结构化学-染料分子颜色与结构的研究

合集下载

第2章 染料的颜色与结构的关系

第2章 染料的颜色与结构的关系
(CH3)2N N O
分子的左边是供电子基,右边是吸电子基,激发时电子发生转移。变成:
(CH3)2N N O
激发态在极性溶剂中比较稳定,因而产生深色效应。 同理,染料在纤维上的颜色也会因纤维极性不同而不同,一般来说,同一染料上 染不同的纤维时,在极性高的纤维上呈深色效应,在极性低的纤维上呈浅色效应。如 阳离子染料在涤纶上得色较在腈纶上浅。
返回第2章目录
第二章 染料的颜色与结构的关系
第四节 外界条件对吸收光谱的影响
二、溶液的浓度的影响 当染料溶液浓度很小时,染料在溶液中以单分子状态存在。如果加大溶液的浓 度,会使溶质分子聚集成为二聚体或多聚体,一般情况下,聚集态的分子π电子流动 性较低,会产生浅色效应。 三、温度的影响 溶液中溶质的聚集倾向一般随温度的升高而降低,因此,提高温度会产生深色 效应。某些有机化合物能随温度变化改变其分子结构,具有热变色性。例如:热敏变 色染料。 四、pH值的影响
第一节 光和色的基本概念
一、光的概念
可见光:波长范围大约在380~780nm的电磁波
电磁波:无线电波 60000
混色光:太阳光
红外线 780
可见光 380
紫外线 100
X射线 0.1
γ射线 nm
红外线
可 见 光
紫外线
返回第2章目录
第二章 染料的颜色与结构的关系
第一节 光和色的基本概念 不同波长的可见光的颜色及其互补色关系表: 波长 nm 380~435 435~480 480~490 490~500 500~560 560~580 580~595 595~605 605~780 光谱色 紫 蓝 蓝绿 绿蓝 绿 黄绿 黄 橙 红 互补色 黄绿 黄 橙 红 红紫 紫 蓝 蓝绿 绿蓝

染料的颜色与结构及功能染料简介解读

染料的颜色与结构及功能染料简介解读

第 1 章染料的颜色与结构及功能染料简介学习目标 :①以量子概念,,分子激发理论阐述染料对光的选择吸收的原因。

②掌握染料颜色与染料分子结构的关系以及外界因素的影响。

③理解功能染料的概念,并熟悉荧光染料、夜光染料及变色染料的颜色产生机理。

④了解荧光染料、夜光染料及变色染料在纺织染整方面的应用,思考染料发展方向。

导言:早在 19 世纪 60 年代 W.H.Perkin 发明合成染料以后,人们对染料的颜色和结构的关系进行了深入的研究,并提出了各种理论。

量子力学的发展使人们对物质的结构的认识有了一个新的突破,此后人们开始从量子力学的角度来对染料的颜色和结构的关系进行研究。

在早期的颜色理论中,发色团及助色团理论的影响很大。

染料的颜色除了与染料本身结构有关外,还受到外界条件的影响。

随着科技的发展,功能染料在当今的社会发展中起到了越来越重要的作用。

荧光染料、夜光染料及变色染料在纺织染整方面的应用也得到很重要的发展。

1.1 光与色颜色是光线刺激了眼睛而在大脑中反映出来的一种主观感受。

它需要考虑到物理学和生理学两方面的因素。

光具有波粒二象性。

很早以前,麦克斯韦就提出了光具有电磁波的特性。

它由相互垂直的电场和磁场组成,其振幅以波动方式分别随时间和距离而变化。

1905 年,普朗克和爱因斯坦建立了一种与电磁辐射模型显然不同的微粒子理论。

这种理论把光看成是一束不连续的能量微粒或光子流,但它按麦克斯韦波动理论的波阵面速度传播。

现在我们知道,光既是一种波又是一种微粒,它具有波粒二象性。

光是一种电磁波,波长不同的光会使光的性质不同,从而引起不同的色觉。

波长为400nm-800nm的光按适当比例的混合后,照射到眼睛的视网膜上呈现的是白色。

使一束这样的混合光通过一个适当的棱镜或光栅,我们会看到连续的有色光谱,其色调主要以此为红、橙、黄、绿、蓝和紫。

这些有色光的波长从红到紫以依次递减。

因此,低能量的光子产生红色的感觉,高能量的光子产生紫色的感觉。

第03章 染料的颜色和结构

第03章 染料的颜色和结构

435nm
580nm
560nm 500nm
480nm 490nm
4
二、吸收定律
Lambert-Beer定律:
l
I0
入射光 C
Iλ 透射光

在稀溶液(理想溶液)中,若不计溶质分子之间 的和溶质与溶剂分子之间的相互作用,透射光强 Iλ与入射光强I0 之间成自然对数关系。 Iλ=I0 ℮ -k'c l (1)——这是光谱学的基本定律之一。
吸收能级ΔE——等于染料吸收带宽的曲线积分(激化度)。 吸收带的宽度和颜色的鲜艳度有关。谱带越宽,颜色越灰暗。
7
1、 A-λ曲线:
A
1.20
0.90 0.60 0.30
λmax=530nm
0.00 380
480
580
680
780 λ(nm)
活性红X-3B的吸光度曲线
(l=1cm,c=50mg∕L)
1、稠环数越多,颜色越深越浓; 2、芳烃的直向稠合比角向稠合易于产生深浓色效应。 3、交替键越长,颜色越深越浓;
二、判断取代基与颜色的关系
1、供电子基一般产生深色和浓色效应; 如-NH2、-NHR、-NH2、-OH、-OR等 2、吸电子基一般产生深色和浓色效应; 如-NO2、-X、-CN、>C=O、—SO3H等 3、供吸电子基的协同作用,使深浓色效应增强,形成氢键,则更强; 4、隔离基可构成混色效应。 如均三嗪基、酰胺基、间次苯基、亚甲基等。
分子轨道理论着眼于处理电子在整个分子中的运动状态和能量的关系, 根据量子力学原理,由薛定谔(Schrö dionger)方程式算出可能出现
的分子轨道,再由各分子轨道能级间隔来确定吸收的量子能级,从而 与λ形成定量关系。

染料化学 第03章 颜色结构

染料化学 第03章 颜色结构

《染料化学》原始教程第3章染料的颜色和结构第3章染料颜色和结构(Color and Constitution of Dyes)本章分4个小节进行介绍:§3.1 吸光现象和吸收光谱曲线§3.2 吸收光谱的量子概念§3.3 染料发色的两种理论§3.4 染料颜色与结构的关系通过本章学习,要掌握以下内容:1、侧重掌握染料发色的价键理论,即共振理论。

它可以定性地解释发色团与助色团在染料结构中与颜色的关系,即描述它们是如何产生深色效应、浓色效应、浅色效应、淡色效应的,以及这些效应和最大吸收浓长λmax和最大摩尔吸光系数εmax 之间的关系。

2、了解染料发色的分子轨道理论。

它试图定量描述染料发色机制,由于染料发色本质的复杂性和多元性,尚难以通过理论计算求出染料的λmax,但是它对进一步解释结构与颜色的关系提供了强大的理论基础。

3、掌握染料颜色与介质性质的关系。

一般来说,当激化态染料分子为极性共振结构时,极性溶剂将产生深色效应;当基态染料分子显极性结构时,非极性溶剂将产生深色效应。

上述结论,反之亦然。

4、尝试由染料结构与颜色的关系解释一些官能团,如吸电子基团、供电子基团、隔离基团在染料结构设计中的运用,判断染料结构与其颜色的关系,比较不同结构的染料其颜色的深浅和浓淡取向等。

5、物质的吸收特性和吸光曲线,由染料的吸光曲线分析染料。

《染料化学》原始教程 第3章 染料的颜色和结构 §3.1 吸光现象和吸收光谱曲线一、概念述语光——可产生色感的电磁波。

习惯上称产生色感的电磁波谓之可见“光”,如红光、紫光等,不可见的电磁波谓之辐射“线”,如红外线IR 、紫外线UV 等。

色——视觉对可见光的感受。

物质对光的选择吸收便显现了物质的颜色。

发色团——结构中能吸收可见光波的吸电子基团。

它以提升染料的λmax 为主导。

助色团——接在π共轭体系上的供电子基团。

它以提升染料的εmax 为主导。

第三章 染料的颜色与结构-PPT精品文档

第三章  染料的颜色与结构-PPT精品文档
a称为吸光系数。浓度如以摩· 升-1为单位,则a改写为 ,称为摩尔吸光系数 (以前称为克分子消光系数)。它 是溶质对某一单色光吸收强度特性的衡量。 T=I/I0, lgT-1称为吸光度,以A代表 (也称光密度,
以D代表)
A=lgI/I0 浓度c以摩· 升-1为单位,吸光度A和摩尔
吸光系数的关系为: A=cl
染料激化态和基态之间的能级间隔E必须与此相适
应。这个能级间隔的大小虽然包含着振动能量和转动
能量的变化,但主要是由价电子激化所需的能量决定
的。就有机化合物而言,对可见光吸收的能级间隔是 由它们分子中电子运动状态所决定的。 键电子所处 的能级比较低, 激化的能级间隔较大,所需能量属 于远紫外线的能量范围。>C=O、-N=N-等氧、
吸收波长为: =hc/E
由上可知,激化态和基态的能 级间隔越小,吸收光波的频率 越低,而吸收波长则与此成反 比。作为染料,它们的主要吸 收波长应在380-780nm波段 范围内。染料激化态和基态之 间的能级间隔E必须与此相
适应。
v '= 2 v '= 1 v '= 0
E
v "= 2 v "= 1 v '= 0ຫໍສະໝຸດ 第二节 吸收现象和吸收光谱曲线
一、颜色和吸收
染料的颜色是它们所吸收的光波颜色(光谱色)的补 色,是它们对光的吸收特性在人们视觉上产生的反映。 染料分子的颜色和结构的关系,实质上就是染料分子 对光的吸收特性和它们的结构之间的关系。
二、吸收定律 染料的理想溶液对单色光(单色光是波长间隔很小的 光,严格地说是由单一波长的光波组成的光)的吸收强 度和溶液浓度、液层厚度间的关系服从朗伯特-比尔 (Lambert-Beer)定律。

第三章 染料的颜色和结构

第三章 染料的颜色和结构
第三章 染料的颜色和结构
§3.1 引言 §3.2 吸收现象与吸收光谱曲线 §3.3 吸收光谱曲线的量子概念 §3.4 染料颜色与结构的关系 §3.5 外界条件对吸收光谱的影响
本章教学要求
1.了解染料对光吸收现象的关系 2.了解光谱色的性质,吸收光谱曲线的量子 概念。 3.掌握染料分子结构与染料颜色之间的关系 (重点) 4.了解外界条件对吸收光谱的影响。
注: 重氮组分 引入吸电 子基有利 于深色效 应.
② 在染料分子的共轭系统中引入取代基之间能形成 氢键,有利于深色效应。
三、染料分子的吸收各向异性和空间阻碍
染料分子对光的吸收是有方向性的,使染料显示不 同颜色。例如:
λmax= 603 nm
λmax= 420 nm λmax= 623 nm
结论 染料的结构与颜色的关系:
普通发色体的颜色,一般并不很深,对各类纤维也不一定有亲和力, 但当另外引入一些基团时,会使整个分子的颜色加深、加浓,并且对纤维 有 亲 和 力 , 维 特 把 这 些 基 团 称 为 助 色 团 。 主 要 的 助 色 团 有 : —OH 、 — OR、—NHR、—NR2、—Cl、—Br等。
此外,像—SO3Na、—COONa等较特殊的助色团,它们对颜色无显 著的影响,但可使染料具有水溶性,并使染料在水溶液里带负电荷,从而 对某些纤维产生亲和力。


5955n8m0nm 黄
480nm
蓝 绿-蓝
580nm 黄-绿 绿 -绿 490nm
560nm
500nm
4. 颜色的拼配 三原色: 红 黄 蓝 红 黄
二次色: 橙
绿紫 橙
三次色:

黄灰 蓝灰 红灰
绿

颜色拼配举例

化学染料分子的结构与性质研究

化学染料分子的结构与性质研究

化学染料分子的结构与性质研究化学染料是一种很重要的有机化合物,广泛应用于纺织、印刷、油墨、涂料、塑料等领域。

染料的染色性能取决于它们的分子结构和化学性质。

因此,对染料分子的结构和性质进行深入研究,对于开发新的染料具有重要的意义。

一、化学染料的分类化学染料按照其化学结构和染色机理分类,可以分为颜料、酸性染料、碱性染料、中性染料等。

颜料是一种不溶于水的染料,通常用作油漆、涂料、橡胶、纸张等领域的颜色着色剂。

酸性染料是一种在酸性条件下具有染色能力的染料。

例如,苯胺类染料在硫酸或盐酸中可以与织物中的亲电性基团进行反应,从而染上颜色。

碱性染料是一种在碱性条件下具有染色能力的染料。

例如,天然黄色染料咖啡因在碱性条件下可以与棉、麻、丝等纤维结合形成染色颜料。

中性染料是不受酸碱度影响,适用于多种纤维的染料。

举例来说,嗜酸性染料是一种中性染料,它具有良好的染色性能,可与纤维中的各种官能团结合,形成稳定的染色化合物。

二、染料分子结构研究化学染料的染色效果随着其分子结构的不同而有所不同。

以下是常见的染料分子结构类型:1.芳环染料芳环染料是一种由苯环和其它芳环组成的有机化合物。

可分为单芳环染料和多芳环染料。

例如,吡啶类染料、菲类染料、蒽类染料等。

2.引体染料引体染料是一种由芳环和侧链组成的染料。

典型的例子是苯并咔唑类染料。

由于其侧链的引入,在相同的条件下,引体染料通常比芳环染料具有更好的染色效果。

3.偶氮染料偶氮染料是一种含有偶氮基(-N=N-)的有机化合物。

它可以通过不同的取代基组成不同的染料颜色,例如:黄色、橙色、红色、紫色、蓝色、绿色等。

在实际应用中,由于偶氮基的染色效果强烈、色牢度高、稳定性好等特点,因此被广泛地应用于纺织、油墨、涂料、塑料等领域。

三、染料分子性质研究除了染料分子的结构,其性质也是影响其染色表现的重要因素。

针对化学染料的性质,我们可以从以下几个方面进行研究:1.光学性质化学染料的颜色来自于其吸收光谱。

染料化学第2章(1)

染料化学第2章(1)

第二节
光和色之间的关系
�吸收 : 染料的作用 �反射 : 眼睛所看到的
第二节
光和色之间的关系
当太阳光或其他白光照射在物体上,还可以看到 以下几种情况: 透明物体的颜 光线全部透过物体;透明物体的颜 � 物体呈透明——光线全部透过物体; 色, 是由它透过的色光决定的; 色,是由它透过的色光决定的; 没有吸收,全部反射 ;不透明物 光线没有吸收,全部反射 � 物体呈白色——光线 体的颜色, 是由它反射的色光决定; 体的颜色,是由它反射的色光决定; � 物体呈黑色——光线全部吸收,没有反射 ; 部分 被物体吸收; 各波段的光平均地部分 部分被物体吸收; � 物体呈灰色——各波段的光平均地
第一节
发色理论
2、结论 � 近代发色理论认为,一个有机化合物之所以具有 颜色,是染料对于光选择吸收的结果,染料的颜 色就是它所吸收的那部分波长光的颜色的补色。 380-780nm � 作为染料,它们的主要吸收波长应该在 作为染料,它们的主要吸收波长应该在380-780nm 范围内。染料激发态和基态之间的能级间隔∆E 必 须与此相对应, 说明分子对光的吸收是有选择性 须与此相对应,说明分子对光的吸收是有选择性 这从本质上解释了物质选择性吸收可见光 产 的。 的。这从本质上解释了物质选择性吸收可见光 这从本质上解释了物质选择性吸收可见光产 的原因 。 生颜色 生颜色的原因 的原因。
第一节
发色理论
二、近代发色理论 1、分子能级和吸收光谱 � 根据量子理论,原子和分子的能量是量子化的。 电子相对于原子核 的运动,以 物质分子中,存在电子相对于原子核 电子相对于原子核的运动,以 � 物质分子中,存在 及原子核间的相对振动和整个分子所存在的一定 的转动。各运动状态都有相应的能量,分别为电 子能级、振动能级、转动能级。Ee>>Ev>>Er � 各能级都是量子化的,分子能量为各运动状态能 量之和:E= Ee+Ev+Er

染料的颜色与结构的关系

染料的颜色与结构的关系
A=lgI0/I =cl 式中:A为光密度,I0为入射光强度,I为透射光 强度,c为溶液浓度,l为光程,为摩尔吸光系数。
求:染色上染百分率、上染速率,研究染色动力学
精品课件
三、吸收光谱曲线
???由染料的吸收光谱曲线,可以得到一些重要的分析数据
精品课件
最大吸收波长λmax——曲线的峰值,它决定了染
精品课件
精品课件
最大共轭效应只有在分子的整个共轭 系统中的原子和原子团处在同一平面上时,才 能显示出来;
因为这样,整个共轭系统中各π电子 云,才能得到最大限度的叠合。
如果分子平面受到程度不等的破坏, 则π电子云叠合程度就会降低,π电子离域程 度低,使激化能增高,吸收光谱向短波方向移 动,产生浅色效应,同时吸光系数也往往降低。
精品课件
色环图
精品课件
K/S
16
14
12
10
8
6
4
2
0
400
450
500
550
600
650
700
波长
几种不同颜色染料的吸收光谱图
精品课件
二、吸收定律
染料的理想溶液对单色光(单色光是波长间隔很小的 光,严格地说是由单一波长的光波组成的光)的吸收强度和 溶液浓度、液层厚度间的关系服从朗伯特-比尔 (Lambert-Beer)定律:
②染料分子基态极性大于激发态
由于基态极性大于激发态,在极性较大的水 中,使基态偶极距增加,即极性增加而基态更 趋稳定,跃迁到激发态所需激发能更大,发生 浅色效应。


精品课件
(CH3)2N
N
O
“苯酚蓝” 的分子右边是吸电 (CH3)2N
N
O

染料参考资料化学 第03章 颜色结构

染料参考资料化学 第03章 颜色结构

第3章染料颜色和结构(Color and Constitution of Dyes)本章分4个小节进行介绍:§3.1 吸光现象和吸收光谱曲线§3.2 吸收光谱的量子概念§3.3 染料发色的两种理论§3.4 染料颜色与结构的关系通过本章学习,要掌握以下内容:1、侧重掌握染料发色的价键理论,即共振理论。

它可以定性地解释发色团与助色团在染料结构中与颜色的关系,即描述它们是如何产生深色效应、浓色效应、浅色效应、淡色效应的,以及这些效应和最大吸收浓长λmax和最大摩尔吸光系数εmax 之间的关系。

2、了解染料发色的分子轨道理论。

它试图定量描述染料发色机制,由于染料发色本质的复杂性和多元性,尚难以通过理论计算求出染料的λmax,但是它对进一步解释结构与颜色的关系提供了强大的理论基础。

3、掌握染料颜色与介质性质的关系。

一般来说,当激化态染料分子为极性共振结构时,极性溶剂将产生深色效应;当基态染料分子显极性结构时,非极性溶剂将产生深色效应。

上述结论,反之亦然。

4、尝试由染料结构与颜色的关系解释一些官能团,如吸电子基团、供电子基团、隔离基团在染料结构设计中的运用,判断染料结构与其颜色的关系,比较不同结构的染料其颜色的深浅和浓淡取向等。

5、物质的吸收特性和吸光曲线,由染料的吸光曲线分析染料。

§3.1 吸光现象和吸收光谱曲线一、概念述语光——可产生色感的电磁波。

习惯上称产生色感的电磁波谓之可见“光”,如红光、紫光等,不可见的电磁波谓之辐射“线”,如红外线IR 、紫外线UV 等。

色——视觉对可见光的感受。

物质对光的选择吸收便显现了物质的颜色。

发色团——结构中能吸收可见光波的吸电子基团。

它以提升染料的λmax 为主导。

助色团——接在π共轭体系上的供电子基团。

它以提升染料的εmax 为主导。

全色——连续光谱依自然比例混合后的颜色。

可见光波全波段(380-780nm )的光按自然比例混合后可以得到白色(指人类视野),反过来,白色光通过色散可以得到一段连续光谱(红、橙、黄、绿、青、蓝、紫)。

第3章染料的结构与颜色讲述

第3章染料的结构与颜色讲述
不能完全解释有色物质的发色机理,有例外。有含有发 色体、发色团、助色团但没有颜色的化合物;有无发色 体,但有颜色的化合物(碘仿CHI3,黄色)。
A:吸光度,透光度T=I0 /I;I0:入射光强度;I:透射光强度; c:溶液浓度;l:光程;ε:摩尔吸光度。
➢ε与有色物质的结构、光的λ有关。
2020年10月4日
第三章 染料的结构与颜色
2、吸收光谱 ➢以ε和可见光的波长λ作图,得到的光谱图,称为吸收光
谱。横坐标:λ(nm);纵坐标:ε。
➢从ε-λ图中可以得到 ε 一定结构物质与吸 收光谱的关系。可 以代表某一化学物 质的结构特性。
2020年10月4日
第三章 染料的结构与颜色
发色团与助色团
HO
NaO3S
NN
O
O
酸性橙Ⅱ (C.I.酸性橙7,15510)
偶氮结构母体为发色体; -SO3Na、-OH为助色团。
还原深蓝BO (C.I.还原蓝20,59800)
只有发色体,不含助色团
2020年10月4日
第三章 染料的结构与颜色
➢ 发色团助色团理论缺点:
性吸收的结果。
2020年10月4日
第三章 染料的结构与颜色
3、补色 ➢两种不同颜色的光混合起来成为白光,这两种光的颜色
称为补色。 ➢一种色的补色可以是单色光,也可以是除去这个颜色光
后白光剩余的颜色。 ➢在颜色盘(环)上能很清楚地看到光谱色的补色就是它
的对角所表示的颜色。即物体的颜色实际上就是物体吸 收光的补色。
在380~780nm。 ➢人们感觉到的光的颜色是不同波长的可见光照射到人眼
中,刺激人的眼神经,而引起的一种生理现象。
➢红色光的波长最长:640~770nm;紫色光的波长最短: 400~440nm。

化学颜料和染料的结构和颜色关系

化学颜料和染料的结构和颜色关系

化学颜料和染料的结构和颜色关系化学颜料和染料是重要的颜色源,它们广泛应用于绘画、印刷、纺织等领域。

本文将探讨化学颜料和染料的结构与其颜色之间的关系。

一、化学颜料的结构特点化学颜料是一种粉末状颜色物质,具有较好的色彩鲜艳度和遮盖力。

它们的颜色来源于分子结构中的特定基团和官能团。

化学颜料的结构特点主要包括以下几个方面:1. 颜料的颜色基团:化学颜料分子中的特定基团赋予其颜色。

不同的颜色基团反映出不同的吸收光谱区域。

例如,苯环具有共轭结构,能吸收紫外光,导致分子呈现黄色或红色。

2. 遮盖性与粒度分布:颜料的遮盖性与颗粒的大小和分布有关。

较小颗粒能更好地散射和吸收光线,从而增强遮盖性。

此外,颗粒的分布均匀度也影响着颜料的色彩均匀度。

3. 耐光性:由于颜料常暴露于阳光照射下,其结构需要具备一定程度的耐光性。

一些颜料分子通过添加有机或无机草酸、醌等结构单元来增强其耐光性,减少颜料的褪色。

二、染料的结构与颜色关系与颜料不同,染料是具有可溶性的有机分子,能够在染料与纤维或其他材料间形成化学键而实现着色。

染料的结构与颜色之间的关系主要由以下几个因素决定:1. 色团结构:染料分子中的色团决定了染料的颜色。

常见的色团包括偶氮类、芳香醇、芳香醛等。

不同的色团对光的吸收和反射产生不同的效果,从而呈现出不同的颜色。

2. 共轭结构:许多染料分子具有共轭结构,通过延长π电子体系,增加色团的吸收范围。

这使得染料可以吸收较宽的光谱范围,呈现出更深的颜色。

3. 可溶性与亲和力:染料需要具有一定的可溶性,以便在染色过程中充分与纤维或其他材料发生相互作用。

此外,染料还需要与纤维表面存在一定的亲和力,以确保染料牢固地结合在材料上。

三、结构与颜色关系的应用了解化学颜料和染料的结构与颜色关系,有助于合成出更多种类的高性能颜料和染料,并应用于各行各业。

如今,许多科研机构和企业致力于开发新型颜料和染料的设计和合成,以满足人们对颜色的特殊需求。

此外,了解颜料和染料结构与颜色之间的关系,还对于文化艺术的发展具有重要意义。

结构化学-染料分子颜色与结构的研究

结构化学-染料分子颜色与结构的研究

染料分子结构与颜色的关系[摘要] 通过建立有机染料分子模型,用Gaussian03量子化学软件包计算其最大吸收波长,讨论有机染料分子结构与其颜色的关系。

采用半经验PM3方法对模型化合物的几何结构进行了优化。

根据优化结果,对以上化合物的性质进行分析。

[关键词] Gaussian 03;染料分子;共轭结构0 引言染料是有颜色的物质,染料的颜色源于其分子对可见光选择性地吸收,而主要的颜色是它的最大吸收光的互补色。

按照量子化学观点,分子在紫外区和可见区的吸收属于电子光谱,通过计算,可以得到分子中所有分子轨道的能量。

可以近似地认为,分子的激发能等于最低空轨道(LUMO)与最高占据轨道(HUMO)的能级差ΔE。

根据普朗克公式ΔE=hν,可以计算出分子的吸收频率和最大吸收波长,再根据互补色理论,得到染料的颜色。

1 计算方法用Gaussian 03量子化学软件包,采用杂化密度泛函理论基础中的B3LYP方法,在STO-3G 基组水平上,对具有共轭结构化合物的的几何结构进行了优化,算出LUMO 与HUMO的能级差,继而算出最大吸收波长,得出染料化合物结构与颜色的关系并作相关的讨论。

2 结果与讨论2.1 共轭结构的影响根据计算机优化结果可以发现,染料分子的共轭结构的差异对颜色有着不同的影响。

图 1.染料分子结构式表1 染料分子颜色与共轭键数目的关系n 1 2 3 4 5 6 ΔE /eV 4.833 4.224 3.785 3.452 3.205 3.009λmax /nm257 294 328 360 388 413颜色无色无色无色无色浅黄色黄色如表1所示,染料分子的颜色随共轭键数目的增加而加深。

π→π*跃迁的能级随着π→π共轭体系中的共轭数目增加而逐渐减少,所需激发能减少,导致分子的最大吸收波长增长,颜色变深。

表 2 苯及稠环能量及性质HOMO -0.35835 -0.32470 -0.30313 -0.28925 -0.27975LUMO -0.01456 -0.01498 -0.03564 -0.04971 -0.05977△E 0.34379 0.30972 0.26749 0.23954 0.21998 λmax(n m)255285384480580颜色无色无色无色黄色蓝色由于苯环的π电子具有较好的流动性。

chap3 有机染料的结构与颜色的

chap3 有机染料的结构与颜色的
(一) 分子轨道理论的基本要点 (1) 分子轨道是由原子轨道线形组合而成, Ψ =C1Ψ 1+C2Ψ 2+C3Ψ 3+………+CiΨ i. (2) 分子轨道=原子轨道数, 能级:成键轨道<非键轨道<反键轨道。 (3) 保里不相容原理、能量最低原理充入电子; NBMO 非键分子轨道 HOMO 最高已占轨道 π 4* LUMO 最低空轨道 π 3* π2 一般价电子的跃迁往往在这些轨道之间发生。 π1 (4) 电子跃迁发生在HOMO与LUMO之间 CH2=CH- CH=CH2
第三章 有机染料的结构与颜色的关系


3-1 光与色的基本概念 一、光和颜色
1. 光 (1)光——可见的电磁波 电磁波范围极广,可见光只是其中相对一部分380-780nm。 X射线 紫外线
10-9 兰色 10-7-10-5 青色 绿色
电磁波 γ 射 线
波长cm 紫外 10-11 紫色
可见光 红外线
日光
2. 色

(1)色——是光作用于人眼所引起的一种视觉反应。 (2)物质的颜色(彩色)——吸收光的补色
白光 反射(黄)
吸收(兰)

黄染料的吸收图 (黄、兰(互补色) )

光线全部被吸收——黑——不透明 光线全部被反射——白色——不透明 光线全部被透过——无色——透明 光线各波段均匀地部分吸收——灰色 光线选择吸收——彩色
2 电子跃迁的基本类型 可能产生6种跃迁 σ π * ;σ σ *; π n σ* n π* 。 其中跃迁可能性较少。σ π
σ *;
*
π
π *; σ *。

π
3 各种电子跃迁类型的基本特点
跃迁类型 △E(kg/mol) λ max(nm) 跃迁强度 跃迁出现范围 属这类跃迁有 机分子 σ 800 150 小 远紫外 烷烃 σ

第二章 染料的颜色与结构

第二章 染料的颜色与结构
OH
O OH OH
OH
-
O
-
O
O Na
-
+
NaOH
O
O Na
-
+
O
茜素(黄色)
红色Байду номын сангаас
(3)当染料分子中含有给电子基-NH2时, 当介质的酸性增强时,-NH2发生阳离子化, N原子上的未共用电子被占用,失去给电子 能力,氨基的p-共轭消失,使颜色变浅。
CH3 NH2
CH3 N H3 . Cl+
+ HCl
发色团 —NO2
发色体
助色团 —OH
HO
染 料
NO2
NO2
—N = N—
N
N
—NH2
H2N
N
N
COONa
—NO2 —N = N—
N NO2
N
—OH —COONa
NO2
N
N
OH
Witt的发色团与助色团理论在历史上对染料 化学的发展起过重要的作用。 目前,发色
团与助色团这两个名称还在广泛使用,但 涵义已经有了根本的变化。 现在的发色团是指能对200~1000nm波长的 电磁波发生吸收的基团。而染料主要是对 380~780nm的光波发生吸收。
(二)吸收强度
染料对光的吸收波长取决于染料分子的激发能;而 染料对光的吸收强度取决于染料分子电子跃迁的 概率。 电子跃迁概率的大小随染料分子受光作用时产生的 瞬间偶极距的大小而不同。这种瞬间偶极距称为 跃迁偶极距,简称跃迁距。电子跃迁概率与跃迁 距M的平方成正比。 在光谱学中,采用跃迁偶极距估算吸收强度。 吸收强度εmax很小的跃迁称为是“禁戒的”; εmax较 大的跃迁称为“允许的”。

染料的颜色与结构的关系

染料的颜色与结构的关系

更多染料的共轭双键系统是由偶氮基联接芳环构成的。例如
NN
NN
OH
分散橙B
通过偶氮基增长共轭系统产生深色效应,但超过两个以后,深色效 应便显著降低了。例如
H2N
NN(
N N )n
λ (nm)
n=0
385(乙醇中)
n=1
416(苯中)
n=2
428(苯中)
2.供电子基和吸电子基
在共轭体系的两端,若存在极性基团(吸电子基和 供电子基)时,可使分子的极性增加,π电子的离域 增强,从而降低了分子的激化能,使吸收光谱向长波 方向移动,导致颜色加深。
1.共轭双键系统
一般而言,在共轭双键体系中,共轭双键愈长,π→π*跃 迁所需能量较低,则选择吸收的光线波长也愈长,在同系 物中,产生不同程度的深色、浓色效应。
图 偶数交替烃分子轨道的能级
例如:



λ max (nm)
ε lg max
200 3.65 无色
285 3.75 无色
384 3.8 无色
色环图
K/S
16
14
12
10
8
6
4
2
0
400
450
500
550
600
650
700
波长
几种不同颜色染料的吸收光谱图
二、吸收定律
染料的理想溶液对单色光(单色光是波长间隔很小的 光,严格地说是由单一波长的光波组成的光)的吸收强度和 溶液浓度、液层厚度间的关系服从朗伯特-比尔 (Lambert-Beer)定律:
助色团:指的是那些接在 共轭系统上的-NH2、- NHR、-NR2、-OH、-OR等供电子基团。

第2章 染料的颜色与结构的关系

第2章 染料的颜色与结构的关系

返回第2章目录
第二章 染料的颜色与结构的关系
第三节 染料分子结构与颜色的关系
一、共轭双键系统与染料颜色的关系 深色效应:染料的最大吸收波长λ max向长波方向移动。 浓色效应:染料的吸收强度ε max增大。 染料分子的共轭双键系统中共轭双键越多,为深色效应和浓色效应。 例如:
最大吸收波长λ
吸收强度lgε
返回第2章目录
第二章 染料的颜色与结构的关系
第一节 光和色的基本概念

二、关于物体颜色的概念
物体的颜色:人眼感觉到的颜色是物体发出的可见光,或是物体对太阳光 或另一光源发出的光部分地吸收后反射或透射出来的光的颜色。
色环:
返回第2章目录
第二章 染料的颜色与结构的关系
第一节 光和色的基本概念
颜色的纯度:物体对光线的吸收接近某一种波长,则物体的颜色纯度就高。 颜色的亮度:物体吸收可见光后,反射出来的光量多,则物体的颜色亮度就大。 颜色的深浅:物体对可见光的最大吸收波长愈长,则色调愈深,最大吸收波长愈 短,则颜色愈浅。 颜色的浓淡:物体的颜色的强度,用颜色的浓淡表示,它是物体吸收一定波长光 线的量的多少。
人们把能增加染料吸收波长的效应称为深色效应,把增加染料吸收强度的效应叫 浓色效应。反之,把降低吸收波长的效应称为浅色效应,把降低吸收强度的效应 叫减色效应。
返回第2章目录
第二章 染料的颜色与结构的关系
第二节 染料的发色理论
一、早期发色理论 发色团与助色团理论:有机化合物结构中至少需要有某些不饱和基团存在时才能发 色,这些基团称之为发色基团,主要的发色基团有-N=N-、=C=C=、-N=O、-NO2、 =C=O等。含有发色团的分子称为发色体或色原体。发色团被引入的愈少,颜色愈浅; 发色团被引入的愈多,颜色愈深。 主要的发色基团有-N=N-、=C=C=、-N=O、-NO2、=C=O等。 有机化合物分子中还应含有助色团。助色团是能加强发色团的发色作用,并增加染 料与被染物的结合力的各种基团 。 主要的助色团有-NH2、-NHR、-NR2、-OH、-OR等。 另外磺酸基(-SO3H)、羧基(-COOH)等为特殊的助色团,它们对发色团并无显著影响, 但可以使染料具有水溶性和对某些物质具有染色能力。 醌构理论 :染料之所以有颜色,是因为其分子中有醌结构存在。醌型结构可视为 分子的发色团。

第三章 染料的颜色和结构讲解

第三章  染料的颜色和结构讲解

λ max
416nm
(在CH2Cl2中)
(在CH2Cl2中)
在染料合成中有时采用所谓隔离基的方法把两个发色体系联接 在一起,互不干扰而成为一个染料分子,以得到绿色、棕色或
其它颜色。常用的隔离基有:
C N
N C
C N
O C NH
均三嗪基
酰胺基
间次苯基
分子的吸收各向异性和空间阻碍 分子对光的吸收是有方向性的。这可以米契勒(Michler)蓝 和孔雀绿的吸收情况为例加以说明。 孔雀绿的共轭体系有两个向不同方向展开的共轭轴。其中一
原子上的孤对电子的能级比较高,激化所需的能量虽
较小,在一定条件下会对可见光发生吸收,但吸收的 强度都很低,对染料的颜色作用不大,而对染料的光 化学作用却有很大的意义。
二、吸收强度和选津 在光谱学中,人们用跃迁矩来估算吸收强度。据
估算,许多具有共轭结构的有机化合物的电子跃迁,
吸收强的max可达105 数量级。人们把 max 很小的跃 迁称为“禁戒”的,而把max 大的跃迁称为“允许” 的。max 小于102的就算是“禁戒”的了。 要发生具有一定跃迁矩的所谓“允许”的跃迁, 要有一定的条件。这些条件称为选律;主要的如下所 述。
染料激化态和基态之间的能级间隔E必须与此相适
应。这个能级间隔的大小虽然包含着振动能量和转动
能量的变化,但主要是由价电子激化所需的能量决定
的。就有机化合物而言,对可见光吸收的能级间隔是 由它们分子中电子运动状态所决定的。 键电子所 处的能级比较低, 激化的能级间隔较大,所需能量 属于远紫外线的能量范围。>C=O、-N=N-等氧、氮
电子跃迁过程中,分子被激化成各种振动状态的机车
问题可以用法兰克-康登原理加以说明。

染料分子结构式及其性质

染料分子结构式及其性质

染料分子结构式及其性质染料是指具有着色作用,并能与织物或其他材料结合的化合物。

染料分子的结构与其性质之间存在密切的关联。

本文将介绍染料分子的结构式以及其性质方面的内容。

染料分子的结构:染料分子通常是由两部分组成的,即色基和辅基。

色基是染料分子的着色中心,具有吸收光线的能力,从而产生颜色。

辅基则是与织物或其他材料结合的部分,通过辅基的分子结构来调节染料的相溶性、亲和性以及稳定性等性质。

1.色基的结构:色基通常是由一个或多个具有共轭结构的环状结构组成的。

这些环状结构中的π电子能够吸收可见光的电磁波,使染料分子显色。

常见的色基包括苯环、萘环、吡咯环等。

2.辅基的结构:辅基的结构可以通过引入不同的功能基团来调节染料的性质,例如增加染料的亲和力、溶解度以及稳定性等。

常见的辅基功能基团包括氨基、羟基、硫醇基、酮基等。

染料分子的性质:染料分子的性质涵盖了其在溶液中的色散性、亲和力、稳定性、光谱性质等多个方面。

1.色散性:色散性是指染料分子在溶液中的颜色的稳定性和分散性。

染料分子要能够在溶液中稳定地分散并发挥其特定的颜色,需要具备一定的溶解度,并且要在染液中形成一个均匀分散的颜色。

2.亲和力:染料分子的亲和力是指其与织物或其他材料结合的能力。

亲和力越高,染料与纤维的相互作用越强,染色效果越好。

3.稳定性:染料分子需要具备一定的稳定性,以便在染色过程中不发生分解或褪色等现象。

染料分子的稳定性与其化学结构、分子内键合的稳定性以及与外界环境的相互作用等因素密切相关。

4.光谱性质:染料分子对不同波长的光的吸收能力不同,从而呈现出不同的颜色。

染料的颜色可以通过其吸收或反射特定波长的光来解释。

通过紫外可见光谱等方法可以研究染料的吸收光谱。

总结:染料分子的结构与其性质之间存在着密切的关联。

色基决定了染料的着色能力,而辅基则通过引入功能基团来调节染料的亲和力、溶解度和稳定性等性质。

了解染料分子的结构式以及其性质有助于我们更好地理解染料的工作原理,并为染料的设计和开发提供科学依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

染料分子结构与颜色的关系
[摘要] 通过建立有机染料分子模型,用Gaussian03量子化学软件包计算其最大吸收波长,讨论有机染料分子结构与其颜色的关系。

采用半经验PM3方法对模型化合物的几何结构进行了优化。

根据优化结果,对以上化合物的性质进行分析。

[关键词] Gaussian 03;染料分子;共轭结构
0 引言
染料是有颜色的物质,染料的颜色源于其分子对可见光选择性地吸收,而主要的颜色是它的最大吸收光的互补色。

按照量子化学观点,分子在紫外区和可见区的吸收属于电子光谱,通过计算,可以得到分子中所有分子轨道的能量。

可以近似地认为,分子的激发能等于最低空轨道(LUMO)与最高占据轨道(HUMO)的能级差ΔE。

根据普朗克公式ΔE=hν,可以计算出分子的吸收频率和最大吸收波长,再根据互补色理论,得到染料的颜色。

1 计算方法
用Gaussian 03量子化学软件包,采用杂化密度泛函理论基础中的B3LYP方法,在STO-3G 基组水平上,对具有共轭结构化合物的的几何结构进行了优化,算出LUMO 与HUMO的能级差,继而算出最大吸收波长,得出染料化合物结构与颜色的关系并作相关的讨论。

2 结果与讨论
2.1 共轭结构的影响
根据计算机优化结果可以发现,染料分子的共轭结构的差异对颜色有着不同的影响。

图 1.染料分子结构式
表1 染料分子颜色与共轭键数目的关系
n 1 2 3 4 5 6 ΔE /eV 4.833 4.224 3.785 3.452 3.205 3.009
λmax /nm257 294 328 360 388 413
颜色无色无色无色无色浅黄色黄色如表1所示,染料分子的颜色随共轭键数目的增加而加深。

π→π*跃迁的能级随着π→π共轭体系中的共轭数目增加而逐渐减少,所需激发能减少,导致分子的最大吸收波长增长,颜色变深。

表 2 苯及稠环能量及性质
HOMO -0.35835 -0.32470 -0.30313 -0.28925 -0.27975
LUMO -0.01456 -0.01498 -0.03564 -0.04971 -0.05977
△E 0.34379 0.30972 0.26749 0.23954 0.21998 λmax(n m)255285384480580颜色无色无色无色黄色蓝色
由于苯环的π电子具有较好的流动性。

根据表2的计算结果可以看出,苯环数的增加,使闭合共轭数增长,π电子云的流动性大增加,使分子激发能降低,最大吸收波长增长,颜色变深。

2.2 不同取代基的影响
不同取代基对最大波长吸收也有影响。

如下计算所示:
表3 不同取代基对最大吸收波长的影响
ΔE /eV 7.653 4.818 7.435 7.096 6.322 6.260
λmax /nm 162 258 167 175 196 198
颜色无色无色无色无色无色无色
表4 不同取代基对最大吸收波长的影响
ΔE /eV 3.815 3.700 3.859 2.916 3.089 2.226 λmax 326 336 322 426 402 558 颜色无色无色无色黄色黄绿色蓝色
由表3、表4可知,将如-NO2,-Cl等吸电子取代基引入共轭体系后,由于了取代基的吸电子作用,π键的电子云被吸引到取代基周围,使得大π电子云发生偏移,减少了跃迁的能级差,最大吸收波长增长,颜色变深;将如-CH3,-NH2等供电子取代基引入共轭体系后,取代基与共轭体系发生p-π共轭作用,形成一个更大的在π键,同时供电子基团的供电子作用,使大π键的电子云偏移,使基态能级升高,跃迁能级差减少,最大吸收波长增长,颜色变深。

取代基位置与数目的不同,造成的对称性不同,对染料分子的颜色也有重要影响。

共轭体系分子的两端对称的取代基与不对称取代基的共轭体系分子相比,最大吸收波长更短,颜色更浅。

表5 两种不同颜色染料的计算结果
ΔE /eV 5.810 5.218
λmax /nm 214 238
颜色绿色蓝色从计算结果可知,前者的最大吸收波长比后者的长,相应地其颜色也要深一些。

在后者里面,供电子基团-CH3的数目比前者中的多,而且集中在同一侧,导致大π键电子云偏移
程度更高,所需激发能减少,最大吸收波长增长。

因而呈现出的颜色是前者为绿色,后者为
蓝色。

3 结论
采用以上方法得到的理论结论基本满足于实际结果,证明了该方法是可行准确的,但由于使用的方法为半经验PM3方法,精准度较使用杂化密度泛函理论中的B3LYP方法差,故而结果会出现部分误差,但总体化合物的颜色变化趋势是符合实际结果的。

若想得到更为准确的答案,可采取更高基组水平的方法,例如B3LYP方法的3-21G等。

参考文献
[1] 高鸿宾等. 有机化学[M]. 第四版. 北京:高等教育出版社,2005,05.
[2] 叶建军,伏宏彬. 有机化合物颜色与分子结构的关系[J]. 成都纺织高等专科学校学报,2001,03.
[3] 党光,王振英.有机颜料分子结构对其性能的影响[J]. 染料与染色, 1994,03.
[4] 周春隆. 有机颜料衍生物特性及其应用[J]. 染料与染色,2003,04.。

相关文档
最新文档