医学统计知识点

合集下载

医学统计学知识点汇总(精华)

医学统计学知识点汇总(精华)

医学统计学知识点汇总(精华)一.概论1,医学统计学:运用概率论和数理统计学的原理和方法,研究医学领域中随机现象有关数据的搜集、整理、分析和推断,进而阐明其客观规律性的一门应用科学。

2,医学统计学的主要内容:1)统计研究设计调查研究设计和实验研究设计2)医学统计学的基本原理和方法研究设计和数据处理中的基本统计理论和方法。

A:资料的搜集与整理 B:常用统计描述,集中趋势和离散趋势,相对数,相关系数,回归系数,统计表,统计图 C:统计推断,如参数估计和假设检验。

3)医学多元统计方法多元线性回归和逐步回归分析、判别分析、聚类分析、主成分分析、因子分析、logistic回归与Cox回归分析。

3,统计工作步骤:1)设计明确研究目的和研究假说,确定观察对象与观察单位,样本含量和抽样方法,拟定研究方案,预期分析指标,误差控制措施,进度与费用。

2)搜集材料A,搜集材料的原则及时、准确、完整B,统计资料的来源医学领域的统计资料的来源主要有三个方面。

一是统计报表,二是经常性工作记录,三是专题调查或专题实验。

C,资料贮存3)整理资料 a检查核对b设计分组c拟定整理表d归表4)分析资料统计分析包括统计描述和统计推断4,同质(homogeneity):指被研究指标的影响因素相同。

变异(variation):同质基础上的各观察单位间的差异。

变量(variable):收集资料过程中,根据研究目的确定同质观察单位,再对每个观察单位的某项特征进行测量或观察,这种特征称为变量变量值:变量的观察结果或测量值。

变量类型变量值表现实例资料类型数值变量离散型定量测量值,有计量单位产前检查次数计量资料连续型身高分类变量无序二分类对立的两类属性性别(男女)计数资料多分类不相容的多类属性血型(A,B,O,AB)有序多分类类间有程度差异的属性受教育程度(小学,中学,高中,大学…)等级资料5,总体(population)根据研究目的所确定的同质研究对象中所有观察单位某变量值的集合。

医学统计学重点总结

医学统计学重点总结
小结:
(1) 单个样本均数 H0:μ=μ0t= ν=n-1 (小样本)
(已知样本——均数) H1:μ≠μ0
α=u= 或u= (大样本)(2)配对:H0:μ=μ0
H1:μ≠μ0t= ν=对子数-1
α=
(3) 两独立样本均数H0:μ=μ0t= ν=n1+n2-2
(4)(已知样本——样本) H1:μ≠μ0
9.对任何参数μ和σ的正态分布,都可以通过一个简单的变量变换成标准正态分布,即μ=X-μ
σ
9
标准正态分布
正态分布
面积或概率
-1~1
μ σ
%
~
μ σ
%
·
μ σ
%
10.医学参考值范围(reference value range)传统上称作正常值范围,指正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。习惯上是包含95%的参照总体的范围。
实际工作中标准差 σ往往未知,因而通常用样本标准差S代替σ,求得样本均数 准误估计值S ,计算公式为 S = (当n→无穷,S→σ,S →0)
3 95%的可信区间的计算:x (μ,σ ) 1) σ已知,可信区间= σ
2)σ未知,n为小样本: t 3)σ未知,n为大样本:
T变换
μ变换
N (0,1)
3、t分布曲线的形态变化与自由度v=n-1有关。
2.四格表专用公式(
3对于四格表资料,通常规定为:(1)当n≥40且所有的T ≥ 5时,用检验的基本公式或四格表的专用公式;(2)当n ≥ 40 但有1≤T<5时,用四格表资料的校正公式;(3)当n<40,或T<1时,用四格表资料的Fisher确切 概率法。
4 行×列表资料的χ 检验: 自由度:ν=(行数-1)(列数-1)

新版医学统计学知识点归纳总结

新版医学统计学知识点归纳总结

新版医学统计学知识点归纳总结医学统计学是医学研究中不可或缺的一部分,它涉及到数据的收集、分析和解释,帮助医学工作者从大量数据中提取有价值的信息。

以下是新版医学统计学的知识点归纳总结:1. 研究设计:研究设计是统计分析的前提,包括观察性研究和实验性研究。

观察性研究如队列研究、病例对照研究,而实验性研究如随机对照试验(RCT)。

2. 数据类型:医学统计学中的数据可分为定性数据和定量数据。

定性数据如性别、血型,定量数据如血压、体重。

3. 描述性统计:描述性统计用于描述数据集的特征,包括集中趋势(均值、中位数、众数)和离散程度(方差、标准差、极差)。

4. 概率分布:在统计学中,概率分布描述了随机变量取值的概率。

常见的分布有正态分布、二项分布和泊松分布。

5. 假设检验:假设检验是统计推断的核心,用于判断样本数据是否支持某个假设。

常见的检验方法有t检验、卡方检验和F检验。

6. 置信区间:置信区间提供了一个范围,用以估计总体参数的可能值。

95%的置信区间意味着有95%的把握认为总体参数落在这个区间内。

7. 回归分析:回归分析用于研究一个或多个自变量对因变量的影响。

简单线性回归和多元线性回归是常见的回归分析方法。

8. 生存分析:生存分析关注个体生存时间的分布和相关因素,常用于肿瘤学和流行病学研究。

Kaplan-Meier估计和Cox比例风险模型是生存分析中的重要工具。

9. 诊断试验评价:诊断试验评价涉及敏感性、特异性、阳性预测值和阴性预测值等指标,用于评估诊断方法的准确性。

10. 样本量计算:样本量计算是研究设计的重要环节,它决定了研究的可行性和结果的可靠性。

样本量计算需要考虑效应大小、显著性水平和检验力。

11. 多变量分析:多变量分析用于同时考虑多个变量对结果的影响,如多元回归分析和判别分析。

12. 统计软件的应用:统计软件如SPSS、SAS和R在医学统计分析中扮演着重要角色,它们提供了数据处理和统计分析的功能。

医学统计学知识点

医学统计学知识点

医学统计学知识点医学统计学是应用统计学原理和方法于医学领域的一门学科,通过对医学数据的收集、整理、分析和解释,可以帮助医学研究者和临床医生更好地理解和应用医学知识。

本文将介绍一些医学统计学中的重要知识点。

一、数据的类型在医学统计学中,我们常常需要处理各种类型的数据,其中最常见的数据类型包括:1. 定性数据:也称为分类数据,指描述事物性质或属性的数据,如性别、疾病类型等。

2. 定量数据:也称为连续数据,指可以用数字进行度量的数据,如身高、体重、血压等。

3. 二分类数据:指只有两种可能取值的数据,如阳性/阴性、生/死等。

4. 多分类数据:指有多种可能取值的数据,如血型、既往医疗史等。

二、描述统计学1. 描述性统计:描述性统计是对数据进行整理、总结和描述的过程,主要包括以下指标:- 频数与频率:频数是指某一数值在数据集中出现的次数,频率是频数与数据总数的比值。

- 中心趋势指标:包括均值、中位数和众数,用于描述数据的集中程度。

- 离散程度指标:包括标准差、方差和四分位差等,用于描述数据的分散程度。

2. 绘图方法:绘图是描述性统计的重要手段之一,常用的绘图方法包括:- 饼图:用于展示分类数据的比例关系。

- 条形图:用于展示不同类别之间的数量关系。

- 箱线图:用于展示数据的分布情况和异常值。

- 散点图:用于展示两个变量之间的相关性关系。

三、推断统计学推断统计学是从样本中得出总体特征的方法,通过对样本数据的分析来进行推断。

其中的重要概念和方法包括:1. 总体与样本:总体是我们研究的对象的全体,样本是从总体中选取的一部分。

2. 参数与统计量:参数是总体的特征值,统计量是样本的特征值,通过统计量来估计参数。

3. 抽样分布:抽样分布是样本统计量的概率分布,常用的抽样分布包括正态分布和t分布。

4. 假设检验:假设检验是通过对样本数据进行统计推断,判断总体参数是否满足某个假设。

5. 置信区间:置信区间是对总体参数的一个范围估计,常用于估计总体均值和总体比例。

医学统计学知识点汇总

医学统计学知识点汇总

医学统计学知识点汇总医学统计学是指应用统计学原理和方法进行医学研究设计、数据分析和结果解释的学科。

医学统计学的知识点非常丰富,包括统计学基础知识、研究设计、样本量计算、控制方法、参数估计、假设检验和数据分析等方面。

以下是医学统计学知识点的一些精华汇总。

1.统计学基本概念:包括基本统计量(均值、中位数、众数)、数据类型(定量数据、定性数据)、数据的描述方法(频数分布表、直方图等)。

2.研究设计:包括随机对照试验、队列研究、病例对照研究等,了解不同研究设计的优缺点及适用场景。

3.样本量计算:确定研究样本量是保证研究结果可靠性的重要一环,需要根据研究目的、效应量和统计显著性水平确定样本量。

4.控制方法:包括随机分组、盲法、配对设计等,用于减少实验误差和避免偏倚。

5.参数估计:常用的参数估计方法有点估计和区间估计。

点估计是通过样本数据得到总体参数的一个点估计值,区间估计是对总体参数的一个区间估计。

6.假设检验:假设检验是用来判断样本数据与总体假设之间的差异是否显著的统计方法。

常用的假设检验方法有t检验、卡方检验、方差分析等。

7.数据分析:包括描述性统计分析和推断性统计分析。

描述性统计分析用来描述研究变量的基本情况,推断性统计分析用来推断样本数据与总体数据之间的关系。

8.相关分析:用来分析变量之间的关联程度,包括皮尔逊相关系数和斯皮尔曼等级相关系数等。

9. 回归分析:用来分析因变量与自变量之间的关系,包括线性回归分析和 logistic回归分析等。

10.生存分析:用来分析时间到达事件发生的概率,包括生存曲线的绘制、生存率的估计和影响因素的分析等。

11. 多变量分析:用来分析多个自变量对因变量的影响,包括多元方差分析、多元回归分析和多元Logistic回归分析等。

12. Meta分析:用于综合多个独立研究结果,对总体效应进行定量分析和综合评价。

以上是医学统计学的一些精华知识点的汇总。

医学统计学的应用非常广泛,不仅在医学研究中需要应用统计学的原理和方法,也在临床实践中需要对医学统计学知识有一定的了解和应用。

(完整版)医学统计学复习要点

(完整版)医学统计学复习要点

(完整版)医学统计学复习要点第⼀章绪论1、数据/资料的分类:①、计量资料,⼜称定量资料或者数值变量;为观测每个观察单位某项治疗的⼤⼩⽽获得的资料。

②、计数资料,⼜称定性资料或者⽆序分类变量;为将观察单位按照某种属性或者类别分组计数,分组汇总各组观察单位数后⽽得到的资料。

③、等级资料,⼜称半定量资料或者有序分类变量。

为将观察单位按某种属性的不同程度分成等级后分组计数,分类汇总各组观察单位数后⽽得到的资料。

2、统计学常⽤基本概念:①、统计学(statistics)是关于数据的科学与艺术,包括设计、搜集、整理、分析和表达等步骤,从数据中提炼新的有科学价值的信息。

②、总体(population)指的是根据研究⽬的⽽确定的同质观察单位的全体。

③、医学统计学(medical statistics):⽤统计学的原理和⽅法处理医学资料中的同质性和变异性的科学和艺术,通过⼀定数量的观察、对⽐、分析,揭⽰那些困惑费解的医学问题背后的规律性。

④、样本(sample):指的是从总体中随机抽取的部分观察单位。

⑤、变量(variable):对观察单位某项特征进⾏测量或者观察,这种特征称为变量。

⑥、频率(frequency):指的是样本的实际发⽣率。

⑦、概率(probability):指的是随机事件发⽣的可能性⼤⼩。

⽤⼤写的P表⽰。

3、统计⼯作的基本步骤:①、统计设计:包括对资料的收集、整理和分析全过程的设想与安排;②、收集资料:采取措施取得准确可靠的原始数据;③、整理资料:将原始数据净化、系统化和条理化;④、分析资料:包括统计描述和统计推断两个⽅⾯。

第⼆章计量资料的统计描述1. 频数表的编制⽅法,频数分布的类型及频数表的⽤途①、求极差(range):也称全距,即最⼤值和最⼩值之差,记作R;②、确定组段数和组距,组段数通常取10-15组;③、根据组距写出组段,每个组段的下限为L,上限为U,变量X值得归组统⼀定为L≤X<U,最后⼀组包括下限。

医学统计学知识点

医学统计学知识点

医学统计学知识点1.数据类型:医学研究中使用的数据包括定类数据和定量数据。

定类数据是非数值型的数据,例如性别、种族等;定量数据是数值型的数据,例如年龄、体重等。

了解数据类型是分析数据的第一步。

2.数据收集:医学研究中的数据可以通过不同的方式收集,例如问卷调查、实验研究、观察等。

在数据收集过程中,需要注意样本的选择、数据的完整性和准确性。

3.描述统计学:描述统计学包括对数据的整体特征进行描述和总结。

常用的描述统计学方法包括中心趋势度量(例如均值、中位数、众数)、离散程度度量(例如标准差、方差)和数据分布描述等。

4.推断统计学:推断统计学是从样本数据推断总体特征的一种方法。

通过推断统计学,可以根据样本数据的统计量(例如样本均值、样本比例)来推断总体参数的区间估计或假设检验。

5.假设检验:假设检验是根据样本数据对总体参数提出假设,并通过计算概率值来判断是否接受或拒绝该假设。

常用的假设检验方法包括t检验、卡方检验、方差分析等。

6.相关分析:相关分析用于研究两个或多个变量之间的关系。

常见的相关分析方法有皮尔逊相关系数、斯皮尔曼相关系数等。

相关分析可以帮助研究者了解变量之间的线性关系和方向。

7. 回归分析:回归分析用于研究因变量与自变量之间的关系,并可用于预测因变量的数值。

常用的回归分析方法有简单线性回归分析、多元线性回归分析和 logistic 回归分析等。

8. 生存分析:生存分析用于研究时间相关的数据,例如疾病患者的生存时间或事件发生的时间。

生存分析方法包括 Kaplan-Meier 曲线、Cox 比例风险模型等。

9.双盲试验和随机分组:在医学研究中,双盲试验和随机分组是常用的研究设计方法。

双盲试验是指研究中既不知道接受治疗的病人,也不知道给予治疗的医生;随机分组是指将研究对象随机分配到不同的治疗组和对照组。

10.统计软件:为了进行医学统计分析,研究者可以使用专业的统计软件,例如SPSS、SAS、R等。

医学统计学知识点汇总

医学统计学知识点汇总

医学统计学知识点汇总医学统计学是一门关于医学研究中数据收集、数据分析和推理的学科,它对医学领域的决策和实践具有重要的指导作用。

本文将对医学统计学的一些重要知识点进行汇总和介绍。

一、数据类型在医学统计学中,常见的数据类型包括定类(分类)数据和定量(数量)数据。

定类数据表示事物的属性或者类别,如性别、病情分级等;而定量数据表示具体的数量或测量结果,如年龄、血压等。

正确理解和分析数据类型对于进行准确的统计分析是至关重要的。

二、描述统计学描述统计学是对数据进行整理、总结和描述的方法和技术。

常见的描述统计学方法包括中心趋势的度量、离散程度的度量以及数据的分布形态。

1.中心趋势的度量中心趋势是指数据集中的中间位置,常用的度量包括平均值、中位数和众数。

平均值是所有观测值的总和除以观测值的个数,中位数是将数据按升序排列,找出中间位置的数值,众数是出现频率最高的数值。

2.离散程度的度量离散程度是指数据的分散程度,常用的度量包括方差、标准差和极差。

方差是观测值与平均值之差的平方的平均值,标准差是方差的平方根,极差是数据集中最大值与最小值之差。

3.数据的分布形态数据的分布形态可以通过绘制直方图和概率密度曲线来进行可视化。

直方图可以显示数据的频数分布情况,概率密度曲线可以反映数据的分布密度。

三、推论统计学推论统计学是根据样本数据对总体进行推断的方法和技术。

主要包括参数估计和假设检验两个方面。

1.参数估计参数估计是通过样本数据来估计总体参数的值。

常用的参数估计方法包括点估计和区间估计。

点估计是通过样本数据来估计总体参数的唯一值,如样本均值估计总体均值;区间估计是通过样本数据来估计总体参数的范围,如置信区间估计总体均值。

2.假设检验假设检验是用来判断总体参数是否符合某个特定的假设。

它涉及到原假设和备择假设的设定,以及根据样本数据进行统计推断的过程。

常用的假设检验方法包括t检验、卡方检验和方差分析等。

四、相关分析相关分析研究两个或多个变量之间的关系。

医学统计基本知识点

医学统计基本知识点

1、医学统计学:以医学理论为指导,运用概率论和数学统计等数学的原理和方法,研究医学领域中资料的搜集、整理、分析和推断的一门学科。

2、同质性:同一总体或其样本中的观察单位在所取指标方面必须具有相同的性质或对观察单位有影响的因素相同或相近。

3、异质性(间杂性):与上述相反。

4、(个体)变异:同质事物之间的差别,包括两方面:1)同一个体在不同阶段的差异;2)其观察单位在个体之间显示的差别。

由于观察单位通常为观察个体,故变异亦称个体变异。

变异表现为定量的,可形成定量资料(血清总胆固醇);变异表现为定性的,可形成定性资料(病人性别);变异表现为等级的,可形成等级资料(心功能分级)。

5、总体:指按研究目的所确定的研究对象中所有观察单位某项指标取值的集合。

6、个体:构成总体的最基本的观察单位。

7、样本:指从研究总体中随机抽取具有代表性的部分观察单位某项指标取值的集合。

8、样本含量:样本所含个体量。

9、随机:是机会均等、无主观影响、目的是保证样本对总体的代表性、可靠性。

包括抽样随机(有相同的机会被抽到)、分组随机(有相同的机会被分到不同的组中)、顺序随机(有相同的机会先后接受处理)。

10、概率:是随机事件发生可能性大小的一个度量,常用P来表示,取值范围为0≤P≤1。

11、小概率事件:当某事件发生的概率小于或等于0.05时,统计学通常称该事件为小概率事件;其涵义为该事件发生的可能性很小,进而认为其在一次抽样中不可能发生,即为小概率原理。

11、频率:在n次随机试验中,有v次得到所要的结果,v≤n,频率=v/n。

12、抽样误差:由于个体变异的存在,抽样引起的样本统计量与总体参数间的差异。

13、总体参数:描述某总体特征的指标。

14、样本统计量:描述某样本特征的指标称为样本统计量。

15、参考值范围:是绝大多数正常人的某观察指标的范围。

16、正常人:不具有影响所测指标的因素或疾病的那类人群。

17、标准误:在统计理论上将样本统计量的标准差称统计量的标准误,样本均数的标准差óx称为均数的标准误,简称标准误。

医学统计学重点要点

医学统计学重点要点

医学统计学重点第一章绪论1.基本概念:总体:根据研究目的确定的性质相同或相近的研究对象的某个变量值的全体。

样本:从总体中随机抽取部分个体的某个变量值的集合.总体参数:刻画总体特征的指标,简称参数。

是固定不变的常数,一般未知。

统计量:刻画样本特征的指标,由样本观察值计算得到,不包含任何未知参数。

抽样误差:由随机抽样造成的样本统计量与相应的总体参数之间的差异。

频率:若事件A在n次独立重复试验中发生了m次,则称m为频数。

称m/n为事件A在n次试验中出现的频率或相对频率。

概率:频率所稳定的常数称为概率。

统计描述:选用合适统计指标(样本统计量)、统计图、统计表对数据的数量特征及其分布规律进行刻画和描述。

统计推断:包括参数估计和假设检验。

用样本统计指标(统计量)来推断总体相应指标(参数),称为参数估计.用样本差别或样本与总体差别推断总体之间是否可能存在差别,称为假设检验。

2.样本特点:足够的样本含量、可靠性、代表性。

3。

资料类型:(1)定量资料:又称计量资料、数值变量或尺度资料.是对观察对象测量指标的数值大小所得的资料,观察指标是定量的,表现为数值大小。

每个个体都能观察到一个观察指标的数值,有度量衡单位.(2)分类资料:包括无序分类资料(计数资料)和有序分类资料(等级资料)①计数资料:是将观察单位按某种属性或类别分组,清点各组观察单位的个数(频数),由各分组标志及其频数构成。

包括二分类资料和多分类资料。

二分类:将观察对象按两种对立的属性分类,两类间相互对立,互不相容.多分类:将观察对象按多种互斥的属性分类②等级资料:将观察单位按某种属性的不同程度、档次或等级顺序分组,清点各组观察单位的个数所得的资料。

4.统计工作基本步骤:统计设计、资料收集、资料整理、统计分析.第二章实验研究的三要素1.实验设计三要素:被试因素、受试对象、实验效应2。

误差分类:随机误差(抽样误差、随机测量误差)、系统误差、过失误差。

3。

实验设计的三个基本原则:对照原则、随机化分组原则、重复原则.4。

(完整版)医学统计学知识点汇总

(完整版)医学统计学知识点汇总

医学统计学总结绪论1、随机现象:在同一条件下进行试验,一次试验结果不能确定,而在一定数量的重复试验之后呈现统计规律的现象。

2、同质:统计学中对研究指标影响较大的,可以控制的主要因素。

3、变异:同质基础上各观察单位某变量值的差异。

数值变量:变量值是定量的,由此而构成的资料称为数值变量资料或计量资料,其数值是连续性的,称之为连续型变量。

变量无序分类变量:所分类别或属性之间无顺序和程度上的差异分类变量:定性变量有序分类变量:有顺序和程度上的差异4、总体:根据研究目的确定的同质研究对象中所有观察单位某变量值的集合。

可以分为有限总体和无限总体。

5、样本:是按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。

样本代表性的前提:同质总体,足够的观察单位数,随机抽样。

统计学中,描述样本特征的指标称为统计量,描述总体特征的指标称为参数。

6、概率:描述随机事件发生的可能性大小的一个度量。

若P(A)=1,则称A为必然事件;若P(A)=0,则称A为不可能事件;随机事件A的概率为0<P<1.小概率事件:若随机事件A的概率P≤α,则称随机事件A为小概率事件,其统计学意义为:小概率事件在一次随机试验中认为是不可能发生的。

统计描述1、频数分布有两个重要的特征:集中趋势和离散程度。

频数分布有对称分布和偏态分布之分。

后者是指频数分布不对称,集中趋势偏向一侧,如偏向数值小的一侧为正偏态分布,如偏向数值大的一侧为负偏态分布。

2、常用的集中趋势的描述指标有:均数,几何均数,中位数等。

均数:适用于正态或近似正态的分布的数值变量资料。

样本均数用x表示,总体均数用μ表示。

几何均数:适用于等比级数资料和对数呈正态分布的资料。

注意观察值中不能有零,一组观察值中不能同时有正值和负值。

中位数:适用于偏态分布资料以及频数分布的一端或两端无确切数据的资料。

3、常用的离散程度的描述指标有:全距,四分位数间距,方差,标准差,变异系数。

全距:任何资料,一组中最大值与最小值的差。

医学统计学知识点汇集总结

医学统计学知识点汇集总结

医学统计学知识点汇集总结一、医学统计学概述医学统计学是指运用统计学方法和技术研究医学数据,并分析、解释医学现象的学科。

对于医学研究和临床实践来说,统计学扮演了至关重要的角色,它可以帮助我们从数据中找出规律和关联,了解疾病的发病机制、评估治疗效果、预测疾病的发展趋势等。

医学统计学应用广泛,包括流行病学调查、临床试验、疾病筛查、医疗资源分配等方面。

二、基本统计概念1.总体与样本总体是指研究者希望了解的所有个体或事物的集合,而样本是从总体中抽出的一部分个体或事物。

在医学统计学中,我们往往针对总体的某些特征进行研究,但因为总体过于庞大或难以直接观察,所以需要通过样本来间接推断总体特征。

2.描述统计学与推断统计学描述统计学是通过对样本数据进行整理、汇总和展示,来描述总体的特征。

例如,用均值、标准差、百分比等指标来描述样本的中心趋势、离散程度和分布规律。

推断统计学则是通过对样本数据进行分析和推断,来进行总体参数估计、假设检验和区间估计等操作,从样本的情况推断总体的性质。

3.测量尺度在医学统计学中,常用的测量尺度有四种:名义尺度、序数尺度、区间尺度和比率尺度。

名义尺度用于对个体进行分类,如性别、种族等;序数尺度表达了个体之间的顺序关系,如疾病的分期、疼痛的程度等;区间尺度是指定了单位长度的测量尺度,其间隔是均匀的,但没有绝对的零点,如温度;比率尺度有绝对的零点,可以进行加减乘除运算,如年龄、身高、体重等。

4.受试者特征曲线(ROC曲线)受试者特征曲线(Receiver Operating Characteristic Curve,ROC曲线)常用于评价诊断试验的准确性。

横轴表示假阳性率(1-特异度),纵轴表示真阳性率(灵敏度),曲线下面积(AUC)为对角线以下的面积,用来评价诊断试验在不同判断标准下的表现。

三、数据的搜集与整理1.样本量计算样本量的大小直接关系到研究结果的可靠性和精度。

样本量计算需要根据预期效应大小、显著性水平、统计功效、数据分析方法等因素来确定。

医学统计学知识点

医学统计学知识点

第一章绪论1、统计学,是关于数据收集、整理、分析、表达和解释的普遍原理和方法。

2、研究对象:具有不确定性结果的事物。

3、统计学作用:能够透过偶然现象来探测其规律性,使研究结论具有科学性。

4、统计分析要点:正确选用统计分析方法,结合专业知识作出科学的结论。

5、医学统计学基本内容:统计设计、数据整理、统计描述、统计推断。

6、医学统计学中的基本概念(1) 同质与变异同质,指根据研究目的所确定的观察单位其性质应大致相同。

变异,指总体内的个体间存在的、绝对的差异。

统计学通过对变异的研究来探索事物。

(2) 变量与数据类型变量,是反映实验或观察对象生理、生化、解剖等特征的指标。

变量的观测值,称为数据分为三种类型:定量数据,也称计量资料,指对每个观察单位某个变量用测量或其他定量方法准确获得的定量结果。

(如身高、体重、血压、温度等)定性数据,也称计数资料,指将观察单位按某种属性分组计数的定性观察结果。

包括二分类、无序多分类。

(进一步分为二分类和多分类,如性别分为男和女,血型分为A、B、O、A B等)有序数据,也称半定量数据或等级资料,指将观察单位按某种属性的不同程度或次序分成等级后分组计数的观察结果,具有半定量性质。

统计方法的选用与数据类型有密切的关系。

(3)总体与样本总体,指根据研究目的确定的所有同质观察单位的全体,包括所有定义范围内的个体变量值。

样本,是从研究总体中随机抽取部分有代表性的观察单位,对变量进行观测得到的数据。

抽样,是从研究总体中随机抽取部分有代表性的观察单位。

参数,指描述总体特征的指标。

统计量,指描述样本特征的指标。

(4)误差误差,指观测值与真实值、统计量与参数之间的差别。

可分为三种:系统误差,也称统计偏倚,是某种必然因素所致,不是偶然机遇造成的,误差的大小通常恒定,具有明确的方向性。

随机测量误差,是偶然机遇所致,误差没有固定的大小和方向。

抽样误差,是抽样引起的统计量与参数间的差异。

抽样误差主要来源于个体的变异。

医学统计学 重点知识总结

医学统计学 重点知识总结

名词解释1、一类错误:拒绝了实际上成立的H。

,这类“弃真”的错误称为I型错误或第一类错误。

2、参数和统计量:这些总体的统计指标或特征值称为参数。

由样本所算出的统计指标或特征值称为统计量。

3、变异系数:亦称离散系数,为标准差与均数之比,常用百分数表示。

4、P值:即概率,反映某一事件发生的可能性大小。

5、检验效能:B称为检验效能或把握度,即两总体却有差别,按α水准能发现它们有差别的能力。

简答题1、描述数值变量资料(统计资料)的集中程度有哪些指标,有何运用条件?算数均数:单峰对称分布的资料几何均数:对数变换后的单峰对称的资料中位数:偏态分布,分布不明资料,有不确定值的资料。

百分位数:当样本含量较少时不宜用靠近俩端的百分位数来估计频数分布范围。

2、实验研究的基本要素和基本原则是什么?基本要素:处理因素、受试对象和实验效应。

基本原则:对照原则、随机化原则和重狂原则大题1、(1)变量资料(2)成组t检验对立性正态性方差齐性(3)H0ιμ1=μ2,新药与常规药物的疗效相同H1rμ1≠μ2,新药与常规药物的疗效不同α=0.05T=1.0195V=n1+n2-2=18(2)t<t0.05z18,p>0.05,按a=0.05水准,不拒绝H0,差别无统计学意义。

结论:t检验结果表明,故尚不能认为新药与常规药物的疗效相同。

2、(1)T=13×17/47=4.7(2)x2检验(3)X2>X2(0.05,1),p<0.05,按a=0.05水准,拒绝H0,接受HQ差别有统计学意义。

结论:x2检验结果表明,乙疗法比甲疗法好。

3、(1)成组设计两样本比较的秩和检验(2)实验组秩次:13、I15、8.5、14、15.5、15.5、17、18对照组秩次:1、2、4、3、5、6、8.5、7、10、11.5(3)H0:两组局部温热的疗效总体分布相同H1:两组局部温热的疗效总体分布不同4(1)Ho:P=O,即母体内时间与体重无线性相关关系H1:P≠0,即母体内时间与体重有线性相关关系a=0.05F>5.23,拒绝HO,接受HI,相关系数有统计学意义。

医学统计学知识点

医学统计学知识点

医学统计学知识点医学统计学是医学中的重要分支,通过对医学数据的收集、整理、分析和解释,帮助医生和研究人员更好地理解疾病的发病规律和治疗效果。

下面将介绍一些医学统计学中常见的知识点。

一、数据类型在医学统计学中,数据通常分为定性数据和定量数据两种类型。

定性数据是指具有类别属性的数据,如性别、疾病类型等;定量数据是指可进行加减乘除等运算的数据,如血压、体重等。

二、描述统计学描述统计学是对收集到的数据进行整理、汇总和描述的过程,包括频数分布、中心趋势和离散程度等指标。

通过描述统计学可以更直观地了解疾病的流行病学特征。

三、推断统计学推断统计学是通过对小样本数据进行推断,得出对总体的推断结论。

常见的方法包括假设检验、置信区间估计和方差分析等。

推断统计学在临床研究和药物试验中有重要应用。

四、生存分析生存分析是研究事件发生时间和生存时间的统计方法,常用于临床预后评估和生存曲线绘制。

生存分析可以帮助医生评估疾病的进展速度和治疗效果。

五、因子分析因子分析是研究多个变量之间的关联性和内在结构的统计方法,常用于疾病危险因素的筛选和分类。

通过因子分析可以揭示疾病的复杂发病机制和影响因素。

六、线性回归线性回归是研究两个或多个变量之间线性关系的统计方法,可用于分析疾病风险因素和疗效预测。

线性回归可以帮助医生更好地控制干预措施,提高治疗效果。

综上所述,医学统计学是医学研究和临床实践中不可或缺的工具,掌握相关知识点可以更好地帮助医生理解和解释医学数据,促进疾病防控和治疗水平的提高。

希望本文介绍的医学统计学知识点能够为医学工作者提供参考和帮助。

感谢阅读!。

医学统计知识点

医学统计知识点

医学统计学知识点整理第一节统计学中基本概念一、同质与变异同质:统计研究中,给观察单位规定一些相同的因素情况。

如儿童的生长发育,规定同性别、同年龄、健康的儿童即为同质的儿童。

变异:同质的基础上个体间的差异。

“同质”是相对的,是客观事物在特定条件下的相对一致性,而“变异”则是绝对的二、总体与样本1、总体:是根据研究目的所确定的,同质观察对象(个体)所构成的全体。

2、样本:是从总体中随机抽取的部分观察单位变量值的集合。

三、参数与统计量总体参数:根据总体个体值统计计算出来的描述总体的特征量。

用希腊字母表示。

口. S . n样本统计量:根据样本个体值统计计算出来的描述样本的特征量。

用拉丁字母表示总体参数一般是不知道的,抽样研究的目的就是用样本统计量来推断总体参数,包括区间估计和假设检验四、误差:实测值与真值之差★1.随机误差:是一类不恒定的、随机变化的误差,由多种尚无法控制的因素引起。

随机测量误差、抽样误差。

2.系统误差:是一类恒定不变或遵循一定变化规律的误差,其产生原因往往是可知的或可能掌握的3.非系统误差:过失误差,可以避免或清除。

五、概率是用来描述事件发生可能性大小的一个量值,常用P 表示。

概率取值0~1。

统计上一般将P V或P V的事件称为小概率事件,表示其发生的概率很小,可以认为在一次抽样中不会发生。

第二节统计资料的类型★ 变量:确定总体之后,研究者应对每个观察单位的某项特征进行观察或测量,这种特征能表现观察单位的变异性,称为变量。

一、数值变量资料又称为计量资料、定量资料:观测每个观察单位某项指标的大小而获得的资料。

表现为数值大小,带有度、量、衡单位。

如身高(cm)、体重(kg)、血红蛋白(g)等。

二、无序分类变量资料又称为定性资料或计数资料:将观察对象按观察对象的某种类别或属性进行分组计数,分组汇总各组观察单位后得到的资料。

分类:二分类:+-;有效,无效;多分类:ABO血型系统特点:没有度量衡单位,多为间断性资料【例题单选】某地A、B、O AB血型人数分布的数据资料是()A.定量资料B.计量资料C. 计数资料D. 等级资料【答案】C【解析】ABO血型系统人数分布资料属于无序分类变量资料,又称为计数资料。

医学统计学重点知识总结

医学统计学重点知识总结

医学统计学第一章 绪言研究设计、资料分析、结论定量资料:以定量值表达每个观察单位的某项观察指标,如血脂心率等。

定性资料:以定性方式表达每个观察单位的某项观察指标,如血型性别等。

等级资料:以等级方式表达每个观察单位的某项观察指标,如疗效分级等。

总体:是指按研究目的所确定的研究对象中所有观察单位某项指标取值的集合。

样本:是指从研究总体中随机抽取具有代表性的部分观察单位某项指标取值的集合。

(以上均可能考名解)描述某总体特征的指标称为总体参数,简称参数;描述某样本特征的指标称为样本统计量,简称统计量。

概率是随机事件发生可能性大小的一个度量,概率小于或等于0.05时,统计学通常称该事件为小概率事件,其涵义为该事件发生的可能性很小,进而认为其在一次抽样中不可能发生,此即为小概率原理。

定量资料的统计指标(大题):算术均数,几何均数,中位数和百分位数。

同质性与异质性:同质是指观察单位具有相同的性质,是构成研究总体的必备条件;异质性是指性质不同,研究内容不同,对同质性的要求不同。

第二章 个体变异与变量分布变异(名解):是以具有同质性的观察单位为载体,某项观察指标在观察单位之间显示的差别。

【在同质的基础上各观察单位(或个体)之间的差异】 正偏态与负偏态【2.3节为重点,尤其是统计指标与图的关系】几何均数应用于比值数据,中位数适用于偏态分布离散趋势指标(重点简答):全距,四分位数间距,方差,标准差和变异系数,其中常用的是标准差和变异系数。

变异系数(名解):亦称离散系数,是标准差s 与均数x 之比,即XS CV X100%,变异系数常用于比较度量衡单位不同的两组或多组资料的变异度、比较均数相差悬殊的两组或多组资料的变异度。

如何正确使用相对数(选择或简答):1,计算相对数的分母不宜过小。

2,分析时不能以构成比代替率。

3,对观察单位数不等的几个率,不能直接相加求其平均率(或称总率)。

4,计算率时要注意资料的同质性,对比分析时应注意资料的可比性。

医学统计学知识点

医学统计学知识点

医学统计学知识点医学统计学是一门应用统计学方法和原理,研究医学领域中数据的收集、整理、分析和解释的科学。

它为医学研究、临床实践和公共卫生决策提供了重要的工具和方法。

下面让我们来了解一些关键的医学统计学知识点。

一、数据类型在医学研究中,我们会遇到不同类型的数据。

主要包括:1、定量数据:也称为数值数据,是可以用数字进行测量和记录的数据,如身高、体重、血压等。

定量数据又可分为连续型数据(可以在一定区间内取任意值,如身高)和离散型数据(只能取整数,如白细胞计数)。

2、定性数据:也称分类数据,是按照某种属性或类别进行划分的数据,如性别(男、女)、疾病的诊断(是、否)等。

定性数据又分为无序分类数据(各类别之间没有顺序关系,如血型)和有序分类数据(各类别之间有顺序关系,如疾病的严重程度分为轻、中、重)。

二、数据的收集为了获得准确和有用的数据,我们需要遵循科学的方法进行收集。

1、抽样方法:包括简单随机抽样、系统抽样、分层抽样和整群抽样等。

简单随机抽样是从总体中随机抽取个体;系统抽样是按照一定的间隔抽取样本;分层抽样是将总体按照某些特征分层,然后从各层中抽样;整群抽样则是以群体为单位进行抽样。

2、样本量的确定:样本量的大小取决于研究的目的、总体的变异程度、研究的精度和检验效能等因素。

一般来说,样本量越大,结果的准确性越高,但研究成本也会增加。

三、数据的整理收集到数据后,需要对其进行整理,以便后续的分析。

1、频数分布:将数据按照不同的类别或区间进行分组,计算每组的频数(出现的次数)和频率(频数与总例数的比值),可以了解数据的分布特征。

2、统计图表:常用的图表有直方图、折线图、饼图等,用于直观地展示数据的分布和趋势。

四、描述性统计描述性统计是对数据的基本特征进行概括和描述。

1、集中趋势的描述:包括算术均数、中位数和众数。

算术均数适用于正态分布的数据;中位数适用于偏态分布或分布不明的数据;众数是出现次数最多的数据值。

2、离散程度的描述:常用的指标有标准差、方差和极差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

医学统计学知识点整理第一节统计学中基本概念一、同质与变异同质:统计研究中,给观察单位规定一些相同的因素情况。

如儿童的生长发育,规定同性别、同年龄、健康的儿童即为同质的儿童。

变异:同质的基础上个体间的差异。

“同质”是相对的,是客观事物在特定条件下的相对一致性,而“变异”则是绝对的二、总体与样本1、总体:是根据研究目的所确定的,同质观察对象(个体)所构成的全体。

2、样本:是从总体中随机抽取的部分观察单位变量值的集合。

三、参数与统计量总体参数:根据总体个体值统计计算出来的描述总体的特征量。

用希腊字母表示。

μ.δ.π样本统计量:根据样本个体值统计计算出来的描述样本的特征量。

用拉丁字母表示。

X.S.p总体参数一般是不知道的,抽样研究的目的就是用样本统计量来推断总体参数,包括区间估计和假设检验四、误差:实测值与真值之差★1.随机误差:是一类不恒定的、随机变化的误差,由多种尚无法控制的因素引起。

随机测量误差、抽样误差。

2.系统误差:是一类恒定不变或遵循一定变化规律的误差,其产生原因往往是可知的或可能掌握的。

3.非系统误差:过失误差,可以避免或清除。

五、概率是用来描述事件发生可能性大小的一个量值,常用P表示。

概率取值0~1。

统计上一般将P≤0.05或P≤0.01的事件称为小概率事件,表示其发生的概率很小,可以认为在一次抽样中不会发生。

第二节统计资料的类型★变量:确定总体之后,研究者应对每个观察单位的某项特征进行观察或测量,这种特征能表现观察单位的变异性,称为变量。

一、数值变量资料又称为计量资料、定量资料:观测每个观察单位某项指标的大小而获得的资料。

表现为数值大小,带有度、量、衡单位。

如身高(cm)、体重(kg)、血红蛋白(g)等。

二、无序分类变量资料又称为定性资料或计数资料:将观察对象按观察对象的某种类别或属性进行分组计数,分组汇总各组观察单位后得到的资料。

分类:二分类:+ -;有效,无效;多分类:ABO血型系统特点:没有度量衡单位,多为间断性资料【例题单选】某地A、B、O、AB血型人数分布的数据资料是( )A.定量资料B.计量资料C.计数资料D.等级资料【答案】C【解析】ABO血型系统人数分布资料属于无序分类变量资料,又称为计数资料。

因为是按照变量的血型分类,血型表现为互不相容的属性。

所以本题选C。

【例题单选】测量正常人的脉搏数所得的变量是()A.二分类变量B.多分类变量C.定量变量D.定性变量【答案】C【解析】脉搏数有数值大小,有度量衡,所以这个资料属于定量资料。

本题选C。

三、有序分类变量资料半定量资料或等级资料:将观察对象按观察对象的某种属性的不同程度分成等级后分组计数,分组汇总各组观察单位后得到的资料。

特点:每一个观察单位没有确切值,各组之间有性质上的差别或程度上的不同举例:- + ++ +++第三节统计工作的基本步骤★1.统计设计2.收集资料3.整理资料4.分析资料:统计描述:是利用统计指标、统计表和统计图相结合来描述样本资料的数量特征及分布规律。

统计推断:是使用样本信息来推断总体特征。

统计推断包括区间估计和假设检验。

第四节统计表与统计图★一、统计表统计表的基本结构与要求标题:高度概括表的主要内容,时间、地点、研究内容,位于表的上方,居中摆放,左侧加表的序号。

标目:横标目和纵标目。

线条:通常采用三线表和四线表的形式。

没有竖线或斜线。

数字:表内数字一律用阿拉伯数字。

同一指标,小数位数应一致,位次对齐。

无数字用“—”表示。

暂缺用“…”表示。

“0”为确切值。

备注:位于表的下面,通常是对表内数字的注解和说明,必要时可以用“*”等标出。

一张统计表的备注不宜太多。

二、制表原则重点突出,一个表一个中心内容主谓分明,层次清楚简单明了,一切文字数字线条尽量从简【例题单选】统计表内不列的项是( ) (2010.7)A.标目B.线条C.数字D.备注【答案】D【解析】统计表内备注位于表的下面,不列在统计表内,所以本题选择D。

三、统计图1.(1)标题(2)标目(3)刻度(4)图例:不同颜色或者不同线条表示,需要说明。

2.常用统计图的适用条件与要求(1)条图:适用于比较、分析独立的或离散变量的多个组或多个类别的统计指标。

(2)圆图和百分比条图:构成比的比较(3)线图:描述某统计量随另一连续性数值变量变化而变化的趋势。

(4)直方图:数值变量的频数分布。

(5)散点图:用点的密集程度和趋势描述2个变量间的数量关系(6)箱式图:多组数据分布的比较(7)统计地图:用不同的颜色和花纹表示统计量的在地理分布上的变化,适宜描述研究指标的地理分布。

【例题填空】描述某地十年间结核病死亡率的变化趋势宜绘制_________图。

【答案】线图数值变量资料的统计分析第一节数值变量资料的统计描述一、频数分布表★1.编制步骤(1)计算全距(2)确定组距(3)划分组段(3)统计频数(4)确定频率与累计频率2.频数分布表的主要用途:(1)揭示资料的分布类型(2)观察资料的集中趋势和离散趋势(3)便于发现某些特大或特小离群值(4)便于进一步计算统计指标和作统计处理二、集中趋势指标★数值变量资料的集中趋势指标是用平均数来描述的,代表一组同质变量值的平均水平。

常用的有算术均数、几何均数和中位数。

1.算数均数适用于对称分布(正态分布)或者近似对称分布的资料。

习惯上以μ表示总体均数,以表示样本均数。

2.几何均数数值变量呈倍数关系或者呈对数正态分布,如抗体效价及抗体滴度,某些传染病的潜伏期、细菌计数等,宜用几何均数(G)。

几何均数常用于等比资料或对数正态分布资料。

3.中位数是指将一组变量值从小到大排列,位次居中的观察值就是中位数。

适用条件:变量值中出现个别特别大或特别小的数值;偏态分布资料;数值一端或两端无确定数值;资料类型不明。

4.百分位数是一种位置指标,以P x表示,把一组数据从小到大排列后,理论上有x%的变量比P x小,有(100-x)% 的变量值比P x大。

【例题单选】描述正态分布资料集中趋势的指标是()A.中位数B.几何均数C.算术平均数D.标准差【答案】C【解析】算数均数适用于对称分布或者近似对称分布的资料。

几何均数常用于等比资料或对数正态分布资料。

中位数适用条件:变量值中出现个别特别大或特别小的数值;偏态分布资料;数值一端或两端无确定数值;资料类型不明。

标准差描述数据的离散趋势指标。

所以本题选择C。

三、离散趋势指标★1.极差和四分位数间距极差:简记为R,亦称全距,即一组变量值中最大值与最小值之差,反应变量值的离散范围。

四分位数间距Q:一般和中位数一起描述偏态分布资料的分布离散趋势。

3.方差和标准差:均离散情况。

标准差是方差的正平方根。

用途:(1)用于表示正态或近似正态分布资料的离散度;(2)反映均数的代表性标准差越小,数据离散程度越小,均数的代表性越好。

(3)确定医学参考值范围95%医学参考值范围 3.变异系数(CV )适用条件:①观察指标单位不同,如身高、体重 ②同单位资料,但均数相差悬殊四、正态分布与参考值范围的制定★(一)正态分布1.概念:也称高斯分布,是医学和生物学最常见、最重要的一种连续性分布。

2.特征:(1)在直角坐标的横轴上方呈钟型曲线,两端与X 轴永不相交,且以X=μ为对称轴左右完全对称(2)在x=μ处,f(X)取最大值 (3)正态分布有两个参数,即均数μ和标准差σ。

均数μ描述了正态分布的集中趋势位置,若固定σ,改变μ值,曲线沿着X 轴平行移动,其形状不变,故μ称为位置参数。

标准差σ描述了正态分布的离散程度,若固定μ,σ越小,曲线越陡峭;反之,σ越大,曲线越平坦.故σ称为形状参数或离散度参数。

(4)正态曲线下的面积分布有一定的规律。

4.正态曲线下面积的分布规律(二)医学参考值范围的制定医学参考值:是指绝大多数正常人的人体形态、功能和代谢产物等各种生理及生化指标常数,也称正常值。

sx 96.1第二节 数值变量资料的统计推断★一、 均数的抽样误差与标准误抽样误差:由于个体变异和抽样造成的样本统计量与总体参数和样本统计量之间的差异。

均数的抽样误差:由于抽样造成的样本均数与总体均数和样本均数间的差异。

标准误:样本均数的标准差,用来表示。

n x σσ= (σ未知) 二、t 分布t 分布曲线以0为中心,t 分布为一簇单峰分布曲线,υ不同,曲线形状不同t 分布与υ有关,υ越小, t 值越分散,t 分布的峰部越低,而两侧尾部翘得越高 t 界值表中一侧尾部面积称单侧概率 (α) 两侧尾部面积之和称双侧概率(α/2) 如:t0.05/2,9=2.262 , t0.05,9=1.833在相同自由度时,〡t 〡 值增大,α减小 在相同α 时,单尾α 对应的t 值比双尾α 的小三、总体均数的区间估计统计描述 n SS x =1,-=-=-=n v S x n S x t x μμ统计分析参数估计---用样本指标估计总体指标统计推断假设检验总体均数置信区间(可信区间)的计算区间估计:是按预先给定的概率(1-α)所确定的包含未知总体参数的一个范围。

(一)小样本或σ 未知----按 t 分布(二)1.已知σ ----- u分布2.σ 未知,但大样本(n>60 )----按u 分布四、假设检验的意义和基本步骤★假设检验:先对总体的参数或分布做出某种假设,再用适当的统计方法根据样本对总体提供的信息,推断此假设应当拒绝或不拒绝。

基本步骤:1、建立检验假设,确定检验水准(无效假设)μ=μ0(1)H0:(2)H(备择假设)μ≠μ0,μ>μ0 或μ<μ01:(3)确定检验水准α=0.052.选定检验方法,计算检验统计量3.确定P值,作出推断结论第三节均数的t检验与u检验★t 检验应用条件:样本与总体/两样本均数的比较①当n<60时,要求样本取自正态分布的总体,总体标准差未知;②两小样本均数比较时,要求两样本总体方差相等(σ12= σ22)。

③n含量较大,u分布一、单样本t检验适用于样本均数代表的未知总体均数μ和已知总体均数μ的比较。

ν=n-1二、配对样本t检验适用于配对设计的计量资料,常见的配对设计主要有以下情形:①自身比较:同一受试对象处理前后。

②同一受试对象分别接受两种不同的处理。

③将条件近似的观察对象两两配成对子,对子中的两个个体分别给予不同的处理。

前提条件:d变量服从正态分布【例题单选】作配对样本t检验的前提条件是( )A.两组数据独立B.两组数据不独立C.两组数据的差值服从正态分布D.两组数据的差值不服从正态分布【答案】C【解析】配对样本t检验样本可以是自身配对,也可以异体配对,所以数据可以独立,也可以不独立。

它处理的是两样本的差值,所以差值要服从正态分布才可以应用配对样本t检验,所以本题答案选C。

相关文档
最新文档