最新高中数学构造函数专题
高中数学人教A版选择性必修二17函数与导数专题(二)构造新函数专题

(2)设函数 f (x) 是定义在 R 上的奇函数,函数 g(x) 是定义在 R 上的偶函数,且 g(x) 0 ,当 x 0 时, f (x)g(x) f (x)g(x) 0 ,若 f (2) 0 ,则不等式 f (x) 0 的解集是___________________
g(x)
例 2(1) f (x) 是可导函数,且 xf '(x) f (x) 0 ,若 a b ,则 (
(2)已知 f (x) f (x) 0, 构造 H (x) ex f (x)
(3)已知 xf (x) f (x) 0, 构造 H (x) xf (x)
(4)已知 xf (x) nf (x) 0, 构造 H (x) xn f (x)
关系是“减号”型
(1)已知 f (x)g(x) g(x) f (x) 0, 构造 H (x) f (x) (g(x) 0) g(x)
2、若函数
f
(x)
在区间
R
上的导数为
f
' ( x) , [
f (x) ex
]'
_______________
3、若函数 f (x) 在区间 R 上的导数为 f ' (x) , f (x) cosx =
2 课时
4、抽象导函数常见模型总结: 关系是“加号”型
(1)已知 f (x)g(x) g(x) f (x) 0, 构造 H (x) f (x)g(x)
2、定义在 R 上的函数 f (x) 满足 f (x) f (x) 0 ,若 f(0) 1, 则不等式 ex f ( x) 1的解集为
3、定义在 R 上的函数 f (x) 满足 f (x) - f (x) 0 ,若 f(0) 1, 则不等式 f (x) ex 的解集为______________
2025高考数学二轮复习导数应用中的函数构造技巧

函数形式出现的是“-”法形式时,优先考虑构造 y=型函数.
(2)利用f(x)与ex(enx)构造
() ()
常用的构造形式有 e f(x),e f(x), e , e ,这类形式一方面是对 y=uv,y=型函
x
nx
数形式的考查,另外一方面也是对(ex)'=ex,(enx)'=nenx 的考查.所以对于
f'(x)cos x-f(x)sin x>0,所以 F'(x)>0,即函数
由于
f
π
6
f
π
6
π
0<6
<
π
4
π
π
cos6<f 4
<
3
π
3
3
<
π
3
<
π
,所以
2
π
π
cos4<f 3
π
F(x)在区间(0,2)
π
4
<F
π
cos3,因此可得
π
6
,故选 AD.
F
π
6
<F
f
π
x∈(0,2)时,
π
3
<
内单调递增.
,即
锐角三角形,则( D )
A.f(sin A)sin2B>f(sin B)sin2A
B.f(sin A)sin2B<f(sin B)sin2A
C.f(cos A)sin2B>f(sin B)cos2A
D.f(cos A)sin2B<f(sin B)cos2A
解析 因为
() '
2
(新)高中数学《导数中的构造函数》小专题

专题5导数中函数的构造问题命制人:丁晓光 使用时间:2021年3月17日 班级: 姓名:一、教学目标:1、掌握构造适当的函数解决问题的方法。
2、体会函数与方程、转化与化归的数学思想,锻炼逻辑推理、数学运算等核心素养。
二、教学重点:应用函数性质,构造函数解决问题。
三、教学难点:变化式子结构特征找到要构建的函数。
四、复习回顾:(课前预热练习)(一)利用()f x 与x (n x )构造1、)(x f 是定义在R 上的偶函数,当 0<x 时, f (x ) + xf '(x ) < 0 ,且 f (-4) = 0,则不等式 xf (x ) > 0的解集为__________2、已知偶函数)0)((≠x x f 的导函数)('x f ,且满足0)1(=-f ,当0>x 时,)(')(2x xf x f >,则使得0)(>x f 成立的x 的取值范围是(二)利用()f x 与x e 构造3、已知定义在R 上的函数f(x)满足()(),f x f x '>且f(1)=0,则关于x 的不等式f(x)>0的解集为( ) A.(2,)+∞ B.(,1)-∞ C.(,2]-∞ D.(1,)+∞(三)利用()f x 与x ln构造 4、设函数'()f x 是奇函数()()f x x R ∈的导函数,当0x >时,1'()ln ()<-f x x f x x ,则使得2(1)()0x f x ->成立的x 的取值范围是 .(四)利用()f x 与sin x ,cos x 构造5、已知函数()y f x =对于任意)2,2(ππ-∈x 满足0sin )(cos )('>+x x f x x f (其中()f x '是函数()f x 的导函数),则下列不等式不成立的是( )A .)4()3(2ππf f <B .)4-()3-(2ππf f <C .)4(2)0(πf f < D .)3(2)0(πf f < (五)构造具体函数关系式6、]2,2[ππβα-∈,,且0sin sin >-ββαα,则下列结论正确的是( ) A .αβ> B .22αβ> C .αβ< D .0αβ+>五、高考真题例一、1、【2020年全国2卷12】若2233x y x y ---<-,则A.0)1ln(>+-x yB.0)1ln(<+-x yC. 0ln >-y xD. 0ln <-y x2、【2020年新课标1卷12】若b a b a 42log 24log 2+=+,则( )A.b a 2>B.b a 2<C.2b a >D.2b a <3、【八省联考8】已知5<a 且a e ae 55=,4<b 且b e be 44=,3<c 且c e ce 33=,则( )A.a b c <<B.a c b <<C.b c a <<D.c b a <<变式训练1:已知2ln(3)ln 51,,35e a b c e +===,则 A.a>b>c B.c>b>a C.a>c>b D.b>a>c总结:六、拓展延伸例二、1、已知函数是定义在上的可导函数,对于任意的实数x ,都有,当时,若,则实数a 的取值范围是( )A .]32,0[B .]0,32[- C . D .2、已知)(x f 是定义在R 上的减函数,其导函数)('x f 满足1)()('<+x x f x f ,则下列结论正确的是( ) A.对于任意的R x ∈,0)(<x f B.对于任意的R x ∈,0)(>x fC.当且仅当)1,(-∞∈x 时,0)(<x fD.当且仅当),1(+∞∈x 时,0)(>x f变式训练2:设函数)(x f 是定义在),(0-∞上的可导函数,其导函数为)('x f ,且有2')()(2x x xf x f >+,则不等式0)2(4)2020()2020(2>--++f x f x 的解集为总结:七、课堂演练:1、已知定义在)2,0(π上的函数)(x f ,)('x f 是它的导函数,且恒有x x f x f tan )()('<成立,则( )A.)3(2)4(3ππf f >B.1sin )6(2)1(πf f <C.)4()6(2ππf f >D.)3()6(3ππf f <2、设是定义在上的可导偶函数,若当时,0)(2)('<+xx f x f ,则函数21)()(x x f x g -=的零点个数为 A .0 B .1 C .2D .0或2八、课后作业 构造导数专题小测九、构造函数的方法总结:1. ()()f x xf x '+,构造()F x =()xf x ; ()()nf x xf x '+,构造()F x =()n x f x2. ()()0xf x f x ->',构造()()f x F x x =; ()()0xf x nf x ->',构造()()n f x F x x=. 3. ()()f x f x '+,构造()F x =e ()x f x . ()()f x nf x '+,构造()F x =e ()nx f x ⋅. 4. ()()f x f x '-,构造()()e x f x F x =, ()()f x nf x '-,构造()()e nx f x F x =, 5. x x f x x f cos )(sin )('+;构造x x f x sin )()(F =6. x x x f x x f 2'sin cos )(sin )(-;构造xx f x sin )()(F = 7. x x f x x f sin )(cos )('-;构造x x f x cos )()(F = 8. x x x f x x f 2'cos sin )(cos )(+.构造xx f x cos )()(F = 9. 1'()ln ()f x x f x x +,构造()F x =()ln x f x ⋅.10. 0)()(>'x f x f ,构造()F x =)(ln x f。
构造函数之专题训练

.. “构造函数”之专题训练一、选择题1.定义在(0,+∞)上的函数f(x)满足f(x)>0,且2f(x)<xf′(x)<3f(x)对x∈(0,+∞)恒成立,其中f′(x)为f(x)的导函数,则()A.<<B.<<C.<<D.<<2.已知函数f(x)满足:f(x)+2f′(x)>0,那么下列不等式成立的是()A. B.<C.>D.f(0)>e2f(4)3.若函数f(x)满足f′(x)-f(x)=2xe x,f(0)=1,其中f′(x)为f(x)的导函数,则当x>0时,′的最大值为()A. B.2 C.2 D.44.己知定义在R上的函数y=f(x)满足f(x)=f(4-x),且当x≠2时,其导函数f′(x)满足f′(x)>xf′(x),若a∈(2,3),则()A.f(log2a)<f(2a)<f(2)B.f(2a)<f(2)<f(log2a)C.f(2a)<f(log2a)<f(2)D.f(2)<f(log2a)<f(2a)5.设f(x)是定义在R上的奇函数,f(2)=0,当x>0时,有′<0恒成立,则>的解集为()A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)6.已知奇函数f(x)的定义域为R,其导函数为f′(x),当x>0时,xf′(x)-f(x)<0,且f(-1)=0,则使得f(x)<0成立的x的取值范围是()A.(-1,0)∪(1,+∞)B.(-∞,1)∪(0,1)C.(0,1)∪(1,+∞)D.(-∞,-1)∪(-1,0)7.已知偶函数f(x)(x≠0)的导函数为f′(x),且满足f(1)=0,当x>0时,xf′(x)<2f(x),则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-1,0)∪(0,1)8.已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,f′(x)+>0,若a=,b=-3f(-3),c=,则a,b,c的大小关系正确的是()A.a<b<cB.a<c<bC.b<c<aD.c<a<b9.已知函数f(x)(x∈R)满足f(1)=1,且f′(x)<1,则不等式f(1g2x)<1g2x 的解集为()A.,B.(10,+∞)C.,D.,,∞10.定义在R上的函数f(x)满足f(x)+f′(x)<e,f(0)=e+2(其中e为自然对数的底数),则不等式e x f(x)>e x+1+2的解集为()A.(-∞,0)B.(-∞,e+2)C.(-∞,0)∪(e+2,+∞)D.(0,+∞)11.设函数f(x)的导函数为f′(x),对任意x∈R都有xf′(x)<f(x)成立,则()A.3f(2)>2f(3)B.3f(2)=2f(3)C.3f(2)<2f(3)D.3f(2)与2f(3)的大小不确定.12.已知函数f(x)是定义在R上的可导函数,f′(x)为其导函数,若对于任意实数,都有f(x)>f′(x),其中e为自然对数的底数,则()A.ef(2015)>f(2016)B.ef(2015)<f(2016)C.ef(2015)=f(2016)D.ef(2015)与f(2016)大小关系不确定13.设函数f′(x)的偶函数f(x)(x∈R且x≠0)的导函数,f(2)=0且当x>0时,xf′(x)-f(x)>0,则使f(x)<0成立的x的取值范围为()A.(-∞,-2)∪(0,2)B.(-2,0)∪(0,2)C.(-2,0)∪(2,+∞)D.(-∞,-2)∪(2,+∞)14.对于R上可导的任意函数f(x),若满足(x-1)f′(x)≥0,则必有()A.f(0)+f(2)<2f(1)B.f(0)+f(2)≤2f (1)C.f(0)+f(2)≥2f(1)D.f(0)+f(2)>2f (1)15.函数f(x)的定义域为R,f(-1)=2015,对任意的x∈R.都有f′(x)<3x2成立,则不等式f(x)<x3+2016的解集为()A.(-1,+∞)B.(-1,0)C.(-∞,-1)D.(-∞,+∞)16.已知函数y=f(x)(x∈R)的图象过点(1,0),f′(x)为函数f(x)的导函数,e 为自然对数的底数,若x>0,xf′(x)>1下恒成立,则不等式f(x)≤lnx的解集为()A.(0,]B.(0,1]C.(0,e]D.(1,e]17.已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>-2f(x),若g(x)=x2f(x),则不等式g(x)<g(1-x)的解集是()A.(,+∞)B.(-∞,)C.(-∞,0)∪(0,)D.(0,)18.已知函数y=f(x)定义在实数集R上的奇函数,且当x∈(-∞,0)时xf′(x)<-f(x)成立(其中f′(x)是f(x)的导函数),若a=f(),b=f(1),c=-2f(log2),则a,b,c的大小关系是()A.c>a>bB.c>b>aC.a>b>cD.a>c>b19.定义在区间(0,+∞)上的函数f(x)使不等式2f(x)<xf′(x)<3f(x)恒成立,其中f′(x)为f(x)的导数,则()A.8<<16B.4<<8C.3<<4D.2<<320.已知定义在R上的函数f(x)的导函数为f′(x),且满足f′(x)>f(x),则下列结论正确的是()A.f(1)>ef(0)B.f(1)<ef(0)C.f(1)>f(0)D.f(1)<f(0)21.已知f(x)是定义在R上的奇函数,f(-1)=-1,且当x>0时,有xf′(x)>f(x),则不等式f(x)>x的解集是()A.(-1,0)B.(1,+∞)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(1,+∞)1.B2.A3.B4.C5.B6.A7.D8.B9.D 10.A 11.A 12.A 13.B 14.C 15.A 16.B 17.C 18.A 19.B 20.A 21.C高中数学试卷第2页,共10页.. “构造函数”之专题训练答案和解析【答案】1.B2.A3.B4.C5.B6.A7.D8.B9.D 10.A 11.A 12.A 13.B 14.C 15.A 16.B 17.C 18.A 19.B 20.A 21.C【解析】1. 解:令g(x)=,x∈(0,+∞),g′(x)=′,∵∀x∈(0,+∞),2f(x)<xf′(x)<3f(x)恒成立,∴f(x)>0,0<′,∴g′(x)>0,∴函数g(x)在x∈(0,+∞)上单调递增,∴<,∴<.令h(x)=,x∈(0,+∞),h′(x)=′,∵∀x∈(0,+∞),2f(x)<xf′(x)<3f(x)恒成立,∴h′(x)=′<0,∴函数h(x)在x∈(0,+∞)上单调递减,∴>,∴<.综上可得:<<,故选:B.分别构造函数g(x)=,x∈(0,+∞),h(x)=,x∈(0,+∞),利用导数研究其单调性即可得出.本题考查了利用导数研究其单调性极值与最值、构造函数法,考查了推理能力与计算能力,属于中档题.2. 解:∵f(x)+2f′(x)>0,可设f(x)=,∴f(1)=,f(0)=e0=1,∴f(1)>,故选:A.根据题意可设f(x)=,然后代入计算判断即可.本题主要考查了初等函数的导数运算公式,关键是构造函数,属于基础题.3. 解:由题意,()′=2x,∴=x2+b,∴f(x)=(x2+b)e x,∵f(0)=1,∴b=1,∴f(x)=(x2+1)e x,f′(x)=(x+1)2e x,∴当x>0时,′=1+≤2,当且仅当x=1时取等号,∴当x>0时,′的最大值为2.故选:B.利用函数f(x)满足f′(x)-f(x)=2xe x,f(0)=1,求出f(x),再代入利用基本不等式即可得出结论.本题考查导数知识的运用,考查基本不等式,考查学生的计算能力,确定f(x)是关键.4. 解:∵定义在R上的函数y=f(x)满足f(x)=f(4-x),∴函数f(x)关于x=2对称,由f′(x)>xf′(x),得(x-2)f′(x)<0,则x>2时,f′(x)<0,此时函数单调递减,当x<2时,f′(x)>0,此时函数单调递增.∴当x=2时,f(x)取得极大值,同时也是最大值.若a∈(2,3),则4<2a<8,1<log2a<2,∴2<4-log2a<3,∴2<4-log2a<2a,即f(2)>f(4-log2a)>f(2a),即f(2a)<f(log2a)<f(2),故选:C根据条件得到函数关于x=2对称,由f′(x)>xf′(x),得到函数的单调性,利用函数的单调性和对称轴即可得到结论.本题主要考查函数单调性和对称性的应用,利用导数和函数单调性的关系是解决本题的关键,综合考查函数性质的应用.5. 解:设g(x)=,f(x)是R上的奇函数,∴g(x)为偶函数;x>0时,′′<;∴g(x)在(0,+∞)上单调递减,g(2)=0;∴由g(x)>0得,g(x)>g(2);∴g(|x|)>g(2);∴|x|<2,且x≠0;∴-2<x<0,或0<x<2;∴>的解集为(-2,0)∪(0,2).故选:B.可设g(x)=,根据条件可以判断g(x)为偶函数,并可得到x>0时,g′(x)高中数学试卷第4页,共10页.<0,从而得出g(x)在(0,+∞)上单调递减,并且g(2)=0,从而由g(x)>g (2)便可得到|x|<2,且x≠0,这样即可得出原不等式的解集.考查奇函数、偶函数的定义,根据导数符号判断函数单调性的方法,根据函数单调性解不等式的方法,知道偶函数g(x)>g(2)等价于g(|x|)>g(2).6. 解:设g(x)=,则g′(x)=′,∵当x>0时,xf′(x)-f(x)<0,∴当x>0时,g′(x)<0,此时函数g(x)为减函数,∵f(x)是奇函数,∴g(x)=是偶函数,即当x<0时,g(x)为增函数.∵f(-1)=0,∴g(-1)=g(1)=0,当x>0时,f(x)<0等价为g(x)=<0,即g(x)<g(1),此时x>1,当x<0时,f(x)<0等价为g(x)=>0,即g(x)>g(-1),此时-1<x<0,综上不等式的解集为(-1,0)∪(1,+∞),故选:A根据条件构造函数g(x)=,求函数的导数,判断函数的单调性和奇偶性,将不等式进行转化求解即可.本题主要考查不等式的求解,根据条件构造函数,利用导数研究函数的单调性,以及将不等式进行转化是解决本题的关键.7. 解:根据题意,设函数,当x>0时,′′<,所以函数g(x)在(0,+∞)上单调递减,又f(x)为偶函数,所以g(x)为偶函数,又f(1)=0,所以g(1)=0,故g(x)在(-1,0)∪(0,1)的函数值大于零,即f(x)在(-1,0)∪(0,1)的函数值大于零.故选:D.构造函数设函数,利用导数得到,g(x)在(0,+∞)是增函数,再根据f(x)为偶函数,根据f(1)=0,解得f(x)>0的解集.本题考查了抽象函数的奇偶性与单调性,考查了构造函数及数形结合的思想.解决本题的关键是能够想到通过构造函数解决.8. 解:定义域为R的奇函数y=f(x),设F(x)=xf(x),∴F(x)为R上的偶函数,∴F′(x)=f(x)+xf′(x)∵当x≠0时,f′(x)+>0.∴当x>0时,x•f′(x)+f(x)>0,当x<0时,x•f′(x)+f(x)<0,即F(x)在(0,+∞)单调递增,在(-∞,0)单调递减..F()=a=f()=F(ln),F(-3)=b=-3f(-3)=F(3),F(ln)=c=(ln)f (ln)=F(ln3),∵ln<ln3<3,∴F(ln)<F(ln3)<F(3).即a<c<b,故选:B.根据式子得出F(x)=xf(x)为R上的偶函数,利用f′(x)+>0.当x>0时,x•f′(x)+f(x)>0;当x<0时,x•f′(x)+f(x)<0,判断单调性即可证明a,b,c 的大小.本题考查了导数在函数单调性的运用,根据给出的式子,得出需要的函数,运用导数判断即可,属于中档题.9. 解:设g(x)=f(x)-x,则函数的导数g′(x)=f′(x)-1,∵f′(x)<1,∴g′(x)<0,即函数g(x)为减函数,∵f(1)=1,∴g(1)=f(1)-1=1-1=0,则不等式g(x)<0等价为g(x)<g(1),则不等式的解为x>1,即f(x)<x的解为x>1,∵f(1g2x)<1g2x,∴由1g2x>1得1gx>1或lgx<-1,解得x>10或0<x<,故不等式的解集为,,∞,故选:D构造函数g(x)=f(x)-x,求函数的导数,利用导数研究函数的单调性,求出不等式f(x)<x的解为x>1,即可得到结论.本题主要考查不等式的求解,构造函数,求函数的导数,利用函数单调性和导数之间的关系是解决本题的关键.10. 解:设g(x)=e x f(x)-e x+1-2(x∈R),则g′(x)=e x f(x)+e x f′(x)-e x+1=e x[f(x)+f′(x)-e],∵f(x)+f′(x)<e,∴f(x)+f′(x)-e<0,∴g′(x)<0,∴y=g(x)在定义域上单调递减,∵f(0)=e+2,∴g(0)=e0f(0)-e-2=e+2-e-2>0,∴g(x)>g(0),∴x<0,∴不等式的解集为(0,+∞)故选:A.构造函数g(x)=e x f(x)-e x+1-2(x∈R),研究g(x)的单调性,结合原函数的性质高中数学试卷第6页,共10页.和函数值,即可求解.本题考查函数的导数与单调性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.11. 解:设函数y=,则y′=′,∵xf′(x)<f(x),∴y′<0,可得y=对任意x∈R,函数y是减函数,∴<,可得3f(2)>2f(3).故选:A.构造函数,利用函数的单调性判断即可.本题考查函数的单调性的判断与应用,构造函数,求解导函数判断单调性是解题的关键.12. 解:令g(x)=,由题意,则g′(x)=′<0,从而g(x)在R上单调递减,∴g(2016)<g(2015).即<,∴e2015f(2016)<e2016f(2015),即ef(2015)<f(2016),故选:A.造函数g(x)=,通过求导判断其单调性,从而确定选项.本题是构造函数的常见类型,大多数题型是结合着选项中的结构和题中的条件来构造函数,形式灵活多变,考生需要多看多做多总结,才容易掌握此题型.13. 解:令g(x)=,∴g′(x)=′,∵x>0时,xf′(x)-f(x)>0,∴x>0时,g′(x)>0,∴g(x)在(0,+∞)上是增函数,∵f(2)=0,∴g(2)==0,当0<x<2,g(x)<g(2)=0,即f(x)<0,当x>2时,g(x)>g(2)=0,即f(x)>0,∵f(x)是偶函数,∴当-2<x<0,f(x)<0,故不等式f(x)<0的解集是(-2,0)∪(0,2),故选:B.构造函数g(x)=,利用导数得到,g(x)在(0,+∞)是增函数,再根据f(x).为奇函数,根据f(2)=0,解得f(x)<0的解集.本题考查了抽象函数的奇偶性与单调性,考查了构造函数及数形结合的思想.解决本题的关键是能够想到通过构造函数解决.14. 解:∵(x-1)f′(x)≥0,∴当x≥1时,f′(x)≥0,当x<1时,f′(x)≤0;故f(x)在(-∞,1)上不增,在[1,+∞)上不减,故f(0)≥f(1),f(2)≥f(1);故f(0)+f(2)≥2f(1),故选C.由题意,当x≥1时,f′(x)≥0,当x<1时,f′(x)≤0;从而可得f(x)在(-∞,1)上不增,在[1,+∞)上不减,故f(0)≥f(1),f(2)≥f(1);从而可得.本题考查了导数的综合应用,属于中档题.15. 解:令g(x)=f(x)-x3-2016,g′(x)=f′(x)-3x2,∵对任意的x∈R.都有f′(x)<3x2成立,∴对任意的x∈R,g′(x)<0,∴g(x)=f(x)-x3-2016在R上是减函数,且g(-1)=f(-1)+1-2016=2015+1-2016=0,故不等式f(x)<x3+2016的解集为(-1,+∞),故选:A.令g(x)=f(x)-x3-2016,求导g′(x)=f′(x)-3x2,从而确定不等式的解集.本题考查了导数的综合应用及函数的性质的判断与应用.16. 解:构造函数g(x)=f(x)-lnx(x>0),则g′(x)=f′(x)-=′>0,∴g(x)=f(x)-lnx在(0,+∞)上单调递增,∵f(x)≤lnx,∴g(x)≤0=g(1),∴0<x≤1,故选:B.构造函数g(x)=f(x)-lnx(x>0),确定g(x)=f(x)-lnx在(0,+∞)上单调递增,f(x)≤lnx,化为g(x)≤0=g(1),即可得出结论.本题考查导数知识的运用,考查函数的单调性,正确构造函数是关键.17. 解:∵f(x)是定义域为{x|x≠0}的偶函数,∴f(-x)=f(x).对任意正实数x满足xf′(x)>-2f(x),∴xf′(x)+2f(x)>0,∵g(x)=x2f(x),∴g′(x)=2xf(x)+x2f′(x)>0.∴函数g(x)在(0,+∞)上单调递增,∴g(x)在(-∞,0)递减;由不等式g(x)<g(1-x),∴>><或<<>,高中数学试卷第8页,共10页.解得:0<x<,或x<0∴不等式g(x)<g(1-x)的解集为:{x|0<x<或x<0}.故选:C.f(x)是定义域为{x|x≠0}的偶函数,可得:f(-x)=f(x),对任意正实数x满足xf′(x)>2f(-x),可得:xf′(x)+2f(x)>0,由g(x)=x2f(x),可得g′(x)>0.可得函数g(x)在(0,+∞)上单调递增.即可得出.本题考查了函数的奇偶性与单调性,考查了推理能力与计算能力,属于中档题.18. 解:当x∈(-∞,0)时,xf′(x)<-f(x),即xf′(x)+f(x)<0,∴[xf(x)]′<0,∴令F(x)=xf(x),由函数y=f(x)是定义在R上的奇函数,则F(x)为偶函数,且在(-∞,0)上是减函数,在(0,+∞)上是增函数,由c=-2f(log2)=-2f(-2)=2f(2)=g(2),a=f()=g(),b=f(1)=g(1),由1<<2,可得b<a<c.故选:A.由f(x)为奇函数得到f(-x)=-f(x),有xf′(x)+f(x)<0,由导数的积的运算得到[xf(x)]′<0,令F(x)=xf(x),则F(x)为偶函数,且在(-∞,0)上是减函数,在(0,+∞)上是增函数,由c=-2f(-2)=2f(2)=g(2),a=f()=g (),b=f(1)=g(1),即可得到所求大小关系.本题主要考查函数的性质及应用,考查奇偶函数的定义及应用,函数的单调性及应用,以及应用导数的运算法则构造函数的能力,是函数的综合题.19. 解:令g(x)=,则g′(x)=′=′,∵xf′(x)<3f(x),即xf′(x)-3f(x)<0,∴g′(x)<0在(0,+∞)恒成立,即有g(x)在(0,+∞)递减,可得g(2)<g(1),即<,由2f(x)<3f(x),可得f(x)>0,则<8;令h(x)=,h′(x)=′=′,∵xf′(x)>2f(x),即xf′(x)-2f(x)>0,∴h′(x)>0在(0,+∞)恒成立,即有h(x)在(0,+∞)递增,可得h(2)>h(1),即>f(1),则>4.即有4<<8.故选:B.令g(x)=g(x)=,h(x)=,求出g(x),h(x)的导数,得到函数g(x),.h(x)的单调性,可得g(2)<g(1),h(2)>h(1),由f(1)>0,即可得到4<<8.本题考查了函数的单调性问题,考查导数的应用,构造g(x)=,h(x)=,求出g(x)和h(x)的导数,得到函数g(x)和h(x)的单调性是解题的关键,本题是一道中档题.20. 解:令g(x)=,则g′(x)=′=′,∵f′(x)>f(x),∴g′(x)>0,g(x)递增,∴g(1)>g(0),即>,∴f(1)>ef(0),故选:A.令g(x)=,利用导数及已知可判断该函数的单调性,由单调性可得答案.该题考查利用导数研究函数的单调性,由选项恰当构造函数是解决该题的关键所在.21. 解:∵f(x)是定义在R上的奇函数,令g(x)=,∴g(x)为偶函数,又当x>0时,xf′(x)>f(x),∴g′(x)=′>0;∴g(x)在(0,+∞)上是增函数,在(-∞,0)上是减函数;又f(-1)=-1,∴f(1)=1,g(1)=1;当x>0时,∵不等式f(x)>x,∴>1,即g(x)>g(1),∴有x>1;当x<0时,∵不等式f(x)>x,∴<1,即g(x)<g(-1),∴有-1<x<0;当x=0时,f(0)=0,不等式f(x)>x不成立;综上,不等式f(x)>x的解集是(-1,0)∪(1,+∞).构造函数g(x)=,根据题意得出g(x)为偶函数,且x>0时,g′(x)>0,g(x)是增函数;讨论x>0、x<0和x=0时,不等式f(x)>x的解集情况,求出解集即可.本题考查了函数奇偶性的应用问题,也考查了不等式的解法与应用问题,考查了构造函数的应用问题以及分类讨论的应用问题,是综合性题目.高中数学试卷第10页,共10页。
2025新高考重难点之构造函数 学生版

重难点之构造函数1.对于不等式f x >k k≠0,构造函数g x =f x -kx+b2.对于不等式xf x +f x >0,构造函数g x =xf x3.对于不等式xf x -f x >0,构造函数g x =f xxx≠04.对于不等式xf x +nf x >0,构造函数g x =x n f(x)5.对于不等式xf x -nf x >0,构造函数g x =f(x) x n6.对于不等式f x -f x >0,构造函数g x =f(x) e x7.对于不等式f x +f x >0,构造函数g x =e x f(x)8.对于不等式f x +kf x >0,构造函数g x =e kx f(x)9.对于不等式f x sin x+f x cos x>0,构造函数g x =sin xf(x)10.对于不等式f x sin x-f x cos x>0,构造函数g x =f(x)sin x 11.对于不等式f x cos x-f x sin x>0,构造函数g x =cos xf(x)12.对于不等式f x cos x+f x sin x>0,构造函数g x =f(x) cos x重难点题型(一)、与一次函数或幂函数有关的构造函数1.(23-24高三下·重庆)已知函数f x 的定义域为-∞,0,f-1=-1,其导函数f x 满足xf x -2f x >0,则不等式f x+2025+x+20252<0的解集为()A.-2026,0B.-2026,-2025C.-∞,-2026D.-∞,-20252.(2021·安徽高三月考(理))设函数f x 是定义在0,+∞ 上的可导函数,其导函数为f 'x ,且有2f x >xf 'x ,则不等式4f x -2021 >x -2021 2f 2 的解集为()A.2021,2023B.0,2022C.0,2020D.2022,+∞3.(2022·四川省眉山第一中学模拟预测(理))已知可导函数f (x )的定义域为(0,+∞),满足xf (x )-2f (x )<0,且f (2)=4,则不等式f (x )>x 2的解集是.4.(23-24高三上·云南昆明)已知定义域为R 的函数f x ,对任意的x ∈R 都有f x >2x ,且f 1 =2,则不等式f 2x -4x 2-1>0的解集为()A.0,+∞B.12,+∞C.1,+∞D.2,+∞1.(22-23高三下·广东)已知f (x )是定义在R 上的偶函数,当x >0时,有xf (x )+2f (x )<0恒成立,则()A.4f (1)>f 12B.f (2)9<f (3)4C.9f 12>4f -13D.9f (-1)<f -132.(22-23高三下·广东东莞)已知函数f x 的定义域为-∞,0 ,其导函数f x 满足xf x -2f x >0,则不等式f x +2023 -x +2023 2f -1 <0的解集为()A.(-2024,-2023)B.(-2024,0)C.(-∞,-2023)D.(-∞,-2024)3.(22-23高三上·山东泰安·阶段练习)已知f x 是定义在R 上的偶函数,f x 是f x 的导函数,当x ≥0时,f x -2x >0,且f 1 =2,则f x >x 2+1的解集是()A.-1,0 ∪(1,+∞)B.-∞,-1 ∪1,+∞C.-1,0 ∪0,1D.-∞,-1 ∪0,14.(2024·陕西商洛·模拟预测)已知函数f x =2x ln x -ax 2,若对任意的x 1,x 2∈0,+∞ ,当x 1>x 2时,都有2x 1+f x 2 >2x 2+f x 1 ,则实数a 的取值范围为()A.12e,+∞ B.1,+∞C.1e,+∞ D.2,+∞重难点题型(二)、与指数函数或对数函数有关的构造函数5.(2023·广东佛山·校考模拟预测)已知f x 是函数y =f x x ∈R 的导函数,对于任意的x ∈R 都有f x +f x >1,且f 0 =2023,则不等式e x f x >e x +2022的解集是()A.2022,+∞B.-∞,0 ∪2023,+∞C.-∞,0 ∪0,+∞D.0,+∞6.(2023·安徽黄山·统考三模)已知定义域为R 的函数f x ,其导函数为f (x ),且满足f (x )-2f x <0,f 0 =1,则()A.e 2f -1 <1B.f 1 >e 2C.f 12<e D.f 1 >ef 1e7.(22-23高三下·天津)已知可导函数f x 的导函数为f x ,f 0 =2023,若对任意的x ∈R ,都有f x <f x ,则不等式f x <2023e x 的解集为()A.0,+∞B.2023e 2,+∞C.-∞,2023e 2D.-∞,08.(22-23高三下·全国)定义域为R 的可导函数f x 的导函数为f x ,满足f x -f x <0,且f 0 =1,则不等式f xex <1的解集为()A.0,+∞B.2,+∞C.-∞,0D.-∞,21.(2023·山东烟台·二模)已知函数f x 的定义域为R ,其导函数为f x ,且满足f x +f x =e -x ,f 0 =0,则不等式e 2x -1 f x <e -1e的解集为( ).A.-1,1eB.1e ,eC.-1,1D.-1,e2.(2022·青海西宁·二模(理))已知定义在R 上的可导函数f x 的导函数为f x ,满足f x <f x ,且f x +3 为偶函数,f 6 =1,则不等式f x >e x 的解集为.3.(23-24高三下·广东佛山)已知函数f x 的定义域为0,+∞ ,且f x >-f x ln2恒成立,则不等式f ln x 4<f 22ln x 的解集为()A.1,e 2B.0,e 2C.1,e 3D.0,e 34.(23-24高三下·福建)设f (x )在R 上存在导数f (x ),满足f (x )+f (x )>0,且有f (2)=2,e x -2f (x )>2的解集为( ).A.(-∞,1)B.(-∞,2)C.(1,+∞)D.(2,+∞)重难点题型(三)、与三角函数有关的构造函数1.(22-23高三上·重庆沙坪坝)已知f x 是函数f x 的导函数,f x -f -x =0,且对于任意的x ∈0,π2有f x cos x >f -x sin -x .则下列不等式一定成立的是()A.32f -12 <f -π6 cos 12B.f -π6 >62f -π4C.f -1 <2f π4cos1 D.22f π4 >f -π32.(2023秋·陕西西安)已知函数f x 的定义域为-π2,π2 ,其导函数是f x .有f x x cos +f x xsin <0,则关于x 的不等式f x <2f π3x cos 的解集为()A.π3,π2B.π6,π2 C.-π6,-π3D.-π2,π63.(22-23高三上·全国·阶段练习)已知函数f (x )及其导函数f (x )的定义域均为-π,0 ,f -π6=-2,3f (x )cos x +f (x )sin x >0,则不等式f (x )sin 3x -14>0的解集为()A.-π3,0 B.-π6,0 .C.-π6,-π3D.-π,-2π34.(2021·甘肃省武威第二中学高三期中(理))对任意x ∈0,π2,不等式sin x ⋅f x <cos x ⋅f x 恒成立,则下列不等式错误的是()A.f π3>2f π4 B.f π3 >2cos1⋅f 1 C.f π4<2cos1⋅f 1 D.f π4<62f π65.(2020高三·全国·专题练习)已知偶函数y =f (x )对于任意的x ∈0,π2满足f (x )⋅cos x +f (x )⋅sin x >0(其中f (x )是函数f (x )的导函数),则下列不等式中不成立的是()A.2f -π3 <f π4B.2f -π3 >f π4C.f (0)<2f -π4D.f π6<3f π31.(21-22高三上·江西南昌·期末)设函数f x 是定义在0,π 上的函数f x 的导函数,有f (x )cos x -f (x )sin x >0,若a =0,b =12f π3 ,c =-22f 3π4,则a ,b ,c 的大小关系是()A.a >b >cB.b >c >aC.c >a >bD.c >b >a2.(2021·东莞市东华高级中学高二期末)已知函数y =f (x )为R 上的偶函数,且对于任意的x ∈0,π2满足f '(x )cos x +f (x )sin x <0,则下列不等式成立的是()A.3f π3>f π6 B.f (0)>2f -π4C.f π4<2f -π3 D.-3f -π3>f -π6 3.(2022·安徽·合肥一中模拟)已知函数y =f x -1 图象关于点1,0 对称,且当x >0时,f x sin x +f x cos x >0则下列说法正确的是()A.f 5π6<-f 7π6 <-f -π6 B.-f 7π6<f 5π6 <-f -π6 C.-f -π6<-f 7π6 <f 5π6 D.-f -π6<f 5π6 <-f 7π6 4.(2024·重庆·模拟预测)若函数f x 的导函数为f x ,对任意x ∈-π,0 ,f x sin x <f x cos x 恒成立,则()A.2f -5π6 >f -3π4 B.f -5π6>2f -3π4 C.2f -5π6<f -3π4 D.f -5π6<2f -3π4 5.(21-22高三上·内蒙古赤峰·阶段练习)已知函数y =f (x )对任意的x ∈(0,π)满足f x cos x >f (x )sin x (其中f x 为函数f (x )的导函数),则下列不等式成立的是()A.f π6>3f π3 B.f π6<3f π3 C.3f π6>f π3 D.3f π6<f π3。
【新高考数学专用】专题16 构造函数用函数单调性判断函数值的大小(原卷+解析)22年难点解题方法突破

专题16 构造函数用函数单调性判断函数值的大小一、单选题 1.设ln 2ln 3ln ,,23a b c ππ===则下列判断中正确的是( ) A .a b c >>B .b c a >>C .a c b >>D .c b a >>2.()f x 是定义在(0,)+∞上的非负、可导函数,且满足()()0xf x f x '-≤,对任意正数a ,b 若a b ≤,则必有( ) A .22()()a f b b f a ≤ B .22()()a f b b f a ≥ C .22()()a f a b f b ≤D .22()()a f a b f b ≥3.()f x 是定义在非零实数集上的函数,()'f x 为其导函数,且0x >时,'()()0xf x f x -<,记0.2220.222(2)(0.2)(log 5)20.2log 5f f f a b c ===,,,则( )A .a b c <<B .b a c <<C .c a b <<D .c b a <<4.已知函数ln ()1xf x x=+在0x x =处取得最大值,则下列判断正确的是( ) ①()00f x x =,①()001f x x =,①()012f x <,①()012f x > A .①①B .①①C .①①D .①①5.已知奇函数f (x )的定义域为(,),22ππ-且()'f x 是f (x )的导函数.若对任意(,0),2x π∈-都有()cos ()sin 0,f x x f x x '+<则满足()2cos ()3f f πθθ<⋅的θ的取值范围是( )A .(,)23ππ-B .(,)(,)2332ππππ--⋃ C .(,)33ππ-D .(,)32ππ 6.已知函数()y f x =是定义在R 上的偶函数,且当[)0,x ∈+∞时,()()0f x xf x '+>,若()660.70.7a f =,()()0.70.7log 6log 6b f =,()0.60.666c f =⋅,则a ,b ,c 的大小关系是( )A .c a b >>B .a c b >>C .b a c >>D .a b c >>7.R 上的函数()f x 满足:()()1f x f x '+>,()20f =,则不等式2()x x e f x e e <-的解集为( )A .()(),00,2∞⋃-B .()(),02,-∞+∞C .()0+∞,D .(),2∞-8.若定义域为R 的函数()f x 的导函数为()'f x ,并且满足()()2f x f x '<-,则下列正确的是( ) A .(2021)(2020)2(1)f ef e -<- B .(2021)(2020)2(1)f ef e ->- C .(2021)(2020)2(1)f ef e ->+D .(2021)(2020)2(1)f ef e -<+9.已知()f x 为定义在R 上的偶函数,其导函数为()f x ',对于任意的π0,2x ⎡⎫∈⎪⎢⎣⎭总有()()cos sin 0f x x f x x '+>成立,则下列不等式成立的有( )A ()π026f ⎛⎫>⎪⎝⎭B .ππ43f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭C ππ36f ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭D ππ46⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭10.已知a =1b e -=,3ln 28c =,则a ,b ,c 的大小关系为( ) A .a b c >>B .b c a >>C .c a b >>D .b a c >>11.已知()'f x 是定义在上的函数()f x 的导函数,且2(1)(1)x f x f x e +=-,当1x >时,()()f x f x '>恒成立,则下列判断正确的是( ) A .()()523e f f ->B .()()523f e f ->C .()()523e f f <-D .()()523f e f >-12.已知定义在R 上函数()f x 的导函数为()f x ',()0,πx ∀∈,有()()sin cos f x x f x x '<,且()()0f x f x +-=.设π4a ⎛⎫= ⎪⎝⎭,π3b f ⎛⎫=- ⎪⎝⎭,π2c f ⎛⎫= ⎪⎝⎭,则( ).A .a b c <<B .b c a <<C .a c b <<D .c b a <<13.下列三个数:33ln 22a =-,lnb ππ=-,ln 33c =-,大小顺序正确的是( ) A .a c b >>B .a b c >>C .b c a >>D .b a c >>14.已知函数()f x (x ∈R )满足()34f =,且()f x 的导函数()1f x '<,则不等式()221f x x -<的A .()2,2-B .()(),22,-∞-+∞C .(D .((),3,-∞+∞15.已知直线l 与曲线()xf x e =和()lng x x =分别相切于点()11,A x y ,()22,B x y .有以下命题:(1)90AOB ∠>︒(O 为原点);(2)()11,1x ∈-;(3)当10x <时,)2121x x ->.则真命题的个数为( )A .0B .1C .2D .316.已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()22f x xf x x '>+,则不等式()()()220182018420x f x f +++-<的解集为( ) A .(),2016-∞- B .(2016,2012)-- C .(2020,2016)-- D .(2016,0)-17.已知定义在(0,)2π上的函数()f x 的导函数为'()f x ,且对于任意的(0,)2x π∈,都有'()cos ()sin f x x f x x <,则( )A ()()43f ππ>B ()()64ππ<C ()()64ππD ()()63f ππ<18.设()f x '是定义域为R 的函数()f x 的导函数,()3f x '<,()32f -=-,则()37f x x >+的解集为( ) A .(),1-∞- B .(),3-∞- C .()()3,01-+∞, D .()()1,01-+∞,19.已知函数()x x g x e e -=-,()()f x xg x =,若53(),(),(3)22a fb fc f =-==,则a ,b ,c 的大小关系为( ) A .a b c <<B .c b a <<C .b a c <<D .b c a <<20.已知函数f (x )(x ①R )满足(1)1f =,且()f x 的导数f ′(x )>12,则不等式1()22x f x <+的解集( ) A .(-∞,1) B .(1,+∞)C .(-∞,-1]①[1,+∞)D .(-1,1)21.设函数()()x f x F x e=是定义在R 上的函数,其中()f x 的导函数()'f x 满足()()f x f x '<对于x ∈R 恒A .(2)f 2(0)e f >,2020(2020)(0)f e f >B .(2)f 2(0)e f <,2020(2020)(0)f e f >C .(2)f 2(0)e f <,2020(2020)(0)f e f <D .(2)f 2(0)e f >,2020(2020)(0)f e f <22.已知()'f x 是定义在R 上的函数()f x 的导函数,且满足()()0xf x f x '+>对任意的x ∈R 都成立,则下列选项中一定正确的是( ) A .(2)(1)2f f >B .(1)(2)2f f > C .(2)(1)2f f <D .(1)(2)2f f < 23.已知函数f (x )的定义域为R ,且()()()1,02f x f x f '+<=,则不等式()13x f x e +>解集为( ) A .(1,)+∞B .(,1)-∞C .(0,)+∞D .(,0)-∞24.已知定义域为R 的奇函数()y f x =的导函数为()y f x '=,当0x ≠时,()()0f x f x x'+<,若(1)a f =,()33b f =--,2(2)c f =,则a ,b ,c 的大小关系正确的是( )A .a b c <<B .b c a <<C .a c b <<D .c a b <<25.若函数216()43cos(2)4x x f x x -=+--,则( ) A .()122331log 18log 122f f f ⎛⎫- ⎪⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥>>+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ B .()1223131log 18log 22f f f ⎛⎫- ⎪⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥+>> ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦ C .()1232131log log 1822f f f ⎛⎫- ⎪⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥+>> ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦ D .()122313log 181log 22f f f ⎛⎫- ⎪⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥>+> ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦26.若1201x x ,则( )A .2121ln ln x x e e x x ->-B .2121ln ln x x e e x x -<-C .1221x x x e x e >D .1221x x x e x e <27.设()()f x g x 、是定义域为R 的恒大于0的可导函数,且()()()()0f x g x f x g x ''-<,则当a x b <<时有( )A .()()()()f x g x f b g b >B .()()()()f x g b f b g x >C .()()()() >f x g a f a g xD .()()()()f x g x f x a g >28.已知函数()f x 的定义域为R ,且()()1f x f x '<-,()11f e =-,则不等式()1xf x e +>的解集为( ) A .()1,+∞B .(),1-∞C .(),e +∞D .(),0-∞29.已知3ln 2t a =,2ln3t b =,23ln c t =,其中()3,4t ∈,则下列选项正确的是( ) A .a b c >> B .c a b >> C .b c a >> D .c b a >>二、多选题30.下列命题正确的是( ) A .若110a b<<,则2233a b > B .若1a b >-≥,则11a ba b≥++ C .若ln ln a b b a >,则b a <D .若ln3ln5,b 35a ==,则11a b a b +<+31.已知数列{a n }满足:0<a 1<1,()14n n n a a ln a +-=-.则下列说法正确的是( ) A .数列{a n }先增后减 B .数列{a n }为单调递增数列 C .a n <3D .202052a >32.定义在()0,∞+上的函数()f x 的导函数为()'f x ,且()()()21'2x f x f x x x +-<+对()0,x ∈+∞恒成立.下列结论正确的是( )A .()()22315f f ->B .若()12f =,1x >,则()21122f x x x >++ C .()()3217f f -<D .若()12f =,01x <<,则()21122f x x x >++ 33.已知函数()ln f x x x =,若120x x <<,则下列结论正确的是( ) A .()()2112x f x x f x < B .()()1122x f x x f x +<+C .1212()-()0f x f x x x <- D .当121x x e<<时,()()()1122212x f x x f x x f x +> 34.函数()f x 在定义域R 内可导,若()(2)f x f x =-,且(1)()0x f x '-<,若1(0),,(3)2a f b f c f ⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系正确的有( )A .b a >B .c b >C .b c >D .c a >35.已知函()sin cos f x x x =-且π2a f ⎛⎫=- ⎪⎝⎭,ππ,b f e ⎛⎫= ⎪⎝⎭,22c f e ⎛⎫= ⎪⎝⎭,则( )A .()f x 为偶函数B .()f x 在π0,2⎛⎫⎪⎝⎭单调递增C .a c b >>D .b a c >>36.已知函数()ln f x x x =,若120x x << ,则下列结论正确的是( ) A .2112()()x f x x f x < B .1122()()x f x x f x +<+ C .()()12120f x f x x x -<-D .当ln 1x >-时,112221()()2()x f x x f x x f x +>37.已知函数()f x 的导函数为()f x ',若()()()2f x xf x f x x '≤<-对(0,)x ∈+∞恒成立,则下列不等式中,一定成立的是( )A .(2)(1)2f f > B .(2)(1)2f f <C .(2)1(1)42f f <+ D .(2)1(1)42f f +< 38.对于定义城为R 的函数()f x ,若满足:①(0)0f =;①当x ∈R ,且0x ≠时,都有()0xf x '>;①当120x x <<且12||||x x <时,都有12()()f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( )A .()321f x x x =-+B .()21xf x e x =--C .()3ln 1,0()2,x x f x x x ⎧-+≤=⎨>⎩D .4()sin f x x x =39.下列不等式正确的有( ) A.ln32< B.ln π<C.15<D .ln 22e <三、填空题40.设()f x '是函数()f x 的导函数,若对任意实数x ,都有()()()0x f x f x f x '-+>⎡⎤⎣⎦,且()12020f e =,则不等式()20200x xf x e -≥的解集为_______.41.已知()'f x 是定义在R 上的函数()f x 的导函数,且()()0f x f x +'>,则()2ln2a f =,()1b ef =,()0c f =的大小关系为_____42.已知函数()cos sin f x x x x =-,下列结论中, ①函数()f x 的图象关于原点对称; ①当(0,)x π∈时,()0f x π-<<; ①若120x x π<<<,则1122sin sin x x x x >; ①若sin ax x bx <<对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,则a 的最大值为2π,b 的最小值为1.所有正确结论的序号为______.43.已知函数()()f x x R ∈满足()11f =,()f x 的导数()1'2f x <,则不等式()22122x f x <+的解集为____.44.已知函数()f x 定义在R 上的函数,若2()()0x f x e f x --=,当0x ≤时,()()0f x f x '+<,则不等式21()(1)x f x e f x -≥-的解集为__________45.已知实数),a b ∈+∞,且满足2211ln ba b a->,则a ,b ______. 46.已知定义在(0,)+∞上的函数()f x 的导函数()'f x 满足21()()ln ,()x f x xf x x f e e'+==,则不等式1()f x e x e+>+的解集是____.47.已知函数()f x 的定义域为[]3,3-,其导函数为()f x ',对任意x ∈R ,()()f x f x '>恒成立,且()11f =,则不等式()x ef x e >的解集为________.48.已知函数()(0)x f x ae a =>与2()2(0)g x x m m =->的图象在第一象限有公共点,且在该点处的切线相同,当实数m 变化时,实数a 的取值范围为______________.四、解答题49.已知函数2()ln 2f x x x x =-.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)求证:存在唯一的0(1,2)x ∈,使得曲线()y f x =在点00(,())x f x 处的切线的斜率为(2)(1)f f -; (3)比较(1.18)f 与 2.18-的大小,并加以证明. 50.已知()()2ln f x x a x =-()a R ∈()1当a =e 是自然对数的底数),求()()f xg x x=的单调区间; ()2若()f x 既有极大值又有极小值,求实数a 的取值范围.专题16 构造函数用函数单调性判断函数值的大小一、单选题 1.设ln 2ln 3ln ,,23a b c ππ===则下列判断中正确的是( ) A .a b c >> B .b c a >>C .a c b >>D .c b a >>【答案】B 【分析】 构造函数()ln xf x x=,利用导数分析()f x 的单调性,从而判断出,,a b c 的大小关系. 【详解】 设()ln x f x x =,所以()21ln xf x x -'=,令()0f x '=,所以x e =, 所以()0,x e ∈时,()0f x '>,()f x 单调递增;(),x e ∈+∞,()0f x '<,()f x 单调递减, 因为()ln 22ln 2ln 44244f ===,且()()()34f f f π>>,所以b c a >>, 故选:B. 【点睛】方法点睛:利用构造函数思想比较大小的方法:(1)先分析所构造函数的导函数,由此分析出函数的单调性; (2)先比较处于同一单调区间的函数值大小;(3)再通过一定方法(函数性质、取中间值等)将非同一单调区间的函数值转化到同一单调区间,即可完成比较大小.2.()f x 是定义在(0,)+∞上的非负、可导函数,且满足()()0xf x f x '-≤,对任意正数a ,b 若a b ≤,则必有( ) A .22()()a f b b f a ≤ B .22()()a f b b f a ≥ C .22()()a f a b f b ≤ D .22()()a f a b f b ≥【答案】A 【分析】 构造新函数()()(0);f x g x x x=>求导利用新函数的单调性得解. 【详解】设()()(0);f x g x x x =>则2()()();xf x f x g x x -''=因为()()0xf x f x '-≤;所以0x >时,()0,g x '≤则函数()()f x g x x =在(0,)+∞上是减函数或常函数;所以对任意正数a ,b ,若a b ≤,则必有()()()().f a f b g a g b a b=≥=()f x 是定义在(0,)+∞上的非负、可导函数,()()0bf a af b ∴≥>110,0,a b a b <≤∴≥>两式相乘得2211()()()()bf a af b b f a a f b a b⨯≥⨯⇒≥故选A 【点睛】本题考查导数的运算,构造新函数,利用函数单调性比较大小,属于中档题..3.()f x 是定义在非零实数集上的函数,()'f x 为其导函数,且0x >时,'()()0xf x f x -<,记0.2220.222(2)(0.2)(log 5)20.2log 5f f f a b c ===,,,则( )A .a b c <<B .b a c <<C .c a b <<D .c b a <<【答案】C 【分析】 构造函数()()f x g x x=,可得()g x 在(0,)+∞的单调性,可得答案. 【详解】解:令()()f x g x x =,得''2()()()xf x f x g x x-=, 由0x >时,'()()0xf x f x -<,得'()0g x <,()g x 在(0,)+∞上单调递减, 又22log 5>log 42=,0.2122<<,20.04100.2=<<,可得0.222log 5>20.2>,故0.222(log 5)(2()0.2g g g <<),故c a b <<, 故选:C. 【点睛】本题主要考查利用导数研究函数的单调性及利用函数单调性比较数值大小,关键在于由已知条件构造出合适的函数,属于中档题. 4.已知函数ln ()1xf x x=+在0x x =处取得最大值,则下列判断正确的是( )①()00f x x =,①()001f x x =,①()012f x <,①()012f x > A .①① B .①①C .①①D .①①【答案】B 【分析】()211ln ()1x x f x x +-'=+,令()11ln g x x x=+-,可知()g x 在()0,∞+上单调递减,()()20g e g e ⋅<,所以存在()20,x e e∈使得()00011ln 0g x x x=+-=,进而可得()001f x x =,然后利用作差法可得()012f x <. 【详解】ln ()1xf x x=+的定义域为()0,∞+, ()()()22111ln 1ln ()11x xx x x f x x x +-+-'==++, 令()11ln g x x x =+-在()0,∞+上单调递减, ()11ln 0g e e e =+->,()2222111ln 10g e e e e=+-=-<,所以20e x e <<,()00011ln 0g x x x =+-=,所以0011ln x x +=, 00000011ln 1()11x x f x x x x +===++,()00002111222x f x x x --=-=,因为20e x e <<,所以020x -<, 所以()0102f x -<,即()012f x <;所以①①正确; 故选:B 【点睛】思路点睛:要判断不等式或等式成立,首先要对函数求导,判断单调性,如果导函数大于或小于0无法求出解集,若导函数的分子符号是定的,需要看导函数的分子是否有单调性,如果看不出导函数分子的单调性,就要设分子为一个新的函数,再求导,利用零点存在定理,即可得出新函数的符号,即可判断原导函数的符号,即可解决问题. 5.已知奇函数f (x )的定义域为(,),22ππ-且()'f x 是f (x )的导函数.若对任意(,0),2x π∈-都有()cos ()sin 0,f x x f x x '+<则满足()2cos ()3f f πθθ<⋅的θ的取值范围是( )A .(,)23ππ-B .(,)(,)2332ππππ--⋃C .(,)33ππ- D .(,)32ππ【答案】D 【分析】 令()()cos f x g x x =,先判断函数()g x 为奇函数,再判断函数()g x 在区间(2π-,)2π上单调递减,由()2cos ()3f f πθθ<⋅,得()()3g g πθ<,即可求出.【详解】 令()()cos f x g x x=,(2x π∈-,)2π,()f x 为奇函数,cos y x =为偶函数,()g x ∴为奇函数.(2x π∀∈-,0),有()cos ()sin 0f x x f x x '+<,2()cos ()sin ()0f x x f x xg x cos x'+∴'=<,()g x ∴在区间(2π-,0)上单调递减,又()g x 为奇函数, ()g x ∴在区间(2π-,)2π上单调递减,当(2x π∈-,)2π,cos 0x >,()2cos ()3f f πθθ<⋅,∴()()3cos cos 3f f πθπθ<,()()3g g πθ∴<,∴32ππθ<<故选:D 【点睛】本题主要考查利用导数研究函数的单调性、构造函数比较大小,属于难题.联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;①若是选择题,可根据选项的共性归纳构造恰当的函数. 6.已知函数()y f x =是定义在R 上的偶函数,且当[)0,x ∈+∞时,()()0f x xf x '+>,若()660.70.7a f =,()()0.70.7log 6log 6b f =,()0.60.666c f =⋅,则a ,b ,c 的大小关系是( )A .c a b >>B .a c b >>C .b a c >>D .a b c >>【答案】A 【分析】令()()g x xf x =,得到()()g x xf x =是定义在R 上的奇函数,且在R 上是增函数,结合单调性,即可求解. 【详解】令()()g x xf x =,由()y f x =是定义在R 上的偶函数, 可得()()g x xf x =是定义在R 上的奇函数, 又因为[)0,x ∈+∞时,()()0y f x xf x ''=+>,所以()()g x xf x =在[)0,+∞上是增函数,所以()()g x xf x =是定义在R 上的增函数,又由60.60.7log 600.716<<<<,所以()060.6.7(0.7)l )og 6(6g g g <<,即b a c <<. 故选:A. 【点睛】本题主要考查了利用导数研究函数的单调性,以及利用函数的单调性比较大小问题,其中解答中构造新函数()()g x xf x =,求得函数()g x 的奇偶性和单调性是解答的关键,着重考查推理与运算能力.7.R 上的函数()f x 满足:()()1f x f x '+>,()20f =,则不等式2()x x e f x e e <-的解集为( ) A .()(),00,2∞⋃-B .()(),02,-∞+∞C .()0+∞,D .(),2∞-【答案】D 【分析】构造函数()()xxF x e f x e =-,则由题意可证得()F x 在R 上单调递增,又()20f =,()()22222F e f e e =-=-,故2()x x e f x e e <-可转化为()()2F x F <,解得2x <.【详解】令()()x xF x e f x e =-,则()()()()()1x x x x F x e f x e f x e e f x f x '''=+-=+-⎡⎤⎣⎦, 因为()()1f x f x '+>,所以()()()0x F x e f x f x ''=+>⎡⎤⎣⎦,所以函数()F x 在R 上单调递增,又()20f =,所以()()22222F e f e e =-=-故当2()x x e f x e e <-时,有2()x x e f x e e -<-,即()()2F x F <, 由()F x 的单调性可知2x <. 故选:D. 【点睛】本题考查导数与函数的应用,考查构造函数法,根据函数的单调性求解不等式,难度一般.8.若定义域为R 的函数()f x 的导函数为()'f x ,并且满足()()2f x f x '<-,则下列正确的是( ) A .(2021)(2020)2(1)f ef e -<- B .(2021)(2020)2(1)f ef e ->- C .(2021)(2020)2(1)f ef e ->+ D .(2021)(2020)2(1)f ef e -<+【答案】B 【分析】根据题意,可知()()20f x f x '-->,构造函数()2()xf xg x e+=,利用导数研究函数的单调性,可知()g x 在R 上单调递增,得出(2021)(2020)g g >,整理即可得出答案. 【详解】解:由题可知()()2f x f x '<-,则()()20f x f x '-->, 令()2()xf xg x e +=, 而0x e >,则()()2()0xf x f xg x e '--'=>,所以()g x 在R 上单调递增, 故(2021)(2020)g g >,即20212020(2021)2(2020)2f f e e ++>,故(2021)2(2020)2f ef e +>+, 即(2021)(2020)22f ef e ->-, 所以(2021)(2020)2(1)f ef e ->-. 故选:B. 【点睛】本题考查根据函数的单调性比较大小,考查构造函数和利用导数解决函数单调性问题,属于中档题. 9.已知()f x 为定义在R 上的偶函数,其导函数为()f x ',对于任意的π0,2x ⎡⎫∈⎪⎢⎣⎭总有()()cos sin 0f x x f x x '+>成立,则下列不等式成立的有( )A ()π026f ⎛⎫>⎪⎝⎭B .ππ43f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭C ππ36f ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭D ππ46⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭【答案】C 【分析】构造函数()()cos f x F x x=,对其求导,根据题中条件,得到()F x 在π0,2⎡⎫⎪⎢⎣⎭上是增函数,可判断AB 错误;再由()f x 与cos y x =均为偶函数,可得()F x 为偶函数,进而可判断C 正确,D 错误.【详解】 构造函数()()cos f x F x x=,则()()()2cos sin cos f x x f x xF x x'+'=, 因为对于任意的π0,2x ⎡⎫∈⎪⎢⎣⎭总有()()cos sin 0f x x f x x '+>成立, 所以当π0,2x ⎡⎫∈⎪⎢⎣⎭时,()0F x '>,所以()F x 在π0,2⎡⎫⎪⎢⎣⎭上是增函数, ①()π06F F ⎛⎫<⎪⎝⎭,ππ43F F ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭, 即()π06πcos0cos 6f f ⎛⎫ ⎪⎝⎭<,ππ43ππcos cos43f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,()π026f ⎛⎫< ⎪⎝⎭,ππ43f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭, 故A ,B 错误;又()f x 与cos y x =均为偶函数,所以() F x 为偶函数,因此πππ336F F F ⎛⎫⎛⎫⎛⎫-=> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即ππ36ππcos cos36f f ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭>,ππ36f ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭,故C 正确;ππ46⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭,故D 错误. 故选:C . 【点睛】本题主要考查由函数单调性比较大小,考查导数的方法研究函数的单调性,属于常考题型.10.已知a =1b e -=,3ln 28c =,则a ,b ,c 的大小关系为( ) A .a b c >> B .b c a >>C .c a b >>D .b a c >>【答案】D 【分析】将a 、b 、c 分别表示为ln 55a =,ln e b e =,ln88c =,然后构造函数()ln xf x x =,利用导数分析函数()y f x =的单调性,并利用单调性比较a 、b 、c 三个数的大小.【详解】根据题意,ln55a =,1ln =e b e e -=,ln88c =. 令()ln x f x x =,则()21ln xf x x -'=,由()0f x '<得x e >;由()0f x '>得0x e <<;则函数()f x 在()0e ,上单调递增,在(),e +∞上单调递减, 又58e <<,所以()()()58f e f f >>, 因此b a c >>. 故选:D . 【点睛】本题主要考查由函数单调性比较函数值大小,熟记导数的方法判定函数单调性即可,属于常考题型. 11.已知()'f x 是定义在上的函数()f x 的导函数,且2(1)(1)x f x f x e +=-,当1x >时,()()f x f x '>恒成立,则下列判断正确的是( ) A .()()523e f f ->B .()()523f e f ->C .()()523e f f <-D .()()523f e f >-【答案】A 【分析】 构造函数()()xf xg x e =,由(1)(1)g x g x -=+,可得()g x 的图象关于直线1x =对称, 利用导数研究函数的单调性,根据单调性即可比较大小. 【详解】构造函数()()x f x g x e =,因为2(1)(1)xf x f x e +=-,所以11(1)(1)x xf x f x e e+-+-=, 则(1)(1)g x g x -=+,所以()g x 的图象关于直线1x =对称,因为当1x >时,()()f x f x '>,所以()()()0xf x f xg x e''-=>, 所以()g x 在(1,)+∞上单调递增, 所以有(3)(2),(2)(3)g g g g ->->, 即3223(3)(2)(2)(3),f f f f e e e e---->>, 即5(3)(2)e f f ->,5(2)(3)e f f ->, 故选:A. 【点睛】本题考查了导数研究函数的单调性,解题的关键是构造函数,属于中档题.12.已知定义在R 上函数()f x 的导函数为()f x ',()0,πx ∀∈,有()()sin cos f x x f x x '<,且()()0f x f x +-=.设π4a ⎛⎫= ⎪⎝⎭,π3b f ⎛⎫=- ⎪⎝⎭,π2c f ⎛⎫= ⎪⎝⎭,则( ).A .a b c <<B .b c a <<C .a c b <<D .c b a <<【答案】D 【分析】首先设函数()()sin f x g x x=,判断函数的单调性,和奇偶性,利用函数的性质比较大小. 【详解】 设()()sin f x g x x=, ()()()()()()sin sin sin f x f x f x g x g x x x x---====--,即()()g x g x -=,所以函数()g x 是偶函数, 并且()()()2sin cos 0sin f x x f x xg x x'-'=<,所以函数()g x 在()0,π单调递减,444sin4fa gππππ⎛⎫⎪⎛⎫⎛⎫⎝⎭===⎪ ⎪⎝⎭⎝⎭,3333sin3fb f g gπππππ⎛⎫-⎪⎛⎫⎛⎫⎛⎫⎝⎭=-==-=⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭-⎪⎝⎭,222sin2fc f gππππ⎛⎫⎪⎛⎫⎛⎫⎝⎭===⎪ ⎪⎝⎭⎝⎭,因为0432ππππ<<<<,所以432g g gπππ⎛⎫⎛⎫⎛⎫>>⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即a b c>>.故选:D【点睛】本题考查导数与函数性质的综合应用,重点考查构造函数,利用函数的性质比较大小,属于中档题型. 13.下列三个数:33ln22a=-,lnbππ=-,ln33c=-,大小顺序正确的是()A.a c b>>B.a b c>>C.b c a>>D.b a c>>【答案】A【分析】构造函数()lnf x x x=-,对其求导,判断单调性,进而可得出结果.【详解】构造函数()lnf x x x=-,因为1()10f xx'=-<对一切(1,)x∈+∞恒成立,所以函数()lnf x x x=-在(1,)x∈+∞上是减函数,从而有3(3)()2f f fπ⎛⎫>>⎪⎝⎭,即a c b>>.故选:A.【点睛】本题主要考查根据函数单调性比较大小,涉及导数的方法判断函数单调性,属于常考题型.14.已知函数()f x(x∈R)满足()34f=,且()f x的导函数()1f x'<,则不等式()221f x x-<的解集为()A .()2,2-B .()(),22,-∞-+∞C.( D.((),3,-∞+∞【答案】B 【分析】构造函数()()g x f x x =-,求导后可证得()g x 在R 上单调递减,将原不等式可转化为()()()221133f x x f ---<-,即()()213g x g -<,再利用函数单调性的定义求解.【详解】令()()g x f x x =-,则()()10g x f x ''=-<, 所以()g x 在R 上单调递减.因为不等式()221f x x -<可等价于()()()221133f x x f ---<-,即()()213g x g -<,所以213x ->, 解得2x >或2x <-, 故选:B. 【点睛】本题主要考查函数的单调性与导数以及利用函数的单调性解不等式,还考查了运算求解的能力,属于中档题.15.已知直线l 与曲线()xf x e =和()lng x x =分别相切于点()11,A x y ,()22,B x y .有以下命题:(1)90AOB ∠>︒(O 为原点);(2)()11,1x ∈-;(3)当10x <时,)2121x x ->.则真命题的个数为( )A .0B .1C .2D .3【答案】C 【分析】先利用导数求斜率得到直线l 的方程,可得出()1121211ln 1x x e xe x x ⎧=⎪⎨⎪-=-⎩,分类讨论1x 的符号,计算化简()111x x OA OB x e e -⋅=-并判断其符号即得命题①正确;由()1121211ln 1x x e x e x x ⎧=⎪⎨⎪-=-⎩结合指数与对数的互化,得到111101xx e x +=>-,即得1x 的范围,得命题①错误;构造函数1111()1x x F x e x +=--,研究其零点132,2x ⎛⎫∈-- ⎪⎝⎭,再构造函数()x h x e x -=-并研究其范围,即得到12112x x x e x --=->,得到命题①正确. 【详解】()x f x e =,()x f x e '∴=,所以直线l 的斜率11x k e =,直线l 的方程为()111x x y e e x x -=-,即()1111x x y e x x e =+-,同理根据()ln g x x =可知,直线l 的方程为()221ln 1y x x x =+-,故()1121211ln 1x x e xe x x ⎧=⎪⎨⎪-=-⎩,得1221ln ln x x x ==-. 命题①中,若10x =,由121x e x =可得21x =,此时等式()1121ln 1xe x x -=-不成立,矛盾; 10x ≠时,()()11111212111x x x x OA OB x x y y x e e x x e e --⋅=+=+⋅-=-,因此,若10x <,则110x x ->>,有110x x e e -->,此时0OA OB ⋅<; 若1>0x ,则110x x -<<,有110x x e e --<,此时0OA OB ⋅<. 所以根据数量积定义知,cos 0AOB ∠<,即90AOB ∠>,故①正确;命题①中,由()1121211ln 1x x e x e x x ⎧=⎪⎨⎪-=-⎩得1211111ln 1110111x x x x e x x x ---+===>---,得11x <-或11x >,故①错误; 命题①中,因为21ln 2111x x x x ex e x --=-=-,由①知,11111xx e x +=-,11x <-或11x >, 故当10x <时,即11x <-,设1111()1x x F x e x +=--,则()1212()01x F x e x '=+>-,故()F x 在(),1-∞-是增函数,而21(2)03F e --=-<,3231025F e -⎛⎫-=-> ⎪⎝⎭,故1111()01x x F x e x +=-=-的根132,2x ⎛⎫∈--⎪⎝⎭,因为21ln 2111x x x x e x e x --=-=-,故构造函数()xh x e x -=-,32,2x ⎛⎫∈-- ⎪⎝⎭,则()10x h x e -'=--<,故()h x 在32,2⎛⎫-- ⎪⎝⎭上单调递减,所以32333()52222xh x e x g e -⎛⎫=->-=+>+> ⎪⎝⎭,故)2121x x ->,故①正确.故选:C. 【点睛】本题考查了利用导数几何意义求曲线的切线,考查了利用函数的单调性研究函数的零点问题,属于函数的综合应用题,属于难题.16.已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()22f x xf x x '>+,则不等式()()()220182018420x f x f +++-<的解集为( ) A .(),2016-∞- B .(2016,2012)-- C .(2020,2016)-- D .(2016,0)-【答案】A 【分析】构造新函数()()2g x x f x =,根据条件可得()g x 是奇函数且单调递增,将所求不等式化为()()()()222018+20184222x f x f f +<--=,即()()20182g x g +<,解得20182x +<,即2016x <-【详解】解:因为()f x 为R 上奇函数,所以()()f x f x -=-,设()()2g x x f x =,所以22()()()()()g x x f x x f x g x -=--=-=-, 所以()g x 为R 上奇函数,对()g x 求导,得()()()2f g f x x x x x '=+'⎡⎤⎣⎦,而当(0,)x ∈+∞时,有()()220f x xf x x '>+≥故(0,)x ∈+∞时,()0g x '>,即()g x 单调递增, 又()g x 为R 上奇函数,(,0)x ∈-∞时,()g x 单调递增,()g x 在R 上可导,()g x 在0x =处连续,所以()g x 在R 上单调递增,不等式()()()22018+2018420x f x f ++-<()()()22018+201842x f x f +<--, ()()()22018+201842x f x f +<即()()20182g x g +<所以20182x +<,解得2016x <- 故选:A 【点睛】本题考查构造新函数并利用其单调性求解不等式、利用导数判断函数的单调性,函数的奇偶性的应用,题目较综合,有一定的技巧性,是中档题. 17.已知定义在(0,)2π上的函数()f x 的导函数为'()f x ,且对于任意的(0,)2x π∈,都有'()cos ()sin f x x f x x <,则( )A ()()43f ππ>B ()()64ππ<C ()()64ππD ()()63f ππ<【答案】A 【分析】构造函数()cos ()g x x f x =⋅,利用导数判断出函数()g x 的单调性,即可判断正确选项. 【详解】解:由题意:构造函数()cos ()g x x f x =⋅, 则()()cos ()sin 0g x f x x f x x '='-<在π0,2x ⎛⎫∈ ⎪⎝⎭恒成立,所以()g x 在π0,2⎛⎫⎪⎝⎭单调递减,所以3ππ4π6g g g ⎛⎫⎛⎫⎛⎫>>⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 所以coscoscos6644ππππππ33f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1624πππ23f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3π4πf ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭, 4π6π⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭3π6πf ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭, 故选:A 【点睛】本题考查利用导数研究函数的单调性、利用函数的单调性比较函数值的大小,是中档题.18.设()f x '是定义域为R 的函数()f x 的导函数,()3f x '<,()32f -=-,则()37f x x >+的解集为( ) A .(),1-∞- B .(),3-∞- C .()()3,01-+∞, D .()()1,01-+∞,【答案】B 【分析】根据()3f x '<,构造函数()()3g x f x x =-,由()()30g x f x ''=-<,得到()g x 在R 上递减,然后将不等式()37f x x >+转化为()37f x x ->,利用函数单调性定义求解. 【详解】因为()3f x '<,即()30f x '-<, 设函数()()3g x f x x =-,()()30g x f x ''=-<, ()g x 在R 上递减,又()32f -=-,所以()()()33337g f -=--⨯-=,不等式()37f x x >+转化为:()37f x x ->, 即()()3g x g >-, 所以3x <-, 故选:B 【点睛】本题主要考查函数的单调性与导数以及利用函数单调性的定义解不等式,还考查了运算求解的能力,属于中档题.19.已知函数()x x g x e e -=-,()()f x xg x =,若53(),(),(3)22a fb fc f =-==,则a ,b ,c 的大小关系为( ) A .a b c << B .c b a <<C .b a c <<D .b c a <<【答案】C 【分析】易得函数()f x 为偶函数,再结合函数()g x 的单调性并利用导数判断函数()f x 的单调性,由此得解. 【详解】()()g x g x -=-,()x x g x e e -∴=-为奇函数,()f x 为偶函数,又()0x x g x e e -'=+>,()g x ∴在R 上单调递增,当0x >时,有()(0)0g x g >=,()()()0f x g x xg x '=+'>, 即()f x 在(0,)+∞上递增,所以355()()()(3)222f f f f <-=<, 故选:C . 【点睛】本题考查函数奇偶性及单调性的综合运用,同时涉及了运用导数判断函数的单调性,属于中档题. 20.已知函数f (x )(x ①R )满足(1)1f =,且()f x 的导数f ′(x )>12,则不等式1()22x f x <+的解集( ) A .(-∞,1)B .(1,+∞)C .(-∞,-1]①[1,+∞)D .(-1,1)【答案】A 【分析】 根据f ′(x )>12,构造函数 ()()122x g x f x =-- ,又()()1111022=--=g f ,然后将不等式1()22x f x <+,转化为1()022--<x f x ,利用单调性的定义求解. 【详解】 因为f ′(x )>12, 所以()102f x '-> 所以()()()()()110222x g x f x g x f x g x =--⇒=->⇒'' 在R 上递增, 又()()1111022=--=g f ,所以不等式1()22x f x <+,即为1()022--<x f x ,即为:()()1g x g <, 所以1x <, 故选:A 【点睛】本题主要考查函数的单调性与导数以及单调性的应用,还考查了构造转化求解问题的能力,属于中档题. 21.设函数()()x f x F x e=是定义在R 上的函数,其中()f x 的导函数()'f x 满足()()f x f x '<对于x ∈R 恒成立,则( )A .(2)f 2(0)e f >,2020(2020)(0)f e f >B .(2)f 2(0)e f <,2020(2020)(0)f e f >C .(2)f 2(0)e f <,2020(2020)(0)f e f <D .(2)f 2(0)e f >,2020(2020)(0)f e f < 【答案】C 【分析】对()F x 求导得()()()xf x f x F x e '-'=,可证得()F x 在R 上单调递减,于是有F (2)(0)F <和(2020)(0)F F <,从而得解.【详解】()()x f x F x e =,()()()0xf x f x F x e -∴='<', ()F x ∴在R 上单调递减,F ∴(2)(0)F <,即2(2)(0)1f f e <,f (2)2(0)e f <; (2020)(0)F F <,即2020(2020)(0)1f f e <,2020(2020)(0)f e f <. 故选:C . 【点睛】本题考查利用导数研究函数的单调性,考查学生的转化思想和逻辑推理能力,属于中档题.22.已知()'f x 是定义在R 上的函数()f x 的导函数,且满足()()0xf x f x '+>对任意的x ∈R 都成立,则下列选项中一定正确的是( ) A .(2)(1)2f f > B .(1)(2)2f f > C .(2)(1)2f f <D .(1)(2)2f f < 【答案】D 【分析】令()()F x xf x =,结合已知条件可知()F x 为R 上的增函数,故可根据()()21F F >得到正确的选项. 【详解】令()()F x xf x =,则()()()0xf x x F x f '='+>,故()F x 为R 上的增函数, 所以()()21F F >即()()221f f >, 故选:D. 【点睛】本题考查函数的单调性,注意根据导数满足的关系合理构建新函数,本题属于基础题.23.已知函数f (x )的定义域为R ,且()()()1,02f x f x f '+<=,则不等式()13x f x e +>解集为( ) A .(1,)+∞ B .(,1)-∞C .(0,)+∞D .(,0)-∞【答案】C【分析】 构造函数()()1xf xg x e+=,再分析()g x 的单调性以及()0g 求解()13xf x e +>即可. 【详解】 构造函数()()1xf xg x e+=,则()()()10x f x f x e g x '--=>',故()g x 在R 上为增函数. 又()()00103f g e+==,故()13xf x e +>即()13x f x e +>,即()()0g x g >.解得0x >. 故选:C 【点睛】本题主要考查了构造函数求解不等式的问题,需要根据题中所给的导数不等式或者所求的不等式,构造合适的函数,再根据函数的单调性求解.属于中档题.24.已知定义域为R 的奇函数()y f x =的导函数为()y f x '=,当0x ≠时,()()0f x f x x'+<,若(1)a f =,()33b f =--,2(2)c f =,则a ,b ,c 的大小关系正确的是( )A .a b c <<B .b c a <<C .a c b <<D .c a b <<【答案】B 【分析】先设()()g x xf x =,对()()g x xf x =求导,结合题中条件,判断()g x 的单调性,再根据函数()y f x =为奇函数,得到()g x 的奇偶性,进而可得出结果. 【详解】设()()g x xf x =,则()()()g x f x xf x ''=+, 因为当0x ≠时,()()0f x f x x'+<,所以当0x >时,()()0f x xf x '+<,即()0g x '<; 当0x <时,()()0f x xf x '+>,即()0g x '>; 所以()g x 在()0-∞,上单调递增,在()0+∞,上单调递减; 又函数()y f x =为奇函数,所以()()f x f x -=-,因此()()()()g x xf x xf x g x -=--==,。
高考数学构造函数试题(含答案)

构造函数一、考点一f(x)与f′(x)共存的不等式问题例题1.(1)定义在R上的函数f(x),满足f(1)=1,且对任意x∈R都有f′(x)<12,则不等式f xlg>lg x+12的解集为(0,10).(2)设f(x),g(x)分别是定义在R上的奇函数和偶函数,若当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3) =0,则不等式f(x)g(x)<0的解集为(-∞,-3)∪(0,3).【解析】(1)由题意构造函数g(x)=f(x)-12x,则g′(x)=f′(x)-12<0,所以g(x)在定义域内是减函数.因为f(1)=1,所以g(1)=f(1)-12=12,由f(lg x)>lg x+12,得f(lg x)-12lg x>12.即g(lg x)=f(lg x)-12lg x>12=g(1),所以lg x<1,解得0<x<10.所以原不等式的解集为(0,10).(2)借助导数的运算法则,f′(x)g(x)+f(x)g′(x)>0⇔[f(x)g(x)]′>0,所以函数y=f(x)g(x)在(-∞,0)上单调递增.又由题意知函数y=f(x)g(x)为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).数形结合可求得不等式f(x)g(x)<0的解集为(-∞,-3)∪(0,3).【答案】(1)(0,10);(2)(-∞,-3)∪(0,3)[解题技法](1)对于不等式f′(x)+g′(x)>0(或<0),构造函数F(x)=f(x)+g(x).(2)对于不等式f′(x)-g′(x)>0(或<0),构造函数F(x)=f(x)-g(x).特别地,对于不等式f′(x)>k(或<k)(k≠0),构造函数F(x)=f(x)-kx.(3)对于不等式f′(x)g(x)+f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x).(4)对于不等式f′(x)g(x)-f(x)g′(x)>0(或<0),构造函数F(x)=f xg x(g(x)≠0).例题2.(1)设f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x) >0成立的x的取值范围是(A)A.-∞,-1∪(0,1) B.(-1,0)∪1,+∞C.-∞,-1∪(-1,0) D.(0,1)∪1,+∞(2)设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,则下列不等式在R上恒成立的是(A)A.f(x)>0B.f(x)<0C.f(x)>xD.f(x)<x【解析】(1)令g(x)=f xx,则g′(x)=xf′x -f xx2.由题意知,当x>0时,g′(x)<0,∴g(x)在(0,+∞)上是减函数.∵f(x)是奇函数,f(-1)=0,∴f(1)=-f(-1)=0,∴g(1)=f(1)=0,∴当x∈(0,1)时,g(x)>0,从而f(x)>0;当x ∈(1,+∞)时,g (x )<0,从而f (x )<0.又∵f (x )是奇函数,∴当x ∈(-∞,-1)时,f (x )>0;当x ∈(-1,0)时,f (x )<0.综上,所求x 的取值范围是(-∞,-1)∪(0,1).(2)令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2].g 0 =0.当x >0时,g ′(x )>0,∴g (x )>g (0),即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0),即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0.综上可知,f (x )>0.【答案】(1)A ;(2)A[解题技法](1)对于xf ′(x )+nf (x )>0型,构造F (x )=x n f (x ),则F ′(x )=x n -1[xf ′(x )+nf (x )](注意对x n -1的符号进行讨论),特别地,当n =1时,xf ′(x )+f (x )>0,构造F (x )=xf (x ),则F ′(x )=xf ′(x )+f (x )>0.(2)对于xf ′(x )-nf (x )>0(x ≠0)型,构造F (x )=f x x n ,则F ′(x )=xf ′x -nf xx n +1(注意对x n +1的符号进行讨论),特别地,当n =1时,xf ′(x )-f (x )>0,构造F (x )=f x x ,则F ′(x )=xf ′x -f xx 2>0例题3.(1)已知f (x )为R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则有(D )A.e 2019f (-2019)<f (0),f (2019)>e 2019f (0)B.e 2019f (-2019)<f (0),f (2019)<e 2019f (0)C.e 2019f (-2019)>f (0),f (2019)>e 2019f (0)D.e 2019f (-2019)>f (0),f (2019)<e 2019f (0)(2)已知定义在R 上的函数f (x )满足f (x )+2f ′(x )>0恒成立,且f (2)=1e(e 为自然对数的底数),则不等式e x f (x )-e x2>0的解集为(2,+∞).【解析】(1)构造函数h (x )=f x e x ,则h ′(x )=f ′x -f xe x<0,即h (x )在R 上单调递减,故h (-2019)>h (0),即f -2019 e -2019>f 0e⇒e 2019f (-2019)>f (0);同理,h (2019)<h (0),即f (2019)<e 2019f (0),故选D .(2)由f (x )+2f ′(x )>0得212f x +f ′x>0,可构造函数h (x )=e x2f (x ),则h ′(x )=12e x2[f (x )+2f ′(x )]>0,所以函数h (x )=e x2f (x )在R 上单调递增,且h (2)=ef (2)=1.不等式e x f (x )-e x2>0等价于e x2f (x )>1,即h (x )>h (2)⇒x >2,所以不等式e xf (x )-e x2>0的解集为(2,+∞).【答案】(1)D ;(2)(2,+∞)[解题技法](1)对于不等式f 'x +f x >0(或<0),构造函数F (x )=e x f (x )(2)对于不等式f 'x -f x >0(或<0),构造函数F (x )=f (x )e x(3)对于不等式nf 'x +f x >0(或<0),构造函数F (x )=e xn f (x )(4)对于不等式nf'x -f x >0(或<0),构造函数F(x)=f x e x n(5)对于不等式f'x +nf x >0(或<0),构造函数F(x)=e nx f(x)(6)对于不等式f'x -nf x >0(或<0),构造函数F(x)=f x e nx1.已知函数f(x)是定义在R上的偶函数,设函数f(x)的导函数为f′(x),若对任意的x>0都有2f(x)+xf′(x)>0成立,则(A) A.4f(-2)<9f(3) B.4f(-2)>9f(3) C.2f(3)>3f(-2) D.3f(-3)<2f(-2)【答案】A【解析】根据题意,令g(x)=x2f(x),其导函数g′(x)=2xf(x)+x2f′(x),又对任意的x>0都有2f(x)+ xf′(x)>0成立,则当x>0时,有g′(x)=x[2f(x)+xf′(x)]>0恒成立,即函数g(x)在(0,+∞)上为增函数,又由函数f(x)是定义在R上的偶函数,则f(-x)=f(x),则有g(-x)=(-x)2f(-x)=x2f(x)=g (x),即函数g(x)也为偶函数,则有g(-2)=g(2),且g(2)<g(3),则有g(-2)<g(3),即有4f(-2)<9f(3).2.f(x)在0,+∞上的导函数为f′(x),xf′(x)>2f(x),则下列不等式成立的是(A) A.20182f(2019)>20192f(2018) B.20182f(2019)<20192f(2018)C.2018f(2019)>2019f(2018)D.2018f(2019)<2019f(2018)【答案】A【解析】令g(x)=f xx2,x∈(0,+∞),则g′(x)=x2f′x -2xf xx4=xf′x -2f xx3>0,则g(x)在(0,+∞)上为增函数,即f201920192>f201820182,∴20182f(2019)>20192f(2018)。
2024高考数学常考题型 导数中构造函数比大小问题题型总结(解析版)

第4讲导数中构造函数比大小问题题型总结【典型例题】题型一:构造()xxx f ln =比较大小此函数定义域为()+∞,0,求导()2ln 1x xx f -=',当()e x ,0∈时,()0>'x f ,故()x f 为增函数,当()+∞∈,e x 时,()0<'x f ,故()x f 为减函数,当e x =时,()x f 取得极大值为()ee f 1=,且()()222ln 42ln 244ln 4f f ====,此结论经常用来把函数转化到同一边进行比较【例1】(2022·广东·佛山市南海区九江中学高二阶段练习)若1ln 2ln 3,,e 23a b c ===,则,,a b c 的大小关系为()A .a c b >>B .b c a>>C .c b a>>D .a b c>>【答案】A 【解析】【分析】通过对三个数的变形及观察,可以构造出函数()ln xf x x=,通过求导分析其单调性即可得到答案【详解】解:1ln e ln 2ln 4ln 3,,e e 243a b c =====,设()()2ln 1ln ,x x f x f x x x -'==,则e x >时,()0f x '<,故()f x 在()e,∞+上单调递减,则()()()3e 4f f f >>,即ln e ln 3ln 4e34>>,所以a c b >>.故选:A.【例2】(2023·全国·高三专题练习)设24ln 4a e -=,ln 22b =,1c e =,则()A .a c b <<B .a b c<<C .b a c<<D .b c a<<【答案】C【解析】【分析】结合已知要比较函数值的结构特点,可考虑构造函数()ln xf x x=,然后结合导数与单调性关系分析出e x =时,函数取得最大值()1e ef =,可得c 最大,然后结合函数单调性即可比较大小.【详解】设()ln x f x x =,则()21ln xf x x -'=,当e x >时,()0f x '<,函数单调递减,当0e x <<时,()0f x '>,函数单调递增,故当e x =时,函数取得最大值()1e ef =,因为()2222e ln 22ln22e e e 22a f -⎛⎫=== ⎪⎝⎭,()()4ln2l e n 4e 1,24b f c f =====,2e 42e << ,当e x >时,()0f x '<,函数单调递减,可得()()2e 4e 2f f f ⎛⎫<< ⎪⎝⎭,即b a c <<.故选:C【例3】(2022·吉林·高二期末)下列命题为真命题的个数是()①ln 32<;②ln π<;③15<;④3e ln 2>.A .1B .2C .3D .4【答案】B 【解析】【分析】本题首先可以构造函数()ln x f x x =,然后通过导数计算出函数()ln xf x x=的单调性以及最值,然后通过对①②③④四组数字进行适当的变形,通过函数()ln xf x x=的单调性即可比较出大小.【详解】解:构造函数()ln x f x x =,则()21ln xf x x -'=,当0e x <<时,()0f x '>,e x >时,()0f x '<,所以函数()ln xf x x=在()0,e 上递增,在()e,+∞上递减,所以当e x =时()f x 取得最大值1e,ln 322ln 2ln 22<⇔⇔,2e <<可得()2ff <,故①正确;lnπ<⇔e <<,可得f f <,故②错误;ln 2ln 4152ln1524<⇔<⇔<<,因为函数()ln xf x x=在()e,+∞上递减,所以()4f f<,故③正确;因为e >,所以(()e f f <,ln ee <1e <,则3e <即3e ln 2<④错误,综上所述,有2个正确.故选:B .【点睛】本题考查如何比较数的大小,当两个数无法直接通过运算进行大小比较时,如果两个数都可以转化为某个函数上的两个函数值,那么可以构造函数,然后通过函数的单调性来判断两个数的大小,考查函数思想,是难题.【例4】(2021·陕西汉中·高二期末(理))已知a ,b ,c 均为区间()0,e 内的实数,且ln 55ln a a =,ln 66ln b b =,ln 77ln c c =,则a ,b ,c 的大小关系为()A .a c b >>B .a b c>>C .c a b>>D .c b a>>【答案】B 【解析】【分析】构造函数()ln xf x x=,由导数判断函数单调性,进而利用单调性即可求解.【详解】解:令()ln x f x x =,则()21ln xf x x -'=,当0e x <<时,()0f x '>,函数()F x 在()0,e 上单调递增,当e x >时,()0f x '<,函数()f x 在()e,+∞上单调递减,因为765e >>>,所以()()()765f f f <<,因为a ,b ,c 均为区间()0,e 内的实数,且ln 5ln 5a a =,ln 6ln 6b b =,ln 7ln 7c c=,所以()()()f a f b f c >>,所以a b c >>,故选:B.【例5】(2022·江西·高三阶段练习(理))设ln 28a =,21e b =,ln 612c =,则()A .a c b <<B .a b c <<C .b a c <<D .c a b<<【答案】B 【解析】【分析】根据a 、b 、c 算式特征构建函数()2ln xf x x =,通过求导确定函数单调性即可比较a 、b 、c 的大小关系.【详解】令()2ln x f x x =,则()42ln 0x x xx x f x '-==⇒=因此()2ln xf x x =在)∞+上单调递减,又因为ln 2ln 4(4)816a f ===,22ln e1=(e)e e b f ==,ln 612c f ===,因为4e >>>a b c <<.故选:B .【题型专练】1.(2022·四川省资阳中学高二期末(理))若ln212ln3,,29e a b c ===,则()A .b a c>>B .b c a>>C .a b c >>D .a c b>>【答案】A 【解析】【分析】令()ln xf x x=,利用导数说明函数的单调性,即可得到函数的最大值,再利用作差法判断a 、c ,即可得解;【详解】解:令()ln x f x x =,则()21ln xf x x-'=,所以当0e x <<时()0f x '>,当e x >时()0f x '<,所以()f x 在()0,e 上单调递增,在()e,+∞上单调递减,所以()()max ln e 1e e e f x f ===,所以1e ln22>又94ln22ln39ln 24ln 3ln 2ln 3ln 512ln 91029181818----===>所以ln22ln329>,即b a c >>.故选:A2.(2022·浙江台州·高二期末)设24ln 4e a -=,ln 22b =,c =,则()A .a b c <<B .b a c <<C .a c b<<D .b c a<<【答案】B 【解析】【分析】由题设22e ln2e 2a =,ln 44b =,ln 33c =,构造ln ()xf x x =并利用导数研究单调性,进而比较它们的大小.【详解】由题设,222e ln4ln 42e e 2a -==,ln 2ln 424b ==,ln 33c ==,令ln ()xf x x=且0x >,可得21ln ()x f x x -'=,所以()0f x '>有0e x <<,则(0,e)上()f x 递增;()0f x '<有e x >,则(e,)+∞上()f x 递减;又2e 43e 2>>>,故c a b >>.故选:B3.(2022·四川广安·模拟预测(理))在给出的(1ln 32)43ln 34<e (3)ee ππ>.三个不等式中,正确的个数为()A .0个B .1个C .2个D .3个【答案】C 【解析】【分析】根据题目特点,构造函数()ln x f x x =,则可根据函数()ln xf x x=的单调性解决问题.【详解】首先,我们来考察一下函数()ln xf x x=,则()21ln xf x x -'=,令()0,f x '>解得0e x <<,令()0,f x '<解得e x >,故()ln xf x x=在区间()0,e 上单调递增,在区间()e,+∞单调递减,所以,(1)ff <ln 3>,则正确;(2)()43e 3f f ⎛⎫< ⎪⎝⎭,即4343lne ln33e <,即43e ln 34⋅>,则错误;(3)()()πf e f >,即e e e e e e ππππππln ln ln ln ln ln >⇒>⇒>,所以,e e ππ>,则正确故选:C.4.(2022·四川资阳·高二期末(文))若ln 33a =,1eb =,3ln 28c =,则()A .b a c >>B .b c a >>C .c b a >>D .c a b>>【答案】A 【解析】【分析】设函数ln (),(0)xf x x x=>,求出其导数,判断函数的单调性,由此可判断出答案.【详解】设ln (),(0)x f x x x =>,则21ln ()xf x x -'=,当0e x <<时,()0f x '>,()f x 递增,当e x >时,()0f x '<,()f x 递减,当e x =时,函数取得最小值,由于e 38<<,故lne ln 3ln 8e 38>>,即b a c >>,故选:A5.(2022·山东日照·高二期末)π是圆周率,e 是自然对数的底数,在e 3,3e ,33,e e ,πe ,3π,π3,e π八个数中,最小的数是___________,最大的数是___________.【答案】e e π3【解析】【分析】分别利用指数函数的单调性,判断出底数同为3,e 以及π的数的大小关系,再由幂函数的单调性,找出最小的数,最后利用函数()ln xf x x=的单调性,判断出最大的数.【详解】显然八个数中最小的数是e e .函数3x y =是增函数,且e 3π<<,∴e 3π333<<;函数e x y =是增函数,且e 3π<<,e 3πe e e <<;函数πx y =是增函数,且e 3π<<,e 3ππ<;函数e y x =在()0,∞+是增函数,且e 3π<<,e e e e 3π<<,则八个数中最小的数是e e 函数πy x =在()0,∞+是增函数,且e 3<,ππe 3<,八个数中最大的数为3π或π3,构造函数()ln xf x x=,求导得()21ln xf x x -'=,当()e,x ∈+∞时()0f x '<,函数()f x 在()e,+∞是减函数,()()3πf f >,即ln 3ln π3π>,即πln 33ln π>,即π3ln 3ln π>,π33π∴>,则八个数中最大的数是π3.故答案为:e e ;π3.6.(2022·安徽省宣城中学高二期末)设24ln41,,e ea b c -===,,a b c 的大小关系为()A .a b c <<B .b a c<<C .a c b<<D .c a b<<【答案】D 【解析】【分析】设ln ()(0)xf x x x =>,利用导数求得()f x 的单调性和最值,化简可得2e 2a f ⎛⎫= ⎪⎝⎭,(e)b f =,(2)c f =,根据函数解析式,可得ln 4(4)(2)4f f ==且2e e 42<<,根据函数的单调性,分析比较,即可得答案.【详解】设ln ()(0)xf x x x=>,则221ln 1ln ()x xx x f x x x ⋅--'==,当(0,e)x ∈时,()0f x '>,则()f x 为单调递增函数,当(e,)x ∈+∞时,()0f x '<,则()f x 为单调递减函数,所以max 1()(e)ef x f ==,又222222e ln 4ln42(ln e e 2e e e 22ln 2)a f ⎛⎫-==-== ⎪⎝⎭,1(e)e b f ==,1ln 2(2)2c f ===,又2ln 4ln 2ln 2(4)(2)442f f ====,2e e 42<<,且()f x 在(e,)+∞上单调递减,所以2e (2)(4)2f f f ⎛⎫=< ⎪⎝⎭,所以b a c >>.故选:D7.(2022·黑龙江·大庆实验中学高二期末)已知实数a ,b ,c 满足ln ln ln 0e a a b cb c==-<,则a ,b ,c 的大小关系为()A .b c a <<B .c b a<<C .a b c<<D .b a c<<【答案】C 【解析】【分析】判断出01,01,1a b c <<<<>,构造函数ln (),(0)xf x x x=>,判断01x <<时的单调性,利用其单调性即可比较出a,b 的大小,即可得答案.【详解】由ln ln ln 0e a a b cb c==-<,得01,01,1a b c <<<<>,设ln (),(0)x f x x x =>,则21ln ()xf x x -'=,当01x <<时,()0f x '>,()f x 单调递增,因为01a <<,所以e 1>>a a ,所以ln ln e a aa a>,故()()ln ln ln e =>∴>a a b a f b f a b a ,则b a >,即有01a b c <<<<,故a b c <<.故选:C.题型二:利用常见不等式关系比较大小1、常见的指数放缩:)1();0(1=≥=+≥x ex e x x e xx证明:设()1--=x e x f x,所以()1-='xe xf ,所以当()0,∞-∈x 时,()0<'x f ,所以()x f 为减函数,当当()+∞∈,0x 时,()0>'x f ,所以()x f 为增函数,所以当0=x 时,()x f 取得最小值为()00=f ,所以()0≥x f ,即1+≥x e x2.常见的对数放缩:)(ln );1(1ln 11e x exx x x x x =≤=-≤≤-3.常见三角函数的放缩:x x x x tan sin ,2,0<<⎪⎭⎫⎝⎛∈π【例1】(2022·湖北武汉·高二期末)设4104a =,ln1.04b =,0.04e 1c =-,则下列关系正确的是()A .a b c >>B .b a c >>C .c a b >>D .c b a>>【答案】D 【解析】【分析】分别令()()e 10xf x x x =-->、()()()ln 10g x x x x =+->、()()()ln 101xh x x x x=+->+,利用导数可求得()0f x >,()0g x <,()0h x >,由此可得大小关系.【详解】令()()e 10xf x x x =-->,则()e 10x f x '=->,()f x ∴在()0,∞+上单调递增,()()00f x f ∴>=,即1x e x ->,则0.04e 10.04->;令()()()ln 10g x x x x =+->,则()11011x g x x x'=-=-<++,()g x ∴在()0,∞+上单调递减,()()00g x g ∴<=,即()ln 1x x +<,则ln1.040.04<;0.04e 1ln1.04∴->,即c b >;令()()()ln 101x h x x x x=+->+,则()()()22110111x h x x x x '=-=>+++,()h x ∴在()0,∞+上的单调递增,()()00h x h ∴>=,即()ln 11xx x+>+,则0.044ln1.04 1.04104>=,即b a >;综上所述:c b a >>.故选:D.【点睛】关键点点睛:本题解题关键是能够通过构造函数的方式,将问题转化为函数值的大小关系的比较问题,通过导数求得函数的单调性后,即可得到函数值的大小.【例2】(2022·山东菏泽·高二期末)已知910a =,19eb -=,101ln 11c =+,则a ,b ,c 的大小关系为()A .a b c <<B .b a c<<C .c b a <<D .c a b<<【答案】B【解析】【分析】首先设()e 1x f x x =--,利用导数得到()e 10xx x >+≠,从而得到11b a>,设()ln 1g x x x =-+,利用导数得到()ln 11x x x <-≠,从而得到111ln 1010<和c a >,即可得到答案.【详解】解:设()e 1x f x x =--,()e 1xf x '=-,令()0f x ¢=,解得0x =.(),0x ∈-∞,()0f x ¢<,()f x 单调递减,()0,x ∞∈+,()0f x ¢>,()f x 单调递增.所以()()00f x f ≥=,即e 10x x --≥,当且仅当0x =时取等号.所以()e 10xx x >+≠.又1911101e 199b a=>+==,0,0a b >>,故11b a >,所以b a <;设()ln 1g x x x =-+,()111xg x x x-'=-=,令()0g x ¢=,解得1x =.()0,1∈x ,()0g x ¢>,()g x 单调递增,()1,x ∈+∞,()0g x ¢<,()g x 单调递减.所以()()10g x g ≤=,即ln 10x x -+≤,当且仅当1x =时取等号.所以()ln 11x x x <-≠,故11111ln 1101010<-=,又1011011lnln ln ln1011101110c a -=+>+==,所以c a >,故b a c <<.故选:B.【例3】(2022·四川凉山·高二期末(文))已知0.01e a =, 1.01b =,1001ln 101c =-,则().A .c a b >>B .a c b>>C .a b c>>D .b a c>>【答案】C 【解析】【分析】构造函数()e 1x f x x =--,由导数确定单调性,进而即得.【详解】设()e 1x f x x =--,则e ()10x f x '=->,在0x >时恒成立,所以()f x 在(0,)+∞上是增函数,所以e 1(0)0x x f -->=,即e 1x x >+,0x >,∴0.01e 1.01>,又ln1.010>,∴ln1.01e 1ln1.01>+,即1001.011ln 101>-,所以a b c >>.故选:C .【例4】(2022·四川绵阳·高二期末(理))若8ln 7a =,18=b ,7ln 6c =,则()A .a c b <<B .c a b<<C .c b a <<D .b a c<<【答案】D 【解析】【分析】构造函数()1ln 1f x x x=+-,其中1x >,利用导数分析函数()f x 的单调性,可比较得出a 、b 的大小关系,利用对数函数的单调性可得出c 、a 的大小关系,即可得出结论.【详解】构造函数()1ln 1f x x x=+-,其中1x >,则()221110x f x x x x -'=-=>,所以,函数()f x 在()1,+∞上为增函数,故()()10f x f >=,则88781ln 1ln 077878f ⎛⎫=+-=-> ⎪⎝⎭,即a b >,78lnln 67> ,因此,b a c <<.故选:D.【例5】(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则()A .c b a >>B .b a c>>C .a b c >>D .a c b>>【答案】A 【解析】【分析】由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解.【详解】因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭所以11tan44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>,故选:A 【题型专练】1.(2022·福建·莆田一中高二期末)设ln1.01a =, 1.0130e b =,1101c =,则()A .a b c <<B .a c b <<C .c b a <<D .c a b<<【答案】D 【解析】【分析】构造函数()ln 1f x x x =-+(0x >),证明ln 1≤-x x ,令 1.01x =,排除选项A,B,再比较,a b 大小,即得解.【详解】解:构造函数()ln 1f x x x =-+(0x >),()10f =,()111xf x x x-'=-=,所以()f x 在()0,1上()0f x '>,()f x 单调递增,()f x 在()1,+∞上()0f x '<,()f x 单调递减,所以max ()(1)0,ln 10,ln 1f x f x x x x ==∴-+≤∴≤-,令 1.01x =,则 ln a x =,30e x b =,11c x=-,考虑到ln 1≤-x x ,可得11ln 1x x ≤-,1ln 1x x -≥-等号当且仅当 1x =时取到,故 1.01x =时a c >,排除选项A ,B.下面比较,a b 大小,由ln 1≤-x x 得 1.01ln1.01 1.0130e<<,故b a >,所以c a b <<.故选:D.2.(2022·吉林·长春市第二中学高二期末)已知1cos 5a =,4950b =,15sin 5=c ,则()A .b a c >>B .c b a >>C .b c a >>D .c a b>>【答案】D 【解析】【分析】构造函数21()cos 12f x x x =+-,利用导数求解函数()f x 的单调性,利用单调性进行求解.【详解】解:设21()cos 1,(01)2f x x x x =+-<<,则()sin f x x x '=-,设()sin ,(01)g x x x x =-<<,则()1cos 0g x x '=->,故()g x 在区间(0,1)上单调递增,即()(0)0g x g >=,即()0f x '>,故()f x 在区间(0,1)上单调递增,所以1(0)05f f ⎛⎫>= ⎪⎝⎭,可得149cos 550>,故a b >,利用三角函数线可得0,2x π⎛⎫∈ ⎪⎝⎭时,tan x x >,所以11tan 55>,即1sin1515cos 5>,所以115sincos 55>,故c a >综上,c a b >>故选:D.3(2022·湖北武汉·高二期末)设4104a =,ln1.04b =,0.04e 1c =-,则下列关系正确的是()A .a b c >>B .b a c >>C .c a b >>D .c b a>>【答案】D 【解析】【分析】分别令()()e 10xf x x x =-->、()()()ln 10g x x x x =+->、()()()ln 101xh x x x x=+->+,利用导数可求得()0f x >,()0g x <,()0h x >,由此可得大小关系.【详解】令()()e 10xf x x x =-->,则()e 10x f x '=->,()f x ∴在()0,∞+上单调递增,()()00f x f ∴>=,即1x e x ->,则0.04e 10.04->;令()()()ln 10g x x x x =+->,则()11011x g x x x'=-=-<++,()g x ∴在()0,∞+上单调递减,()()00g x g ∴<=,即()ln 1x x +<,则ln1.040.04<;0.04e 1ln1.04∴->,即c b >;令()()()ln 101x h x x x x =+->+,则()()()22110111x h x x x x '=-=>+++,()h x ∴在()0,∞+上的单调递增,()()00h x h ∴>=,即()ln 11xx x+>+,则0.044ln1.04 1.04104>=,即b a >;综上所述:c b a >>.故选:D.题型三:构造其它函数比大小(研究给出数据结构,合理构造函数)【例1】(2022·河南河南·高二期末(理))已知1ln 22a a -=,1ln 33b b -=,e ln e cc -=,其中12a ≠,13b ≠,e c ≠,则a ,b ,c 的大小关系为().A .c a b <<B .c b a<<C .a b c<<D .a c b<<【答案】A 【解析】【分析】构造函数()()ln 0f x x x x =->,并求()f x ',利用函数()f x 的图象去比较a b c 、、三者之间的大小顺序即可解决.【详解】将题目中等式整理,得11ln ln 22a a -=-,11ln ln 33b b -=-,ln e ln e c c -=-,构造函数()()ln 0f x x x x =->,()111x f x x x-'=-=,令()0f x '=,得1x =,所以()f x 在()0,1上单调递减,在()1,+∞上单调递增,函数()f x 的大致图象如图所示.因为()12f a f ⎛⎫= ⎪⎝⎭,()13f b f ⎛⎫= ⎪⎝⎭,()()e f c f =,且12a ≠,13b ≠,e c ≠,则由图可知1b a >>,01c <<,所以c a b <<.故选:A .【例2】(2022·重庆市万州第二高级中学高二阶段练习)设 1.01e a =,3eb =,ln 3c =,其中e 为自然对数的底数,则a ,b ,c 的大小关系是()A .b a c >>B .c a b>>C .a c b>>D .a b c>>【答案】D 【解析】【分析】可判断 1.012e a =>,e32b =<,ln 32c =<,再令()ln exf x x =-,[e x ∈,)∞+,求导判断函数的单调性,从而比较大小.【详解】解: 1.012e a =>,e 32b =<,ln 32c =<,令()ln exf x x =-,[e x ∈,)∞+,11()0e e e x f x x x-'=-=<,故()f x 在[e ,)∞+上是减函数,故()()e 3f f <,即3ln 30e-<,故 1.013l e e n 3<<,即c b a <<,故选:D .【例3】(2022·全国·高三专题练习)已知ln 32a =,1e 1b =-,ln 43c =,则a ,b ,c 的大小关系是()A .b a c >>B .b c a >>C .c a b >>D .c b a>>【答案】A 【解析】【分析】根据给定条件构造函数ln ()e)1xf x x x =≥-,再探讨其单调性并借助单调性判断作答.【详解】令函数ln ()(e)1x f x x x =≥-,求导得()211ln ()1x x f x x --'=-,令()11ln g x x x =--,则()210,(e)xg x x x -'=<≥,故()11ln g x x x =--,(e)x ≥单调递减,又()111ln101g =--=,故()0,(e)g x x <≥,即()0,(e)f x x '<≥,而e 34<<,则(e)(3)(4)f f f >>,即1ln 3ln 4e 123>>-,所以b a c >>,故选:A【例4】(山东省淄博市2021-2022学年高二下学期期末数学试题)设110a =,ln1.1b =,910ec -=,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<【答案】D 【解析】【分析】利用指数函数的性质可比较,a c 的大小,再构造函数()ln(1)f x x x =-+,利用导数判断函数的单调性,再利用其单调性可比较出,a b ,从而可比较出三个数的大小【详解】因为e x y =在R 上为增函数,且9110-<-,所以9110e e --<,因为11e 10-<,所以9101e 10-<,即a c <,令()ln(1)f x x x =-+(0x >),得1()1011xf x x x'=-=>++,所以()f x 在(0,)+∞上递增,所以()(0)0f x f >=,所以ln(1)x x >+,令0.1x =,则0.1ln1.1>,即1ln1.110>,即a b >,所以b a c <<,故选:D【例5】(2022·四川南充·高二期末(理))设0.010.01e a =,199b =,ln 0.99c =-,则()A .c a b <<B .c b a <<C .a b c <<D .a c b<<【答案】A 【解析】【分析】根据给定数的特征,构造对应的函数,借助导数探讨单调性比较函数值大小作答.【详解】令函数e ,,ln(1)1xxy x t u x x===---,1)x ∈,显然0,0y t >>,则ln ln ln [ln ln(1)]ln(1)y t x x x x x x -=+---=+-,令()ln(1)f x x x =+-,1)x ∈-,求导得1()1011x f x x x '=+=<--,即()f x 在1)-上单调递减,1)x ∀∈,()(0)0f x f <=,即ln ln y t y t <⇔<,因此当1)x ∈时,e 1xx x x<-,取0.01x =,则有0.010.0110.01e10.0199a b =<==-,令()e ln(1)xg x y u x x =-=+-,1)x ∈-,21(1)e 1()(1)e 11x xx g x x x x -+'=++=--,令2()(1)e 1x h x x =-+,1)x ∈,2()(21)e 0x h x x x '=+-<,()h x在1)-上单调递减,1)x ∀∈,()(0)0h x h <=,有()0g x '>,则()g x 在1)上单调递增,1)x ∀∈,()(0)0g x g >=,因此当1)x ∈时,e ln(1)x x x >--,取0.01x =,则有0.010.01e ln(10.01)ln 0.99a c =>--=-=,所以c a b <<.故选:A 【点睛】思路点睛:涉及某些数或式大小比较,探求它们的共同特性,构造符合条件的函数,利用函数的单调性求解即可.【例6】(2022·全国·高三专题练习)已知0.3πa =,20.9πb =,sin 0.1c =,则a ,b ,c 的大小关系正确的是()A .a b c >>B .c a b>>C .a c b>>D .b a c>>【答案】B 【解析】【分析】作差法比较出a b >,构造函数,利用函数单调性比较出c a >,从而得出c a b >>.【详解】2220.30.90.3π0.90.330.90ππππa b -⨯--=-=>=,所以0a b ->,故a b >,又()πsin 3f x x x =-,则()πcos 3f x x '=-在π0,6x ⎛⎫∈ ⎪⎝⎭上单调递减,又()0π30f '=->,π306f ⎛⎫'=-< ⎪⎝⎭,所以存在0π0,6x ⎛⎫∈ ⎪⎝⎭,使得()00f x '=,且在()00,x x ∈时,()0f x '>,在0π,6x x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,即()πsin 3f x x x =-在()00,x x ∈上单调递增,在0π,6x x ⎛⎫∈ ⎪⎝⎭单调递减,且ππ30124f ⎛⎫'=-> ⎪⎝⎭,所以0π12x >,又因为()00f =,所以当()00,x x ∈时,()πsin 30f x x x =->,其中因为1π1012<,所以()010,10x ∈,所以1πsin 0.10.3010f ⎛⎫=-> ⎪⎝⎭,故sin 0.10.3π>,即c a b >>.故选:B【例7】(2022·河南洛阳·三模(理))已知108a =,99b =,810c =,则a ,b ,c 的大小关系为()A .b c a >>B .b a c >>C .a c b >>D .a b c>>【答案】D 【解析】【分析】构造函数()()18ln f x x x =-,8x ≥,求其单调性,从而判断a ,b ,c 的大小关系.【详解】构造()()18ln f x x x =-,8x ≥,()18ln 1f x x x+'=--,()18ln 1f x x x+'=--在[)8,+∞时为减函数,且()295558ln 81ln 8ln e 204444f =-+-=-<-=-<',所以()18ln 10f x x x=-+-<'在[)8,+∞恒成立,故()()18ln f x x x =-在[)8,+∞上单调递减,所以()()()8910f f f >>,即10ln89ln 98ln10>>,所以10988910>>,即a b c >>.故选:D 【点睛】对于指数式,对数式比较大小问题,通常方法是结合函数单调性及中间值比较大小,稍复杂的可能需要构造函数进行比较大小,要结合题目特征,构造合适的函数,通过导函数研究其单调性,比较出大小.【例8】(2022·河南·模拟预测(理))若0.2e a =,b =ln 3.2c =,则a ,b ,c 的大小关系为()A .a b c >>B .a c b >>C .b a c >>D .c b a>>【答案】B 【解析】构造函数()()e 10xf x x x =-->,利用导数可得0.2e 1.2b a >>=,进而可得 1.2e 3.2>,可得a c >,再利用函数()()21ln 1x g x x x -=-+,可得ln 3.2 1.1>,即得.【详解】令()()e 10xf x x x =-->,则()e 10x f x '=->,∴()f x 在()0,∞+上单调递增,∴0.20.21 1.2e a b >+=>=,0.2 1.21.e ln 2e a >==,ln 3.2c =,∵()()()6551.262.7387.4,3.2335.5e e >≈≈=,∴ 1.2e 3.2>,故a c >,设()()21ln 1x g x x x -=-+,则()()()()()22221211011x xx g x x x x x +--=-=≥++',所以函数在()0,∞+上单调递增,由()10g =,所以1x >时,()0g x >,即()21ln 1x x x ->+,∴()()22121.6155ln 3.2ln 2ln1.611 1.1211.613950--=+>+=>=++,又1 1.2 1.21,1 1.1b <<<<,∴ 1.1c b >>,故a c b >>.故选:B.【点睛】本题解题关键是构造了两个不等式()e 10xx x >+>与()21ln (1)1x x x x ->>+进行放缩,需要学生对一些重要不等式的积累.【题型专练】1(2022·山东烟台·高二期末)设a =0.9,b =9ln e10c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为()A .b c a >>B .b a c >>C .c b a >>D .c a b>>【答案】B【分析】构造函数()ln 1f x x x =--,()g x x =-.【详解】令()ln 1f x x x =--,因为11()1x f x x x'-=-=所以,当01x <<时,()0f x '<,()f x 单调递减,所以(0.9)0.9ln 0.91(1)0f f =-->=,即90.9ln 0.91ln(e)10>+=,a c >;令()g x x =()1g x '=-所以,当114x <<时,()0g x '>,()g x 单调递增,所以(0.9)(1)g g <,即0.90<,0.9a b <.综上,c a b <<.故选:B2.(2022·山东青岛·高二期末)已知ln 3a π=,2b =,1sin 0.042c ⎫=-⎪⎪⎭,则a ,b ,c 的大小关系是()A .c b a >>B .a b c>>C .b a c>>D .a c b>>【答案】C 【解析】【分析】构造函数得出,a b 大小,又0c <即得出结论.【详解】构造函数()()()2ln 212ln 1f x x x x x =--=-+,则a b f -=,()1210f x x ⎛⎫'=-< ⎪⎝⎭在()1,+∞上恒成立,则()y f x =在()1,+∞上单调递减,故()10a b f f -=<=,则0b a >>,()π103x x =+>,则()π30121100433.x .-+-=>=,由对于函数()πsin 02g x x x x ⎛⎫=<< ⎪⎝⎭-,()πcos 1002g x x ,x ⎛⎫'=<<< ⎪⎝⎭-恒成立,所以,()()sin 00g x x x g =<=-即sin x x <在π0,2⎛⎫ ⎪⎝⎭上恒成立.所以,1sin0.04sin sin 02x x x ⎫<=<-<⎪⎭(注:004009020305.x .,...<<<<)所以,b a c >>故选:C3.(2022·湖北襄阳·高二期末)设253e 4a =,342e 5b =,35c =,则()A .b c a <<B .a b c <<C .c b a<<D .c a b<<【答案】C 【解析】【分析】根据式子结构,构造函数()()e ,01xf x x x=<<,利用导数判断单调性,得到2354f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即可判断出a b >.记()()e 2,01xg x x x =-<<,推理判断出b c >.【详解】24452533e23e 542e e 534a b ==.记()()e ,01x f x x x =<<,则()()2e 10x xf x x -'=<,所以()e xf x x =在()0,1上单调递减.所以2354f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以a b >.433422e e 5325354b c ⎛⎫-= ⎪⨯⎝--⎭=.记()()e 2,01x g x x x =-<<,则()e 2xg x '=-.所以在()0,ln 2x ∈上,()0g x '<,则()g x 单调递减;在()ln 2,1x ∈上,()0g x '>,则()g x 单调递增;所以()()()ln 2min ln 2e 2ln 221ln 20g x g ==-⨯=->,所以()min 304g g x ⎛⎫>> ⎪⎝⎭,即3422e 0534b c ⨯⎛⎫-> ⎪⎝⎭=-.所以b c >.综上所述:c b a <<.故选:C4.(2022·福建宁德·高二期末)已知a ,R b ∈,且221a b >>,则()A .ln ln a b a b -<-e eB .ln ln b a a b <C .e a b ba->D .sin sin 1a ba b-<-【答案】D 【解析】【分析】由题设有0a b >>,分别构造e ln x y x =-、ln xy x=、e x y x =、sin y x x =-,利用导数研究在,()0x ∈+∞上的单调性,进而判断各项的正误.【详解】由221a b >>,即0a b >>,A :若e ln x y x =-且,()0x ∈+∞,则1e xy x'=-,故12|20x y ='=-<,1|e 10x y ='=->,即y '在1(,1)2上存在零点且y '在(0,)+∞上递增,所以y 在(0,)+∞上不单调,则e ln e ln a b a b -<-不一定成立,排除;B :若ln x y x =且,()0x ∈+∞,则21ln xy x -'=,所以(0,e)上0y '>,y 递增;(e,)+∞上0y '<,y 递减;故y 在(0,)+∞上不单调,则ln ln a ba b<不一定成立,排除;C :若e x y x =且,()0x ∈+∞,则e (1)0x y x '=+>,即y 在(0,)+∞上递增,所以e e a b a b >,即e a b ba-<,排除;D :若sin y x x =-且,()0x ∈+∞,则1cos 0y x '=-≥,即y 在(0,)+∞上递增,所以sin sin a a b b ->-,即sin sin 1a ba b-<-,正确.故选:D5.(2022·贵州贵阳·高二期末(理))设 1.01e a =,3eb =,ln3c =,则a ,b ,c 的大小关系是()A .b a c >>B .c a b>>C .a c b >>D .a b c>>【答案】D 【解析】【分析】分析可得2a >,(1,2)b ∈,(1,2)c ∈,令()ln ,[e,)e xf x x x =-∈+∞,利用导数可得()f x 的单调性,根据函数单调性,可比较ln 3和3e的大小,即可得答案.【详解】由题意得 1.011e e 2a =>>,3(2e 1,)b =∈,ln 3(1,2)c =∈,令()ln ,[e,)exf x x x =-∈+∞,则11e ()0e ex f x x x -'=-=≤,所以()f x 在[e,)+∞为减函数,所以(3)(e)f f <,即3eln 3ln e 0e e-<-=,所以3ln 3e<,则 1.013e ln 3e >>,即a b c >>.故选:D6.(2022·重庆南开中学高二期末)已知6ln1.25a =,0.20.2e b =,13c =,则()A .a b c <<B .c b a <<C .c a b <<D .a c b<<【答案】A 【解析】【分析】0.20.20.20.2e e ln e b ==,令()ln f x x x =,利用导数求出函数()f x 的单调区间,令()e 1xg x x =--,利用导数求出函数()g x 的单调区间,从而可得出0.2e 和1.2的大小,从而可得出,a b 的大小关系,将,b c 两边同时取对数,然后作差,从而可得出,b c 的大小关系,即可得出结论.【详解】解:0.20.20.20.2e e ln e b ==,6ln1.2 1.2ln1.25a ==,令()ln f x x x =,则()ln 1f x x '=+,当10ex <<时,()0f x '<,当1e x >时,()0f x '>,所以函数()f x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭上递增,令()e 1xg x x =--,则()e 1x g x '=-,当0x <时,()0g x '<,当0x >时,()0g x '>,所以函数()g x 在(),0∞-上递减,在()0,∞+上递增,所以()()0.200g g >=,即0.21e10.2 1.2e>+=>,所以()()0.2e 1.2f f >,即0.20.2e e 1.22ln ln1.>,所以b a >,由0.20.2e b =,得()0.211ln ln 0.2e ln 55b ==+,由13c =,得1ln ln 3c =,11151ln ln ln ln ln 35535c b -=--=-,因为55625510e 3243⨯⎛⎫=>> ⎪⎝⎭,所以155e 3>,所以51ln 35>,所以ln ln 0c b ->,即ln ln c b >,所以c b >,综上所述a b c <<.故选:A.【点睛】本题考查了比较大小的问题,考查了同构的思想,考查了利用导数求函数的单调区间,解决本题的关键在于构造函数,有一定的难度.7.(2022·湖北恩施·高二期末多选)已知212ln 204a a -=>,22122ln 0eb b --=>,221ln 303c c -=>,则()A .c b <B .b a<C .c a<D .b c<【答案】AC 【解析】【分析】根据题意可将式子变形为2211ln ln 44a a -=-,222211ln ln e e b b -=-,2211ln ln 33c c -=-,构造函数()ln f x x x =-,利用导数求解函数()f x 的单调性,即可求解.【详解】解:由题意知,211,1,23a b c >>>,对三个式子变形可得2211ln ln 44a a -=-,222211ln ln e eb b -=-,2211ln ln 33c c -=-,设函数()ln f x x x =-,则()111x f x x x-'=-=.由()0f x ¢>,得1x >;由()0f x <,得01x <<,则()f x 在()0,1上单调递减,在()1,+∞上单调递增,因为211101e 43<<<<,所以222b a c >>,所以c a b <<.故选:AC.8.(2022·安徽·歙县教研室高二期末)已知01x y z ∈、、(,),且满足2e 2e x x =,3e 3e y y =,4e 4e z z =,则()A .x y z <<B .x z y<<C .z y x<<D .z x y<<【答案】C 【解析】【分析】先对已知条件取对数后得到ln ln22x x -=-,ln ln33y y -=-,ln ln44z z -=-.根据式子结构,构造函数()ln m x x x =-,利用导数判断单调性,比较大小.【详解】由2e 2e x x =得2ln ln2,x x +=+即ln ln22x x -=-.同理得:ln ln33y y -=-,ln ln44z z -=-.令()ln ,m x x x =-则()111xm x x x-=-='.故()m x 在()0,1上单调递增,1∞+(,)上单调递减.所以z y x <<.故选:C.。
高中数学构造函数解决导数问题专题复习

高中数学构造函数解决导数问题专题复习高中数学构造函数解决导数问题专题复习【知识框架】【考点分类】考点一、直接作差构造函数证明;两个函数,一个变量,直接构造函数求最值;【例1-1】(14顺义一模理18)已知函数()(Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)若在区间上函数的图象恒在直线下方,求的取值范围.【例1-2】(13海淀二模文18)已知函数.(Ⅰ)当时,若曲线在点处的切线与曲线在点处的切线平行,求实数的值;(Ⅱ)若,都有,求实数的取值范围.【练1-1】(14西城一模文18)已知函数,其中.(Ⅰ)当时,求函数的图象在点处的切线方程;(Ⅱ)如果对于任意,都有,求的取值范围.【练1-2】已知函数是常数.(Ⅰ)求函数的图象在点处的切线的方程;(Ⅱ)证明函数的图象在直线的下方;(Ⅲ)讨论函数零点的个数.【练1-3】已知曲线.(Ⅰ)若曲线C在点处的切线为,求实数和的值;(Ⅱ)对任意实数,曲线总在直线:的上方,求实数的取值范围.【练1-4】已知函数,求证:在区间上,函数的图像在函数的图像的下方;【练1-5】.已知函数;(1)当时,求在区间上的最大值和最小值;(2)若在区间上,函数的图像恒在直线下方,求的取值范围。
【练1-6】已知函数;(1)求的极小值;(2)如果直线与函数的图像无交点,求的取值范围;答案:考点二、从条件特征入手构造函数证明【例2-1】若函数在上可导且满足不等式,恒成立,且常数,满足,求证:。
【例2-2】设是上的可导函数,分别为的导函数,且满足,则当时,有()A.B.C.D.【练2-1】设是上的可导函数,,求不等式的解集。
【练2-2】已知定义在的函数满足,且,若,求关于的不等式的解集。
【练2-3】已知定义域为的奇函数的导函数为,当时,若,则下列关于的大小关系正确的是()DA.B.C.D.【练2-4】已知函数为定义在上的可导函数,且对于任意恒成立,为自然对数的底数,则()CA.B.C.D.【练2-5】设是上的可导函数,且,求的值。
高考数学复习考点知识与题型专题讲解21---函数中的构造问题

高考数学复习考点知识与题型专题讲解函数中的构造问题题型一 导数型构造函数命题点1利用f (x )与x 构造例1(2022·湘豫名校联考)已知定义在R 上的函数f (x ),其导函数为f ′(x ),当x >0时,f ′(x )-f (x )x >0,若a =2f (1),b =f (2),c =4f ⎝ ⎛⎭⎪⎫12,则a ,b ,c 的大小关系是() A .c <b <a B .c <a <bC .b <a <cD .a <b <c答案B解析构造函数g (x )=f (x )x (x >0),得g ′(x )=xf ′(x )-f (x )x 2=1x ⎣⎢⎡⎦⎥⎤f ′(x )-f (x )x , 由题知当x >0时,f ′(x )-f (x )x >0,所以g ′(x )>0,故g (x )在(0,+∞)上单调递增,所以f (2)2>f (1)1>f ⎝ ⎛⎭⎪⎫1212,即f (2)>2f (1)>4f ⎝ ⎛⎭⎪⎫12,即b >a >c . 思维升华 (1)出现nf (x )+xf ′(x )形式,构造函数F (x )=x n f (x );(2)出现xf ′(x )-nf (x )形式,构造函数F (x )=f (x )x n .跟踪训练1设f (x )为定义在R 上的奇函数,f (-3)=0.当x >0时,xf ′(x )+2f (x )>0,其中f ′(x )为f (x )的导函数,则使得f (x )>0成立的x 的取值范围是()A .(-∞,-3)∪(0,3)B .(-3,0)∪(3,+∞)C .(-3,0)∪(0,3)D .(-∞,-3)∪(3,+∞)答案B解析令g (x )=x 2f (x ),x ∈R ,当x >0时,g ′(x )=x 2f ′(x )+2xf (x )=x [xf ′(x )+2f (x )]>0,即g (x )在(0,+∞)上单调递增,因为f (x )为R 上的奇函数,即f (-x )=-f (x ),于是得g (-x )=(-x )2f (-x )=-g (x ),则g (x )是奇函数,g (x )在(-∞,0)上单调递增,又f(-3)=0,则g(3)=-g(-3)=-[(-3)2f(-3)]=0,当x>0时,f(x)>0⇔g(x)>0=g(3),得x>3,当x<0时,f(x)>0⇔g(x)>0=g(-3),得-3<x<0,综上,得-3<x<0或x>3,所以使f(x)>0成立的x的取值范围是(-3,0)∪(3,+∞).命题点2利用f(x)与e x构造例2已知f(x)是定义在(-∞,+∞)上的函数,导函数f′(x)满足f′(x)<f(x)对于x∈R恒成立,a=f(2)e2,b=f(0),则a,b的大小关系为________.答案a<b解析构造F(x)=f(x)e x,则F′(x)=e x f′(x)-e x f(x)e2x=f′(x)-f(x)e x,导函数f′(x)满足f′(x)<f(x),则F′(x)<0,F(x)在R上单调递减,F(2)<F(0),即f(2)e2<f(0).思维升华(1)出现f′(x)+f(x)形式,构造函数F(x)=e x f(x);(2)出现f′(x)-f(x)形式,构造函数F(x)=f(x) e x.跟踪训练2已知f(x)是定义在R上的函数,f′(x)是f(x)的导函数,满足:e x f(x)+(e x+1)·f′(x)>0,且f(1)=12,则不等式f(x)>e+12(e x+1)的解集为()A.(-1,1) B.(-∞,-1)∪(1,+∞)C .(-∞,-1)D .(1,+∞)答案D解析令g (x )=(e x +1)f (x ),则g ′(x )=e x f (x )+(e x +1)f ′(x )>0,所以g (x )在R 上单调递增,不等式f (x )>e +12(e x +1)可化为(e x +1)f (x )>e +12, 而f (1)=12,则g (1)=(e +1)f (1)=e +12,即g (x )>g (1),所以x >1,即不等式的解集为(1,+∞).命题点3利用f (x )与sin x 、cos x 构造例3(2022·重庆模拟)定义在⎝ ⎛⎭⎪⎫0,π2上的函数f (x ),已知f ′(x )是它的导函数,且恒有cos x ·f ′(x )+sin x ·f (x )<0成立,则有()A .f ⎝ ⎛⎭⎪⎫π6>2f ⎝ ⎛⎭⎪⎫π4 B.3f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π3 C .f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3 D.2f ⎝ ⎛⎭⎪⎫π6<3f ⎝ ⎛⎭⎪⎫π4 答案C解析构造函数g (x )=f (x )cos x ⎝ ⎛⎭⎪⎫0<x <π2. 则g ′(x )=f ′(x )cos x +f (x )sin x (cos x )2<0, 即函数g (x )在⎝ ⎛⎭⎪⎫0,π2上单调递减, 所以g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π3, 所以f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3, 同理g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π4, 即2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4. 思维升华 函数f (x )与sin x ,cos x 相结合构造可导函数的几种常见形式F (x )=f (x )sin x ,F ′(x )=f ′(x )sin x +f (x )cos x ;F (x )=f (x )sin x ,F ′(x )=f ′(x )sin x -f (x )cos x sin 2x; F (x )=f (x )cos x ,F ′(x )=f ′(x )cos x -f (x )sin x ;F (x )=f (x )cos x ,F ′(x )=f ′(x )cos x +f (x )sin x cos 2x. 跟踪训练3已知R 上的奇函数f (x ),其导函数为f ′(x ),且当x ∈(0,+∞)时,f ′(x )sin x+f (x )cos x <0,若a =22f ⎝ ⎛⎭⎪⎫-π6,b =-f ⎝ ⎛⎭⎪⎫π4,则a 与b 的大小关系为________. 答案a <b解析设φ(x )=f (x )·sin x ,则φ′(x )=f ′(x )sin x +f (x )cos x ,∴x ∈(0,+∞)时,φ′(x )<0,即φ(x )在(0,+∞)上单调递减,又f (x )为奇函数,∴φ(x )为偶函数,∴φ⎝ ⎛⎭⎪⎫-π6=φ⎝ ⎛⎭⎪⎫π6>φ⎝ ⎛⎭⎪⎫π4, 即f ⎝ ⎛⎭⎪⎫-π6·sin ⎝ ⎛⎭⎪⎫-π6>f ⎝ ⎛⎭⎪⎫π4·sin π4, 即-12f ⎝ ⎛⎭⎪⎫-π6>22f ⎝ ⎛⎭⎪⎫π4, 即22f ⎝ ⎛⎭⎪⎫-π6<-f ⎝ ⎛⎭⎪⎫π4,∴a <b . 题型二 同构法构造函数例4(1)若存在x ,y ∈(0,+∞)使得x ln(2ax )+y =x ln y ,则实数a 的最大值为() A.1e B.12eC.13eD.2e答案B解析由x ln(2ax )+y =x ln y ,得ln(2a )=ln y x -y x ,令t =y x >0,g (t )=ln t -t ,则g ′(t )=1t -1=1-t t ,当0<t <1时,g ′(t )>0,当t >1时,g ′(t )<0,所以g (t )在(0,1)上单调递增,在(1,+∞)上单调递减,所以当t =1时,g (t )取得极大值即最大值g (1)=-1,因为当t →0时,g (t )→-∞,所以g (t )∈(-∞,-1],所以ln2a ≤-1,所以0<a ≤12e ,所以实数a 的最大值为12e .(2)已知当x ≥e 时,不等式x a+1x -1e x ≥a ln x 恒成立,则正实数a 的最小值为() A .1B.1e C .eD.1e 2答案B解析由题意,原不等式可变形为1e x -1x ≤x a -a ln x , 即1e x -ln 1e x ≤x a -ln x a ,设f (x )=x -ln x ,则当x ≥e 时,f (1e x )≤f (x a )恒成立,因为f ′(x )=1-1x =x -1x ,所以函数f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,因为x ≥e ,a >0,所以1e x >1,x a >1,因为f (x )在(1,+∞)上单调递增,所以要使f (1e x )≤f (x a ),只需1e x ≤x a ,两边取对数,得1x ≤a ln x ,因为x ≥e ,所以a ≥1x ln x .令h (x )=x ln x (x ∈[e ,+∞)),因为h ′(x )=ln x +1>0,所以h (x )在[e ,+∞)上单调递增,所以h (x )min =h (e)=e ,所以0<1x ln x ≤1e ,则a ≥1e ,故正实数a 的最小值为1e .思维升华 同构法的三种基本模式:①乘积型,如a e a ≤b ln b 可以同构成a e a ≤(ln b )e ln b ,进而构造函数f (x )=x e x;②比商型,如e a a <b ln b 可以同构成e a lne a <b ln b ,进而构造函数f (x )=x ln x ;③和差型,如e a ±a >b ±ln b ,同构后可以构造函数f (x )=e x ±x 或f (x )=x ±ln x . 跟踪训练4(1)(2022·常州模拟)若0<x 1<x 2<1,则下列不等式成立的是()A .x 21e x >x 12e xB .x 21e x <x 12e xC .2e x -1e x >ln x 2-ln x 1D .1e x -2e x >ln x 2-ln x 1答案A解析构造函数f (x )=e x x (0<x <1),因为f ′(x )=e x (x -1)x 2<0,所以f (x )在(0,1)上单调递减,因为0<x 1<x 2<1, 所以22e x x <11e x x , 即x 21e x >x 12e x ,所以选项A正确,选项B错误;构造函数h(x)=e x-ln x(0<x<1),h′(x)=e x-1 x ,易知h′(x)在(0,1)上单调递增,而h′(1)=e-1>0,当x→0+时,h′(x)→-∞,所以存在x0∈(0,1),使h′(x0)=0,所以h(x)在(0,x0)上单调递减,在(x0,1)上单调递增,所以无法判断C选项的正确性;构造函数g(x)=e x+ln x(0<x<1),易知g(x)在(0,1)上单调递增,因为0<x1<x2<1,所以1e x+ln x1<2e x+ln x2,即1e x-2e x<ln x2-ln x1,所以选项D不正确.(2)已知函数f(x)=e x-ln x+kx-1在(0,+∞)上有且仅有一个零点,则实数k=________.答案1解析令f(x)=0得,k=x e x-x-ln x=e ln x·e x-x-ln x=e ln x+x-x-ln x,令x+ln x=t,所以t∈R,所以k=e t-t,令φ(t)=e t-t,φ′(t)=e t-1,令φ′(t)>0,得t>0,令φ′(t)<0,得t<0,所以φ(t)在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以φ(t)min=φ(0)=1,且当t→-∞时,φ(t)→+∞,当t→+∞时,φ(t)→+∞,所以k=1.在解决不等式恒(能)成立,求参数的取值范围这一类问题时,最常用的方法是分离参数法,转化成求函数的最值,但在求最值时如果出现“00”型的代数式,就设法求其最值.“00”型的代数式,是大学数学中的不定式问题,解决此类问题的有效方法就是利用洛必达法则.法则1若函数f(x)和g(x)满足下列条件:(1)limx→a f(x)=0及limx→ag(x)=0;(2)在点a的某去心邻域内,f(x)与g(x)可导且g′(x)≠0;(3)limx→a f′(x)g′(x)=A,那么limx→af(x)g(x)=limx→a f′(x)g′(x)=A.法则2若函数f(x)和g(x)满足下列条件:(1)limx→a f(x)=∞及limx→ag(x)=∞;(2)在点a的某去心邻域内,f(x)与g(x)可导且g′(x)≠0;(3)limx→a f′(x)g′(x)=A,那么limx→af(x)g(x)=limx→af′(x)g′(x)=A.例1已知函数f(x)=x ln x,若对任意x>1,都有f(x)>a(x-1)成立,求实数a的取值范围.解当x>1时,f(x)>a(x-1),即a<x ln xx-1,令φ(x)=x ln xx-1(x>1),φ′(x )=x -1-ln x(x -1)2,令g (x )=x -1-ln x (x >1),∴g ′(x )=1-1x =x -1x >0,∴g (x )在(1,+∞)上单调递增,∴g (x )>g (1)=0,∴φ′(x )>0,∴φ(x )在(1,+∞)上单调递增,由洛必达法则知lim x →1φ(x )=lim x →1x ln x x -1=lim x →1(1+ln x )=1, ∴a ≤1.故实数a 的取值范围是(-∞,1].例2已知函数f (x )=x (e x -1)-ax 2(a ∈R ).(1)若f (x )在x =-1处有极值,求a 的值.(2)当x >0时,f (x )≥0,求实数a 的取值范围.解(1)f ′(x )=e x -1+x e x -2ax=(x +1)e x -2ax -1,依题意知f ′(-1)=2a -1=0,∴a=1 2.经检验a=12符合题意.(2)方法一当x>0时,f(x)≥0,即x(e x-1)-ax2≥0,即e x-1-ax≥0,令φ(x)=e x-1-ax(x>0),则φ(x)min≥0,φ′(x)=e x-a.①当a≤1时,φ′(x)=e x-a>0,∴φ(x)在(0,+∞)上单调递增,∴φ(x)>φ(0)=0,∴a≤1满足条件.②当a>1时,若0<x<ln a,则φ′(x)<0,若x>ln a,则φ′(x)>0.∴φ(x)在(0,ln a)上单调递减,在(ln a,+∞)上单调递增,∴φ(x)min=φ(ln a)=a-1-a ln a≥0.令g(a)=a-1-a ln a(a>1),∴g ′(a )=1-(1+ln a )=-ln a <0,∴g (a )在(1,+∞)上单调递减.∴g (a )<g (1)=0与g (a )≥0矛盾,故a >1不满足条件,综上,实数a 的取值范围是(-∞,1].方法二当x >0时,f (x )≥0,即x (e x -1)-ax 2≥0,即e x -1-ax ≥0,即ax ≤e x -1,即a ≤e x -1x 恒成立,令h (x )=e x -1x (x >0),∴h ′(x )=e x(x -1)+1x 2,令k (x )=e x (x -1)+1(x >0),∴k ′(x )=e x ·x >0,∴k (x )在(0,+∞)上单调递增,∴k (x )>k (0)=0,∴h ′(x )>0,∴h(x)在(0,+∞)上单调递增.由洛必达法则知,lim x→0h(x)=limx→0e x-1x=limx→0e x=1,∴a≤1.故实数a的取值范围是(-∞,1].课时精练1.已知f(x)的定义域为R,f(1)=2023,且f′(x)≥6x恒成立,则不等式f(x)>3x2+2020的解集为()A.(-1,1)B.(1,+∞)C.(-∞,-1)D.(-∞,-1)∪(1,+∞)答案B解析令函数g(x)=f(x)-3x2,因为g′(x)=f′(x)-6x≥0,所以g(x)在R上单调递增.因为g(1)=f(1)-3=2020,所以不等式f(x)>3x2+2020等价于g(x)>g(1),所以x>1.2.已知定义在R上的函数f(x)的导函数为f′(x),且满足xf′(x)<f(x),若a=f(1),b=f(ln4) ln4,c =f (3)3,则a ,b ,c 的大小关系为()A .a >b >cB .c >a >bC .b >a >cD .a >c >b答案A解析设g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2<0, ∴g (x )为减函数.∵3>ln4>1,∴g (3)<g (ln4)<g (1),即a >b >c .3.(2022·青铜峡模拟)已知函数f (x )是定义在R 上的可导函数,其导函数记为f ′(x ),若对于任意实数x ,有f (x )>f ′(x ),且f (0)=1,则不等式f (x )<e x 的解集为()A .(0,+∞)B .(-∞,0)C .(-∞,e 4)D .(e 4,+∞)答案A解析令g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x , ∵f (x )>f ′(x ),∴g ′(x )<0,即g (x )为减函数,又f (0)=1,故g (0)=f (0)e 0=1,则不等式f (x )<e x 等价于f (x )e x <1=g (0),即g (x )<g (0),解得x >0,故不等式的解集为(0,+∞).4.若函数f (x )的导函数为f ′(x ),对任意x ∈(-π,0),f ′(x )sin x <f (x )cos x 恒成立,则() A.2f ⎝ ⎛⎭⎪⎫-5π6>f ⎝ ⎛⎭⎪⎫-3π4 B .f ⎝ ⎛⎭⎪⎫-5π6>2f ⎝ ⎛⎭⎪⎫-3π4 C.2f ⎝ ⎛⎭⎪⎫-5π6<f ⎝ ⎛⎭⎪⎫-3π4 D .f ⎝ ⎛⎭⎪⎫-5π6<2f ⎝ ⎛⎭⎪⎫-3π4 答案C解析因为任意x ∈(-π,0),f ′(x )sin x -f (x )cos x <0恒成立,又当x ∈(-π,0)时,sin x <0,所以⎣⎢⎡⎦⎥⎤f (x )sin x ′=f ′(x )sin x -f (x )cos x (sin x )2<0, 所以y =f (x )sin x 在(-π,0)上单调递减,因为-5π6<-3π4,所以f ⎝ ⎛⎭⎪⎫-5π6sin ⎝ ⎛⎭⎪⎫-5π6>f ⎝ ⎛⎭⎪⎫-3π4sin ⎝ ⎛⎭⎪⎫-3π4, 即f ⎝ ⎛⎭⎪⎫-5π6-12>f ⎝ ⎛⎭⎪⎫-3π4-22, 所以2f ⎝ ⎛⎭⎪⎫-5π6<f ⎝ ⎛⎭⎪⎫-3π4. 5.已知a =ln 33,b =e -1,c =3ln28,则a ,b ,c 的大小关系为()A .b >c >aB .a >c >bC .a >b >cD .b >a >c答案D解析依题意得a =ln 33=ln33,b =e -1=lne e ,c =3ln28=ln88.令f (x )=ln x x (x >0),则f ′(x )=1-ln x x 2,易知函数f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减.所以f (x )max =f (e)=1e =b ,且f (3)>f (8),即a >c ,所以b >a >c .6.若e 2b+12(a -1)2=e a +12(2b -1)2,则() A .a >2b B .a =2bC .a <2bD .a >b 2答案B解析∵e 2b +12(a -1)2=e a +12(2b -1)2,∴e a -12(a -1)2=e 2b -12(2b -1)2,令f (x )=e x -12(x -1)2,∴f ′(x )=e x -x +1,令g (x )=e x -x +1,∴g ′(x )=e x -1,当x ∈(-∞,0)时,g ′(x )<0;当x ∈(0,+∞)时,g ′(x )>0,∴g (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, ∴g (x )min =g (0)=2,∴g (x )>0,∴f ′(x )>0,∴f (x )在R 上为增函数,又e a -12(a -1)2=e 2b -12(2b -1)2,则f (a )=f (2b ),∴a =2b .7.已知a ,b ∈(0,e),且a <b ,则下列式子中不可能成立的是()A .a e b <b e aB .a e b >b e aC .a ln b <b ln aD .a ln b >b ln a答案C解析设g (x )=e x x ,则g ′(x )=e x(x -1)x 2,所以g (x )=e x x 在(0,1)上单调递减,在(1,e)上单调递增.所以当a ,b ∈(0,e),a <b 时,不能判断出g (a )与g (b )的大小.所以选项A ,B 都有可能正确;设f (x )=ln x x ,则f ′(x )=1-ln x x 2,由f ′(x )>0,得0<x <e ,由f ′(x )<0,得x >e ,所以f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,因为a ,b ∈(0,e),且a <b ,所以ln a a <ln b b ,即a ln b >b ln a .所以选项C 不正确,D 正确.8.已知定义域为R 的函数f (x )的图象连续不断,且∀x ∈R ,f (x )+f (-x )=4x 2,当x ∈(0,+∞)时,f ′(x )<4x ,若f (2m +1)-f (-m )≤6m 2+8m +2,则实数m 的取值范围是()A .[-1,+∞) B.⎣⎢⎡⎭⎪⎫-13,+∞ C.⎣⎢⎡⎭⎪⎫13,+∞D .[1,+∞) 答案B解析依题意得,f (x )+f (-x )=4x 2,故f (x )-2x 2=-[f (-x )-2(-x )2],令g (x )=f (x )-2x 2,则g (x )=-g (-x ),所以函数g (x )为奇函数,g ′(x )=f ′(x )-4x ,因为当x ∈(0,+∞)时,f ′(x )<4x ,即当x ∈(0,+∞)时,g ′(x )=f ′(x )-4x <0,故g (x )在(0,+∞)上单调递减,由g (x )为奇函数可知,g (x )在R 上单调递减,因为f (2m +1)-f (-m )≤6m 2+8m +2,故f (2m +1)-2·(2m +1)2≤f (-m )-2·(-m )2,即g (2m +1)≤g (-m ),故2m +1≥-m ,则m ≥-13,所以实数m 的取值范围为⎣⎢⎡⎭⎪⎫-13,+∞. 9.定义在R 上的函数f (x )满足:f (x )+f ′(x )>1,f (0)=4,则不等式e x f (x )>e x +3的解集为________.答案(0,+∞)解析将f (x )+f ′(x )>1左右两边同乘e x 得,e xf (x )+e x f ′(x )-e x >0,令g (x )=e x f (x )-e x ,则g ′(x )=e x f (x )+e x f ′(x )-e x >0,所以g (x )在R 上单调递增,且g (0)=f (0)-1=3,不等式e x f (x )>e x +3等价于e x f (x )-e x >3,即g (x )>g (0),所以x >0.10.若x <y 时,不等式2(sin x -sin y )<m (x -y )恒成立,则实数m 的取值范围是________. 答案(-∞,-2]解析因为∀x <y ,恒有2(sin x -sin y )<m (x -y ),即2sin x -mx <2sin y -my ,令f(x)=2sin x-mx,所以∀x<y,有f(x)<f(y),所以f(x)在R上单调递增,所以f′(x)=2cos x-m≥0恒成立,即m≤2cos x,所以m≤-2.11.(2022·深圳模拟)已知a,b,c∈(0,1),且a2-2ln a+1=e,b2-2ln b+2=e2,c2-2ln c +3=e3,其中e是自然对数的底数,则a,b,c的大小关系是________.答案a>b>c解析设f(x)=x2-2ln x,g(x)=e x-x,则f(a)=g(1),f(b)=g(2),f(c)=g(3),又g′(x)=e x-1>0(x>0),所以g(x)在(0,+∞)上单调递增,所以g(3)>g(2)>g(1),即f(c)>f(b)>f(a),因为f′(x)=2x-2x =2(x2-1)x<0(x∈(0,1)),所以f(x)在(0,1)上单调递减,所以a>b>c.12.若不等式x e x-a≥ln x+x-1恒成立,则实数a的最大值为________.答案2解析∵x e x-a≥ln x+x-1,∴e ln x+x-a≥ln x+x-1,令t=ln x+x,则e t-a≥t-1恒成立,则a≤e t-t+1恒成立,令φ(t)=e t-t+1,∴φ′(t)=e t-1,当t∈(-∞,0)时,φ′(t)<0;当t∈(0,+∞)时,φ′(t)>0,∴φ(t)在(-∞,0)上单调递减,在(0,+∞)上单调递增,∴φ(t)min=φ(0)=2,∴a≤2,故a的最大值为2.。
专题3-4 构造函数解不等式(选填)(原卷版)2023年高考数学二轮专题全套热点题型

例题 2.(2022·四川·成都外国语学校高二阶段练习(文))已知定义在 R 上的偶函数 f (x)
满足:当 x 0 时,恒有 xf (x) 2 f (x) 0 .若 a 2 f ( 2) ,b 9 f (3) ,c f (1) ,则 a ,b ,
c 的大小关系为(
)
A. b a c
例题 3.(2022·福建省诏安县桥东中学高三期中)已知函数 f x 的定义域和值域均为 0, ,
f
x 的导函数为
f ¢(x) ,且满足 2 f
x
f
x 3f
x ,则
f f
2021 2022
的范围是______.
构造可导积(商)函数模型:
① enx[ f ( x) nf ( x)] [enx f ( x)]
2.(2022·安徽师范大学附属中学高二期中(文))设定义域为 R 的函数 f x 满足 f x f x , 则不等式 ex1 f x f 2x 1 的解集为
A. ,1
B. 1,
C. 1,1
D. 1,
3.(2022·黑龙江·虎林市高级中学高三开学考试)定义域为 R 的可导函数的导函数 y f x 为 f x ,满足 f x f x ,且 f 0 1,则不等式 f x ex 的解集为( )
x
x2
f
x
0 ,若 a
f
2 ,b
2
f
π
,c
π
f
5 ,则 a,b, c 的大小关系是(
5
)
A. c b a
B. c a b
C. b a c
D. a b c
2.(2022·江苏连云港·高三期中)设函数 f x 的导函数为 f x ,对任意 x R ,都有 xf x f x 成立,则( )
构造函数法解选择填空题专题-精品

构造函数解题专题高考中要取得高分,关键在于选准选好的解题方法,才能省时省力又有效果。
近几年各地高考数学试卷中,许多方面尤其涉及函数题目,采用构造函数法解答是一个不错的选择。
所谓构造函数法是指通过一定方式,设计并构造一个与有待解答问题相关函数,并对其进行观察分析,借助函数本身性质如单调性或利用运算结果,解决原问题方法,简而言之就是构造函数解答问题。
怎样合理的构造函数就是问题的关键,这里我们来一起探讨一下这方面问题。
几种导数的常见构造:1.对于r(x)>g'(x),构造〃(x)=/(x)一g(x)若遇到r(X)> W°),则可构〃(x)=/(%)-ca2.对于r(x)+gQ)>。
,构造〃(x)=/(x)+g(x)3.对于1(x)+,f(x)>0,构造〃(%)=e'/(x)4.对于尸(x)>/(x)[或/(x)—构造〃(幻=/孚e5.对于对"(X)+/(%)〉0,构造〃(工)二4'(工)6.对于4'(x)—/(x)>0,构造=X一、构造函数法比较大小例1.已知函数y=/(x)的图象关于y轴对称,且当X£(—OO,0),/(X)+4'(X)<0成立,«=202./(20-2),。
=log乃3・.f(log13),。
=1%9・“1839),则a,b,c的大小关系是()Aa>b>cB.a>c>bC.c>b>aDb>a>c例2.己知/(x)为R上的可导函数,且VxwR,均有/(x)>/'(x),则有A.e20,6/(-2016)</(0),/(2016)>e20,6/(0)B.^20,6/(-2016)</(0),/(2016)<e20,6/(0)C.e20,6/(-2016)>/(0),/(2016)>e20,6/(0)D.e20,6/(-2016)>/(0),/(2016)<e20,6/(0)变式:已知函数为定义在R上的可导函数,且/(x)</'(x)对于任意XE R恒成立,e为自然对数的底数,则()A/(l)>e./(O)./(2016)<e2016./(O) <e-f(O)./(2016)>e2016./(O)C./(l)>e"(0)、/(2016)>/6"(o)D./(l)<e♦/(0)、/(2016)<e2016"(0)例3.在数列{q}中,(4严=n+L5eN*).则数列{q}中的最大项为().A.V2B.^3C.V5D.不存在TT7T练习1.已知函数y=/(x)对任意的工£(一5,5)满足,f'(x)cosx+.f(x)sinx>0,则( )A./(0)>V2/(^)B./(0)<2/(-^)C.⑸令吟D.⑸(4)</(q)二、构造函数法解恒成立问题例1.若函数尸/(X)在彳上可导且满足不等式4'(xH/S)〉。
2025届高考数学复习:压轴好题专项(构造函数证明不等式)练习(附答案)

2025届高考数学复习:压轴好题专项(构造函数证明不等式)练习1. (2024届云南省昆明市第一中学高三上学期第一次月考)已知函数()()2ln f x x a x =-,R a ∈. (1)若()10f '=,求a ;(2)若()1,e a ∈,()f x 的极大值大于b2e <.2.(2024届全国名校大联考高三上学期第一联考)已知函数()2ln f x x ax =+(a ∈R ). (1)若()0f x ≤在()0,∞+上恒成立,求a 的取值范围:(2)设()()3g x x f x =-,1x ,2x 为函数()g x 的两个零点,证明:121x x <.3.(2024届山东省青岛市高三上学期期初调研检测)已知1ea ≥,函数()e ln ln xf x a x a =-+.(1)若1a =,求()f x 在点()()1,1f 处的切线方程; (2)求证:()44f x x ≥-+;(3)若β为()f x 的极值点,点()(),f ββ在圆22117416x y ⎛⎫++= ⎪⎝⎭上.求a .4.(2024届湖南省株洲市第二中学教育集团2高三上学期开学联考)已知函数()21e 12xf x x x =---, (1)证明:当0x >时,()0f x >恒成立; (2)若关于x 的方程()sin 2f x xa x x +=在()0,π内有解,求实数a 的取值范围. 5.(2024届辽宁省十校联合体高三上学期八月调研考试)设方程()22e x x a -=有三个实数根123123,,()x x x x x x <<.(1)求a 的取值范围;(2)请在以下两个问题中任选一个进行作答,注意选的序号不同,该题得分不同.若选①则该小问满分4分,若选②则该小问满分9分.①证明:12(2)(2)4x x --<;②证明:1231231113e 2x x x x x x +++++<. 6.(2024届安徽省江淮十校高三第一次联考)已知函数()2k f x x x=+,0k ≠.(1)讨论()f x 的单调性;(2)设函数()3ln g x x x =-n m ≤<,当13k =-时,证明:()()()()332g m g n f m f n m n -+<-. 7.(2024届内蒙古包头市高三上学期调研考试)设函数()()ln 1f x a x =+-,已知2x =是函数()()2y x f x =-的极值点.(1)求a ; (2)设函数()()()()22x f x g x x f x -=-+,证明:()1g x >.8.(2024届北京市景山学校高三上学期开学考试)已知函数())(0)f x x b a =+≠,曲线()y f x =在点(1,(1))f 处的切线方程是1y x =-.(1)求a 、b 的值; (2)求证:()f x x <;(3)若函数()2()()g x f x t x x =+-在区间(1,)+∞上无零点,求t 的取值范围.9.(2024届山西省大同市高三上学期质量检测)已知函数2()ln (R)af x ax x a x=--∈. (1)讨论()f x 的单调性;(2)若()f x 的两个极值点分别为1x ,2x ,证明:12|()()|2f x f x a-<.10.(2024届黑龙江省哈尔滨市第三中学校高三上学期开学测试)已知函数()()111ln f x ax a x x=+--+.(1)讨论函数()f x 的单调性;(2)求证:n *∀∈N ,)21+⋅⋅⋅++>.参考答案1. (2024届云南省昆明市第一中学高三上学期第一次月考)已知函数()()2ln f x x a x =-,R a ∈. (1)若()10f '=,求a ;(2)若()1,e a ∈,()f x 的极大值大于b 2e <.【过程详解】(1)()212()ln ()f x x a x x a x'=-+-⋅,由()10f '=,即202(1)ln1(1)a a --=+,解得1a =. (2)()()(2ln 1)af x x a x x'=--+, 令()2ln 1ag x x x=-+, ()1,e a ∈ ,111(,1e ),a a a∴∈∴<,()21()2ln 11)2ln (10g a a a a a a=--+=-++-<, ()2ln 112ln 0g a a a =-+=>, 22()0ag x x x+'=>在(0,)+∞恒成立, 故()g x 在(0,)+∞递增,而1lg()0,()0g a a <>,01(,)x a a∴∃∈,使得g 0()0,x =令()0f x '=,有1201,,x a x x x =<=故0(0,)x x ∈时()0f x ¢>,0(,)x x a ∈时()0f x '<,(,)x a ∈+∞时()0f x ¢>, 故()f x 在0(0,)x 上递增,在0(,)x a 上递减,在(,)a +∞上递增,∴()f x 极大值2000()()ln ,f x x a x b =->由000()2ln 10,ag x x x =-+=得0002ln ,a x x x =+ 故23004(ln ),b x x <则230028(ln ),ab ax x <01,e 1e x a a<<<< 0e,e a x ∴<<,23233008(ln )8e e 18e ax x ∴<⋅⋅⋅=,328e ,ab ∴<2e <.2.(2024届全国名校大联考高三上学期第一联考)已知函数()2ln f x x ax =+(a ∈R ). (1)若()0f x ≤在()0,∞+上恒成立,求a 的取值范围:(2)设()()3g x x f x =-,1x ,2x 为函数()g x 的两个零点,证明:121x x <.【过程详解】(1)若()0f x ≤在()0,∞+上恒成立,即2ln xa x≤-, 令()2ln x u x x =-,所以()()222ln 122ln x x u x x x --'=-=, 所以当0e x <<时,()0u x '<,当e x >时,()0u x '>, 所以()u x 在()0,e 上单调递减,在()e,+∞上单调递增, 所以()()min 2e eu x u ==-,所以2a e ≤-,即a 的取值范围是2,e ⎛⎤-∞- ⎝⎦.(2)令()0g x =,即22ln 0xx a x--=, 令()22ln x h x x a x =--,则()()()3222ln 121ln 2x x x h x x x x +--'=-=, 令()3ln 1r x x x =+-,所以()2130r x x x'=+>,所以()r x 在()0,∞+上单调递增,又()10r =,所以当01x <<时,()0r x <,所以()0h x '<, 当1x >时,()0r x >,所以()0h x '>,所以()h x 在()0,1上单调递减,在()1,+∞上单调递增. 不妨设12x x <,则1201x x <<<,2101x <<, 因为()()120h x h x ==,所以()()22212222222212ln 2ln 1111x x h x h h x h x a a x x x x x ⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪-=-=----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭22222112ln x x x x x ⎛⎫⎛⎫=+--- ⎪ ⎪⎝⎭⎝⎭. 设函数()12ln x x x x ϕ=--(1x >),则()()22211210x x x x xϕ-'=+-=>在()1,+∞上恒成立, 所以()x ϕ在()1,+∞上单调递增,所以()()222212ln 10x x x x ϕϕ=-->=, 所以()1210h x h x ⎛⎫-> ⎪⎝⎭,即()121h x h x ⎛⎫> ⎪⎝⎭.又函数()22ln xh x x a x=--在()0,1上单调递减, 所以12101x x <<<,所以121x x <. 3.(2024届山东省青岛市高三上学期期初调研检测)已知1ea ≥,函数()e ln ln xf x a x a =-+.(1)若1a =,求()f x 在点()()1,1f 处的切线方程; (2)求证:()44f x x ≥-+;(3)若β为()f x 的极值点,点()(),f ββ在圆22117416x y ⎛⎫++= ⎪⎝⎭上.求a .【过程详解】(1)1a =,()e ln xf x x =-,0x >由()11e ln1e f =-=,得切点为()1,e由()1e xf x x'=-,有()1e 1f '=-,即()f x 在点()1,e 处的切线斜率为e 1-,所以()f x 在点()1,e 处的切线方程为:()e 11y x =-+. (2)证明:因为()1e xf x a x '=-(1ea ≥,0x >),设函数()()g x f x '=,则()21e 0xg x a x '=+>(1e a ≥,0x >),所以()f x '在()0,∞+上单调递增又因为()212e 02f a '=->,112e2e 1e 2e e 2e 02e a a f a a a a ⎛⎫⎛⎫'=-=-< ⎪ ⎪⎝⎭⎝⎭, 所以存在1,22e a β⎛⎫∈⎪⎝⎭,使得()0f β'=, 即1e a ββ=,1e a ββ=,所以,当()0,x ∈β时,()0f x '<,()f x 在()0,β上单调递减; 当(),x β∈+∞时,()0f x ¢>,()f x 在(),β+∞上单调递增;所以()()1e ln ln 2lnf x f a a ββββββ≥=-+=--令()12ln =--h x x x x ,()()()()14432ln 40x h x x x x x xϕ=--+=+-->, 则()()()2131x x x x ϕ-+'=,()0x ϕ'<解得01x <<,()0x ϕ'>解得1x >,所以,()x ϕ在()0,1上单调递减,在()1,+∞上单调递增; 所以,()()10x ϕϕ≥=,所以,()h x 的图像在44y x =-+的上方,且()h x 与44y x =-+唯一交点为()1,0, 所以,()44f x x ≥-+.(3)圆22117416x y ⎛⎫++= ⎪⎝⎭的圆心坐标为10,4⎛⎫- ⎪⎝⎭,半径r =圆心到直线44y x =-+的距离174d ===, 所以直线44y x =-+为圆22117416x y ⎛⎫++= ⎪⎝⎭的切线,由2211741644x y y x ⎧⎛⎫++=⎪ ⎪⎨⎝⎭⎪=-+⎩解得切点坐标为()1,0, 显然,圆22117416x y ⎛⎫++= ⎪⎝⎭在直线44y x =-+的下方又因为()44f x x ≥-+,且点()(),f ββ在圆22117416x y ⎛⎫++= ⎪⎝⎭上,则点()(),f ββ即为切点为()1,0,所以1β=,1ea =.4.(2024届湖南省株洲市第二中学教育集团2高三上学期开学联考)已知函数()21e 12xf x x x =---, (1)证明:当0x >时,()0f x >恒成立;(2)若关于x 的方程()sin 2f x xa x x +=在()0,π内有解,求实数a 的取值范围. 【过程详解】(1)函数21()e 12xf x x x =---,0x >,求导得()e 1x f x x '=--,令e 1x y x =--,0x >,求导得e 10x y '=->, 则函数()f x '在(0,)+∞上单调递增,()(0)0f x f ''>=, 因此函数()f x 在(0,)+∞上单调递增,()(0)0f x f >=, 所以当0x >时,()0f x >恒成立.(2)设sin y x x =-,()0,πx ∈,则1cos 0y x '=->, 则sin y x x =-在()0,π上递增,0y >,即sin 0x x >>, 方程()sin 2f x xa x x +=等价于e sin 10x ax x x ---=,()0,πx ∈, 令()e sin 1xg x ax x x =---,原问题等价于()g x 在()0,π内有零点,由()0,πx ∈,得2sin x x x <, 由(1)知,当12a ≤时,()21e sin 1e 102x xg x ax x x x x =--->--->, 当()0,πx ∈时,函数()y g x =没有零点,不合题意; 当12a >时,由()e sin 1x g x ax x x =---,求导得()()e cos sin 1xg x a x x x '=-+-, 令()()()e cos sin 1x t x g x a x x x '==-+-,则()()e sin 2cos xt x a x x x '=+-,当π[,π)2x ∈时,()0t x '>恒成立,当π(0,)2x ∈时,令()()()e sin 2cos x s x t x a x x x '==+-,则()()e 3sin cos xs x a x x x '=++,因为e 0x >,()3sin cos 0a x x x +>,则()0s x '>,即()t x '在π(0,2上单调递增,又()0120t a '=-<,π2ππ(e 022t a '=+>,因此()t x '在π(0,)2上存在唯一的零点0x ,当()00,x x ∈时,()0t x '<,函数()g x '单调递减,当()0,πx x ∈时,()0t x '>,函数()g x '单调递增,显然()()000g x g ''<=,()ππe π10g a '=+->,因此()g x '在()0,π上存在唯一的零点1x ,且()10,πx x ∈,当()10,x x ∈时,()0g x '<,函数()g x 单调递减,当()1,πx x ∈时,()0g x '>,()g x 单调递增, 又()00g =,()()100g x g <=,由(1)知,21e 112x x x x >++>+,则()ππe π10g =-->,所以()g x 在()10,x 上没有零点,在()1,πx 上存在唯一零点,因此()g x 在()0,π上有唯一零点, 所以a 的取值范围是1(,)2+∞.5.(2024届辽宁省十校联合体高三上学期八月调研考试)设方程()22e x x a -=有三个实数根123123,,()x x x x x x <<.(1)求a 的取值范围;(2)请在以下两个问题中任选一个进行作答,注意选的序号不同,该题得分不同.若选①则该小问满分4分,若选②则该小问满分9分.①证明:12(2)(2)4x x --<;②证明:1231231113e2x x x x x x +++++<. 【过程详解】(1)由题意设()()22e x f x x =-(x ∈R ),则()f x '=()2e xx x -,x ∈R ,令()0f x '=,得0x =或2x =,当0x <或2x >时,()0f x ¢>,所以()f x 在(),0∞-,()2,+∞上单调递增; 当02x <<时,()0f x '<,所以()f x 在()0,2上单调递减;又()20f =,()04f =,()33e 4f =>,且()()22e 0x f x x =-≥,当x 趋向于+∞时,()f x 也趋向于+∞,又方程()22e x x a -=有三个实数根123123,,()x x x x x x <<, 等价于直线y a =与()y f x =的函数图像有三个交点, 即04a <<,所以a 的取值范围为()0,4.(2)选①,证明如下:由(1)得:1202x x <<<,则122220x x -<-<-<, 设112t x =-,222t x =-,则1220t t <-<<, 不妨设121t k t =>,则12t kt =(1k >), 又()()1222122e 2e x x x x a -=-=,即12222212e e t t t t a ++==,故22222222e e 0e kt ta k t t ==>,即222e e kt t k =,所以22ln 1k t k=-,212ln 1k k t kt k ==-,1k >, 则()()()2222121222ln 2ln 22111k x x t t k k ⎛⎫⎫ ⎪⎛⎫⎪--==⋅==⎪ ⎪ ⎪-⎝⎭⎪⎪-⎪⎝⎭⎭,设()l 1n 2x g x x x=-+,1x >, 则()()222121=10x g x x x x -'--=-≤,所以()g x 在()1,+∞上单调递减,即()()10g x g <=,1>,则0<,即,0>2<,故()()212122241x x t t ⎛⎫ ⎪--==<⎪ ⎪⎪⎝⎭. 选②,证明如下:由(1)得:1202x x <<<,则122220x x -<-<-<, 设112t x =-,222t x =-,则1220t t <-<<, 不妨设121t k t =>,则12t kt =(1k >), 又()()1222122e 2e x x x x a -=-=,即12222212e e t t t t a ++==,故22222222e e 0e kt ta k t t ==>,即222e e kt t k =,所以22ln 1k t k=-,212ln 1k k t kt k ==-(1k >),则()()()2222121222ln 2ln 22111k x x t t k k ⎛⎫⎫ ⎪⎛⎫⎪--==⋅==⎪ ⎪ ⎪-⎝⎭⎪⎪-⎪⎝⎭⎭1>), 设()l 1n 2x g x x x=-+,1x >, 则()()222121=10x g x x x x -'--=-≤,所以()g x 在()1,+∞上单调递减,即()()10g x g <=,1>,则0<,即,0>2<,故()()212122241x x t t ⎛⎫ ⎪--==<⎪ ⎪⎪⎝⎭. 所以()()()12121222244x x x x x x --=-++<,则()12122x x x x <+, 又因为1202x x <<<,所以120x x <,从而()12121221121x x x x x x +⎛⎫=+< ⎪⎝⎭,故121112x x +<①,下证120x x +<, 有12122ln 2ln 44011k k kx x t t k k+=++=++<--(1k >), 即证1k >时,()()1ln 21k k k +>-,即()214ln 211k k k k ->=-++, 即证4ln 21k k +>+(1k >), 设()4ln 1h x x x =++(1x >),则()()()()22211411x h x x x x x -'=-=++,当1x >时,()0h x '>,所以()h x 在()1,+∞上单调递增, 则()()12h x h >=,所以120x x +<②,又()()33e 0f f =>,所以得323x <<,设()1x x xϕ=+,(23x <<),则()211x x ϕ'=-,当23x <<时,()0x ϕ'>,所以()x ϕ在()2,3上单调递增, 则331103x x +<③, 联立①②③得:123123*********e 042362x x x x x x +++++<++=<<,故1231231113e2x x x x x x +++++<. 6.(2024届安徽省江淮十校高三第一次联考)已知函数()2k f x x x=+,0k ≠.(1)讨论()f x 的单调性;(2)设函数()3ln g x x x =-n m ≤<,当13k =-时,证明:()()()()332g m g n f m f n m n -+<-. 【过程详解】(1)解:函数()f x 的定义域为{}|0x x ≠,()32222k x kf x x x x -='-=, 令()0f x '=,则x =①当0k<时,当x <()0f x '<,()f x0x <<时,()0f x ¢>,()f x 单调递增;当0x >时,()0f x ¢>,()f x 单调递增;②当0k>时,当0x <时,()0f x '<,()f x 单调递减;当0x <<()0f x '<,()f x 单调递减;当x >时,()0f x ¢>,()f x 单调递增.综上:当0k <时,单调增区间为⎫⎪⎪⎭,()0,∞+,单调递减区间为⎛-∞ ⎝; 当0k >时,单调递增区间为⎫+∞⎪⎪⎭,单调递减区间为(),0∞-,⎛ ⎝. (2)对任意的m,n ⎫∈+∞⎪⎭,且m n >,令mt n =(1t >),因为()()()()()()()32m n f m f n g m g n -+--()22333311ln 2222m m n m n m n m n n ⎛⎫⎛⎫=-+----- ⎪ ⎪⎝⎭⎝⎭33221133ln 222222n m m m n mn m n m n n=-+-+-+ 323111332ln 22m m m m n m n n n n n mn ⎡⎤⎛⎫⎛⎫⎛⎫=-+⋅----⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()332331*********ln (1)2ln 2222n t t t t t n t t t t t ⎛⎫⎛⎫=-+----=---- ⎪ ⎪⎝⎭⎝⎭ ()33211111(1)2ln 33132ln 626t t t t t t t t t t ⎡⎤⎛⎫⎛⎫≥----=-+---- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 321336ln 16t t t t ⎛⎫=-++- ⎪⎝⎭, 记()32336ln 1h t t t t t =-++-,则()22226311113636320h t t t t t t t t t t t t t ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=---'=-+-> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以()h t 在()1,+∞单调递增,所以()()10h t h >=,故32336ln 10t t t t-++->,所以()()()()()()()302m n f m f n g m g n -+-->, 故()()()()332g m g n f m f n m n-+<-.7.(2024届内蒙古包头市高三上学期调研考试)设函数()()ln 1f x a x =+-,已知2x =是函数()()2y x f x =-的极值点.(1)求a ; (2)设函数()()()()22x f x g x x f x -=-+,证明:()1g x >.【过程详解】(1)由题意可知,()()()()22ln 1y x f x x a x =-=-+-,则()2ln 11xy a x a x-'=+-++-,因为2x =是函数()()2ln 1y x a x =-+-的极值点, 所以()ln 120a +-=,解得2a =, 经检验满足题意,故2a =;(2)由(1)得()()ln 3f x x =-,(),3x ∞∈-, 设()()()22ln 3h x x f x x x =-+=-+-,则()12133x h x x x -'=-=--, 当2x <时,203x x ->-,即()0h x '>,所以()h x 在区间(),2-∞单调递增; 当23x <<时,203x x -<-,即()0h x '<,所以()h x 在区间()2,3单调递减, 因此当(),3x ∞∈-时,()()20h x h ≤=,因为()g x 的定义域要求()f x 有意义,即(),3x ∞∈-,同时还要求()2ln 30x x -+-≠,即要求2x ≠,所以()g x的定义域为{|3x x < 且}2x ≠, 要证()()()()212x f x g x x f x -=>-+,因为()20x f x -+<,所以需证()()()22x f x x f x -<-+, 即需证()()23ln 30x x x -+-->,令3x t -=,则0t >且1t ≠,则只需证1ln 0t t t -+>,令()1ln m t t t t =-+,则()ln m t t '=,令()ln 0m t t '==,可得1t =, 所以()0,1t ∈,()0m t '<;()1,t ∈+∞,()0m t '>;所以()m t 在区间()0,1上单调递减,在区间()1,+∞上单调递增, 所以()()10m t m >=,即()1g x >成立.8.(2024届北京市景山学校高三上学期开学考试)已知函数())(0)f x x b a =+≠,曲线()y f x =在点(1,(1))f 处的切线方程是1y x =-.(1)求a 、b 的值; (2)求证:()f x x <;(3)若函数()2()()g x f x t x x =+-在区间(1,)+∞上无零点,求t 的取值范围.【过程详解】(1)()()f x x b '=+由切线方程知()()1110f f ⎧=⎪⎨='⎪⎩,即()()1110b b +=+=,注意到0a ≠,解得1a =,0b =.(2)由(1)可知()f x x,若要()f x x x =<且注意到0x >,所以只需ln x < 构造函数()ln h x x =()122h x x x '==,令()0h x '=得4x =,所以()h x 、()h x '随x 的变化情况如下表:()0,4 ()4,+∞()h x '+-()h x所以()h x 有极大值()244ln 42ln 0eh =-=<,综上()0h x <,结合分析可知命题得证. (3)由题意分以下三种情形讨论:情形一:注意到当0t ≥且1x >0x >,()10txx -≥,此时有()0g x >,即()g x 在区间(1,)+∞上无零点,符合题意.情形二:对()2()g x x t x x =+-求导得()()21g xt x x '=+-,所以有()11g t '=+;进一步对()()21g x t x x '=++- 求导得()32ln 24x g x t x-''=+,注意到当1t ≤-且1x >时,有20t <,32ln 04x x-< ,进而有()0g x ''<,所以()g x '单调递减,所以()()110g x g t ''<=+≤,因此()g x 单调递减,故()()10g x g <=,即()g x 在区间(1,)+∞上无零点,符合题意.情形三:由(2)可知1x >lnx <,且注意到当10t -<<时有()()()1()21211212g x t x t x t x '=-<+-<++-成立, 所以11(02a g a a -'<-<,此时()110g t '=+>, 所以存在011,a x a -⎛⎫∈ ⎪⎝⎭使得()00g x '=,且注意到此时有()32ln 204x g x t x -''=+<成立, 所以()g x 、()g x '随x 的变化情况如下表:()01,x ()0,x +∞()g x ' +-()g x故一方面当0x x =时,()g x 取极大值(或最大值)()0g x ,显然有()()010g x g >=;ln x <可得()()()22()1g x x t x x x t x x x tx t +-<+-=+-,所以有10a g a -⎛⎫< ⎪⎝⎭,由零点存在定理并结合这两方面可知函数()g x 在区间(1,)+∞上存在零点.综上所述,符合题意的t 的取值范围为(][),10,-∞-⋃+∞.9.(2024届山西省大同市高三上学期质量检测)已知函数2()ln (R)af x ax x a x=--∈. (1)讨论()f x 的单调性;(2)若()f x 的两个极值点分别为1x ,2x,证明:12|()()|f x f x -<. 【过程详解】(1)依题意,222122()(0)a ax x af x a x x x x -+'=-+=>,当0a ≤时,()0f x '<,所以()f x 在(0,)+∞上单调递减;当0a <<()0f x '>,解得102x a <<或12x a>,令()0f x '<,解得112x a <<,所以()f x在1(0,2a 上单调递增,在11(22a a上单调递减,在)+∞上单调递增;当a ≥时,()0f x '≥,所以()f x 在(0,)+∞上单调递增. (2)不妨设120x x <<,由(1)知,当04a <<时,()f x 在1(0,)x 上单调递增,在12(,)x x 上单调递减,在2(,)x +∞上单调递增,所以1x 是()f x 的极大值点,2x 是()fx的极小值点,所以12()()f x f x >,所以1212|()()|()()f x f x f xf x -=-.由(1)知,122x x =,121x x a+=,则21x xa-==.要证12|()()|f x f x -<1221()())2f x f x x x -<-.因为22121122121112()()()()()ln 222x x xx x f x f x x x a x x a x x x ---+=-+--+⋅2212212111212()2()()ln ln 2x x x x a x x x x x x x x -=-+--=+ 2122112(1)ln 1x x xx x x -=+, 设211x t x =>,2(1)()ln 1t g t t t -=++.所以222414()0(1)(1)g t t t t '==>++, 所以()g t 在(1,)+∞上单调递增,所以()(1)0g t g >=.所以2112)()()02x x f x f x --+>,即得1221()()()2f x f x x x -<-成立. 所以原不等式成立.10.(2024届黑龙江省哈尔滨市第三中学校高三上学期开学测试)已知函数()()111ln f x ax a x x=+--+.(1)讨论函数()f x 的单调性;(2)求证:n *∀∈N ,)21+⋅⋅⋅++>.【过程详解】(1)()f x 的定义域为()0,∞+,()()()221111ax x a f x a x x x --+'=+-=, 当0a ≤时,10ax -<,令()0f x ¢>,解得01x <<,令()0f x '<,解得1x >,所以()f x 在()0,1上单调递增,()1,+∞上单调递减;当01a <<时,令()0f x ¢>,解得01x <<或1x a >,令()0f x '<,解得11x a <<,所以()f x 在()0,1,1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,11,a ⎛⎫⎪⎝⎭上单调递减;当1a =时,()0f x '≥恒成立,所以()f x 在()0,∞+上单调递增;当1a >时,令()0f x ¢>,解得10x a <<或1x >,令()0f x '<,解得11x a <<,所以()f x 在10,a ⎛⎫⎪⎝⎭,()1,+∞上单调递增,1,1a ⎛⎫⎪⎝⎭上单调递减;综上所述,当0a ≤时,()f x 在()0,1上单调递增,()1,+∞上单调递减;当01a <<时,()f x 在()0,1,1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,11,a ⎛⎫⎪⎝⎭上单调递减;当1a =时,()f x 在()0,∞+上单调递增;当1a >时,()f x 在10,a ⎛⎫⎪⎝⎭,()1,+∞上单调递增,1,1a ⎛⎫ ⎪⎝⎭上单调递减.(2)当0a =时,由(1)可得()()11ln 10f x x f x=--<=,()1x >,因为N n *∈1>,则10<,即11>>所以n ++>-+L L2n =-L2n =-)21=-,即)2ln 1+>L .。
构造函数(含答案)

构造函数常见构造函数方法:1.利用和差函数求导法则构造(1))()()()0(0)()(x g x f x F x g x f +=⇒<>'+'或; (2))(-)()()0(0)(-)(x g x f x F x g x f =⇒<>''或; (3)kx x f x F k x f -=⇒<>')()()(k )(或; 2.利用积商函数求导法则构造(1))()()()0(0)()()(g )(x g x f x F x g x f x x f =⇒<>'+'或; (2))0)(()(g )()()0(0)()(-)(g )(≠=⇒<>''x g x x f x F x g x f x x f 或; (3))()()0(0)()(x x xf x F x f x f =⇒<>+'或; (4))0(x)()()0(0)(-)(x ≠=⇒<>'x x f x F x f x f 或; (5))()()0(0)(n )(x x f x x F x f x f n=⇒<>+'或; (6))0(x)()()0(0)(n -)(x n ≠=⇒<>'x x f x F x f x f 或; (7))(e )()0(0)()(x f x F x f x f x=⇒<>+'或; (8))0(e )()()0(0)(-)(x≠=⇒<>'x x f x F x f x f 或; (9))(e )()0(0)(k )(x f x F x f x f kx=⇒<>+'或; (10))0(e)()()0(0)(k -)(k x≠=⇒<>'x x f x F x f x f 或; (11))(sin )()0(0tanx )()(x xf x F x f x f =⇒<>'+或;(12))0(sin sinx )()()0(0tan )(-)(≠=⇒<>'x x f x F x x f x f 或; (13))0(cos cos )()()0(0)(tanx )(≠=⇒<>+'x xx f x F x f x f 或; (14))(cos )()0(0)(tanx -)(x f x F x f x f =⇒<>'或;(15)()+lna ()0(0)()()xf x f x F x a f x '><⇒=或;(16)()()lna ()0(0)()x f x f x f x F x a '-><⇒=或;考点一。
导数中的构造函数(最全精编)学生版

导数小题中构造函数的技巧函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中,下面我就导数小题中构造函数的技巧和大家进行分享和交流。
(一)利用)(x f 进行抽象函数构造1、利用)(x f 与x 构造;常用构造形式有x x f x xf )(),(;这类形式是对vuv u ,⋅型函数导数计算的推广及应用,我们对vuv u ,⋅的导函数观察可得知,v u ⋅导函数中体现的是“+”法,vu型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造v u ⋅型,当导函数形式出现的是“-”法形式时,优先考虑构造vu,我们根据得出的“优先”原则,看一看例1,例2.【例1】)(x f 是定义在R 上的函数,当0<x 时,0)()('<+x xf x f ,且0)4(=-f ,则不等式0)(>x xf 的解集为____________❀❀❀思路点拨:出现“+”形式,优先构造)()(x xf x F =,然后利用函数的单调性、奇偶性和数形结合求解即可.【例2】设)(x f 是定义在R 上的偶函数,且0)1(=f ,当0<x 时,有0)()('>-x f x xf 恒成立,则不等式0)(>x f 的解集为________________❀❀❀思路点拨:出现“-”形式,优先构造然后利用函数的单调性、奇偶性和数形结合求解即可.xx f x F )()(=xx f x xf )(),(是比较简单常见的)(x f 与x 之间的函数关系式,如果碰见复杂的,不易想的我们该如何处理,由此我们可以思考形如此类函数的一般形式.)()(x f x x F n =,)]()([)()()('11'x f x nf x x f x x f nx x F n n n +=+=--;n xx f x F )()(=,1'21'')()()()()(+--=-⋅=n n n n x x nf x xf x x f nx x x f x F ;结论:出现)()('x xf x nf +形式,构造函数)()(x f x x F n =;出现)()('x nf x xf -形式,构造函数n xx f x F )()(=.我们根据得出的结论去解决例3题【例3】已知偶函数)0)((≠x x f 的导函数为)('x f ,且满足0)1(=-f ,当0>x 时,)()(2'x xf x f >,则使得0)(>x f 成立的x 的取值范围是___________❀❀❀思路点拨:满足“)()('x nf x xf -”形式,优先构造然后利用函数的单调性、奇偶性和数形结合求解即可.nx x f x F )()(=【变式提升】设函数)(x f 满足x x f x x f x ln 1)(3)(2'3+=+,且ee f 21)(=,则0>x 时,)(x f ()A 、有极大值,无极小值B 、有极小值,无极大值C 、既有极大值又有极小值D 、既无极大值也无极小值❀❀❀思路点拨:满足“)()('x nf x xf +”形式,为3=n 时情况,优先构造nx x f x F )()(=,然后利用积分、函数的性质求解即可.【例4】设)(x f 是定义在R 上的奇函数,在)0,(-∞上有0)2()2(2'<+x f x xf ,且0)2(=-f ,则不等式0)2(<x xf 的解集为___________.❀❀❀思路点拨:满足“)()('x nf x xf +”形式,优先构造)2()(x xf x F =,然后利用函数的单调性、奇偶性和数形结合求解即可.注意0)2(=-f 和)(x F 的转化.(2)利用)(x f 与x e 构造;)(x f 与x e 构造,一方面是对vuv u ,⋅函数形式的考察,另外一方面是对x x e e =)(的考察.所以对于)()('x f x f ±类型,我们可以等同xx f x xf )(),(的类型处理,“+”法优先考虑构造x e x f x F ⋅=)()(,“-”法优先考虑构造x ex f x F )()(=.【例5】已知)(x f 是定义在),(+∞-∞上的函数,导函数)('x f 满足)()('x f x f <对于R x ∈恒成立,则()A 、)0()2014(),0()2(20142f e f f e f >>B 、)0()2014(),0()2(20142f e f f e f ><C 、)0()2014(),0()2(20142f e f f e f <>D 、)0()2014(),0()2(20142f e f f e f <<❀❀❀思路点拨:满足“0)()('<-x f x f ”形式,优先构造xe xf x F )()(=,然后利用函数的单调性和数形结合求解即可.注意选项的转化.同样xx ex f x f e )(),(是比较简单常见的)(x f 与xe 之间的函数关系式,如果碰见复杂的,我们是否也能找出此类函数的一般形式呢?)()(x f e x F nx =,)]()([)()()('''x nf x f e x f e x f e n x F nx nx nx +=+⋅=;nx e x f x F )()(=,nx nxnx nx e x nf x f e x f ne e x f x F )]()([)()()('2''-=-=;结论:1、出现)()('x nf x f +形式,构造函数)()(x f e x F nx =;2、出现)()('x nf x f -形式,构造函数nxex f x F )()(=.我们根据得出的结论去解决例6题.【例6】若定义在R 上的函数)(x f 满足1)0(,0)(2)('=>-f x f x f ,则不等式x e x f 2)(>的解集为___________❀❀❀思路点拨:满足“0)(2)('<-x f x f ”形式,优先构造xe xf x F 2)()(=,然后利用函数的单调性和数形结合求解即可.注意选项的转化.【变式提升】若定义在R 上的函数)(x f 满足1)0(,04)(2)('-=>--f x f x f ,则不等式2)(2->x e x f 的解集为___________❀❀❀思路点拨:利用通式构造函数时考虑4-如何转化.构造函数x x ee xf x F 222)()(-=【例7】已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足:()()(1)[]0x f x f x '-->,()22(2)x f x f x e --=,则下列判断一定正确的是()(A))0()1(f f <(B))0()2(2f e f >(C))0()3(3f e f >(D))0()4(4f e f <❀❀❀思路点拨:满足“)()('x f x f -”形式,优先构造x ex f x F )()(=,然后利用函数的单调性和数形结合求解即可.注意选项的转化.(3)利用)(x f 与x x cos ,sin 构造.x x cos ,sin 因为导函数存在一定的特殊性,所以也是重点考察的范畴,我们一起看看常考的几种形式.x x f x x f x F x x f x F cos )(sin )()(,sin )()(''+==;x xx f x x f x F x x f x F 2''sin cos )(sin )()(,sin )()(-==;x x f x x f x F x x f x F sin )(cos )()(,cos )()(''-==;xx x f x x f x F x x f x F 2''cos sin )(cos )()(,cos )()(+==.根据得出的关系式,我们来看一下例8【例8】已知函数()y f x =对于任意的(,)22x ππ∈-满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式不成立的是()A、(()34f ππ<(()34f ππ-<-C、(0)()4f π<D、(0)2()3f f π<❀❀❀思路点拨:满足“()()cos sin 0f x x f x x '+>”形式,优先构造然后利用函数的单调性和数形结合求解即可.注意选项的转化.xx f x F cos )()(=【变式提升】定义在)2,0(π上的函数,函数)('x f 是它的导函数,且恒有x x f x f tan )()('<成立,则()A、)3(24(3ππf f >B、1sin 6(2)1(πf f <C、)4()6(2ππf f >D、)3()6(3ππf f <❀❀❀思路点拨:满足“x x f x x f cos )(sin )('-”形式,优先构造xx f x F sin )()(=,然后利用函数的单调性和数形结合求解即可.注意选项的转化.(二)构造具体函数关系式构造这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题.【例9】]2,2[,ππβα-∈,且0sin sin >-ββαα,则下列结论正确的是()A、βα>B、22βα>C、βα<D、0>+βα❀❀❀思路点拨:构造函数x x x f sin )(=,然后利用函数的单调性和数形结合求解即可.【变式提升】定义在R 上的函数)(x f 满足1)1(=f ,且对21)(,'<∈∀x f R x 则不等式21log )(log 22+>x x f 的解集为_________.❀❀❀思路点拨:构造函数221)()(x x f x F -=,令x t 2log =,然后原不等式等价于21)(+>t t f ,利用单调性求解集,然后解对数不等式即可.【例10】等比数列}{n a 中,21=a ,48=a ,函数))...()(()(821a x a x a x x x f ---=,则=)0('f ()A 、62B 、92C 、122D 、152❀❀❀思路点拨:构造函数)()(x xg x f =,然后利用整体代换思想和数列的性质求解即可.【例11】已知实数c b a ,,满足1112=--=-d cb e a a ,其中e 是自然对数的底数,那么22)()(d bc a -+-的最小值为()A、8B、10C、12D、18❀❀❀思路点拨:把22)()(d b c a -+-看成两点距离的平方,然后利用数形结合以及点到直线的距离即可.【变式提升】已知实数b a ,满足0ln 522=--b a a ,R c ∈,则22)()(c b c a ++-的最小值为______________❀❀❀思路点拨:构造函数x x x f ln 52)(2-=,x x g -=)(,然后利用两点之间的距离公式和数形结合思想求解即可.【课后作业】设函数)(x f 在R 上的导函数)('x f ,在),0(+∞上x x f 2sin )('<,且R x ∈∀,有x x f x f 2sin 2)()(=+-,则以下大小关系一定正确的是()A、)34()65(ππf f <B、)()4(ππf f <C、34(65(ππ-<-f f D、)(4(ππ->-f f。
专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数

专题5 构造函数证明不等式函数与导数一直是高考中的热点与难点, 利用导数证明不等式在近几年高考中出现的频率比较高.求解此类问题关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的.(一) 把证明()f x k >转化为证明()min f x k>此类问题一般简单的题目可以直接求出()f x 的最小值,复杂一点的题目是()f x 有最小值,但无法具体确定,这种情况下一般是先把()f x 的最小值转化为关于极值点的一个函数,再根据极值点所在范围,确定最小值所在范围【例1】(2024届黑龙江省哈尔滨市三中学校高三下学期第五次模拟)已知函数()()21ln f x a x x x =+--(a ÎR ).(1)讨论()f x 的单调性;(2)当102a <£时,求证:()1212f x a a³-+.【解析】(1)由题意可知,函数2()(1)ln f x a x x x =+--的定义域为(0,)+¥,导数1(1)(21)()2(1)1x ax f x a x x x+-¢=+--=,当0a £时,,()0x Î+¥,()0f x ¢<;当0a >时,1(0,)2x a Î,()0f x ¢<;1(,),()02x f x a¢Î+¥>;综上,当0a £时,函数()f x 在区间(0,)+¥上单调递减;当0a >时,函数()f x 在区间1(0,2a 上单调递减,在区间1(,)2a+¥上单调递增.(2)由(1)可知,当102a <£时,函数()f x 在区间1(0,)2a 上单调递减,在区间1(,)2a+¥上单调递增.所以函数211111()()(1)ln()1ln(2)22224f x f a a a a a a a a³=+--=+-+,要证1()212f x a a ³-+,需证111ln(2)2142a a a a a+-+³-+,即需证11ln(2)0,(0,]42a a a a +-³Î恒成立.令1()ln(2)4g a a a a =+-,则()2222111()1044a g a a aa -=--+=-£¢,所以函数()g a 在区间1(0,2单调递减,故111()()00222g a g ³=+-=,所以11ln(2)0,(0,]42a a a a +-³Î恒成立,所以当102a <£时,1()212f x a a³-+.【例2】(2024届重庆市南开中学高三上学期第一次质量检测)已知函数()()sin ln 1f x x x =-+.(1)求证:当π1,2x æöÎ-ç÷èø时,()0f x ³;(2)求证:()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L .【解析】(1)证明:因为()()sin ln 1f x x x =-+,则()0sin 0ln10f =-=,()1cos 1f x x x =-+¢,当(]1,0x Î-时,cos 1x £,111x ³+,()0f x ¢£,函数()f x 单调递减,则()()00f x f ³=成立;当π0,2x æöÎç÷èø时,令()1cos 1p x x x =-+,则()()21sin 1p x x x ¢=-+,因为函数()211y x =+、sin y x =-在π0,2æöç÷èø上均为减函数,所以,函数()p x ¢在π0,2æöç÷èø上为减函数,因为()010p ¢=>,2π1102π12p æö¢=-<ç÷èøæö+ç÷èø,所以存在π0,2x æöÎç÷èø,使得()00p x ¢=,且当00x x <<时,()0p x ¢>,此时函数()f x ¢单调递增,当0π2x x <<时,()0p x ¢<,此时函数()f x ¢单调递减,而()00f ¢=,所以()00f x ¢>,又因为π02f æö¢<ç÷èø,所以存在10π,2x x æöÎç÷èø,使得()10f x ¢=,当10x x <<时,()0f x ¢>,此时函数()f x 单调递增,当1π2x x <<时,()0f x ¢<,此时函数()f x 单调递减,因为π1e 2+<,所以,ππ1ln 11ln e 022f æöæö=-+>-=ç÷ç÷èøèø,所以,对任意的π0,2x æöÎç÷èø时,()0f x >成立,综上,()0f x ³对任意的π1,2x æöÎ-ç÷èø恒成立.(2)证明:由(1),对任意的n *ÎN ,11022n <£,则111sin ln 10222f n n n æöæö=-+>ç÷ç÷èøèø,即1121sinln 1ln 222n n n n +æö>+=ç÷èø,对任意的n *ÎN ,()()()()22122221221022*******n n n n n n n n n n n +-+++-==>+++,所以,2122221n n n n ++>+,则2122ln ln 221n n n n ++>+,所以111135721sin sin sin sinln ln ln ln 24622462n n n +++++>+++L ,从而可得111146822sin sin sin sinln ln ln ln 246235721n n n +++++>++++L ,上述两个不等式相加可得11112sin sin sin sin 2462n æö++++ç÷èøL ()3456782122ln ln ln ln ln ln ln ln ln 1234567221n n n n n ++>++++++++=++L ,所以,()11111sin sin sin sinln 124622n n ++++>+L ,又由(1),因为1102n -<-<,则111121sin ln 1sin ln022222n f n n n n n -æöæöæö-=---=-->ç÷ç÷ç÷èøèøèø,可得1212sinln ln 2221n nn n n -<-=-,当2n ³且n *ÎN 时,()()()()()()22222122110212221222122n n n n n n n n n n n -----==-<------,所以,2212122n n n n -<--,即221ln ln 2122n n n n -<--,所以,当2n ³时,1111462sin sin sin sinln 2ln ln ln 24623521nn n ++++<++++-L L ,从而有11113521sin sin sin sinln 2ln ln ln 24622422n n n -++++<++++-L L ,上述两个不等式相加得:11112sin sin sin sin 2462n æö++++ç÷èøL 3456782122ln 2ln ln ln ln ln ln ln ln 2ln 2ln 2345672221n nn n n -<+++++++++=+--L ,所以,11111sin sin sin sinln 2ln 24622n n ++++<+L ,当1n =时,1111sin ln ln 2sin 02222f æöæö-=--=->ç÷ç÷èøèø,即1sin ln 22<,所以,对任意的n *ÎN ,11111sin sin sin sinln ln 224622n n ++++<+L ,因此,()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L . (二) 把证明()()f x g x > 转化为证明()()0f xg x ->此类问题是证明不等式中最基本的一类问题,把两个函数通过作差转化为一个函数,再利用导数研究该函数的性质,通过函数性质证明该不等式.【例3】(2024届西省榆林市第十中学高三下学期一模)已知函数()()e 11xf x a x =+--,其中a ÎR .(1)讨论函数()f x 的单调性;(2)当2a =时,证明:()ln cos f x x x x >-.【解析】(1)()()e 11x f x a x =+--Q ,()e 1x f x a \=¢+-,当1a ³时,()e 10xf x a =+->¢,函数()f x 在R 上单调递增;当1a <时,由()e 10xf x a =+->¢,得()ln 1x a >-,函数()f x 在区间()()ln 1,a ¥-+上单调递增,由()e 10xf x a =+-<¢,得()ln 1x a <-,函数()f x 在区间()(),ln 1a -¥-上单调递减.综上,当1a ³时,()f x 在R 上单调递增,无减区间.当1a <时,()f x 在()()ln 1,a ¥-+上单调递增,在()(),ln 1a -¥-上单调递减.(2)Q 当2a =时,()e 1xf x x =+-,\要证()ln cos f x x x x >-,即证()e cos 1ln 0,0,x x x x x x ++-->Î+¥,①当01x <£时,e cos 10x x x ++->Q ,ln 0x x £,e cos 1ln 0x x x x x \++-->;②当1x >时,令()e cos 1ln xg x x x x x =++--,则()e sin ln x g x x x =--¢,设()()h x g x ¢=,则()1e cos xh x x x=¢--,1x >Q ,e e 2x \>>,110x-<-<,1cos 1x -£-£,()0h x ¢\>,()h x \在()1,+¥上单调递增,()()1e sin100h x h \>=-->,即()0g x ¢>,()g x \在()1,+¥上单调递增,()()1e cos10g x g \>=+>,即e cos 1ln 0x x x x x ++-->.综上,当2a =时,()ln cos f x x x x >-. (三) 把证明()()f x g x > 转化为证明()()min maxf xg x >有时候把证明()()f x g x > 转化为证明()()0f x g x ->后,可能会出现()()f x g x -的导函数很复杂,很难根据导函数研究()()f x g x -的最值,而()f x 的最小值及()g x 的最大值都比较容易求,可考虑利用证明()()min max f x g x >的方法证明原不等式,但要注意这种方法有局限性,因为()()f x g x >未必有()()min max f x g x >.【例4】(2024届广东省部分学校高三上学期第二次联考)已知函数()()e 0xf x ax a =¹.(1)讨论()f x 的单调性;(2)当24e a ³时,证明:()()1ln 01f x x x x -+>+.【解析】(1)由题意可得()()1e xf x a x +¢=.则0a >时,由()0f x ¢>,得1x >-,由()0f x ¢<,得1x <-,则()f x 在(),1-¥-上单调递减,在()1,-+¥上单调递增;当a<0时,由()0f x ¢<,得1x >-,由()0f x ¢>,得1x <-,则()f x 在(),1-¥-上单调递增,在()1,-+¥上单调递减.(2)因为0x >,所以e 01x x x >+.因为24e a ³,所以()()2e 4e 1ln 1ln 11xx ax x x x x x x x --+³-+++.要证()()1ln 01f x x x x -+>+,即证()24e 1ln 01x x x x x --+>+,即证()224e ln 1x x x x ->+.设()()224e 1x g x x -=+,则()()()234e 11x x g x x --¢=+.当()0,1x Î时,()0g x ¢<,当()1,x Î+¥时,()0g x ¢>,则()g x 在()0,1上单调递减,在()1,+¥上单调递增.故()()min 11eg x g ==.设()ln x h x x =,则()21ln xh x x-¢=.当()0,e x Î时,()0h x ¢>,当()e,x Î+¥时,()0h x ¢<,则()h x 在()0,e 上单调递增,在()e,+¥上单调递减.故()()max 1e eh x h ==.因为()()min max g x h x =,且两个最值的取等条件不同,所以()224e ln 1x x x x ->+,即当24e a ³时,()()1ln 01f x x x x -+>+.(四) 把证明()()f xg x >转化为证明()()()(),f xh x h x g x >>若直接证明()()f x g x >比较困难,有时可利用导数中的常见不等式如ln 1,e +1x x x x £-³构造一个中间函数()h x ,或利用不等式的性质通过放缩构造一个中间函数()h x ,再通过证明()()()(),f x h x h x g x >>来证明原不等式.【例5】已知函数()sin 2cos xf x x=+在区间()0,a 上单调.(1)求a 的最大值;(2)证明:当0x >时,()31e xf x +<.【解析】 (1)由已知得,22cos (2cos )sin sin 2cos 1()(2cos )(2cos )x x x x x f x x x +++¢==++,要使函数()f x 在区间(0,)a 上单调,可知在区间(0,)a 上单调递增,令()0f x ¢>,得2cos 10x +>,即1cos 2x >-,解得22(2,2)33x k k p pp p Î-++,(k Z Î),当0k =时满足题意,此时,在区间2(0,3p 上是单调递增的,故a 的最在值为23p.(2)当0x >时,要证明()31e xf x +<,即证明e 1()3x f x -<,而1xe x ->,故需要证明e 1()33x xf x -<<.先证:e 133x x -<,(0x >)记()e 1x F x x =--,()e 1x F x ¢=-Q ,,()0x Î+¥时,()0F x ¢>,所以()F x 在(0,)+¥上递增,\()e 1xF x x =--(0)0F >=,故1xe x ->,即e133xx -<.再证:()3x f x <,(0x >)令1()()3G x f x x =-,则sin 1(),2cos 3x G x x x =-+则()()()()222cos 12cos 1132cos 32cos x x G x x x ¢--+=-=++,故对于0x ">,都有()0¢<G x ,因而()G x 在(0,)¥+上递减,对于0x ">,都有()(0)0G x G <=,因此对于0x ">,都有()3xf x <.所以e 1()33x x f x -<<成立,即e 1()3x f x -<成立,故原不等式成立.(五) 改变不等式结构,重新构造函数证明不等式此类问题要先对待证不等式进行重组整合,适当变形,找到其等价的不等式,观察其结构,根据结构构造函数.常见的变形方法有:①去分母,把分数不等式转化为整式不等式;②两边取对数,把指数型不等式转化为对数型不等式;③不等式为()()()()f x h x g x h x >类型,且()()0h x >或<0的解集比较容易确定,可考虑两边同时除以()h x ;④不等式中含有,有时为了一次求导后不再含有对数符号,可考虑不等式两边同时除以x ;⑤通过换元把复杂的不等式转化为简单不等式.【例6】(2024届河南省创新发展联盟5月月考)已知函数1e 1()ln x af x x x x-=--.(1)讨论()f x 的单调性;(2)当52a ³时,证明:()11()ln e 1ln x f x x x x x -++->-.【解析】(1)函数1e 1()ln x af x x x x -=--的定义域为(0,)+¥,求导得11222e (1)11(1)(e 1)()x x a x x a f x x x x x -----=-+=¢,若0a £,则1e 10x a --<,且当()0,1x Î时,()0f x ¢>,当()1,x ¥Î+时,()0f x ¢<,即函数()f x 在(0,1)上递增,在(1,)+¥上递减;若0a >,令1e 10x a --=,解得1ln x a =-,若1ln 0a -£,即e a ³,则1e 10x a --³恒成立,当()0,1x Î时,()0f x ¢<,当()1,x ¥Î+时,()0f x ¢>,即函数()f x 在(0,1)上递减,在(1,)+¥上递增;若01ln 1a <-<,即1e a <<,则当()()0,1ln 1,x a ¥Î-È+时,()0f x ¢>,当()1ln ,1x a Î-时,()0f x ¢<,即函数()f x 在(0,1ln ),(1,)a -+¥上递增,在(1ln ,1)a -上递减;ln x x若1ln 1a -=,即1a =,则()0f x ¢³在()0,¥+上恒成立,函数()f x 在(0,)+¥上递增;若1ln 1a ->,即01a <<,则当()()0,11ln ,x a ¥ÎÈ-+时,()0f x ¢>,当(1,1ln )x a Î-时,()0f x ¢<,即函数()f x 在(0,1),(1ln ,)a -+¥上递增,在(1,1ln )a -上递减,所以当0a £时,()f x 的递增区间为()0,1,递减区间为()1,¥+;当01a <<时,()f x 的递增区间为()0,1和()1ln ,a ¥-+,递减区间为()1,1ln a -;当1a =时,()f x 的递增区间为()0,¥+,无递减区间;当1e a <<时,()f x 的递增区间为()0,1ln a -和()1,¥+,递减区间为()1ln ,1a -;当e a ³时,()f x 的递增区间为()1,¥+,递减区间为()0,1.(2)要证()()11ln e 1ln x f x x x x x -++->-,需证()11e e ln 10x x a x x x --+-->,而15e ,02x a x -³>,即有()()1111e 5e e ln 1e ln 12x x x x a x x x x x x----+--³+--,则只需证明()115e e ln 102x x x x x --+-->,即证15e ln 12x x x x -æö+->ç÷èø,即证()215ln 12e x x x x -+->,令()()5ln 12h x x x =+-,则()ln h x x ¢=,当()0,1x Î时,()0h x ¢<,当()1,x ¥Î+时,()0h x ¢>,即函数()h x 在(0,1)上单调递减,在(1,)+¥上单调递增,则()min 3()12h x h ==,令()21(0)e x x x x j -=>,则()()12ex x x x j --¢=,当()0,2x Î时,()0x j ¢>,当()2,x ¥Î+时,()0x j ¢<,函数()j x 在(0,2)上单调递增,在(2,)+¥上单调递减,则()max min 43()2()e 2x h x j j ==<=,从而()215ln 12e x x x x -+->,即()11()ln e 1ln x f x x x x x -++->-成立.(六) 通过减元法构造函数证明不等式对于多变量不等式 ,一般处理策略为消元或是把一个看作变量其他看作常量;当都不能处理的时候,通过变形,再换元产生一个新变量,从而构造新变量的函数.【例7】(2024届江西省南昌市高三三模)定义:若变量,0x y >,且满足:1mmx y a b æöæö+=ç÷ç÷èøèø,其中,0,Z a b m >Î,称y 是关于的“m 型函数”.(1)当2,1a b ==时,求y 关于x 的“2型函数”在点æççè处的切线方程;(2)若y 是关于x 的“1-型函数”,(i )求x y +的最小值:(ii )求证:()1111n n n nn n n n nx ya b+++æö+³+ç÷èø,()N n *Î.【解析】(1)解:当2,1a b ==时,可得12214x y æö=-ç÷èø,则122111242x y x -æöæö=-×-ç÷¢ç÷èøèø,所以1x y =¢=,所求切线方程为1)y x =-,即40x +-=.(2)解:由y 是关于x 的“1-型函数”,可得111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,(i)因为2()()a b ay bx x y x y a b a b x y x y æö+=++=+++³++=ç÷èø,当且仅当2ay x x y ì=ïíï+î即x a y b ì=ïí=ïî时取得最小值.(ii )由111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,则()()x a y b ab --=,且x a >,y b >,可设x a at -=,by b t-=,其中(0,)t Î+¥,于是11[(1)]1(1)1nnnnnn n n x y a t b a t b t t éùæöæö+=+++=+++ç÷ç÷êúèøèøëû,记1()(1)1nnnnh t a t b t æö=+++ç÷èø,可得()()()11112111111n n n nn nn n n na t b h t na t nb t t t t a ---++éù+æöæöæö=+++-=-êúç÷ç÷ç÷èøèøèøêëû¢ú,由()0h t ¢=,得1n n b t a +æö=ç÷èø,记10n n b t a +æö=ç÷èø,当00t t <<时()0h t ¢<,当0t t >时,()0h t ¢>,则()()11min0001()1111nnn nnn n n n n n n b a h t h t a t b a b t a b ++éùéùæöæöæöêúêú==+++=+++ç÷ç÷ç÷êúêúèøèøèøëûëû111111111111n n n nn n n n n n n nn n n n n n n n n n a b a b a b a a b b b a ++++++++++æöæöæöæö=+×++×=+++ç÷ç÷ç÷ç÷èøèøèøèø111n n n nn n a b+++æö=+ç÷èø,所以()1111n n n nn n n n nx ya b+++æö+³+ç÷èø.(七) 与极值点或零点有关的多变量不等式的证明此类问题通常是给出函数的零点或极值点12,x x 或123,,x x x ,与证明与12,x x 或123,,x x x 有关的不等式,求解时要有意识的利用方程思想代入消元(若i x 是()f x 的零点,则()0i f x =,若i x 是()f x 的极值点,则()0i f x ¢=,),减少变量个数.【例8】(2024届湖南娄底市高三下学期高考考前仿真联考)已知函数()2e 2ln x af x a x x x =--.(1)当1a =时,讨论函数()f x 的单调性;(2)若22e a >,(i )证明:函数()f x 有三个不同的极值点;(ii )记函数()f x 三个极值点分别为123,,x x x ,且123x x x <<,证明:()()()23131e a f x f x a x x æö-<--ç÷èø.【解析】(1)函数()f x 的定义域为(0,)+¥,当1a =时,()2e 2ln xf x x x x=--,则()422323e e 21e 2(2)(e 2(2))x xx x x x x x x f x x x x x x x x -----¢=+-=+=,令e (0)x y x x =->,则e 10(0)x y x ¢=->>,所以e x y x =-在(0,)+¥上递增,所以0e e 01x y x =->-=,所以当2x >时,()0f x ¢>,当02x <<时,()0f x ¢<,所以()f x 在(0,2)上递减,在(2,)+¥上递增;(2)(i )因为,()0x Î+¥,且()233(2e 2(2)(e ))x xa a x f x x x x a x x x -¢=+--=-,(2)0f ¢=,由e 0xax -=,得e xa x=(,()0x Î+¥),令()(0)x e g x x x =>,则2(e 1)()(0)x x g x x x-¢=>,当01x <<时,()0g x ¢<,当1x >时,()0g x ¢>,所以()g x 在(0,1)上递减,在(1,)+¥上递增,所以min ()(1)e g x g ==,当2e (2)e 2a g >=>时,e xa x=在(0,1)和(2,)+¥上各有一个实数根,分别记为13,x x ,则1301,2x x <<>,设22x =,当10x x <<或23x x x <<时,()0f x ¢<,当12x x x <<或3x x >时,()0f x ¢>,所以()f x 在()10,x 和()23,x x 上递减,在()12,x x 和3(,)x +¥上递增,所以函数()f x 在(0,)+¥上有三个不同的极值点,(ii )由(i )1301,2x x <<>,所以13,x x 是方程e x ax =的两个不相等的实数根,即11e x ax =,33e xax =,所以11111211111e 221()ln ln ln x a a af x a x a x a x x x x x x æö=--=--=-+ç÷èø,同理3331()ln f x a x x æö=-+ç÷èø,所以()()313131313111ln ln a x a x f x f x x x x x x x æöæö-+++ç÷ç÷-èøèø=--31313111ln ln a x x x x x x æö-+--ç÷èø=-13331131ln x x x a x x x x x æö--+ç÷èø=-,由11e x ax =,33e x ax =,得3331113311e e ln ln ln ln e e e x x x x x x x a x x x a-====-,所以()()1331331313113131313131ln 11x x x x x a a x x f x f x x x x x x a x x x x x x x x æöæö---+-+-ç÷ç÷-æöèøèø===-ç÷---èø,因为2e ,2a æöÎ+¥ç÷èø,所以要证()()()23131e a f x f x a x x æö-<--ç÷èø,只要证()()23131e f x f x a a x x -<--,即证23111e a a a x x æö-<-ç÷èø,即证31111e a x x -<-,即证311e a x x <,只需证13e ax x <,即31e e xx <×,即311ex x -<,由(i )可得1301,2x x <<>,所以3110e e 1x --<<<,根据(i )中结论可知函数e ()=xg x x在(0,1)上递减,所以要证311ex x -<,即证311()(e )x g x g -<,因为3113e e x x a x x ==,所以13()()g x g x =,所以只要证313()(e )x g x g -<,即1333e 13e e e xx x x --<,得13e 3e e x x -<,即3131e ln x x --<,得313e 01ln xx ---<,令1()1ln e(2)xh x x x -=-->,则111e 1()e (2)x x x h x x x x---¢=-+=>,令1()e 1(2)x u x x x -=->,则1()(1)e 0(2)x u x x x -¢=-<>,所以()u x 在(2,)+¥上递减,所以2()(2)10eu x u <=-<,所以()0h x ¢<,所以()h x 在(2,)+¥上递减,所以1()(2)1ln 20e h x h <=--<,所以得证.(八) 与数列前n 项和有关的不等式的证明此类问题一般先由已知条件及导数得出一个不等式,再把该不等式中的自变量依次用1,2,3,L ,n 代换,然后用叠加法证明.【例9】(2024届重庆市九龙坡区高三下学期5月质量抽测)已知函数()213ln 22f x x x ax =+-+,()0a >.(1)当[)1,x ¥Î+时,函数()0f x ³恒成立,求实数a 的最大值;(2)当2a =时,若()()120f x f x +=,且12x x ¹,求证:122x x +>;(3)求证:对任意*N n Î,都有()2112ln 1ni i n n i =-æö++>ç÷èøå.【解析】(1)当1x ³时,()213ln 022f x x x ax =+-+³恒成立,即ln 1322x a x x x £++恒成立,只需min ln 1322x a x xx æö£++ç÷èø即可,令()ln 1322x g x x x x =++,1x ³,则()22221ln 132ln 1222x x x g x x x x ---=-¢+=,令()22ln 1h x x x =--,1x ³,则()22222x h x x x x=¢-=-,当1x ³时,()0h x ¢³恒成立,()h x 在[)1,x ¥Î+单调递增,所以()()10h x h ³=,所以()0g x ¢³在[)1,x ¥Î+恒成立,()g x 在[)1,x ¥Î+单调递增,所以()()min 12g x g ==,所以2a £,即实数a 的最大值为2.(2)当2a =时,()213ln 222f x x x x =+-+,0x >,所以()()21120x f x x x x-=+=¢-³,()f x 在()0,x ¥Î+上单调递增,又()10f =,()()120f x f x +=且12x x ¹,不妨设1201x x <<<,要证122x x +>,即证明212x x >-,因为()f x 在()0,x ¥Î+上单调递增,即证()()212f x f x >-,因为()()120f x f x +=,即证()()1120f x f x +-<,设()()()()()()2213132ln 2ln 22222222F x f x f x x x x x x x =+-=+-++-+---+()()()2ln 221ln 221x x x x x x x x éùéù=-+-+=---+ëûëû,01x <<,令()2t x x =-,则01t <<,则()ln 1t t t j =-+,()111tt t t j -=-=¢,由01t <<可得()0t j ¢>,()t j 在()0,1单调递增,所以()()10t j j <=,即()()()20F x f x f x =+-<,所以()()1120f x f x +-<成立,所以122x x +>.(3)由(2)可知当2a =时,()f x 在()1,¥+单调递增,且()()10f x f >=,由213ln 2022x x x +-+>得22ln 430x x x +-+>,即()22ln 21x x +->,令1n x n +=,则2112ln 21n n n n ++æö+->ç÷èø,即2112ln 1n n n n +-æö+>ç÷èø,所以22112ln 111-æö+>ç÷èø,23122ln 122-æö+>ç÷èø,24132ln 133-æö+>ç÷èø,…,2112ln 1n n n n +-æö+>ç÷èø,相加得()2112ln 1ni i n n i =-æö++>ç÷èøå.(九)通过同构函数把复杂不等式化为简单不等式此类问题通常是构造一个函数()f x ,把所证不等式转化为()()()()f g x f h x >,再根据()f x 的单调性转化为证明一个较简单的不等式.【例10】(2024届广东省广州市高中毕业班冲刺训练二)已知函数()e axf x x =(0a >).(1)求()f x 在区间[]1,1-上的最大值与最小值;(2)当1a ³时,求证:()ln 1f x x x ³++.【解析】(1)解:()()e 1axf x ax =+¢(0x >)(0a >),令()0f x ¢=,则1x a =-,当01a <£时,11a-£-,所以()0f x ¢³在区间[]1,1-上恒成立,()f x 在区间[]1,1-上单调递增,所以()()min 1e a f x f -=-=-,()()max 1e af x f ==.当1a >时,111a -<-<,则当11,x a éöÎ--÷êëø时,()0f x ¢<,()f x 在区间11,a éö--÷êëø上单调递减;当1,1x a æùÎ-çúèû时,()0f x ¢>,()f x 在区间1,1a æù-çúèû上单调递增,所以()min 11e f x f a a æö=-=-ç÷èø,而()1e 0a f --=-<,()1e 0a f =>.所以()()max 1e af x f ==综上所述,当01a <£时,()min e a f x -=-,()max e af x =;当1a >时,所以()min 1ef x a =-,()max e af x =.(2)因为0x >,1a ³,所以e e ax x x x ³,欲证e ln 1ax x x x ³++,只需证明e ln 1x x x x ³++,只需证明ln ln e e e e ln 1x x x x x x x x x +==³++,因此构造函数()e 1x h x x =--(x ÎR ),()e 1xh x ¢=-,当(),0x Î-¥时,()0h x ¢<,()h x 在(),0¥-上单调递减;当()0,x Î+¥时,()0h x ¢>,()h x 在()0,¥+上单调递增:所以()()00h x h ³=,所以e 1x x ³+,所以e ln 1x x x x ³++,因此()ln 1f x x x ³++.【例1】(2024届内蒙古呼和浩特市高三第二次质量监测)对于函数()f x ,若实数0x 满足()00f x x =,则0x 称为()f x 的不动点.已知函数()()e 2e 0x xf x x a x -=-+³.(1)当1a =-时,求证()0f x ³;(2)当0a =时,求函数()f x 的不动点的个数;(3)设*N n Î,()ln 1n +>+L .【解析】(1)当1a =-时,有()()e 2e 0x xf x x x -=--³,所以()1e 2e x x f x =+-¢()0x ³,所以()1e 220e x x f x =+-³=¢当且仅当1e e xx=,e 1x=,即0x =时,等号成立,所以当[)0,x Î+¥时,()0f x ¢³,()f x 单调递增,所以()()()min 00f x f x f ³==,所以()0f x ³得证.(2)当0a =时,()()e 20xf x x x =-³,根据题意可知:方程e 2x x x -=()0x ³解的个数即为函数()f x 的不动点的个数,化e 2x x x -=()0x ³为e 30x x -=()0x ³,令()e 3xg x x =-()0x ³,所以函数()g x 的零点个数,即为函数()f x 的不动点的个数,()e 3x g x ¢=-()0x ³,令()0g x ¢=,即e 3x =,解得ln 3x =,x[)0,ln 3ln 3()ln 3,¥+()g x ¢-+()g x 单调递减33ln 3-单调递增因为()010g =>,()ln 333ln 30g =-<,所以()g x 在[)0,ln 3上有唯一一个零点,又()555e 15215170g =->-=>,所以()g x 在()ln 3,¥+上有唯一一个零点,综上所述,函数()f x 有两个不动点.(3)由(1)知,()e 2e 0,0,x xx x ¥--->Î+,令ln ,1x s s =>,则12ln 0s s s --->,即12ln ,1s s s s->>,设*N s n =Î,则满足1s >,>1ln 1n æö>+ç÷èø,()1ln ln 1ln n n n n +æö>=+-ç÷èø,()ln 2ln1ln 3ln 2ln(1)ln ln 1n n n >-+-+++-=+L L ,即()ln 1n >+L .【例2】(2024届四川省自贡市高三第三次诊断性考试)已知函数1()1ln (0)f x a x a x=++>(1)求函数()f x 的单调区间;(2)函数()f x 有唯一零点1x ,函数2()sin e ag x x x =--在R 上的零点为2x .证明:12x x <.【解析】(1)函数1()1ln (0)f x a x a x=++>的定义域为()0,¥+,且2211()a ax f x x x x -¢=-+=,所以当10x a<<时()0f x ¢<,当1x a >时()0f x ¢>,所以()f x 的单调递减区间为10,a æöç÷èø,单调递增区间为1,a æö+¥ç÷èø;(2)法一:由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即1ln 10f a a a a æö=-++=ç÷èø,令()ln 1x x x x j =-++,则()ln x x j ¢=-,当1x >时,()()0,x x j j ¢<单调递减,当01x <<时,()()0,x x j j ¢>单调递增,因为44e 2.753.144127>=>,55e 3243256<=<,所以()433ln 344ln 27ln e ln 270j =-+=-=->,()544ln 455ln 256ln e ln 2560j =-+=-=-<,当01x <<时()()1ln 10x x x j =-+>,当x ®+¥时()x j ®-¥,所以()x j 在()3,4上存在唯一零点,所以33a <<,即11143a <<,令()2e sin h x x x x -=+-,则()22e cos 10h x x x -=-+-<¢,所以()h x 在()0,¥+上单调递减,故22113113111sin sin sin 03e333333h h a æöæö>=+->+-=>ç÷ç÷èøèø,所以211e sin a a a->-,又()2222sin e 0g x x x a -=--=,所以2221111sin e sin sin x x a x x a a--=>-=-,令()sin F x x x =-,则()1cos 0F x x =-³¢,所以()F x 在()0,¥+上单调递增,又()()21>F x F x ,所以21x x >.法二:因为0a >,由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即()()1111111111ln 1ln 10ln 10f x a x x x x x x x =++=++=Þ++=,设211()ln 1,0,0e e h x x x h h æöæö=++><ç÷ç÷èøèø,而()h x 在()0,¥+上单调递增,所以1211,e e x æöÎç÷èø,()1cos 0g x x ¢=-≥,所以()g x 在R 上单调递增,又12(0)0,0e ag x =-<\>,令22211()sin ,()1cos 0e e x x x x x x x j j ¢=--=-+>,所以()j x 在()0,¥+上单调递增,所以()111sin 0e e x j j æö\<=-<ç÷èø,而()222212211sin sin 0e e a g x x x x x x =--=--=,()()11122211221111sin sin e e g x x x g x x x x x x x \=--<=--\<.【例3】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()lng x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a->,且211x a <<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x xx x xxx x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例4】(2024届天津市滨海新区高考模拟检测)已知函数()ln a xf x x+=,其中a 为实数.(1)当1a =时,①求函数()f x 的图象在e x =(e 为自然对数的底数)处的切线方程;②若对任意的x D Î,均有()()m x n x £,则称()m x 为()n x 在区间D 上的下界函数,()n x 为()m x 在区间D 上的上界函数.若()1kg x x =+,且()g x 为()f x 在[)1,+¥上的下界函数,求实数k 的取值范围.。