果你去看日出,会有什么不同于作者的启示?(3分) 答: ? 22.示例:娓娓引出话题,有曲径通幽之美,激发读者阅读 兴趣和思考。? 共2分 23.示例:“充满果汁的空气”化虚的空气为实的果汁,不仅有丰富的味道,而且有鲜艳的色彩,有体量,有动感。? 共2分 24.示例: (1)形象生动地写出了作者被“按时看日出”这句话所震撼和叹服,并由此陷入沉思。? 共2分 ? (2)重复机械的生活,使人丧失对 美好生活的好奇、探索、感悟和品味,变得麻木迟钝。? 共2分 25.示例:第○11○12段之间。承上启下,以普通人反衬福楼拜,突出作者对后者人生态度的肯定和赞赏,批判我们的懈怠和疏懒。? 共3分 26.示例:美是短暂、稍纵即逝的,美好东西要紧握手中,不要因错过而后悔。? 共3 分 (2017·成都市中考)阅读下面的文章,完成8—11题。(18分) 最后的常春藤叶 【美】欧?亨利 华盛顿广场西面的一个小区,住着不少画家,他们寻找朝北的窗户以及低廉的房租。 苏艾和琼珊也在此合租了一个房间。 年底,肺炎在不断蔓延,琼珊也被感染了。她病得很重,躺在 一张铁床上,一动也不动,凝望着窗对面的空墙。 一天早晨,医生对苏艾说:“要治好,可能只有一成希望,这全在她自己要不要活,她是满肚子以为自己活不成了。人不想活,任何药都无效。” 医生走后,苏艾伤心地痛哭一场。屋子里,琼珊一动不动地躺着,被子底下的身子纹丝不 动。苏艾走进来的时候以为她睡着了。忽然,传来一个低微的声音,重复着。苏艾快步走到床边,琼珊的眼睛睁得很大,望着窗外,数着: “九、八、七…… ” 苏艾看着窗外,满是疑惑:有什么可数的呢?一个空荡荡的院子,一堵空墙,一棵老极了的常春藤,藤上的叶子几乎都被吹 掉了,只剩下些光秃秃的枝条缠绕在剥落的砖块上。 “六”,琼珊几乎已是耳语。“越落越快了,三天前还有一百多片。又掉了!只剩五片了。” “五片?什么?” “叶子,等最后一片掉下来,我也就要去了。难道医生没有告诉你?” “哟,那条破叶子跟你的病有什么相干?不要说 傻话了,医生今天早上还说你就快好了。 喝点儿汤吧!” 琼珊直盯着窗外说:“不,我不想喝。又落了,只剩四片了!等最后一片掉下来,我也就去了。” “琼珊,答应我不要瞧窗外,行吗?” 琼珊闭了眼睛,脸色苍白,一动不动地躺在床上,就像是座横倒在地上的雕像。 “你睡会 儿,我去把贝尔曼叫来,给我当那幅‘老矿工'的模特儿。” 贝尔曼是个画家。他年过六十,画画四十年,总说就要画他的那幅杰作了,可到现在也没有动笔。他除了偶尔画点广告外,什么也没画。他喝酒毫无节制,是一个火气十足的小老头子,十分瞧不起别人的温情。苏艾走进楼下他 那间光线黯淡的小屋,他满嘴的酒气,两只发红的眼睛迎风流着泪。苏艾把琼珊的胡思乱想告诉了他,他嗤笑道:“世上竟有人蠢到因为那些该死的常春藤叶子落掉就想死吗?哎,可怜!”他喊道。 他们一起上楼。琼珊睡着了。他们不由得瞅着窗外那棵常春藤,都默默无言。贝尔曼当 完模特就走了。大片的雪花伴着寒冷的雨不停地落下。 “把窗帘拉起来,我要看看。”琼珊第二天早晨醒来就低声地命令苏艾。 然而,看呀!一夜的风吹雨打,砖墙上还挂着一片藤叶。它是常春藤上最后的一片叶子。靠近茎部仍是深绿色,可锯齿形的叶子边缘已经枯萎发黄,它傲然挂 在一根离地二十多英尺的藤枝上。 “最后一片!我以为它不在了。今天它一定会落,我也会死的。” 琼珊说。 白天总算过去了。暮色中,那片孤零零的藤叶紧紧地依附在靠墙的枝上。夜里北风呼啸,拍打着窗户,雨水从屋檐上流泻下来。 天刚亮,琼珊就吩咐苏艾拉开窗帘。那片枯藤 叶仍在那里。琼珊躺着,盯着看了很久。 “苏艾,我是个坏女孩。想死是有罪的,天意让那片藤叶留着来证明我的坏。你给我拿点汤来吧!”她突然喊道。 下午,医生来了,临走对苏艾说:“她很快会好的。现在我得去楼下看另一个病人。他叫贝尔曼,也是肺炎。但年纪太大,病得很 重。恐怕治不好了。” 房间里,琼珊平静地靠着墙,织一条蓝色披肩。“有件事我要告诉你,亲爱的!”苏艾走过来靠着琼珊说:“贝尔曼先生患肺炎,今天在医院里去世了。他只病了两天。从我们这儿离开后的第二天早晨,门房发现他痛得动弹不了,全身也都湿透了。他们不清楚他 究竟去做了什么。后来,他们发现了一盏还没有熄灭的灯笼,一把挪动过地方的梯子,几支扔得满地的画笔,一块涂抹着绿色和黄色颜料的调色板……亲爱的,瞧瞧墙上那最后一片藤叶。再想想,为什么凤刮得厉害,它都从来不摇一摇呢?哎,这片叶子才是贝尔曼的杰作──就是在最后 一片叶子掉下来的晚上,他把它画在那里的。”(选文有删改) 8、小说中的贝尔曼先生是怎样的一个人?请结合全文简要分析。(4分) 答:___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 9、作者为什么在文中画线 处三次写到琼珊躺着,“一动不动”这一细节?请简要回答。 (4分) 答:__________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 10、小说略去贝尔曼先生画“最后的常春藤叶”的过程,有何作用?请简要分析(4分) 答:__________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 11、小说最后一句体现了欧?亨利小说“在意料之外,又在情理之中”的结尾艺术,请结合全文进行简要赏析。(6分) 8、(4分) ①贝尔曼是一个郁郁不得志的画家,性格暴躁,酗酒成性,生活失意。 “他年过六十,画画四十年,总说就要画他的那幅杰作了,可到现在也没有动笔。他喝酒毫无节制,是一个火气十足的小老头子。黯淡的小屋,满嘴的酒气,两只发红的眼睛迎风流着泪。” ②善良,富有同情心,无私关怀、帮助他人。当苏艾把琼珊的胡思乱想告诉了他,他喊道:“哎, 可怜!” ③崇高的爱心,自我牺牲的精神。晚上冒雨画“常春藤”,以致得肺炎而死。 ④贝尔曼画技高超。他画的那片常春藤,连当画家的琼珊都没有看出来。 (分析:本题主要考查小说人物形象的归纳和概括,要注意准确和全面。人物形象概括主要从外貌、语言、动作、神态、心 理等方面的信息来提取整合。另外,还可以根据情节、环境、作者的客观介绍等方面的信息来提取概括。) 9、(4分) ①写出了琼珊病情严重,对生活失去了希望。交代了故事发生的背景。 ②推动故事情