数学模型在生物学中的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学模型在生物学中的应用

摘要

数学模型是研究生命发展规律,发现和分析生命现状的工具。建立可靠的本文从生物数学的发展、分支了解生物数学的历史,紧接着又在数学模型在生物数学的地位中了解数学模型的地位,最后在数学模型的应用中知道了微分方程模型、差分方程模型以及稳定性模型.这将有助于在生物数学的研究中,依据数学模型的基础,建立符合规律的数学模型,在生命进程中验证新的规律、新的发现,使在研究生物学时更清晰、更明了.

关键词:数学模型;生物学;应用

Application of mathematical model in Biology

Abstract: Mathematical models in biology such as a microscope can be found in biological mysteries, biological research through with the establishment of the mathematical rules of the law of development of life, which launched a new discovery, new rules and in biology established reliable model of the biological status of classified analysis and forecasting.The from the history of mathematical biology development, the branch of the understanding of mathematical biology, followed by another in the mathematical model in Mathematical Biology status in understanding the status of mathematical model. Finally, in the application of mathematical model know differential equation model, the differential equation model and the stability of the model.This will help in mathematical biology research, on the basis of the mathematical model, established in accordance with the law of the mathematical model, in the process of life to verify new rules, new found in biological research clearer, more clear.

Keywords: mathematical mode;biology;application

目录

1 引言……………………………………………………………………………………

2 文献综述………………………………………………………………………………

2.1 国内外研究现

状………………………………………………………………………

2.3 提出问题………………………………………………………………………………错误!未定义书签。

3 生物数学的发展………………………………………………………………………

3.1 生物数学发展历史……………………………………………………………………

3.2 生物数学的分支………………………………………………………………………

3.2.1 生物信息学……………………………………………………………………………

3.2.2 生物统计………………………………………………………………………………

3.2.3 数量遗传学……………………………………………………………………………

3.2.4 数学生态学……………………………………………………………………………

3.2.5 数理医药学……………………………………………………………………………

3.3 数学模型在生物数学中的地位………………………………………………………

4 数学模型在生物学中应用……………………………………………………………

4.1 微分方程模型…………………………………………………………………………

4.2 差分方程模型 (9)

4.3 稳定性模型…………………………………………………………………………

5 结论…………………………………………………………………………………

5.1 主要发现……………………………………………………………………………

5.2启示…………………………………………………………………………………

5.3 局限性………………………………………………………………………………

5.4努力方向……………………………………………………………………………

参考文献……………………………………………………………………………

1 引言

数学是所有自然学科的基础,生物却是偏文科性质的自然学科,把两者有机的的结合在一起就构成了生物数学.但在生物学中应用数学最多的还是数学模型的应用,解决生物中各种种群增长问题,种群扩散问题,环境污染问题等.虽然有生物数学这样的学科产生,但真正让数学与应用数学的学生了解数学在生物中的应用,仍需要很大的努力.同时,许多人会觉得数学的知识只能应用在生物中,而生物知识却不能应用在数学问题解决中,但是有些实际问题却不得不提醒我们,在解决一部分实际问题时,我必须得先了解生物上的一些知识,才能解决.但同时我们也得先了解生物数学这门学科,以及生物数学的的分支,我们才能知道生物与数学的联系,方便我们在解决一些实际问题时,全面的考虑问题,分析问题.

生物数学是数学的边沿学科,使数学模型得以更好的建立的根本,不仅是一个学科的分支,更是学习应用数学的一个工具.了解生物数学的发展,知道生物数学的产生,并知道生物数学的分支,方便更好的学习数学模型,然后才能把数学模型更好应用在生物学中,数学模型是应用数学中最直观应用于数学的东西,但数学模型中很大一部分模型和生物相关联,所以才会出现生物数学.特别地,生物数学在整个数学建模中起了很重要的作用.

2 文献综述

2.1 国内外研究现状

现查阅到的参考文献中,分别就数学模型做了介绍,并且对模型的应用也做了介绍.在文献[1-4]中详细的讲解了生物数学的起源、发展、分支等方面,还阐述了生物数学在其他方面的应用,其中穿插的讲解了数学模型在生物数学中地位以及生物数学的未来发展趋势.在文献[5]中主要是利用数学模型在生物序列结构比较中的研究及其应用进行了介绍,且主要研究了数学模型在DNA、蛋白质结构分析中的应用.在文献[6]中主要综述了生物数学这一门学科的大概,介绍了生物数学各分支的具体内容,还讲解了生物数学模型的实例.在文献[7]中强调了数学在生物学中的地位,从不同的角度诠释数学在生物学中的应用,以及数学模型的方法.在文献[8]中从建立数学模型的步骤、初等模型、优化模型、微分方程模型、差分方程模型等方面进行了介绍,详细的讲解了数学模型在不同方面的应用.在文献[9]中运用马尔萨斯模型、logistic模型、

相关文档
最新文档