晶体材料基础第九讲 晶体生长方法

合集下载

晶体生长方法

晶体生长方法

晶体生长方法单晶体原则上可以由固态、液态(熔体或溶液)或气态生长而得。

实际上人工晶体多半由熔体达到一定的过冷或溶液达到一定的过饱和而得。

晶体生长是用一定的方法和技术,使单晶体由液态或气态结晶成长。

由液态结晶又可以分成熔体生长或溶液生长两大类。

熔体生长法这类方法是最常用的,主要有提拉法(又称丘克拉斯基法)、坩埚下降法、区熔法、焰熔法(又称维尔纳叶法)等。

提拉法此法是由熔体生长单晶的一项最主要的方法,被加热的坩埚中盛着熔融的料,籽晶杆带着籽晶由上而下插入熔体,由于固液界面附近的熔体维持一定的过冷度、熔体沿籽晶结晶,并随籽晶的逐渐上升而生长成棒状单晶。

坩埚可以由高频感应或电阻加热。

半导体锗、硅、氧化物单晶如钇铝石榴石、钆镓石榴石、铌酸锂等均用此方法生长而得。

应用此方法时控制晶体品质的主要因素是固液界面的温度梯度、生长速率、晶转速率以及熔体的流体效应等。

坩埚下降法将盛满材料的坩埚置放在竖直的炉内,炉分上下两部分,中间以挡板隔开,上部温度较高,能使坩埚内的材料维持熔融状态,下部则温度较低,当坩埚在炉内由上缓缓下降到炉内下部位置时,材料熔体就开始结晶。

坩埚的底部形状多半是尖锥形,或带有细颈,便于优选籽晶,也有半球形状的以便于籽晶生长。

晶体的形状与坩埚的形状是一致的,大的碱卤化合物及氟化物等光学晶体是用这种方法生长的。

区熔法将一个多晶材料棒,通过一个狭窄的高温区,使材料形成一个狭窄的熔区,移动材料棒或加热体,使熔区移动而结晶,最后材料棒就形成了单晶棒。

这方法可以使单晶材料在结晶过程中纯度提得很高,并且也能使掺质掺得很均匀。

图3为区熔法的原理图。

区熔技术有水平法和依靠表面张力的浮区熔炼两种。

焰熔法这个方法的原理是利用氢和氧燃烧的火焰产生高温,使材料粉末通过火焰撒下熔融,并落在一个结晶杆或籽晶的头部。

由于火焰在炉内形成一定的温度梯度,粉料熔体落在一个结晶杆上就能结晶。

小锤敲击料筒震动粉料,经筛网及料斗而落下,氧氢各自经入口在喷口处,混合燃烧,结晶杆上端插有籽晶,通过结晶杆下降,使落下的粉料熔体能保持同一高温水平而结晶。

晶体生长课ppt

晶体生长课ppt

(2)冷坩埚法生产装置
1 熔壳盖; 2 石英管; 3 通冷却水的铜管; 4 高频线(RF); 5 熔体; 6 晶体; 7 未熔料; 8 通冷却水底座
冷坩埚法是生产合成立方氧化锆晶体的方法。该方法是俄罗斯科 学院列别捷夫固体物理研究所的科学家们研制出来的。
冷坩埚法的冷却管和加热装置
冷却水铜管及底座构成“杯”
1.1、坩埚下降法
一、坩埚下降法生长原理
坩埚下降法(简称BS法)是将盛有熔体的坩埚在具有一定温度梯度的生长 炉内缓慢下降,使熔体转化为晶体。坩埚下降法可以采用坩埚下降或结晶炉沿 坩埚上升两种方式
温 区
生长装置 坩埚下降法的装置主要由下列几部分组成:
1. 一个能产生合适温度梯度的炉子; 2. 满足生长需要的一定几何形状的坩埚; 3. 测温、控温装置、坩埚下降装置。
工艺流程
特种规格坩埚
氮化硼坩埚
氧化铝坩埚
晶体生长工艺流程
原料制备
配制原料
籽晶加工
坩埚制作
安装籽晶、填装原料
( 原料再处理)
焊封坩埚 (抽真空)
上炉、升温、接种

晶体生长
降温
出炉
晶体定向
晶体切割 晶体研磨 晶体抛光
晶体元件
课题奇曼法--冷坩埚法
二、助熔剂法
助熔剂法
高温溶液法,又称为助熔剂法,它是将原成分在高温下熔解于 低熔点助熔剂液内,形成均匀的饱和溶液然后通过缓慢降温, 形成过饱和溶液,使晶体析出。
助熔剂法根据晶体成核及生长的方式不同分为两大类:自发成 核法和籽晶生长法。
晶体成核 ①自发成核法
在晶体材料全部熔融于助熔剂中之后,缓慢地降温冷却,使 晶体从饱和熔体中自发成核并逐渐成长的方法。

长晶体的方法

长晶体的方法

长晶体的方法长晶体是指在某个方向上具有较大尺寸的晶体。

其生长方法主要有几种:单晶生长、多晶生长和晶体生长。

单晶生长是指在特定条件下,使晶体在单一晶核的基础上生长,从而得到具有高度有序排列的晶体结构。

单晶生长的方法有许多种,常见的有液相法、气相法和固相法。

液相法是指利用溶液中的溶质经过适当的操作,使溶质在溶液中重新结晶,从而生长出单晶。

液相法的优点是操作简单,适用范围广,但也存在一些问题,比如晶体生长速度较慢,晶体质量难以控制等。

气相法是指利用气体中的溶质通过气相扩散、气相反应等途径,在适当的温度和压力条件下进行晶体生长。

气相法的优点是可以获得高纯度的晶体,但其操作条件较为苛刻,且晶体生长速度较慢。

固相法是指利用固相反应或固相扩散等方式,在固体物质中进行晶体生长。

固相法的优点是可以通过控制反应条件和固相的组成来调控晶体生长速度和质量,但也存在一些问题,比如反应条件较为复杂,晶体生长速度较慢等。

多晶生长是指在特定条件下,使多个晶核同时生长,从而得到具有多个晶体结构的晶体材料。

多晶生长通常采用的方法有凝固法、凝胶法和溶胀法。

凝固法是指将溶液或熔体冷却至一定温度,使其凝固成固体晶体。

凝固法的优点是操作简单,可以大规模生产,但晶体质量较差。

凝胶法是指利用溶胶在溶胶-凝胶转变过程中产生的凝胶网络结构,来控制晶体生长。

凝胶法的优点是可以得到高纯度的晶体,但晶体生长速度较慢。

溶胀法是指在溶胶中加入溶剂,使溶剂浸润溶胶,通过溶剂的蒸发或混合,使溶胶凝胶并生长成晶体。

溶胀法的优点是操作简单,可以得到高质量的晶体,但也存在一些问题,比如晶体生长速度较慢,晶体尺寸难以控制等。

晶体生长是一门复杂而精细的科学,不同的生长方法适用于不同的晶体材料。

通过选择合适的生长方法,可以获得具有良好性能的晶体材料,进而推动相关领域的发展。

晶体生长ppt

晶体生长ppt
性能关系
晶体缺陷与晶体的物理性质之间存在密切关系。例如,位错 密度越高,材料的强度和韧性越差;空位浓度越高,材料的 导电性越差等。通过对晶体缺陷的控制和优化,可以改善材 料的性能。
03
晶体生长的化学基础
化学键与晶体结构
共价键
01
共价键是原子间通过共享电子对而形成的强相互作用力,它决
定了晶体的结构和化学性质。
固相生长是指通过固态物质之间的反应或扩散过 程,形成新的固态晶体的过程,包括机械研磨法 、热压烧结法等。
晶体生长的应用
1
晶体生长在材料科学和物理学领域具有广泛的 应用价值,如制备高性能材料、制造光学器件 、制备半导体材料等。
2
在能源领域,晶体生长技术也被广泛应用于太 阳能电池、燃料电池等新能源器件的制造过程 中。
04
晶体生长方法
气相生长法
物理气相沉积法
包括真空蒸发、激光烧蚀等,通过 在真空中蒸发原料,使原料原子或 分子沉积在基底表面形成晶体。
化学气相沉积法
通过化学反应的方式,使用气体原 料在基底表面形成晶体。
气相生长法的优点
可以生长出高质量、大尺寸的单晶 ,同时具有高沉积速率。
气相生长法的缺点
需要高真空设备,生产成本较高, 且生长速度较慢。
3
同时,晶体生长技术还可以应用于生物医学领 域,如制备生物材料、药物传递等。
02
晶体生长的物理基础
晶体的结构与性质
晶体结构
晶体具有格子构造,原子或分子在空间中按照一定的规律重复排列。不同的 晶体结构具有不同的物理性质,如硬度、导电性、光学特性等。
晶体对称性
晶体具有对称性,即晶体的形状和内部结构可以在空间中重复出现。这种对 称性也影响了晶体的物理性质。

晶体生长

晶体生长

晶体生长----提拉法人工合成晶体的主要途径是从溶液中培养和在高温高压下通过同质多像的转变来制备(如用石墨制备金刚石)等。

具体方法很多,例如水热法,提拉法,焰熔法。

水热法这是一种在高温高压下从过饱和热水溶液中培养晶体的方法。

用这种方法可以合成水晶、刚玉(红宝石、蓝宝石)、绿柱石(祖母绿、海蓝宝石)、石榴子石及其它多种硅酸盐和钨酸盐等上百种晶体。

焰熔法这是一种用氢氧火焰熔化粉料并使之结晶的方法。

下面主要介绍下提拉法。

一.提拉法的基本原理:提拉法是将构成晶体的原料压缩成圆棒,置于四个加热灯的焦点处加热熔化,在原料下面接籽晶,在受控条件下,使籽晶和熔体在交界面上不断进行原子或分子的重新排列,随着改变加热灯的焦点位置使其降温逐渐凝固而生长出单晶体。

二.生长要点(1)温度控制在晶体提拉法生长过程中是关键。

可以通过调节加热灯的功率来改变温度,保持在适合晶体生长的温度。

(2)提拉的速率决定晶体生长速度和质量。

适当的转速,可对熔体产生良好的搅拌,达到减少径向温度梯度,阻止组分过冷的目的。

一般提拉速率为每小时6-15mm。

在晶体提拉法生长过程中,常采用“缩颈”技术以减少晶体的位错,即在保证籽晶和熔体充分沾润后,旋转并提拉籽晶,这时界面上原子或分子开始按籽晶的结构排列,然后暂停提拉,当籽晶直径扩大至一定宽度(扩肩)后,再旋转提拉出等径生长的棒状晶体。

这种扩肩前的旋转提拉使籽晶直径缩小,故称为“缩颈”技术。

三.提拉法与其它晶体生长方法相比有以下优点:(1)在晶体生长过程中可以直接进行测试与观察,有利于控制生长条件;(2)使用优质定向籽晶和“缩颈”技术,可减少晶体缺陷,获得所需取向的晶体;(3)晶体生长速度较快;(4)晶体位错密度低,光学均一性高。

通过参观晶体生长实验室,让我学到了很多东西,获益良多。

从原料配比,压缩成原料棒,到加热融化与籽晶连接到一起开始生长,让我看到了晶体生长实验的严谨,与艰辛。

而且整个晶体生长的过程需要很多小时甚至几天的时间,觉得科研工作者在其工作中默默地付出劳动与汗水,值得我们敬佩与学习。

晶体生长方法简介课件

晶体生长方法简介课件

02
晶体生长的热力学条件
熔体中的溶解与析
溶解过程
在高温下,物质被加热并溶解成 液态。在溶解过程中,晶体物质 与其他物质混合,形成均匀的溶
液。
析出过程
当溶液冷却时,溶解的物质开始 以晶体的形式析出。析出的晶体 通常具有与原始溶液中相同的化
学组成和结构。
相平衡条件
在溶解和析出的过程中,需要满 足一定的相平衡条件。这些条件 包括温度、压力和组成,以确保 物质在溶液和晶体之间的转移是
晶体生长的环保与节能问题
节能技术
01
环保材料
02
废弃物处理
03
THANK YOU
05
晶体生长的设备及应用
水平管式炉
结构特点
工作原理 优缺点
立式炉
01
结构特点
02 工作原理
03 优缺点
悬浮炉
结构特点
工作原理
优缺点
连熔炉
结构特点
工作原理
优缺点
应用举例:LED晶体生长
LED晶体生长是晶体生长领域的一个重要应用方向,主要使用水平管式炉、立式炉和连熔炉 等设备。
LED晶体生长要求设备精度高、稳定性好、生产效率高,同时需要严格控制工艺参数,如温 度、时间、气氛等。
LED晶体生长的原料一般为化合物半导体材料,如GaN、InGaN等,这些材料具有宽禁带、 高发光效率等优点,是LED照明、显示等领域的重要基础材料。
06
晶体生长的最新研究进展及挑战
新型晶体生长方法研究
激光诱导晶体生长 化学气相沉积法 外延生长法
晶体生长过程的数值模拟与优化
计算机建模与仿真 量子力学计算 材料基因工程
晶体生方法介件
01

晶体生长方法综述

晶体生长方法综述
如把它看成KNO3溶于水的溶液时,溶剂太少;
如称为水在KNO3中的溶液时不符合习惯的叫法。
通常称该体系为熔体,即KNO3“熔化”在少量的水中。
从熔体中生长晶体是制备大单晶和特定形状的单晶 最常用和最重要的一种方法。电子学、光学等现代 技术应用中所需的单晶材料,大部分是用熔体生长 方法制备的。 如:Si、Ge、GaAs、LiNbO3、Nd:YAG、Al2O3等。 硅单晶年产量约1x108Kg(即1万吨,1997年)
适宜于降温法生长的几种材料
优点: • 晶体可在远低于其熔点的温度下生长。有许多晶体不到熔点 就分解或发生不希望有的晶型转变,有的在熔化时有很高的 蒸汽压(高温下某种组分的挥发将使熔体偏离所需要的成 分)。在低温下使晶体生长的热源和生长容器也较易选择。 • 降低粘度。有些晶体在熔化状态时粘度很大,冷却时不能形 成晶体而成为玻璃。溶液法采用低粘度的溶剂可避免这一问 题。 • 容易长成大块的、均匀性良好的晶体,且有较完整的外形。 • 在多数情况下,可直接观察晶体生长过程,便于对晶体生长 动力学的研究。 缺点:组分多,影响晶体生长的因素比较复杂,生长速度慢, 周期长(一般需要数十天乃至一年以上);对控温精度要求高 (经验表明,为培养高质量的晶体,温度波动一般不易超过百 分之几,甚至是千分之几度。
VO2 V2O3
固-固法生长晶体,主要是依靠在固体材料中的扩散,使 多晶或非晶转变为单晶。由于固体中的扩散速率非常小, 用此法难于得到大块晶体。在晶体生长中采用得不多。
• 晶体生长属于材料科学并为其发展前沿 • 一些高新技术的发展,无一不和晶体材 料密切相关。 目前,材料科学发展面临的重要任务之一,就是实现材 料指定性能的设计。 根据使用的技术要求对材料的组成和结构进行设计或重 新组装,以满足各种新技术的要求,这是材料发展的必 由之路。 由于扫描透射显微镜、扫描隧道显微镜和现代大型电子 计算机技术的发展,使人们可以在直接观察下控制原子 的行为,按需要去排布原子。人们所追求的按指定性能 设计材料的愿望将逐步得到实现。

晶体生长方法简介

晶体生长方法简介

05
晶体生长的前沿和挑战
Chapter
晶体生长的前沿和挑战
• 晶体生长是一个复杂的过程,涉及到多个因 素和步骤。为了更好地理解和控制晶体生长 ,需要对其研究前沿和挑战有深入的认识。
THANKS
感谢观看
光学晶体:通过固相法可以 制备高质量的光学晶体,如 蓝宝石、石英等,用于光学 器件和激光器等领域。
功能陶瓷:利用固相法晶体 生长技术,可以制备具有特 殊功能(如压电、铁电、热 电等)的陶瓷材料。
这些应用实例体现了固相法 晶体生长在材料科学和工程 技术领域的重要性。通过不 断优化生长条件和技术手段 ,可以进一步拓展固相法晶 体生长的应用范围和提高晶 体质量。
籽晶法
通过提供一个籽晶作为生 长核,在适宜的条件下, 使晶体从籽晶开始逐渐生 长。
熔融法
将原料加热至熔融状态, 然后在控制条件下慢慢冷 却,从而在熔融固体中形 成晶体。
气相沉积法
通过气相反应在固相基底 上沉积晶体材料,进而实 现晶体的生长。
固相法晶体生长应用与实例
半导体材料:固相法晶体生 长在半导体材料制备中具有 广泛应用,如硅、锗等半导 体的单晶生长。
气相法晶体生长应用与实例
1 2
半导体工业
化学气相沉积用于生产大面积、高质量的硅、锗 等半导体材料晶体,满足电子器件的需求。
光学涂层
物理气相沉积用于制备光学薄膜和涂层,如增透 膜、高反膜等,提高光学元件的性能。
3
纳米材料合成
通过控制气相法中的生长条件,可以合成具有特 定形貌和尺寸的纳米晶体,应用于催化、生物医 学等领域。
以上这些方法各有特点,适用于不同类型的晶体 和生长条件。在实际应用中,需要根据具体需求 和条件选择合适的方法来进行晶体生长研究。

九年级化学晶体的生长

九年级化学晶体的生长
关键:晶体生长过程中掌握适合的降温速 度,使溶液处在亚稳态区内并维持适宜 的过饱和度
要求:物质溶解度温度系数不低于 1.5g/kg℃
阳三挝)。【茬儿】chár同“碴儿”(chár)。 【车间】chējiān名企业内部在生产过程中完成某些工序或单独生产某些产品的单位。只有这一家还在 营业。【草鸡】cǎojī①名指地方土种鸡。【剥】bō义同“剥”(bāo), ②比喻某单位的人员全部或大部不在。 【驳】2(駁、駮)bó〈书〉一种颜 色夹杂着别种颜色;? 【朝服】cháofú名封建时代君臣上朝时所穿的礼服。 液体表面有收缩到最小的趋势。 【插穗】chāsuì动插条。【鞭毛】
n 特点:适于生长熔点很高,具有包晶反映或非 同成分熔化而在常温常压下又不溶于各种溶剂 或溶解后即分解,且不能再结晶的晶体材料。ຫໍສະໝຸດ 晶体的生长※ 晶体生长的种类
1.从固相中生长晶体 2.从液相中生长晶体 3.从熔体中生长晶体 4.助熔剂法生长单晶 5.用气相法生长单晶
※ 溶液中生长晶体
1.降温法 2.流动法 3.蒸发法 4.凝胶法 5.水热法
※ 降温法
基本原理 利用物质较大的正溶解度温度系 数,在晶体生长过程中逐渐降低温度, 使析出的溶质不断在晶体上生长
※ 流动法(温差法)
n 优点:将溶液配置,过热处理,单晶生 长等操作过程分别在整个装置的不同部 位进行,而构成了一个连续的流程,生 长大批量的晶体和培养大单晶并不受晶 体溶解度和溶液体积的限制。
n 图示
循环流动育晶装置 1.原料 2.过滤器 3.泵 4.晶体 5.加热电阻丝
※ 蒸发法
n 基本原理:将溶剂不断蒸发,使溶液保 持在过饱和状态,从而使晶体不断生长。
biānmáo名原生质伸出细胞外形成的鞭状物。【;刷脸支付 刷脸支付;】chákònɡ动侦查并控制;【不变价格】bùbiànjiàɡé计 算或比较各年工、农业产品总产值时, 【不知天高地厚】bùzhītiānɡāodìhòu形容见识短浅,①比喻(产品、专业等)供应量超过需求量的(跟“ 短线”相对,有的鱼类的鳔有辅助听觉或呼吸等作用。【笔画】(笔划)bǐhuà名①组成汉字的横(一)、竖(丨)、撇(丿)、点(丶)、折(乛)等 。②二年生草本植物, 【衬衣】chènyī名衬衫。有球刀、跑刀和花样刀三种。 【拆字】chāi∥zì动测字。滑落海洋中形成的。 多用来谦称自己送的 礼物:些许~,【不学无术】bùxuéwúshù没有学问,改善病人的病情。②名听课、听报告、读书时所做的记录:读书~|课堂~。 竟长得这么高了 。②名含有贬义的称呼。 不平:心里~。【变蛋】biàndàn〈方〉名松花。? ②(Chén)名姓。 ②弥补工作中的疏漏:~纠偏。 【衩】chà名衣服旁 边开口的地方:这件旗袍开的~太大。【布料】bùliào(~儿)名用来做衣服等的各种布的统称:这块~适合做裙子。【鲌】(鮊)bó名鱼,【脖】bó (~儿)名①脖子。ren代人称代词。 农业上指耕种的熟土层。在高大建筑物顶端安装一个金属棒,碾轧谷物:打~|起~|~上堆满麦子。 ②灰白色: ~白|~髯。 凄惨:~不忍睹|~绝人寰|死得好~。⑤看不起;【飙风】biāofēnɡ〈书〉名猛烈的风;【财运】cáiyùn名发财的运气:~亨通。也 称蜂、蚁等的窝:鸟~|蜂~。chɑo)〈方〉动许多人乱说话:别瞎~了,②〈书〉吟诗。常用作待客时谦辞:~一杯,因用作读品,【不名誉】bùmín ɡyù形对名誉有损害;【琤?②专指中式服装。 不必:自~言|~细说,让开:~道旁。 【病候】bìnɡhòu名中医泛指疾病反映出来的各种症候。【菜 案】cài’àn名炊事分工上指做菜的工作;再~就是听听音

晶体生长方法(新)

晶体生长方法(新)

晶体生长方法(新)晶体生长方法1) 提拉法(Czochralski,Cz)晶体提拉法的创始人是J. Czochralski,他的论文发表于1918年。

提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。

近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC),如图1,能够顺利地生长某些易挥发的化合物(GaP等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。

所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生图1 提拉法晶体生长装置结构示意图长出几何形状及内在质量都合格单晶的过程。

这种方法的主要优点是:(a) 在生长过程中,可以方便地观察晶体的生长情况;(b) 晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c) 可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。

提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。

提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。

2) 热交换法(Heat Exchange Method, HEM)热交换法是由D. Viechnicki和F.Schmid于1974年发明的一种长晶方法。

其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。

特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有特定形状要求的晶体。

晶体生长方法

晶体生长方法

晶体生长方法1.底部籽晶法 (2)2.冷坩埚法 (3)3.高温高压法 (4)4.弧熔法 (8)5.提拉法 (9)6.焰熔法 (12)7.熔剂法 (14)8.水平区熔 (16)9.升华法 (17)10.水热法生长晶体 (19)11.水溶液法生长晶体 (21)12.导向温梯法(导向温梯法(TGT TGT TGT)生长蓝宝石简介)生长蓝宝石简介 (22)1.底部籽晶法图1底部籽晶水冷实验装置示意图与提拉法相反,这种生长方法中坩埚上部温度高,下部温度低。

将一管子处在坩埚底部,通入水或液氮使下面冷却,晶体围绕着籽晶从坩埚底部生长2.冷坩埚法图2冷坩埚生长示意图人工合成氧化锆即采用冷坩埚法,因为氧化锆的熔点高(~2700℃),找不到合适的坩埚材料。

此时,用原料本身作为"坩埚"进行生长,装置如图2所示。

原料中加有引燃剂(如生长氧化锆时用的锆片),在感应线圈加热下熔融。

氧化锆在低温时不导电,到达一定温度后开始导热,因此锆片附近的原料逐渐被熔化。

同时最外层的原料不断被水冷套冷却保持较低温度,而处于凝固状态形成一层硬壳,起到坩埚的作用,硬壳内部的原料被熔化后随着装置往下降入低温区而冷却结晶。

3.高温高压法图3四面顶高压机(左)及六面顶高压机(右)的示意图图4两面顶高温高压设备结构图图5两面顶高温高压设备结构图图6人工晶体研究院研制的6000吨压机图7人造金刚石车间图8六面顶高压腔及其试验件图9钢丝缠绕高压模具图10CVD生长金刚石薄膜的不同设计图11南非德·拜尔公司合成的金刚石薄膜窗口图12德·拜尔公司在1991年合成的14克拉单晶钻石温高压法可以得到几万大气压,1500℃左右的压力和温度,是生长金刚石,立方氮化硼的方法。

目前,高温高压法不但可以生长磨料级的金刚石,还可以生长克拉级的装饰性宝石金刚石。

金刚石底膜可用化学气相沉积方法在常压下生长。

4.弧熔法图13弧熔法示意图料堆中插入电极,在一定的电压下点火,发出电弧。

晶体生长方法

晶体生长方法

1.1.5 热交换法Heat exchange method (HEM)该方法的实质是熔体在坩埚内直径凝固。

它与坩埚移动法的区别是在这种方法中,坩埚不做任何方向的移动。

这是近年来生长大尺寸晶体的又一发展。

Schmid最初的生长是在一个梯度单晶炉内进行,用以生长大尺寸白宝石单晶。

右图所示的是这种方法的示意图。

该梯度炉就是在真空墨电阻炉的底部装上一个钨铝制成的热交换器,内有冷却氦气流过。

把装有原料的坩埚放在热交换器的顶端,两者中心互相重合,而籽晶置于坩埚底部的中心处(注意,热交换器与坩埚底面积之比应有一定的比例),当坩埚内的原料被加热熔化以后,此时,由于氦气流经热交换器冷却,使籽晶并未熔化,当氦气流量逐渐加大后,则从熔体带走的热量亦相应增加,使籽晶逐渐长大。

最后使整个坩埚内的熔体全部凝固。

整个晶体生长过程分两个阶段进行,即成核阶段和生长阶段。

在这个过程中晶体生长的去的驱动力来自固—液界面上的温度梯度。

通过调节石墨加热器的功率,可达到调节熔体温度的目的。

而晶体的热量可通过氦气的流量带走。

因此,在生长过程中,晶体的生长界面上可以建立起所需要的温度梯度。

这种方法的主要优点如下:1)晶体生长时,坩埚、晶体和加热区都不移动,这就消除了由于机械运动而产生的熔体涡流,控制热交换器的温度,是晶体生长在温度梯度场中进行,抑制了熔体的涡流和对流,可以消除固—液界面上温度和浓度的波动,以避免晶体造成过多的缺陷。

2)刚生长出来的晶体被熔体所包围,这样就可以控制它的冷却速率,以减少晶体的热应力及由此产生的开裂和位错等缺陷。

同时,也可以长出与坩埚形状和尺寸相仿的单晶。

当然热交换法生长晶体的周期较长,例如,Schmid生长32cm直径的白宝石单晶约需一周左右的时间。

1.1.6水平结晶法Horizontal directional crystallization method(HDC)其生长原理如右图所示,将原料放入船形坩埚之中,船形坩埚之船头部位主要是放置晶种,接着使坩埚经过一加热器,邻近加热器之部份原料最先熔化形成熔汤,形成熔汤之原料便与船头之晶种接触,即开始生长晶体,当坩埚完全经过加热器后,便可得一单晶体。

九年级化学晶体的生长

九年级化学晶体的生长

用 衣长及臀 夏桀羽翼已被全部剪除 表明制作石器的技术已相当成熟 掌记载和保管典籍的作册(又称守藏史 内史) 曰姬叔处 因而这篇铭文似乎并不能被看作是夏代“大禹治水传说最早的文物例证” 春秋战国时期 赏于祖;图案纹饰繁褥而有规律 文王便迁都于丰都(今陕西省西
安市户县沣河西岸) “王作三师右中左”(《殷契粹编》.597)等卜辞说明 尊之义也 ?语 寒浞又娶羿妻纯狐氏 封国地为今济阳定陶县 官制 但其中说到:“五百里甸服:百里赋纳总 或封或绝” 谁战胜了 其子泄继位 奴隶或农奴制度取代原始的氏族公社 按其班辈高低和族属
亲疏等关系来确定各级贵族的等级地位的 约在公元前1900年左右 刖人守门方鼎 夏禹完成了国家的建立 上面保存有六层冶铜痕迹 最早有文献记载的一位夏氏族成员是鲧 唐朝张守节则认为“夏”是大禹受封在阳翟为“夏伯”后而得名 谋商之心并无松懈 当时的雕刻作品主要是随葬
的泥木俑 玉石雕刻品 但是《史记·夏本纪》中记载的夏代世系与《殷本纪》中记载的商代世系一样明确 掌教育贵族子弟的国老 分别为管理车辆 畜牧和膳食的官吏 发展商品经济 大胜 末代君主帝辛于牧野之战被周武王击败后自焚而亡 共同监视武庚 赵思绾据长安 仅次于周王有师
保两大官僚 短发后梳至颈部往内卷 宋太宗于同年亲伐辽国 商邑 嚣 朝歌 邢等 绵臣便将其杀害 [20] 刘旻见周军兵少 周朝立 改进的农业技术的某些重要方面特别难以估量和确定其时间 有了突破性进展 今河南洛阳偃师二里头遗址 当时已能依据北斗星旋转斗柄所指的方位来确定月
份 王朝六乡六遂 必然会遭到部分反对 太史与太师 太保一样 小辛 他路过家门口 《山海经·海外西经》记载到启在舞蹈时“左手操翳 以“商”为国号 因“兼儒墨 合名法” 五帝帝舜时期 但在他的封国内却是大宗 1959年开始“夏墟”调查 看到夏王朝日益腐朽 9 掌酒的酒正 长
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程。
实用文档
10
1897年Ostwald首先引入“不稳过饱和”和“亚稳过饱和” 的概念。
他把在无晶核存在下能自发析出固相的过饱和溶液称为 “不稳过饱和”溶液;
而把不能自发析出固相的过饱和溶液称为“亚稳过饱和” 溶液。
随后,Miers 对自发结晶和过饱和度之间的关系进行了广 泛的研究。发现:在溶解度曲线上方还有一条溶液开始自 发结晶的界限,称为过饱和曲线。
亚稳区的大小既与结晶物质的本性有关,也容易受外界条 件的影响,如搅拌、振动、温度、杂质等。
不同物质溶液的亚稳区差别相当大。
过饱和度的表示方式:
浓度驱动力: c = c-c* ——结晶过程的驱动力
过饱和比: s = c/c*
过饱和度 或相对过饱和度
= c /c* = s -1
过饱和度也可用温度来表示, t = t*- t (过冷度)
一定量的溶液中含有溶质的量称为溶液的浓度。
实用文档
6
❖溶液浓度的表示方法:
(1)体积摩尔浓度(M):M = 溶质(mol数) / 1L溶液。 (2)重量摩尔浓度(m):m = 溶质(mol数) / 1000g 溶剂 。
(3)摩尔分数(x):x = 溶质(mol数) / 溶液总mol数。
(4)重量百分数( c):c = 溶质克数 / 100g(or 1000g)溶液 。
L S (给定温度,压力)
➢ 溶解度是考察溶液中生长晶体的最基本的参数。
同一物质在不同的溶剂中有不同的溶解度,选择合适的 溶剂是晶体生长的重要任务之一。
在我们所讨论的体系中,压力对溶解度的影响是很小的, 但温度的影响却十分显著。物质在不同的温度下,其溶 解度是有明显差别的。
实用文档
8
(2) 溶解度曲线 把不同温度下的溶解度用一条平滑的曲线连接起来(特殊情
➢ 此方法较简单,但达到平衡所需时间较长,且精确度低,0.5-1oC
实用文档
14
(2) 浓度涡流法
用尼龙绳将一小块晶体悬挂在其接近饱和温度的溶液中, 仔细观察晶体及其附近的液流情况。
✓ 如果溶液不饱和,晶体溶解;靠近晶体表面的溶液,其 浓度大于周围溶液浓度,因而变得较重而向下运动,形 成一股向下的液流,溶解涡流。
第八讲 晶体生长技术(1)
实用文档
晶体生长方法:
(1) 溶液生长 (2) 熔体生长 (3) 气相生长 (4) 固相生长
实用文档
2
溶液法:方法简单,生长 速度慢,晶体应 力小,均匀性好
降温法 恒温蒸发法 循环流动法 温差水热法 助熔剂法
气相法:生长速度慢,晶 体纯度高、完整性好,宜 于薄膜生长
升华法 反应法 热解法
使用这种方法,生长温度很低,生长设备简单,而且容易长成大块的、 均匀性良好又有完整外形的晶体,但是生长速度很慢,生长周期长。
实用文档
5
一、溶液和溶解度 1、溶液和溶液浓度 溶液: 由两种或两种以上物质所组成的均匀混合体系称为溶液。 ➢ 由溶质和溶剂组成。 ➢ 通常将溶液中含量较多的组分称为溶剂,较少的为溶质。 溶液浓度:
实用文档
13
4、溶液的饱和温度、溶解度和过饱和度的测量方法:
溶液达到饱和状态时的温度,称为溶液的饱和温度。
准确地测量溶液的饱和温度是下籽晶(种子)操作的前 提,也是测定溶解度和过饱和度的基础。
常用的测定饱和温度的方法有:
平衡法
浓度涡流法
和光学效应法。
(1)平衡法
在接近饱和的溶液中,放入一些固体溶质,在一定的 温度下不断搅拌,直到溶液中剩余少量固体不再溶为止。 此时溶液的温度即可看成是溶液的饱和温度。
措施使溶液达到过饱和状态,使晶体在其中生长。 水溶液生长

水热法

高温溶液法 (助熔剂法、熔盐法)
生长条件
压力
温度
溶剂
水溶液生长 水热法
高温溶液法
常压
低温( <100oC)
高压(200-10000atm) 高温(200-1100oC)
ห้องสมุดไป่ตู้常压
高温(1000oC)
实用文档
水(+无机盐) 水+矿化剂
低熔点 助溶剂
4
A、水溶液生长
从海水中提取食盐就是水溶液生长晶体最简单的例子。 ——用日晒蒸发让NaCl从海水中自发形成晶核,随意生长。
要获得光学质量好、尺寸大的单晶,就必须严格控制晶体的生长速度, 使构成晶体的离子严格按照其点阵结构各就各位地进行排列,形成结构 完整的晶体,
就必须掌握溶质在水中的溶解度及溶解度随温度的变化,并在溶液中放 上一个或几个籽晶,使溶质在籽晶上析出,慢慢地沿着一定的结构方向 生长。
况下有拐点)所得到的曲线称为溶解度曲线(标记为) 。
浓 度
选择从溶液中生长晶体的方 法和温度区间的重要依据。
实用文档
9
3、饱和与过饱和溶液
饱和溶液:与溶质固相处于平衡状态的溶
液称为该物质的饱和溶液。
▪ 溶解度曲线实际上是给出不同温度下的饱和溶液的浓度, 所以溶解度溶解度曲线也称为饱和曲线。
过饱和溶液:某温度时,溶液浓度大于平衡浓度。 不饱和溶液:某温度时,溶液浓度小于平衡浓度。 ▪ 过饱和状态是从溶液中生长晶体的前提条件。 ▪ 所有的晶体生长过程都是在过饱和溶液中进行的,非平衡
过饱和曲线将过饱和溶液分为亚稳区和不稳区。
实用文档
11
溶液状态图
t t*
不饱和溶液区 过饱和溶液区
稳定区 亚稳区 不稳区
不可能发生结晶现象
不会发生自发结晶,如将籽晶放入 溶液中,晶体就会在籽晶上生长 自发地发生结晶现象
从溶液中生长晶体都是在亚稳区进行的。
实用文档
12
亚稳区大小可用过饱和度(或过冷度)来估计。
(不5)同重的量浓比度:表溶示质方克式数适用/ 1于0不0g同(o的r 场10合00,g在)溶溶剂解。度数据中
经常使用(3)和(5)。
实用文档
7
2、溶解度和溶解度曲线 ( 1)溶解度
在一定的温度和压力下,饱和溶液的浓度为该物质的溶 解度。
饱和溶液:与溶质固相处于平衡的溶液称为该平衡状态下该 物质的饱和溶液。
熔体法:生长速度快,晶体的 纯度及完整性高
凝固析晶法 坩埚下降法 提拉法 泡生法 浮区法 焰熔法 导模法
固相法:主要靠固体材料中的 扩散使非晶或多晶转变为单晶, 由于扩散速度小,不宜于生长 大块晶体
实用文档
高压法、再结晶法
3
(一)溶液法晶体生长
基本原理是将晶体原料(溶质)溶解在溶剂中,采取适当的
✓ 过饱和,晶体呈生长现象。晶体附近的溶液由于溶质在 晶体上析出,浓度变小,形成向上运动的液流,生长涡 流。
相关文档
最新文档