运筹学经典案例

合集下载

简单的运筹学实际应用案例

简单的运筹学实际应用案例

简单的运筹学实际应用案例运筹学(Operations Research)是一门研究如何有效利用有限资源进行决策的学科,它通过数学、统计学和经济学等方法,帮助管理者做出最佳决策。

下面将介绍几个简单的运筹学实际应用案例。

1.生产线优化假设一公司拥有多条生产线,每条生产线对应不同的产品。

公司希望通过优化生产线的调度,以达到最大的产出和利润。

运筹学可以通过数学模型和算法,对生产线进行优化调度。

例如,可以使用线性规划模型来确定每条生产线的产量和调度,以最大化总利润;也可以使用整数规划模型来考虑生产线的限制和约束条件。

2.物流网络设计一家物流公司需要设计其物流网络,以最小化成本并满足客户对快速物流的需求。

运筹学可以通过数学模型和算法,帮助物流公司优化物流网络的设计。

例如,可以使用网络流模型来确定货物在物流网络中的最佳路线和节点,以最小化总运输成本;也可以使用线性规划模型来决定在不同节点上的仓库和货物库存量,以满足客户的需求。

3.航班调度问题一家航空公司需要制定最佳航班调度计划,以最大化航班利润并排除延误风险。

运筹学可以通过数学模型和算法,帮助航空公司优化航班调度。

例如,可以使用线性规划模型来决定不同航班的起降时间和机型,以最大化航班利润;也可以使用排队论模型来评估航班的延误风险,并制定相应的调度策略。

4.人员调度问题一家超市需要制定最佳的员工调度计划,以最大化服务质量和节约人力成本。

运筹学可以通过数学模型和算法,帮助超市优化员工调度。

例如,可以使用整数规划模型来决定不同时间段需要多少员工,并考虑员工的技能匹配和工作时间的合理安排;也可以使用模拟仿真方法来评估不同调度策略的效果,并做出相应的决策。

以上是几个简单的运筹学实际应用案例,运筹学在实际生产和管理中有着广泛的应用。

通过数学模型和算法的应用,可以帮助企业优化资源配置、提高效率和决策质量,从而实现最佳的经济效益。

运筹学教学案例集

运筹学教学案例集
B 公司面临的问题是接受 N 公司的提议还是不接受而继续研究和开发他们的 软件包;如果在三维技术的样品运作获得成功的话,他们将考虑申请 SBIR 的资 助,还是接受 N 公司的要求;如果他们没有成功,则他们要决定是继续投资三 维技术,申请 SBIR 的资助,还是完全放弃这个项目。在此过程中,嘉美斯在想 是否 N 公司提出未来利润的 80%份额对于他们$1,000,000 的投入来说太高了。 显然,嘉美斯必须面对这些决策问题。

OR 案例
2. 年收入及其概率的估计 假定在医用成像技术的市场中竞争激烈,在以后的三年中,很多不确定的因
素都对 B 公司的潜在年收入有影响。嘉美斯试着估计公司在不同情况下的收入, 表 2.1 给出了嘉美斯估计的三种情况下(高利润、中等利润、低利润)的年收入 以及三种情况出现的概率估计。
表 2.1 当 B 公司获得 SBIR 资助并且三维技术软件获得成功时,B 公司的估计收入
显然我们简单的设想一下,贝尔觉得所有的工作机会,在学习、团队合作和 获得工作经验方面都将提供相似的内容,因此,我们认为,贝尔唯一的决策标准 就是薪水,贝尔明显喜欢薪水较高的那个工作。 3. 概率数据分析
3.1 学校的工作机会 贝尔的夏季打工问题面临着许多不确定因素,首先是瓦莎提供工作只是一种 可能,其次学校组织的夏季招工活动,收入也高低不同,甚至未必能够找到工作。 贝尔已经去过学校的就业中心,收集了先前一些 MBA 学生夏季打工薪水数 据,这些数据经整理列在表 1-1 中。此表中给出了五种薪水水平(根据周工资) 和相关的占有比例,其中有 5%的学生没有工资收入,既没有能够安排合适的打 工的机会。
市场状况
概率
总收入
高利润
20%
$3,000,000

运筹学实例 含解析

运筹学实例 含解析

案例1. 工程项目选择问题某承包企业在同一时期内有八项工程可供选择投标。

其中有五项住宅工程,三项工业车间。

由于这些工程要求同时施工,而企业又没有能力同时承担,企业应根据自身的能力,分析这两类工程的盈利水平,作出正确的投标方案。

有关数据见下表:表1 可供选择投标工程的有关数据统计工程类型 预期利润/元 抹灰量/m 2混凝土量/ m 3砌筑量/ m 3住宅每项 50011 25 000 280 4 200 工业车间每项 80 000480 880 1 800 企业尚有能力108 0003 68013 800试建立此问题的数学模型。

解:设承包商承包X 1项住宅工程,X 2项工业车间工程可获利最高,依题意可建立如下整数模型:目标是获利最高,故得目标函数为21X 80000X 50011z Max +=根据企业工程量能力限制与项目本身特性,有约束:利用WinSQB 建立模型求解:1080002X 4801X 25000≤+3680X 880X 28021≤+13800X 1800X 420021≤+为整数,;,2121X X 3X 5X ≤≤综上,承包商对2项住宅工程,3项车间工程进行投标,可获利最大,目标函数Max z=340022 元。

案例2. 生产计划问题某厂生产四种产品。

每种产品要经过A,B两道工序加工。

设该厂有两种规格的设备能完成A工序,以A1 ,A2表示;有三种规格的设备能完成B工序,以B1 ,B2,B3 表示。

产品D可在A,B任何一种规格的设备上加工。

产品E可在任何规格的A设备上加工,但完成B工序时只能在B1设备上加工。

产品F可在A2及B2 ,B3上加工。

产品G可在任何一种规格的A设备上加工,但完成B工序时只能在B1 ,B2设备上加工。

已知生产单件产品的设备工时,原材料费,及产品单价,各种设备有效台时如下表,要求安排最优的生产计划,使该厂利润最大?设设产品设备有效台时1 2 3 4A1 A2 B1 B2 B357647109812111068108601110000400070004000原料费(元/件)单价(元/件)0.251.250.352.000.502.800.42.4解:设Xia(b)j为i产品在a(b)j设备上的加工数量,i=1,2,3,4;j=1,2,3,得变量列表设备产品设备有效台时Ta(b)j1 2 3 4A1 A2 B1 B2 B3X1a1X1a2X1b1X1b2X1b3X2a1X2a2X2b1X3b2X3b3X3a1X3a2X3b1X3b2X3b3X4a1X4a2X4b1X4b2X4b3601110000400070004000原料费Ci (元/件) 单价Pi (元/件) 0.25 1.25 0.352.00 0.50 2.80 0.4 2.4其中,令X 3a 1,X 3b 1,X 3b 2,X 3b 3,X 4b 3=0 可建立数学模型如下: 目标函数: ∑∑==-=4121)](*[Maxi j iaj Ci Pi X z=1.00*(X 1a 1+X 1a 2)+1.65*(X 2a 1+X 2a 2)+2.30* X 3a 2+2.00*( X 4a 1+X 4a 2)约束条件:利用WinSQB 求解(X1~X4,X5~X8,X9~X12,X13~X17,X18~X20分别表示各行变量):4,3,2,1X21j 31==∑∑==i X j ibjiaj2,1T X 41iaj=<=∑=j Taj i iaj 3,2,141=<=∑=j TbjT Xi ibj ibj2,1;4,3,2,10X iaj ==>=j i 且为整数32,1;4,3,2,10X ibj ,且为整数==>=j i 0X X X X X 4b33b33b23b13a1=====综上,最优生产计划如下:设备产品1 2 3 4A1 A2 B1 B2 B3774235004004008732875目标函数zMax=3495,即最大利润为3495案例3. 高校教职工聘任问题 (建摸)由校方确定的各级决策目标为:P 1 要求教师有一定的学术水平。

运筹学经典案例

运筹学经典案例

运筹学经典案例运筹学是一门研究如何有效地利用有限资源来达到最优化目标的学科。

它涉及到数学、统计学、经济学等多个领域,被广泛应用于工程、管理、物流等领域。

在运筹学的研究中,经典案例是非常重要的,它们可以帮助我们更好地理解运筹学的原理和方法。

本文将介绍一些运筹学的经典案例,帮助读者更好地了解这门学科。

第一个经典案例是著名的旅行商问题(TSP)。

旅行商问题是指一个旅行商要拜访n个城市,每个城市只能拜访一次,而且最后要回到出发的城市。

问题是如何确定一条最短的路径,使得旅行商可以完成旅行并回到出发的城市。

这个问题看似简单,实际上却是一个NP难题,需要运筹学方法来求解。

通过对TSP的研究,我们可以深入了解运筹学中的最优化问题和算法设计。

第二个经典案例是库存管理问题。

库存管理是企业经营中非常重要的一个环节,它涉及到如何合理地控制库存水平,以满足客户需求的同时最大限度地减少库存成本。

运筹学通过建立数学模型,可以帮助企业确定最优的订货量和补货周期,从而实现库存的最优管理。

通过研究库存管理问题,我们可以深入了解运筹学在实际生产中的应用。

第三个经典案例是生产调度问题。

在工业生产中,如何合理地安排生产任务和资源是一个关键问题。

运筹学可以通过建立生产调度模型,帮助企业确定最优的生产计划,从而提高生产效率和降低生产成本。

通过研究生产调度问题,我们可以深入了解运筹学在生产管理中的应用。

以上这些经典案例只是运筹学应用的冰山一角,实际上运筹学在现实生活中有着广泛的应用。

通过研究这些经典案例,我们可以更好地理解运筹学的基本原理和方法,为实际问题的解决提供理论支持和指导。

希望本文能够帮助读者更好地了解运筹学,并对其在实际中的应用有更深入的认识。

运筹学案例集

运筹学案例集

运筹学案例集常州宝菱重工机械有限公司孔念荣收集整理运筹学的一些典型性应用•合理利用材料问题:如何在保证生产的条件下,下料最少•配料问题:在原料供应量的限制下,如何获取最大收益•投资问题:从投资项目中选取最佳组合,使投资回报最大•产品生产计划:合理利用人力、物力、财力等,使获利最大•劳动力安排:用最少的劳动力来满足工作的需要•运输问题:如何制定最佳调运方案,使总运费最少一、生产计划问题案例1(2-4)、某工厂用A、B、C、D四种原料生产甲、乙两种产品,生产甲和乙所需各种原料的数量以及在一个计划期内各种原料的现有数量见下表所示。

又已知每单位产品甲、乙的售价分别为400元和600元,问应如何安排生产才能获得最大收益?已知生产单位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?案例3(2-25)、某公司面临一个是外包协作还是自行生产的问题。

该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。

甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量,数据如下表所示。

问题:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?案例4(2-28)、永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两道工序加工。

设有两种规格的设备A1、A2能完成A工序;有三种规格的设备B1、B2、B3能完成B 工序。

Ⅰ可在A、B的任何规格的设备上加工;Ⅱ可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设备上加工,数据如下表所示。

问题:为使该厂获得最大利润,应如何制定产品加工方案?案例5、某造纸厂用原材料白坯纸生产原稿纸、笔记本和练习本三种产品。

该厂现有工人100人,每月白坯纸供应量为3万公斤。

已知工人的劳动生产率为:每人每月生产原稿纸30捆,或生产日记本30打,或练习本30箱。

运筹学应用案例

运筹学应用案例

运筹学应用案例运筹学是一门应用数学,研究如何在资源有限的情况下,最优地组织和管理这些资源。

运筹学的应用范围非常广泛,涉及到各个领域。

以下是一个关于运筹学应用的实际案例。

某公司是一家制造业企业,主要生产产品A和产品B。

这家公司有两个生产车间和一个物流中心,每个车间配备了不同的生产设备。

公司的目标是最大化利润。

产品A在车间1中生产,车间1的生产设备可以在一小时内生产5个单位的产品A。

产品B在车间2中生产,车间2的生产设备可以在一小时内生产4个单位的产品B。

物流中心负责将产品A和产品B运送到市场,物流中心的运输能力为每小时20个单位。

同时,公司还面临一个资源的限制,即每天生产的产品A和产品B的总数不能超过400个单位。

另外,公司还有一个库存的限制,即每天生产的产品A和产品B的总数不能超过600个单位。

为了系统地解决这个问题,公司决定使用运筹学的方法进行决策。

首先,公司需要确定目标函数。

由于公司的目标是最大化利润,所以可以将目标函数定义为利润函数。

假设公司每个单位的产品A的利润为10美元,每个单位的产品B的利润为8美元。

那么公司的目标函数可以定义为:Z=10A+8B。

然后,公司需要确定约束条件。

根据资源的限制,可以得到以下约束条件:A≤5×小时数(车间1的生产能力)B≤4×小时数(车间2的生产能力)A+B≤400(每天生产的总数限制)A+B≤600(库存的限制)20A+20B≤600(物流中心的运输能力)接下来,公司需要确定变量的取值范围。

由于产量和库存数量为实数,所以可以将A和B的取值范围定义为非负实数。

最后,公司需要使用线性规划算法来求解最优解。

线性规划算法可以通过求解目标函数的最大值来找到最优解。

在这个案例中,可以使用单纯形法来求解最优解。

通过使用运筹学的方法,公司可以得到最优的生产和运输计划,以最大化利润。

对于公司而言,这个案例展示了如何在资源有限的情况下,通过合理的规划和管理,实现最优的生产和销售策略。

运筹学案例集

运筹学案例集

运筹学案例集常州宝菱重工机械有限公司孔念荣收集整理运筹学的一些典型性应用•合理利用材料问题:如何在保证生产的条件下,下料最少•配料问题:在原料供应量的限制下,如何获取最大收益•投资问题:从投资项目中选取最佳组合,使投资回报最大•产品生产计划:合理利用人力、物力、财力等,使获利最大•劳动力安排:用最少的劳动力来满足工作的需要•运输问题:如何制定最佳调运方案,使总运费最少一、生产计划问题案例1(2-4)、某工厂用A、B、C、D四种原料生产甲、乙两种产品,生产甲和乙所需各种原料的数量以及在一个计划期内各种原料的现有数量见下表所示。

又已知每单位产品甲、乙的售价分别为400元和600元,问应如何安排生产才能获得最大收益?已知生产单位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?案例3(2-25)、某公司面临一个是外包协作还是自行生产的问题。

该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。

甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量,数据如下表所示。

问题:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?案例4(2-28)、永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两道工序加工。

设有两种规格的设备A1、A2能完成A工序;有三种规格的设备B1、B2、B3能完成 B 工序。

Ⅰ可在A、B的任何规格的设备上加工;Ⅱ可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设备上加工,数据如下表所示。

问题:为使该厂获得最大利润,应如何制定产品加工方案?案例5、某造纸厂用原材料白坯纸生产原稿纸、笔记本和练习本三种产品。

该厂现有工人100人,每月白坯纸供应量为3万公斤。

已知工人的劳动生产率为:每人每月生产原稿纸30捆,或生产日记本30打,或练习本30箱。

运筹学在工业领域的应用案例

运筹学在工业领域的应用案例

运筹学在工业领域的应用案例运筹学是一门研究如何通过数学模型和优化方法来解决实际问题的学科。

它广泛应用于工业领域,帮助企业提高生产效率、优化资源利用以及优化决策。

本文将以一些实际案例来展示运筹学在工业领域的应用。

案例一:物流调度在现代物流中心,卡车调度是一个重要而复杂的问题。

一家物流企业面临着如何合理安排卡车的运输路线以及如何将货物分配给不同的卡车的问题。

运筹学通过建立数学模型和优化算法,可以帮助企业快速找到最佳的调度方案。

通过考虑货物的重量、体积、运输距离等因素,运筹学能够帮助企业节省时间和成本,提高物流效率。

案例二:生产计划在工业生产中,合理的生产计划对企业的运营至关重要。

运筹学可以通过建立生产计划的数学模型,考虑原材料、人力资源、设备利用率等因素,制定最优的生产计划。

这种方法可以帮助企业合理安排生产任务、减少生产成本,并确保产品按时交付。

案例三:库存管理有效的库存管理对于企业的正常运营非常重要。

过多的库存会增加企业的成本,而库存不足则会导致订单无法及时完成。

运筹学可以利用数学模型和优化算法,预测需求并制定合理的库存策略。

通过运筹学的方法,企业可以实时调整库存水平,减少库存成本,同时确保生产进度和客户需求之间的平衡。

案例四:供应链优化供应链优化是一个复杂的问题,涉及到多个环节和多个参与者之间的协调。

运筹学可以帮助企业建立供应链的数学模型,考虑供应商、生产商、分销商等各个环节的需求和约束,通过优化算法找到最佳的供应链配置方案。

通过运筹学的方法,企业可以提高供应链的响应速度和灵活性,降低整体成本,提供更好的服务。

案例五:设备维护与优化在工业领域,设备的维护和优化是保证生产连续性和降低成本的关键。

运筹学可以利用数据分析和模型建立,制定设备的维护计划和优化方案。

通过预测设备故障、制定维护策略和排班方案,运筹学可以帮助企业降低设备故障率,最大限度地提高设备利用率,进而提高生产效率和降低成本。

综上所述,运筹学在工业领域有着广泛的应用。

运筹学 案例

运筹学 案例

《运筹学》案例分析案例1:超级食品公司的广告混合问题超级食品公司的营销部副总裁克莱略·希文生正面临着一个棘手的挑战:如何才能大规模地进入已有许多供应商的早点谷类食品市场。

值得庆幸的时,该公司的早点谷类食品“脆始”(Crunchy Start)有许多受欢迎的优点:口味佳、营养、松脆。

克莱略·希文生对这一切都如数家珍,她知道这一食品是能够赢得这次促销活动的。

然而,克莱略清楚她必须避免上一次产品促销活动中所犯的错误。

那是她晋升以后第一项重大任务,结果简直是个悲剧!她本以为已经大功告成,却没想到那次活动并没有触及至关重要的目标市场——幼年儿童以及幼年儿童的父母。

同时,她还领悟到未将优惠卷包含在杂志与报纸的广告中是另一大失误。

哎,学习是永无止境的。

这一次,必须吸取上次的教训。

公司的总裁大卫·斯隆已经向她表示脆始这一产品成功与否对公司前途有着重要影响。

她清楚地记得大卫在结束与她的谈话时说:“公司的股东对公司的现状极为不满,我们必须再次纠正方向,增加公司收入。

”克莱略以前也曾听到过这样的语调,但这一次,她从大卫极为严肃的目光中意识到了问题的严重性。

克莱略在攻读MBA管理运筹学课程时,曾经学习过如何通过建立数学模型来解决管理决策问题。

现在是时候让她仔细考虑一下问题,并准备应用所学知识解决问题了。

问题克莱略已经雇佣了一家一流的广告公司G&J公司来帮助设计全国性的促销活动,以使脆始取得尽可能多的消费者的认可。

超级食品公司将根据该广告公司所提供的服务付给一定的酬金(不超过100万美元)并已经预留了另外的400万美元作为广告费用。

G&J公司已经确定了这一产品最有效的三种广告媒介:媒介1:星期六上午儿童节目的电视广告。

媒介2:食品与家庭导向的杂志上的广告。

媒介3:主要报纸星期天增刊上的广告。

现在,要解决的问题是如何确定各广告活动的使用水平(levels)以取得最有效的绩效。

为了确定这一广告投放问题的最佳活动水平组合,首先必须明确该问题的总绩效测度(overall measure of performance)以及每一活动对该测度的贡献。

运筹学经典案例

运筹学经典案例

运筹学经典案例案例一:鲍德西((B AWDSEY)雷达站的研究20世纪 30 年代,德国内部民族沙文主义及纳粹主义日渐抬头。

以希特勒为首的纳粹势力夺取了政权开始为以战争扩充版图,以武力称霸世界的构想作战争准备。

欧洲上空战云密布。

英国海军大臣丘吉尔反对主政者的“绥靖”政策,认为英德之战不可避免,而且已日益临近。

他在自己的权力范围内作着迎战德国的准备,其中最重要、最有成效之一者是英国本土防空准备。

1935 年,英国科学家沃森—瓦特( R.Watson-Wart )发明了雷达。

丘吉尔敏锐地认识到它的重要意义,并下令在英国东海岸的 Bawdsey 建立了一个秘密的雷达站。

当时,德国已拥有一支强大的空军,起飞 17 分钟即可到达英国。

在如此短的时间内,如何预警及做好拦截,甚至在本土之外或海上拦截德机,就成为一大难题。

雷达技术帮助了英国,即使在当时的演习中已经可以探测到160 公里之外的飞机,但空防中仍有许多漏洞,1939 年,由曼彻斯特大学物理学家、英国战斗机司令部科学顾问、战后获诺贝尔奖金的P.M.S.Blachett 为首,组织了一个小组,代号为“ Blachett 马戏团”,专门就改进空防系统进行研究。

这个小组包括三名心理学家、两名数学家、两名应用数学家、一名天文物理学家、一名普通物理学家、一名海军军官、一名陆军军官及一名测量人员。

研究的问题是:设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力的协调,作了系统的研究,并获得了成功,从而大大提高了英国本土防空能力,在以后不久对抗德国对英伦三岛的狂轰滥炸中,发挥了极大的作用。

二战史专家评论说,如果没有这项技术及研究,英国就不可能赢得这场战争,甚至在一开始就被击败。

“ Blackett 马戏团”是世界上第一个运筹学小组。

在他们就此项研究所写的秘密报告中,使用了“Operatio nal Research” 一词,意指作战研究”或"运用研究"。

运筹学经典案例

运筹学经典案例

运筹学经典案例运筹学是一门研究在有限资源下进行有效决策的学科,它涉及到数学、经济学、管理学等多个领域。

在现实生活中,我们经常会遇到需要做出决策的情况,而运筹学正是帮助我们在复杂的情况下做出最优决策的学科。

下面,我们将介绍一些运筹学的经典案例,希望能够帮助大家更好地理解运筹学的应用。

1. 供应链优化。

供应链优化是运筹学中非常重要的一个领域,它涉及到如何在有限的资源下,实现最佳的供应链效率。

一个经典的案例是,某公司需要将产品从生产地运送到各个销售点,而在运输过程中需要考虑到运输成本、时间、货物损耗等多个因素。

通过运筹学的方法,可以帮助公司找到最佳的运输方案,从而降低成本、提高效率。

2. 生产排程优化。

在工厂生产过程中,如何合理地安排生产顺序和时间,是一个典型的运筹学问题。

通过对生产设备的利用率、生产时间、生产成本等因素进行综合考虑,可以利用运筹学的方法找到最优的生产排程,从而提高生产效率,降低生产成本。

3. 库存管理。

对于零售商来说,如何合理地管理库存是一个关键问题。

库存过多会增加成本,而库存过少又会导致无法满足客户需求。

通过运筹学的方法,可以帮助零售商找到最佳的库存管理策略,使得库存成本和客户满意度达到最优平衡。

4. 交通规划。

在城市交通规划中,如何合理地安排交通流量、制定最佳的交通信号灯配时方案等,都是典型的运筹学问题。

通过对交通流量、道路容量、交通需求等因素进行分析和优化,可以帮助城市交通管理部门制定出更加合理的交通规划方案,提高交通效率,减少拥堵。

5. 项目管理。

在企业项目管理中,如何合理地安排资源、时间和任务分配,是一个重要的问题。

通过运筹学的方法,可以帮助项目经理制定出最佳的项目计划,提高项目执行效率,降低项目成本,确保项目顺利完成。

总结。

运筹学在现实生活中有着广泛的应用,它帮助我们在复杂的决策情况下找到最佳解决方案,提高效率,降低成本。

通过对供应链优化、生产排程、库存管理、交通规划、项目管理等经典案例的分析,我们可以更好地理解运筹学的应用,希望大家能够在实际工作中运用运筹学的方法,解决复杂的决策问题,取得更好的效果。

运筹学案例

运筹学案例

运筹学案例(第一部分)案例1 高压电器强电流试验计划的安排某高压电器研究所属行业归口所,是国家高压电器试验检测中心,每年都有大量的产品试验、中试、出口商检等任务.试验计划安排及实施的过程一般如下:·提前一个月接受委托试验申请·按申请的高压电器类别及台数编制下月计划·按计划调度,试验产品进入试验现场·试验检测,出检测报告·试验完成,撤出现场高压电器试验分强电流试验和高压电试验两部分,该研究所承担的强电流实验任务繁重,委托试验的电器量很大,因此科学地计划安排试验计划显得非常重要。

高压电器分十大类,委托试验的产品有一定随机性,但是试验量最多的产品(占85%以上)是以下八类:1.35KV断路器2.10KV等级断路器3.35KV开关柜4.10KV等级开关柜5.高压熔断器6.负荷开关7.隔离开关8.互感器这八类产品涉及全国近千个厂家,市场广阔,数量庞大。

当前的强电流产品试验收费标准见表1—1。

表1-1 强电流产品试验收费标准由于强电流试验用的短路发电机启动时,会给城市电网造成冲击,严重影响市网质量,故只能在中午1点用电低谷时启动,从而影响全月连续试验工时只有约108小时,任务紧张时只能靠加班调节。

正常情况下各种试验所需试验工时见表8—2。

表1—2 各类产品试验所需工时强电流试验特点是开机时耗电量大,而每次实验短路时,只持续几秒钟,虽然短路容量在“0”秒时达2500 MVA,但瞬时耗电量却很小.每天试验设备提供耗电量限制为5000千瓦,每月135千千瓦,那麽每种产品耗量如表8-3所示。

各类产品的冷却水由两个日处理能力为14吨的冷却塔供给.每月按27天计,冷却水月供给量为14×27=378吨.每月各类产品冷却水处理量见表8-3。

表1—3 各类产品试验耗电量与冷却水处理量根据以往的经验和统计报表显示第一类产品和第二类产品每月最多试验台数分别为6台和4台,第三类和第四类产品则每月至少需分别安排8台和10台。

运筹学经典案例

运筹学经典案例

运筹学经典案例
运筹学是一门研究如何有效地组织、管理和优化资源的学科,它在现代管理中
起着至关重要的作用。

在实际应用中,我们可以通过一些经典案例来了解运筹学的具体运用,下面就介绍几个经典案例。

第一个案例是关于生产调度的。

在一个工厂中,有多条生产线,每条生产线上
有不同的产品需要生产。

如何合理安排生产顺序,以最大程度地提高生产效率,是一个典型的运筹学问题。

通过运筹学的方法,可以建立数学模型,考虑到各种约束条件,最终得出一个最优的生产调度方案,从而实现生产效率的最大化。

第二个案例是关于物流配送的。

在物流配送中,如何合理规划配送路线,以最
大程度地降低成本,提高配送效率,也是一个典型的运筹学问题。

通过对各种因素的分析和考虑,可以利用运筹学方法建立配送优化模型,从而得出最优的配送路线和方案。

第三个案例是关于库存管理的。

在企业的库存管理中,如何合理控制库存水平,以最大程度地降低库存成本,同时又能够保证供应链的稳定性,也是一个典型的运筹学问题。

通过对需求的预测和供应链的优化,可以利用运筹学方法建立库存管理模型,从而实现库存水平的最优控制。

通过以上几个经典案例的介绍,我们可以看到,运筹学在实际应用中发挥着重
要作用。

通过建立数学模型,考虑各种约束条件,运用运筹学方法进行优化,可以帮助企业提高生产效率,降低成本,提高配送效率,优化供应链,从而实现经济效益的最大化。

总的来说,运筹学经典案例的研究和实践对于企业的管理和运营具有重要的指
导意义。

希望通过对运筹学经典案例的深入学习和研究,可以更好地应用运筹学理论,解决实际管理中的问题,实现企业的可持续发展。

生活中的运筹学案例

生活中的运筹学案例

生活中的运筹学案例生活中的运筹学案例无处不在,它们展现了运筹学在实际生活中的应用和重要性。

运筹学是一门研究如何有效地组织和管理资源,以最大化效益的学科。

通过分析、建模和优化,运筹学可以帮助人们在生活中做出更加明智的决策,提高效率,节约资源,降低成本,提高生活质量。

下面我们将通过几个生活中的案例来看看运筹学是如何应用的。

首先,我们可以看看购物中的运筹学。

在购物过程中,我们需要考虑如何在有限的预算下购买最多的商品。

这就涉及到了“多重背包问题”,即在有限的背包容量下,如何选择商品来使得总价值最大化。

运筹学可以帮助我们建立数学模型,通过优化算法来解决这个问题,从而使我们在购物时可以更加理性地选择商品,最大化利益。

其次,生活中的旅行也是一个充满运筹学的场景。

在旅行中,我们需要考虑如何安排行程、选择交通工具和酒店,以及如何合理安排时间和预算。

这就涉及到了“旅行商问题”和“背包问题”。

运筹学可以帮助我们制定最佳的旅行计划,通过优化算法来确定最短的旅行路线和最合适的行程安排,使得旅行更加高效和愉快。

另外,生活中的排队问题也是一个典型的运筹学案例。

在超市、银行、医院等场所,我们经常需要排队等候。

如何合理安排队伍,减少等待时间,提高服务效率,是一个重要的问题。

运筹学可以帮助我们通过排队理论和优化算法来设计更加合理的排队系统,从而提高服务质量和顾客满意度。

最后,生活中的日常安排也离不开运筹学的帮助。

比如,如何合理安排工作和学习时间,如何有效规划饮食和锻炼计划,如何管理个人财务和投资等等,都可以通过运筹学的方法来进行优化和改进,使得生活更加有序和高效。

总之,生活中的运筹学案例无处不在,它们展现了运筹学在实际生活中的应用和重要性。

通过分析、建模和优化,运筹学可以帮助人们在生活中做出更加明智的决策,提高效率,节约资源,降低成本,提高生活质量。

希望大家能够在日常生活中更加关注和运用运筹学的方法,使得生活更加美好。

优秀的运筹学案例

优秀的运筹学案例

优秀的运筹案例1. 孙武与《孙子兵法》孙武,字长卿,后人尊称其为孙武子、孙子,中国历史上著名军事家.公元前535年左右出生于齐国乐安(今山东惠民). 后来到了吴国,因为献上兵法十三篇,被吴王阖闾重用,拜为大将,和伍子胥共事,辅佐吴王,领兵攻破楚国都城郢(今湖北江陵县纪南城).孙武在春秋末期(公元前476年前后)所著《孙子兵法》,是世界上现存最古老的兵书.其中的《始计第一》论述怎样在开战之前和战争中实行谋划的问题,以及谋划在战争中的重要意义;《作战第二》论述速战速胜的重要性;《谋攻第三》论述用计谋征服敌人的问题;《军形第四》论述用兵作战要先为自己创造不被敌人战胜的条件,以等待敌人可以被我战胜的时机,使自己“立于不败之地”;《兵势第五》论述用兵作战要造成一种可以压倒敌人的迅猛之势,并要善于利用这种迅猛之势;《虚实第六》论述用兵作战须采用“避实而击虚”的方针;《军争第七》论述如何争夺制胜的有利条件,使自己掌握作战主动权的问题;《九变第八》论述将帅指挥作战应根据各种具体情况灵活机动地处置问题,不要机械死板而招致失败,并对将帅提出了要求;《行军第九》论述行军作战中怎样安置军队和判断敌情问题;《地形第十》论述用兵作战怎样利用地形的问题,并着重论述深入敌国作战的好处;《九地第十一》进一步论述用兵作战怎样利用地形及统兵之道的问题;《火攻第十二》论述在战争中使用火攻的办法、条件和原则等问题;《用间第十三》论述使用间谍侦察敌情在作战中的重要意义,以及间谍的种类和使用间谍的方法.《孙子兵法》是体现我国古代军事运筹思想的最早的典籍.它考察了战争中各种依存、制约关系,总结了战争的规律,并依此来研究如何筹划兵力以争取全局的胜利. 书中的语言叙述简洁,内容也很有哲理性,后来的很多将领用兵都受到了该书的影响.《孙子兵法》对中国的文化发展有深远的影响.2. 孙膑与齐王赛马孙膑(约公元前380-公元前432),孙武的后世子孙,战国中期的著名军事家. 少时孤苦,年长后从师鬼谷子(著名隐士,精通兵学和纵横学)学习《孙子兵法》十三篇等兵书战策. 庞涓妒孙膑之才而将其骗至魏,施以膑刑(割去膝盖骨).后来乘齐国使团来魏之机,孙膑被齐使秘密接到齐国,并被大将田忌所赏识,留在府中做幕僚,奉为上宾. 孙膑的“斗马术”是我国古代运筹思想中争取总体最优的脍炙人口的著名范例(记载于《史记·孙子吴起列传》),成为军事上一条重要的用兵规律,即要善于用局部的牺牲去换取全局的胜利,从而达到以弱胜强的目的. “斗马术”的基本思想是不强求一局的得失,而争取全盘的胜利. 这是一个典型的博弈问题.3. 围魏救赵公元前354年,魏将庞涓发兵8万,以突袭的办法将赵国的都城邯郸包围. 赵国抵挡不住,求救于齐. 齐王拜田忌为大将,孙膑为军师,发兵8万,前往救赵. 大军既出,田忌欲直奔邯郸,速解赵国之围. 孙膑提出应趁魏国国内兵力空虚之机,发兵直取魏都大梁(今河南开封),迫使魏军弃赵回救. 这一战略思想,将避免齐军长途奔袭的疲劳,而致魏军于奔波被动之中,立即为田忌采纳,率领齐军杀往魏国都城大梁. 庞涓得知大梁告急的消息,忙率大军驰援大梁. 齐军事先在魏军必经之路的桂陵(今河南长垣南),占据有利地形,以逸待劳,打败了魏军. 这就是历史上有名的“围魏救赵”之战.“围魏救赵”之妙,妙在善于调动敌人. 调动敌人的要诀,则在“攻其所必救”.4. 减灶之法公元前342年,魏将庞涓带领10万大军进攻韩国. 韩国向齐国求救. 齐王召集群臣商讨对策,齐国的成侯邹忌主张不救,田忌主张早救. 孙膑建议先答应韩国的请求,致使韩国必倾力抗敌. 等到韩、魏双方战到疲惫不堪时,再出兵救韩,可用力少而见功多,取胜易而受益大. 韩国仗恃有齐国相援,倾全力抗魏,五战皆败,只得于公元前341年再次向齐求助. 齐王才决定派兵救韩,仍以田忌为主将,孙膑为军师. 战役之初,按照孙膑的计策,齐军长驱直入把攻击的矛头指向魏国的都城大梁. 庞涓听到消息,立即回援,但齐军已经进入魏国境内. 孙膑对田忌说,魏国军队素来慓悍勇武而看不起齐国,善于作战的人只能因势利导. 兵法上说,行军百里与敌争利会损失上将军,行军五十里而与敌争利只有一半人能赶到. 为了让魏军以为齐军大量掉队,应使齐军进入魏国境内后先设10万个灶,过一天设5万个灶,再过一天设3万个灶. 庞涓行军三天,见到齐军所留灶迹,判断齐军士兵已经逃跑一大半,所以丢下步兵,只率轻车锐骑用加倍的速度追赶齐军. 孙膑计算魏军行程,日暮时必然赶到马陵(今河南范县西南).马陵道路狭窄,两旁地形险阻.孙膑预先布置好伏兵,并集中优秀弩手夹道设伏. 庞涓日暮追至马陵,进入齐军伏击阵地. 齐军万弩齐发,魏军大乱,庞涓兵败自刎. 齐军乘胜全歼10万魏军.马陵之战,孙膑的因势利导、调动敌人、变劣势为优势、力争发挥突然性的作战指导主动,是颇有参考价值的. 其退军设伏的战法,也给了后人不少的启示.“围魏救赵”与“减灶之法”都充分体现了如何运用筹划兵力,选择最佳时间、地点,趋利避害,集中优势兵力以弱克强的运筹思想.5. 运筹帷幄中,决胜千里外在公元前3世纪楚汉相争中,汉高祖刘邦的著名谋士张良为推翻秦朝,打败项羽,统一全国立下了盖世奇功,刘邦赞誉他“夫运筹策帷帐之中,决胜于千里之外”. 这千古名句也可以说是对张良运筹思想的赞颂和褒奖. 《史记》在《留侯世家》及其他多处提及“夫运筹策帷帐之中,决胜于千里之外”. 这里的“运筹”,指张良在帷幄中制定作战谋略与决策的过程. 在西汉时代,“运筹”已被当作制定谋略与决策职能分工的代名词.20世纪30年代发展起来的运筹学,其基本宗旨是探讨事理,强调做一项工作之前要明确目的,制定效果,衡量指标体系作为估计不同方案所达到预定目标程度的依据,在此基础上选择最优方案和实施有效管理. 我国1955年开始研究运筹学时,从《史记》中摘取“运筹”一词作为“Operations Research”的意译,包含了运用筹划、以智取胜的深刻含义. 从《史记》对“运筹”的记述表明,我国运筹思想源远流长,至今对运筹学的发展仍有重要影响.6. 贾思勰与《齐民要术》贾思勰,北魏时期的科学家,益都(在山东寿光南)人,祖、父两代都善于经营,有着丰富的劳动经验,并都非常重视农业技术方面的学习和研究. 贾思勰从小在田园长大,对很多农作物都非常熟悉,他还跟着父亲身体力行参加各种农业劳动,学习掌握了大量农业科技. 他家里拥有大量藏书,这使他从小就有机会博览群书,从中汲取各方面的知识,也为他以后编撰《齐民要术》打下了基础. 大约在北魏永熙二年(533年)到东魏武定二年(554年)期间,他将自己积累的许多古书上的农业技术资料、询问老农获得的丰富经验以及他自己的亲身实践,加以分析、整理、总结,写成农业科学技术巨著《齐民要术》.《齐民要术》一书,不仅是我国古代农业科学一部杰出的学术著作,也是一部蕴含丰富运筹思想的宝贵文献,它记载了我国古代农民如何根据天时、地利和生产条件去合理筹划农事的经验. 其中所提出的不同作物的播种时间和各种作物茬口安排上的先后关系,可以说是现代运筹学中二阶段决策问题的雏型.7. 丁渭修皇宫[6]图1.1 丁渭修皇宫引水示意图[7]宋真宗大中祥符年间(1008—1017),都城开封里的皇宫失火,需要重建. 右谏议大夫、权三司使丁渭受命负责限期重新营造皇宫. 建造皇宫需要很多土,丁渭考虑到从营建工地到城外取土的地方距离太远,费工费力,于是下令将城中街道挖开取土,节省了不少工时. 挖了不久,街道便成了大沟. 丁渭又命人挖开官堤,引汴河水进入大沟之中,然后调来各地的竹筏、木船经这条大沟运送建造皇宫所用的各种物材,十分便利(见图1. 1). 等到皇宫营建完毕,丁渭命人将大沟中的水排尽,再将拆掉废旧皇宫以及营建新皇宫所丢弃的砖头瓦砾添入大沟中,大沟又变成了平地,重新成为街道. 这样,丁渭一举三得,挖土、运送物材、处理废弃瓦砾等三件工程一蹴而成,节省的工费数以亿万计.这是我国古代大规模工程施工组织方面运筹思想的典型例子.8. 沈括运粮[6]沈括(1031—1095), 北宋时期大科学家、军事家. 在率兵抗击西夏侵扰的征途中,曾经从行军中各类人员可以背负粮食的基本数据出发,分析计算了后勤人员与作战兵士在不同行军天数中的不同比例关系,同时也分析计算了用各种牲畜运粮与人力运粮之间的利弊,最后做出了从敌国就地征粮,保障前方供应的重要决策,从而减少了后勤人员的比例,增强了前方作战的兵力.当时沈括的分析计算过程译意如下:凡是行军作战,如何从敌方取得粮食,是最急迫的事情. 自己运粮不仅耗费大,而且沈括势必难以远行. 我曾经作过计算:假设一个民夫可以背六斗米,士兵自带五天的干粮.如果一个民夫供应一个士兵,单程只能进军十八天(六斗米,每人每天吃两升米,两人吃十八天*). 若要计回程的话,只能进军九天.如果两个民夫供应一个士兵,单程可进军二十六天(两个民夫背一石二斗米,三个人每天要吃六升米. 八天以后,其中一个民夫背的米已经吃光,给他六天的口粮让他先返回,以后的十八天,两人每天吃四升米).若要计回程的话,只能前进十三天的路程(前八天每天吃六升,后五天及回程每天吃四升米,能够进军十三天).如果三个民夫供应一个士兵,单程可进军三十一天(三人背米一石八斗,前六天半四个人,每天吃八升米,遣返一个民夫,给他四天口粮. 中间的七天三个人同吃,每天吃六升米,再遣返一个民夫,给他九天口粮;最后的十八天两人吃,每天四升米).如果要计回程的话,只可以前进十六天的路程(开始六天半每天吃八升米,中间七天,每天吃六升米,最后两天半以及十六天回程每天吃四升米).三个民夫供应一个士兵,已经到极限了.如果要出动十万军队,辎重占去三分之一兵源,能够上阵打仗的士兵不足七万人.这就要用三十万民夫运粮,再要扩大规模很困难了.每人背六斗米的数量也是根据民夫的总数平均来说的. 因为其中的队长不背,伙夫减半,他们所减少的要摊在众人头上.*士兵干粮相当于十升米,连同民夫背的米共有七十升,每天吃四升米,实际上只能维持十七天半. 十八天是以整数来说的. 以下计算类同.更何况还会有患病和死亡的人,他们所背的米又要由众人分担.所以军队中不容许饮食无度,如果有一个人暴食,两三个人供应他还不够.如果用牲畜运输,骆驼可以驮三石,马或骡可以驮一石五斗,驴子可以驮一石.与人工相比,虽然能驮得多,花费也少,但如果不能及时放牧或喂食,牲口就会瘦弱而死.一头牲口死了,只能连它驮的粮食也一同丢弃.所以与人工相比,实际上是利害相当.这种军事后勤问题的分析计算是具有现代意义的运筹思想的范例.9. 高超治河[6]高超,宋朝人,河工. 宋仁宗庆历年间(1041—1048)黄河在北都(今太原)商胡地区决口,很长时间都没有堵上决口. 朝廷派三司度支副使(官职名)郭申锡亲自前往监督工程进行. 凡是堵决口将要合拢的时候,都要在决口中间压上一埽(用树枝、芦苇、石头等捆紧做成圆柱形),叫做“合龙门”,这是成败的关键. 当时好几次压埽都合不上. 那时合龙门用的埽长六十步(步,古代的长度计量单位).有个叫做高超的水工献策说:埽身太长,人力压不住,埽到达不了水底,所以水流不断. 应当把六十步的埽身分为三节,每节长二十步,中间用绳索连起来. 先放下第一节,等它到了水底,再压第二节、第三节. 老河工和他争论,认为不可行,说:“二十步的埽不能阻断水流,白白使用三节埽,浪费好几倍成本,而决口依然堵不上”.高超对他说:“第一节河水确实没有被阻断,但是水势必然被削弱一半. 压第二节时只用一半的力气,水就算没有被阻断,也不过是很少往外漏出. 第三节就是在平地上施工,足以能够让人使出全部力气. 压完第三节以后,上两节自来就被浊泥淤积,不用再麻烦人力来加固它们了.” 郭申锡遵照从前的方法,不采纳高超的建议.当时魏公(爵位名)贾将军镇守北门(地名),只有他认为高超的话是对的,暗地派遣几千人在下游收集漂下来的埽. 而上游的埽压上以后,果然被水冲走了,黄河的决口更加大,郭申锡因此被贬官. 最后还是采用了高超的建议,才堵上了商胡地区的决口.这种分阶段作业优于一次作业的分析与论证,是运筹思想的典型范例.10、为何说一名数学家等于十个师?在第二次世界大战中,盟军为了和德国法西斯作战,大量军需物品要穿过大西洋运送到各个战场。

生活中的运筹学案例

生活中的运筹学案例

生活中的运筹学案例生活中的运筹学案例随处可见,无论是在家庭生活、工作环境还是社会活动中,都可以找到运筹学的身影。

运筹学是一门以数学为基础,以系统思维和科学方法为手段,研究在资源有限的条件下,如何做出最佳决策的学科。

下面就让我们通过几个生活中的案例来看看运筹学是如何应用的。

首先,我们来看看家庭生活中的运筹学案例。

在日常生活中,家庭主妇要合理安排家庭的开支,做出最佳的购物决策。

她需要考虑到家庭成员的口味、饮食习惯、季节变化等因素,合理分配食材的采购计划,避免食物浪费。

同时,她还需要考虑到家庭成员的生活习惯和工作学习时间,合理安排家务工作的分配,做出最佳的时间管理决策。

其次,我们来看看工作环境中的运筹学案例。

在企业管理中,经理需要合理安排生产计划,确保生产效率最大化,成本最小化。

他需要考虑到原材料的供应情况、生产设备的利用率、员工的工作效率等因素,做出最佳的生产调度决策。

同时,他还需要考虑到市场需求的变化、竞争对手的动向,做出最佳的市场营销策略,确保企业的长期发展。

最后,我们来看看社会活动中的运筹学案例。

在城市交通管理中,政府需要合理规划道路建设,确保交通畅通,减少拥堵。

他们需要考虑到城市的发展规划、人口的流动情况、交通工具的利用率等因素,做出最佳的交通规划决策。

同时,他们还需要考虑到环境保护、资源节约等因素,做出最佳的城市规划决策,确保城市的可持续发展。

综上所述,生活中的运筹学案例无处不在,无论是家庭生活、工作环境还是社会活动中,都可以找到运筹学的身影。

通过合理的资源分配、最佳的决策策略,我们可以更好地管理和规划我们的生活,实现资源的最大化利用,提高效率,达到最佳的生活状态。

因此,学习运筹学对我们的生活和工作都至关重要,希望大家能够重视并应用运筹学的原理和方法,让我们的生活变得更加美好。

四个运筹学案例

四个运筹学案例

1、年度配矿计划优化——线性规划j(单位:万吨)2 约束条件:包括三部分1)供给(资源)约束:x1 ≤70 x2≤7 x3≤17 x4≤23 x5≤3 x6≤9.5 x7≤1 x8≤15.4 x9≤ 2.7 x10≤7.6 x11≤13.5 x12≤2.7 x13≤1.2 x14≤7.22)品位约束3)非负约束: x j ≥ 0 j = 1,2,3, … ,143 目标函数:此题目要求“效益最佳”有一定的模糊性,由于配矿后的混合矿石将作为后面 工序的原料而产生利润,故在初始阶段,可将目标函数选作配矿总量的极大化。

三、计算结果及分析1 计算结果利用单纯形法可得出该问题的最优解为:x1 = 31.121 x2 = 7 x3 = 17 x4 = 23 x5 = 3 x6 = 9.5 x7 = 1 x8 = 15.4 x9 = 2.7 x10 = 7.6 x11 = 13.5 x12 = 2.7 x13 = 1.2 x14 = 7.2 最优值:Z* = 141.921(万吨)2 分析与讨论1)计算结果是否可被该公司接受?——回答是否定因为:①在最优解中,除第1个采矿点有富裕外,其余13个采矿点的出矿量全部参与了配矿。

而矿点1在配矿以后尚有富余量 70 -31.12 =38.879 (万吨),但矿点1的矿石品位仅为37.16%,属贫矿。

②该公司花费了大量人力、物力、财力后,在矿点1生产的贫矿中却有近39万吨矿石被闲置,而且在大量积压的同时,还会对环境造成破坏,作为该公司的负责人或公司决策者是难以接受这样的生产方案的。

———原因何在?出路何在?2)解决问题的思路经过分析后可知:在矿石品位T Fe 及出矿量都不可变更的情况下,只能把注意力集中在 混合矿石的品位T Fe 要求上。

——不难看出,降低T Fe 的值,可以使更多的低品位矿石参与配矿。

问题:T Fe 的值有可能降低吗?在降低T Fe 的值,使更多的贫矿入选的同时,会产生什么影响?——以上问题就属于运筹学的灵敏度分析(优化后分析)3)经调查,以及与现场操作人员、工程技术人员、管理人员学习、咨询,拟定了三个T Fe 的新值:44% 、43% 、42%3 变动参数之后再计算,结果如下表所示:∑==+++++++++++++14114131211109875432145.0502.04073.05692.05271.04022.0408.04834.05141.064996.04200.04700.0400.05125.03716.0j jx x x x x x x x x x x x x x x ∑==141max j jx zFe境的破坏,故不予以考虑。

运筹学案例

运筹学案例

例1 某昼夜服务的公交路线每天各时间段内所需司机和乘务人员人数如表4-1所示。

表4-1设司机和乘务人员分别在各自时间段开始上班,并连续工作8小时,问该公交线路应怎么安排司机和乘务人员,既能满足工作需要,又使配备司机和乘务人员的人数最少?解设x i表示第i班次时开始上班的司机和乘务人员人数,这样可以知道在第i班次工作的人数应包括i-1班次时开始上班的人数和第i班次时开始上班的人数,如有x1+x2≥70.又要求这六个班次时开始上班的所有人员最少,即要求x1+x2+x3+x4+x5+x6最小,这样建立如下数学模型:min x1+x2+x3+x4+x5+x6;约束条件:x1+x6≥60,x1+x2≥70,x2+x3≥60,x3+x4≥50,x4+x5≥20,x5+x6≥30,x1、x2、x3、x4、x5、x6≥0.用管理运筹学软件可以求得此问题的最优解:x1=50,x2=20,x3=50,x4=0,x5=20,x6=10,一共需要150人。

案例1:北方化工厂月生产计划安排一、问题提出根据经营现状和目标,合理定制生产计划并有效组织生产,是一个企业提高效益的核心,特别是对于一个化工厂而言,由于其原料品种多,生产工艺复杂,原材料和生产成品存储费用较高,并有一定的危险性,对其生产计划作出合理性安排就显得尤为重要。

现要求对北方化工厂的生产计划作出合理的安排。

二、有关数据1.生产概况北方化工厂现有职工120人,其中生产工人105人,该厂主要设备是2套提取生产线,每套生产线容量为800kg,至少需要10人看管,该厂每天24h连续生产,节假日不停机,从原料投入到产品出线平均需要10h,成品率为60%,该厂只有4t卡车1辆,可供原材料的运输。

2.产品结构及有关资料该厂目前的产品可分为5类,所用原料15种,根据厂方提供的资料,经整理得表4-22.表4-223.供销情况(1)根据现有运输条件,原料3从外地购入,每月只能购入1车。

运筹学的教育应用案例(3篇)

运筹学的教育应用案例(3篇)

第1篇一、引言运筹学是一门研究如何通过科学的方法和数学模型来优化决策过程的学科。

随着社会经济的发展,高校图书馆作为知识传播的重要载体,其资源的合理分配和利用显得尤为重要。

本文以某高校图书馆为例,运用运筹学的原理和方法,对其资源分配策略进行优化,以提高图书馆资源的利用效率。

二、案例背景某高校图书馆藏书量丰富,拥有各类图书、期刊、电子资源等,但图书馆资源分配存在以下问题:1. 部分图书利用率低,而某些热门图书却供不应求;2. 图书馆空间利用率不高,部分区域闲置;3. 图书馆工作人员工作量不均衡,部分区域人员紧缺;4. 读者满意度不高,图书馆服务效率有待提高。

针对上述问题,图书馆希望通过运筹学的原理和方法,优化资源分配策略,提高图书馆资源的利用效率。

三、运筹学模型构建1. 目标函数以图书馆资源利用效率最大化为目标,构建目标函数如下:Max Z = ∑(读者满意度× 资源利用率)其中,Z为图书馆资源利用效率,读者满意度为各读者对图书馆服务的评价,资源利用率为各类资源的实际利用率。

2. 决策变量(1)图书分配:设图书馆有n种图书,每种图书有m本,则决策变量为xij,表示第i种图书分配到第j个区域的数量;(2)区域分配:设图书馆有k个区域,则决策变量为yij,表示第i种图书分配到第j个区域的比例;(3)人员分配:设图书馆有p个工作人员,则决策变量为zij,表示第i个工作人员分配到第j个区域的比例。

3. 约束条件(1)图书分配约束:xij ≥ 0,∀i,j;(2)区域分配约束:yij ≥ 0,∀i,j;(3)人员分配约束:zij ≥ 0,∀i,j;(4)图书总量约束:∑xij = m,∀i;(5)区域分配比例约束:0 ≤ yij ≤ 1,∀i,j;(6)人员分配比例约束:0 ≤ zij ≤ 1,∀i,j;(7)图书馆资源利用率约束:资源利用率≥ 90%,∀资源。

四、求解与优化1. 求解过程采用线性规划方法求解上述运筹学模型,通过计算机软件(如MATLAB、Lingo等)进行计算,得到最优解。

运筹学案例集

运筹学案例集

运筹学案例集运筹学案例集常州宝菱重工机械有限公司孔念荣收集整理运筹学的一些典型性应用合理利用材料问题:如何在保证生产的条件下,下料最少配料问题:在原料供应量的限制下,如何获取最大收益投资问题:从投资项目中选取最佳组合,使投资回报最大产品生产计划:合理利用人力、物力、财力等,使获利最大?劳动力安排:用最少的劳动力来满足工作的需要运输问题:如何制定最佳调运方案,使总运费最少一、生产计划问题案例1(2-4)、某工厂用A、B、C、D四种原料生产甲、乙两种产品,生产甲和乙所需各种原料的数量以及在一个计划期内各种原料的现有数量见下表所示。

又已知每单位产品甲、乙的售价分别为400元和600元,问应如何安排生产才能获得最大收益?已知生产单位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?案例3(2-25)、某公司面临一个是外包协作还是自行生产的问题。

该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。

甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量,数据如下表所示。

问题:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?案例4(2-28)、永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两道工序加工。

设有两种规格的设备A1、A2能完成A工序;有三种规格的设备B1、B2、B3能完成B 工序。

Ⅰ可在A、B的任何规格的设备上加工;Ⅱ可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设备上加工,数据如下表所示。

问题:为使该厂获得最大利润,应如何制定产品加工方案?案例5、某造纸厂用原材料白坯纸生产原稿纸、笔记本和练习本三种产品。

该厂现有工人100人,每月白坯纸供应量为3万公斤。

已知工人的劳动生产率为:每人每月生产原稿纸30捆,或生产日记本30打,或练习本30箱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

案例一:鲍德西((B AWDSEY)雷达站的研究20世纪30年代,德国内部民族沙文主义及纳粹主义日渐抬头。

以希特勒为首的纳粹势力夺取了政权开始为以战争扩充版图,以武力称霸世界的构想作战争准备。

欧洲上空战云密布。

英国海军大臣丘吉尔反对主政者的“绥靖”政策,认为英德之战不可避免,而且已日益临近。

他在自己的权力范围内作着迎战德国的准备,其中最重要、最有成效之一者是英国本土防空准备。

1935年,英国科学家沃森—瓦特(R.Watson-Wart)发明了雷达。

丘吉尔敏锐地认识到它的重要意义,并下令在英国东海岸的Bawdsey建立了一个秘密的雷达站。

当时,德国已拥有一支强大的空军,起飞17分钟即可到达英国。

在如此短的时间内,如何预警及做好拦截,甚至在本土之外或海上拦截德机,就成为一大难题。

雷达技术帮助了英国,即使在当时的演习中已经可以探测到160公里之外的飞机,但空防中仍有许多漏洞,1939年,由曼彻斯特大学物理学家、英国战斗机司令部科学顾问、战后获诺贝尔奖金的为首,组织了一个小组,代号为“Blachett马戏团”,专门就改进空防系统进行研究。

这个小组包括三名心理学家、两名数学家、两名应用数学家、一名天文物理学家、一名普通物理学家、一名海军军官、一名陆军军官及一名测量人员。

研究的问题是:设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力的协调,作了系统的研究,并获得了成功,从而大大提高了英国本土防空能力,在以后不久对抗德国对英伦三岛的狂轰滥炸中,发挥了极大的作用。

二战史专家评论说,如果没有这项技术及研究,英国就不可能赢得这场战争,甚至在一开始就被击败。

“Blackett马戏团”是世界上第一个运筹学小组。

在他们就此项研究所写的秘密报告中,使用了“Operational Research”一词,意指作战研究”或“运用研究”。

就是我们所说的运筹学。

Bawdseg雷达站的研究是运筹学的发祥与典范。

项目的巨大实际价值、明确的目标、整体化的思想、数量化的分析、多学科的协同、最优化的结果,以及简明朴素的表述,都展示了运筹学的本色与特色,使人难以忘怀。

案例二:B LACKETT备忘录1941年12月,Blackett以其巨大的声望,应盟国政府的要求,写了一份题为“Scientists at the Operational Level”(作战位置上的科学家)的简短备忘录。

建议在各大指挥部建立运筹学小组,这个建议迅速被采纳。

据不完全统计,第二次世界大战期间,仅在英国、美国和加拿大,参加运筹学工作的科学家超过700名。

1943年5月,B1ackett写了第二份备忘录,题为“关于运筹学方法论某些方面的说明”。

他写道:“运筹学的一个明显特性,正如目前所实践的那样,是它具有或应该有强烈的实际性质。

它的目的是帮助找出一些方法,以改进正在进行中的或计划在未来进行的作战的效率。

为了达到这一目的,要研究过去的作战来明确事实,要得出一些理论来解释事实,最后,利用这些事实和理论对未来的作战作出预测。

”这些OR的早期思想至今仍然有效。

案例三:大西洋反潜战美国投入第二次世界大战后,吸收了大量科学家协助作战指挥。

1942年,美国大西洋舰队反潜战官员W.D.Baker舰长请求成立反潜战运筹组,麻省理工学院的物理学家P.W.Morse被请来担任计划与监督。

Morse最出色的工作之一,是协助英国打破了德国对英吉利海峡的海上封锁。

194l~1942年,德国潜艇严密封锁了英吉利海峡,企图切断英国的“生命线”。

海军数次反封锁,均不成功。

应英国的要求,美国派Morse率领一个小组去协助。

Morse小组经过多方实地调查,最后提出了两条重要建议: 1、将反潜攻击由反潜舰艇投掷水雷,改为飞机投掷深水炸弹。

起爆深度由100米左右,改为25米左右,即当德方潜艇刚下潜时攻击效果最佳。

2、运送物资的船队及护航舰艇编队,由小规模多批次,改为加大规模、减少批次,这样,损失率将减少。

丘吉尔采纳了Morse的建议,最终成功地打破了德国的封锁,并重创了德国潜艇舰队。

由于这项工作,Morse同时获得了英国及美国战时的最高勋章。

案例四:英国战斗机中队援法决策第二次世界大战开始后不久,德国军队突破了法国的马奇诺防线,法军节节败退。

英国为了对抗德国,派遣了十几个战斗机中队,在法国国土上空与德国空军作战,且指挥、维护均在法国进行。

由于战斗损失,法国总理要求增援10个中队。

已出任英国首相的丘吉尔决定同意这个请求。

英国运筹人员得悉此事后,进行了一项快速研究,其结果表明:在当时的环境下,当损失率、补充率为现行水平时,仅再进行两周左右,英国的援法战斗机就连一架也不存在了。

这些运筹学家以简明的图表、明确的分析结果说服了丘吉尔。

丘吉尔最终决定:不仅不再增换新的战斗机中队,而且还将在法的英国战机大部分撤回英国本土,以本土为基地,继续对抗德国。

局面有了大的改观。

在第二次世界大战中,定量化、系统化的方法迅速发展,且很有特点。

由上面几个例子可以看出这一时期军事运筹的特点:①真实的实际数据;②多学科密切协作;③解决方法渗透着物理学思想。

案例五:E RLONG与排队论19世纪后半期,电话问世并随即建立为用户服务的电话通信网。

在电话网服务中,基本问题之一是:根据业务量适当配置电话设备。

既不要使用户因容量小而过长等待,又不要使电话公司设备投入过大而造成过多空闲。

这是一个需定量分析才有可能解决的问题。

1909~1920年间,丹麦哥本哈根电话公司工程师A.K.Erlong陆续发表了关于电话通路数量等方面的分析与计算公式。

尤其是1909年的论文“概率与电话通话理论”,开创了排队论—随机运筹学的一个重要分支。

他的工作虽属排队论最早期成果的范畴,但方法论正确得当引用了概率论的数学工具作定量描述与分析;并具有系统论的思想,即从整体性来寻求系统的优化。

据不完整的综述,截止到1960年,在排队论的应用研究报告486篇中,电信系统222篇,运输系统125篇。

在其他领域中则初步显示了一个潜在应用领域——计算机系统。

案例六:V ON.N EUMANN和对策论由20年代开始,Von.Neumann即开始了对经济的研究,做了许多开创性工作。

如大约在1939年,提出了一个属于宏观经济优化的控制论模型,成为数量经济学的一个经典模型。

Von.Neumann是近代对策论研究的创始人之一。

1944年,他与Morgenstern的名著:《对策论与经济行为》一书出版。

将经济活动中的冲突作为一种可以量化的问题来处理。

在经济活动中,冲突、协调与平衡分析问题比比皆是。

von.Neumann分析了这类问题的特征,解决了一些基本问题,如“二人零和对策”中的最大一最小方法等。

第二次世界大战期间,对策论的思想与方法受到军方重视,并开始了用对策论对战略概念进行分析的研究,在军事运筹领域占有重要位置。

还应指出:尽管Von.Neumann不幸过早去世(1957年),但他对运筹学的贡献还有很多。

他领导研制的电子计算机成为运筹学的技术实现支柱之一。

他慧眼识人才,对Dantzig从事的以单纯形法为核心的线性规划研究,最早给予肯定与扶持,使运筹学中这个最重要的分支在第二次世界大战后不久即脱颖而出。

Dantzig当时年龄还不到30岁!案例七:K ANTORO V ICH与“生产组织与计划中的数学方法”康托洛维奇(KantoroVich)是苏联著名的数理经济专家。

30年代,他从事了生产组织与管理中的定量化方法研究,取得了很多重要成果。

如运输调度优化、合理下料研究等。

运筹学中著名的运输问题,其求解方法就以他来命名(康托洛维奇—希奇柯克算法)。

1939年,他出版了名著:《生产组织和计划中的数学方法》,堪称运筹学的先驱著作。

其思想与模型均可归入线性规划的范畴,尽管当时还未能建立方法论与理论体系,但仍具很大的开创性,因为它比Dantzig建立的线性规划几乎早了十年。

康托洛维奇的这些工作在当时的苏联被忽视了,但在国际上却获得了很高的评价。

1975年,他与T.C.Koopmans一起获得了诺贝尔经济学奖。

运筹学分支的重大理论成果由运筹学作为一门学科开始到60年代,在近三十年的发展中,出现了多方面的理论成果;其中相当部分属于理论奠基或重大突破,现将这些事件列出如下: 1947年,Dantzig 提出单纯形法;1950~1956年,线性规划的对偶理论;1960年,Dantzig-Wolfe建立大规模线性规划的分解算法;1951年,Kuhn-Tucker定理奠定了非线性规划理论基础;1954年,网络流理论建立;1955年,创立随机规划;1958年,创立整数规划求解整数规划的割平面法问世;1958年,求解动态规划的Bellman原理发表。

即使是这个罗列很不完整,但足以看出50年代是运筹学理论体系创立与形成的重要十年,令运筹学工作者感到欢欣鼓舞。

博弈论(GameTheory)“对策论”、“赛局理论”,属应用数学的一个分支。

目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。

是运筹学的一个重要学科。

智猪博弈(Pigs’payoffs)讲的是:猪圈里有两头猪,一头大猪,一头小猪。

猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。

如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。

当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前,争吃到另一半残羹。

那么,两只猪各会采取什么策略答案是:小猪将选“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。

原因何在。

相关文档
最新文档