2012年云南省中考数学试题(解析版)
2005—2012年云南昭通中考数学历年真题试卷
2005年云南省中考数学试卷(课程改革实验区)一、填空题(本大题共6个小题,每小题3分,满分18分)1. 31-的绝对值是_________。
2. 我省今年虽遇到特大干旱,但至5月底大春播种面积已完成应播种面积的84.2%以上,达到44168000亩,这个数用科学记数法表示为_________亩。
3. 已知:如图,圆O 1与圆O 2外切于点P ,圆O 1的半径为3,且O 1O 2=8,则圆O 2的半径R=_________。
4. 若4个数据,1,3,x ,4的平均数为2,则x=_________。
5. 抛物线542+-=x x y 的顶点坐标是_________。
6. 请你添加一个条件,使平行四边形ABCD 成为一个菱形,你添加的条件是_________。
二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分) 7. 下列运算正确的是( )A. 532)(a a =B. 1)14.3(0=-πC.532=+D. 632-=-8. 数学老师为了估计全班每位同学数学成绩的稳定性,要求每位同学对自己最近4次的数学测试成绩进行统计分析,那么小明需要求出自己这4次成绩的是( )A. 平均数B. 众数C. 频率D. 方差9. 下列图形中,即是轴对称图形,又是中心对称图形的是( )A. 等腰三角形B. 平行四边形C. 梯形D. 圆 10. 函数2-=x y 中自变量x 的取值范围是( )A. x ≥2B. x>2C. x<2D. x ≤2 11. 若n 边形的内角和是1260°,则边数n 为( )A. 8B. 9C. 10D. 11 12. 小亮观察下边的两个物体,得到的俯视图是( )13. 九年级(2)班同学在一起玩报数游戏,第一位同学从1开始报数,当报到5的倍数的数时,则必须跳过该数报下一个数。
如:位置 一 二 三 四 五 六 七 八 九 十 …报出的数 1 2 3 4 6 7 8 9 11 12 …依此类推,第25位置上的小强应报出的数是( ) A. 25 B. 27 C. 31 D. 3314. 小颖在做下面的数学作业时,因钢笔漏墨水,不小心将部分迹污损了。
2012年云南省中考数学试题
2012年云南省中考数学试题一、选择题1.(2012•乌鲁木齐)关于x的一元二次方程(a-1)x2+x+|a|-1=0的一个根是0,则实数a 的值为()A.-1 B.0 C.1 D.-1或11.A1.解:把x=0代入方程得:|a|-1=0,∴a=±1,∵a-1≠0,∴a=-1.故选A.2.(2012•荆门)用配方法解关于x的一元二次方程x2-2x-3=0,配方后的方程可以是()A.(x-1)2=4 B.(x+1)2=4 C.(x-1)2=16 D.(x+1)2=162.A3.(2012•宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为()A.(x-3)2+11 B.(x+3)2-7 C.(x+3)2-11 D.(x+2)2+43.B.4.(2012•莆田)方程(x-1)(x+2)=0的两根分别为()A.x1=-1,x2=2 B.x1=1,x2=2C.x1=-1,x2=-2 D.x1=1,x2=-24.D5.(2012•淮安)方程x2-3x=0的解为()A.x=0 B.x=3 C.x1=0,x2=-3 D.x1=0,x2=35.D6.(2012•南昌)已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是()A.1 B.-1 C.D.-6.B.7.(2012•常德)若一元二次方程x2+2x+m=0有实数解,则m的取值范围是()A.m≤-1 B.m≤1 C.m≤4 D.m≤7.B8.(2012•泰州)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1-x)2=36-25 B.36(1-2x)=25C.36(1-x)2=25 D.36(1-x2)=258.C.9.(2012•河池)一元二次方程x2+2x+2=0的根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.无实数根考点:根的判别式。
2012年全国中考数学试题分类解析汇编(159套63专题)专题22_二次函数的应用(几何问题)(附答案)
2012年全国中考数学试题分类解析汇编(159套63专题)专题22:二次函数的应用(几何问题)一、选择题1.(2012甘肃兰州4分)二次函数y =ax 2+bx +c(a≠0)的图象如图所示,若|ax 2+bx +c|=k(k≠0)有两个不相等的实数根,则k 的取值范围是【 】A .k <-3B .k >-3C .k <3D .k >3 二、填空题 三、解答题1. (2012天津市10分)已知抛物线y=ax 2+bx+c (0<2a <b )的顶点为P (x 0,y 0),点A (1,y A )、B (0,y B )、C (-1,y C )在该抛物线上.(Ⅰ)当a=1,b=4,c=10时,①求顶点P 的坐标;②求AB Cy y y -的值;(Ⅱ)当y 0≥0恒成立时,求AB Cy y y -的最小值.2. (2012上海市12分)如图,在平面直角坐标系中,二次函数y=ax 2+6x+c 的图象经过点A (4,0)、B (﹣1,0),与y 轴交于点C ,点D 在线段OC 上,OD=t ,点E 在第二象限,∠ADE=90°,tan∠DAE=12,EF⊥OD,垂足为F .(1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示); (3)当∠ECA=∠OAC 时,求t 的值.3. (2012广东广州14分)如图,抛物线233y=x x+384--与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标; (3)若直线l 过点E (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有三个时,求直线l 的解析式.4. (2012广东肇庆10分)已知二次函数2y mx nx p =++图象的顶点横坐标是2,与x 轴交于A (x 1,0)、B (x 2,0),x 1﹤0﹤x 2,与y 轴交于点C ,O 为坐标原点,tan tan CA BO 1O C ∠-∠=. (1)求证: n 4m 0+=; (2)求m 、n 的值;(3)当p ﹥0且二次函数图象与直线y x 3=+仅有一个交点时,求二次函数的最大值.5. (2012广东珠海7分)如图,二次函数y=(x ﹣2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b 的图象经过该二次函数图象上点A (1,0)及点B . (1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x ﹣2)2+m 的x 的取值范围.6. (2012浙江杭州12分)在平面直角坐标系内,反比例函数和二次函数y=k (x 2+x ﹣1)的图象交于点A (1,k )和点B (﹣1,﹣k ).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围; (3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.7. (2012浙江宁波12分)如图,二次函数y=ax 2+bx+c 的图象交x 轴于A (﹣1,0),B (2,0),交y 轴于C (0,﹣2),过A ,C 画直线. (1)求二次函数的解析式;(2)点P 在x 轴正半轴上,且PA=PC ,求OP 的长;(3)点M 在二次函数图象上,以M 为圆心的圆与直线AC 相切,切点为H . ①若M 在y 轴右侧,且△CHM∽△AOC(点C 与点A 对应),求点M 的坐标;②若⊙M M 的坐标.8. (2012浙江温州14分)如图,经过原点的抛物线2y x 2mx(m 0)=-+>与x 轴的另一个交点为A.过点P(1,m)作直线PM x ⊥轴于点M ,交抛物线于点B.记点B 关于抛物线对称轴的对称点为C (B 、C 不重合).连结CB,CP 。
云南省2012年初中学业水平考试_数学_试题卷(自作含答案)
云南省2012年初中学业水平考试数学 试题卷试卷说明:本试卷是本人自己打的,教育局的原稿还没拿到,若有急需的人可以看看本卷,只是图形没有原稿画得好,不过还可以看,实在对不起。
(答案是本人自己做的,若觉得哪里不好可与本人联系,或直接改动。
)一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1. 5的相反数是 A .51 B .5- C .51- D .52.如图是由6个形同的小正方体搭成的一个几何体,则它的俯视图是A .B .C .D .3.下列运算正确的是A .632=⋅x xB .632-=-C .523)(x x = D .140=4.不等式组⎩⎨⎧->>-.423,01x x x 的解集是A .1<xB .4->xC .14<<-xD .1>x5.如图,在ABC ∆中,∠︒=67B ,∠︒=33C ,AD 是ABC ∆的角平分线,则∠BCD 的 度数为A .︒40B .︒45C .︒50D .︒556.如图,AB 、CD 是⊙O 的两条弦,连接AD 、BC .若∠︒=60BAD ,则∠BCD 的度 数为A .︒40B .︒50C .︒60D .︒707.我省五个A 5级旅游景区门票票价如下表所示(单位:元)关于这五个里边有景区门票票价,下列说法中错误的是A .平均数是120B .中位数是105C .众数是80 .极差是958.若4122=-b a ,21=-b a ,则b a +的值为 A .21- B .21 C .1 D .2二、填空题(本大题共6个小题,每小题3分,满分18分)9.国家统计局发布第六次全国人口普查主要数据公布报告显示:云南省常住人口约为00096045人.这个数据用科学计数法可表示为 人.10.写出一个大于2小于4的无理数: .DC B ABMDC B A 11.分解因式:=+-3632x x .12.函数2-=x y 的自变量x 的取值范围是 .13.一直扇形的圆心角为︒120,半径为cm 3,则该扇形的面积为 .(结 果保留π)14.观察下列图形的排列规律(其中▲、■、★分别表示三角形、正方形、五角星).若 第一个图形是三角形,则第18个图形是 .(填图形的名称)▲ ■ ★ ■ ▲ ★ ▲ ■ ★ ■ ▲ ★ ▲ …三、解答题(本大题共9个小题,满分58分) 15.(本小题5分)化简求值:)1()1111(2-∙-++x x x ,其中21=x .16.(本小题5分)如图,在ABC ∆中,∠︒=90C ,点D 是AB 边上的一点,DM ⊥AB , 且AC DM =,过点M 作ME ∥BC 交AB 于点E .求证:ABC ∆~MED ∆.17.(本小题6分)某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件.已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件.求该企业分别捐给甲、乙两所学校的 矿泉水个多少件?18.(本小题7分)某同学在学习了统计知识后,就下表所列的5种用牙不良习惯对全班每一个同学进行了问卷调查(每个被调查的同学必须选择而且只能在5种用牙不良习惯中根据以上统计图提供的信息,回答下列问题:(1)这个班有多少名学生?(2)这个班中有C类用牙不良习惯的学生多少人?占全班人数的百分比是多少?(3)请补全条形统计图;(4)根据调查结果,估计这个年级850名学生中有B类用牙不良习惯的学生多少人?19.(本小题7分)现有5个质地、大小完全相同的小球上分别标有数字1-,2-,1,2,3.先将标有数字2-,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从两个盒子里各随即取出一个小球.(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;(2)求取出的两个小球上的数字之和等于0的概率.20.(本小题6分)如图,某同学在楼房的A 处测得荷塘的一端B 处的俯角为︒30,荷塘另 一端D 与点C 、B 在同一直线上,已知32=AC 米,16=CD 米,求荷塘宽BD 为多 少米?(取73.13≈,结果保留整数)21.(本小题6分)如图,在平面直角坐标系中,O 为原点,一次函数与反比例函数的图像 相交于)1,2(A 、)2,1(--B 两点,与x 轴交于点C .(1)分别求反比例函数和一次函数的解析式(关系式); (2)连接OA ,求AOC ∆的面积.22.(本小题7分)如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BD 相交于点N ,连接BM ,DN . (1)求证:四边形BMDN 是菱形;(2)若4=AB ,8=AD ,求MD 的长.D C B A30°OD C B A23.(本小题9分)如图,在平面直角坐标系中,直线231+-=x y 交x 轴于点P ,交y 轴 于点A .抛物线c bx x y ++-=221的图像过点)0,1(-E ,并与直线相交于A 、B 两点. (1)求抛物线的解析式(关系式);(2)过点A 作AC ⊥AB 交x 轴于点C ,求点C 的坐标;(3)除点C 外,在坐标轴上是否存在点M ,使得MAB ∆是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.CE PBAOxy参考答案二、填空题(本大题共6个小题,每小题3分,满分18分) 9.710596.4⨯4小于16无理数都可以) 11.2)1(3-x 12.2≥x 13.π314.五角星三、解答题(本大题共9个小题,满分58分)15.(本小题5分)解:原式=)1)(1()1)(1(11-+⋅⎥⎦⎤⎢⎣⎡-+++-x x x x x x …………2分 =x 2…………3分当21=x 时 原式=212⨯=1…………5分16.(本小题5分)证:MD ⊥AB ,∴∠=MDE ∠︒=90C …………1分 ME ∥BC ,∴∠=B ∠MED …………2分 在ABC ∆与MED ∆中,⎪⎩⎪⎨⎧===AC MD C MDE MED B …………4分)(AAS MED ABC ∆≅∆∴…………5分17.(本小题6分)解:设该企业向甲学校捐了x 件矿泉水,向乙学校捐了y 件矿泉水.…………1分⎩⎨⎧-==+40022000y x y x …………3分 解得:⎩⎨⎧==8001200y x …………5分答:设该企业向甲学校捐了1200件矿泉水,向乙学校捐了800件 矿泉水.…………6分18.(本小题7分)解:(1)6050%30=÷…………1分(2)%30%20%501=--…………2分 18%3060=⨯…………3分(3)图略.(注意在画图时要对齐、标上数字、上色)…………5分 (4)8510%850=⨯…………6分 答:(1)这个班有60名学生; (2)这个班中有C 类用牙不良习惯的学生18人占全班人数的百分比是30%;(4)根据调查结果,估计这个年级850名学生中有B 类用牙不良习惯的学生85人.…………7分19.(本小题7分)解:(1)①列表:共有6种结果,且它们的可能性相同…………3分②树状图:共有6种结果,且它们的可能性相同…………3分两数和:530,203-…………5分(3,2)(3,-1)(1,2)(1,-1)(-2,2)(-2,-1)2-12-12-131-2开始(2)3162)0(==两数和为P …………6分 答:两个小球上的数字之和等于0的概率为31.20.(本小题6分)解:由题易知:∠︒=60CAB ,ABC ∆ 是直角三角形, 在ABC Rt ∆中, AC BC =︒60tan ,即332=BC…………2分 332=∴BC …………4分 16332-=∴BD39≈…………5分答:荷塘宽BD 为39米.…………6分21.(本小题6分)解:(1)设正比例函数解析式为)0(1≠+=k b kx y ; 反比例函数解析式为)0(2≠=a xay …………1分 将)1,2(A 、)2,1(--B 代人1y 得: ⎩⎨⎧+-=-+=bk bk 221…………2分⎩⎨⎧-==∴11b k ,11-=∴x y …………3分将)1,2(A 代人2y 得: 2=a ,xy 22=∴…………4分 (2)对11-=x y 说: 当01=y 时,1=x)0,1(C ∴,1=∴OC …………5分211121=⨯⨯=∴∆AOC S …………6分 答:AOC ∆的面积为21.22.(本小题7分)(1)证:在矩形ABCD 中,MN 是BD 的中垂线, OD OB DM BM ==∴,…………1分AD ∥BC ,∴∠=MDO ∠NBO ,∠=DMO ∠BNO …………2分 MDO ∆∴~)(AAS NBO ∆…………3分 BN MD =∴,且MD ∥BN ,∴四边形MDNB 是平行四边形, DM BM = (或MN ⊥BD ),是菱形平行四边形BMDN ∴.…………4分(2)解:设MD 长为x ,则x DM MB ==…………5分 在AMB Rt ∆中,222AB AM BM += 即x x x 16641622-++=…………6分 解得:5=x答:MD 长为5.23.(本小题9分)解:(1)对231+-=x y 说,当0=x 时,2=y )2,0(A ∴…………1分 将)2,0(A ,)0,1(-E 代人c bx x y ++-=221得: ⎪⎩⎪⎨⎧+--==c b c 2102,⎪⎩⎪⎨⎧==∴223c b …………2分 )25.15.0(2232122++-=++-=∴x x y x x y 或…………3分(2)AC ⊥AB ,直线231+-=x y AB 的解析式为h x y AC +=∴3的解析式为…………4分)(值为倒数的相反数由于垂直,k将)2,0(A 代人h x y +=3中,23+=∴x y ,32,0-==x y 时当)0,32(-∴C …………5分(3)时当231223212+-=++-x x x , 311,021==x x )97,311(B ∴ Ⅰ.当AM ⊥BM 时,如图:作1BM ⊥1AM ①由上可知)97,0(1M②设)0,(m M若当∠︒=90AMB 时222BM AM AB +=由上可知222)911()311(+=AB 422+=m AM ,222)97()311(+-=m BM 0811263112=+-∴m m 解得:665112-=m ,665113+=m )0,66511(2-∴M ,)0,66511(3+∴MⅡ.当AB ⊥BM 时,如图:此时B M 5⊥AB ,99235-=∴x y B M 的解析式为 )0,2792(279204M x y ,即时,当== )992,0(,99205--==M y x 即时,当 综上述,符合的M 点的坐标有五个点,分别是: )992,0()0,2792()0,66511()0,66511()97,0(54321-+-M M M M M 、、、、 …………9分(一个点一分,第二、三个点两个一分)。
云南省2012年中考数学试题精析
⒓函数y=x的取值范围是.⒔已知扇形的圆心角为120︒半径为3cm ,则该扇形的面积为 2m (结果保留π).观察下列图形的排列规律(其中、、分别表示三角形、正方形、五角星),若第一个图形是三角形,则第18个图形是 .(填图形名称)▲■★■▲★▲■★■▲★▲■★■▲★▲■★[答案] 五角星 [考点] 分类归纳本题考查图形的变化类的分类归纳[解析] 根据观察可知图形的排列规律是3的循环,而1836÷=余数为0,所以第18个图形也就是第三个图形解:图形的排列规律是6的循环,而1863÷=余数为0,所以第18个图形也就是第六个图形,即五角星.三、解答题(本大题共9个小题,满分58分)[解析]《课标》要求了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.但本题把2(1)x -作为整体分配相乘比较简便,约分合并同类项后可求值。
(本小题5分)如图,在中, ,点是边上的一点,,且DM AC =, 过点M 作ME BC ∥交AB 于点E 。
求证:ABC MED ∆≅∆ [考点] 平行线、全等三角形本题考查平行线性质、全等三角形的判定[解析] 利用平行线性质和直角定义,ABC ∆和MED ∆的两组对应角对应相等,再由已知DM AC =,根据全等三角形AAS 的判定定理得证。
[证明] 如图, ME BC ∥DEM B∴∠=∠(两直线平行,同位角相等) D M A B ⊥ 90MDE ∴∠=︒ 又,90C ∠=︒ MDE C ∴∠=∠ 在ABC MED ∆∆和中()()()B DEM C MDE AC DM⎧∠=∠⎪∠=∠⎨⎪=⎩已证已证已知A BC M ED ∴∆≅∆()AAS⒘(本小题6分)某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件,已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件,求该企业捐给甲、乙两所学校的矿泉水各多少件?[答案] 捐给甲校1200件,捐给乙校800件. [考点] 一元一次方程的应用、二元一次方程组应用本题考查一元一次方程或二元一次方程组的应用[解析]《课标》要求能够根据具体问题中的数量关系,列出方程(组),本题比较简单,注意两数的关系是2倍少400,不难得出方程或方程组.解:(一元法)设该企业捐给乙校的矿泉水件数是x ,则捐给甲校的矿泉水件数是2400x -,依题意得方程:(2400)2000x x -+=,解得:800x =,24001200x -=所以,该企业捐给甲校的矿泉水1200件,捐给乙校的矿泉水800件. (二元法)设该企业捐给甲校的矿泉水件数是x ,捐给乙校的矿泉水件数是y , 依题意得方程组:20002400x y x y +=⎧⎨=-⎩ 解得:1200x =,800y =所以,该企业捐给甲校的矿泉水是1200件,捐给乙校的矿泉水是800件.⒙(本小题7分)某同学在学习了统计知识后,就下表所列的5种用牙不良习惯对全班每一个同学进行了问卷调查(每个被调查的同学必须选择而且只能在5种用牙不良习惯中选择一项),调查结果如下统计图所示:根据以上统计图提供的信息,回答下列问题: (1)这个班共有多少学生?(2)这个班中有C 类用牙不良习惯的学生多少人?占全班人数的百分比是多少? (3)请补全条形统计图.(4)根据调查结果,估计这个年级850名学生中有B 类用牙不良习惯的学生多少人? [答案] (1)60人;(2)18人,30%;(3)如图;(4)约85人. [考点] 统计图,频数、频率和总量的关系本题考查条形统计图、扇形统计图,频数、频率和总量的关系[解析](1)条形统计图A 类用牙不良习惯的学生人数为30人,在扇形统计图中,占全班的50%,因此可以求出这个班共有学生人数。
云南省中考数学试卷及答案解析()
云南省中考数学试卷一、填空题(本大题共6个小题,每小题3分,满分18分)1.|﹣3|=.2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=.3.因式分解:x2﹣1=.4.若一个多边形的边数为6,则这个多边形的内角和为 720度.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.据《云南省生物物种名录()的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣48.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠29.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱 B.圆锥 C.球 D.正方体10.下列计算,正确的是()A.(﹣2)﹣2=4 B. C.46÷(﹣2)6=64 D.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4 B.2 C.1 D.﹣212.某校随机抽查了10名参加云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)46 47 48 49 50人数(人) 1 2 1 2 4下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为4813.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C. D.5三.解答题(共9个小题,共70分)15.解不等式组.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.17.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?20.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.23.(12分)(•云南)有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这个数的和,即,求证:.云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每小题3分,满分18分)1.|﹣3|=3.【考点】绝对值.【分析】根据负数的绝对值等于这个数的相反数,即可得出答案.【解答】解:|﹣3|=3.故答案为:3.【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=60°.【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由对顶角的定义即可得出结论.【解答】解:∵直线a∥b,∠1=60°,∴∠1=∠3=60°.∵∠2与∠3是对顶角,∴∠2=∠3=60°.故答案为:60°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.因式分解:x2﹣1=(x+1)(x﹣1).【考点】因式分解-运用公式法.【专题】因式分解.【分析】方程利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.4.若一个多边形的边数为6,则这个多边形的内角和为 720度.【考点】多边形内角与外角.【分析】根据多边形的内角和公式求解即可.【解答】解:根据题意得,180°(6﹣2)=720°故答案为720【点评】此题是多边形的内角和外角,主要考差了多边形的内角和公式,解本题的关键是熟记多边形的内角和公式.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为﹣1或2.【考点】根的判别式.【分析】根据方程有两个相等的实数根列出关于a的方程,求出a的值即可.【解答】解:∵关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,∴△=0,即4a2﹣4(a+2)=0,解得a=﹣1或2.故答案为:﹣1或2.【点评】本题考查的是根的判别式,熟知一元二次方程的解与判别式之间的关系是解答此题的关键.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于144或384π.【考点】几何体的展开图.【分析】分两种情况:①底面周长为6高为16π;②底面周长为16π高为6;先根据底面周长得到底面半径,再根据圆柱的体积公式计算即可求解.【解答】解:①底面周长为6高为16π,π×()2×16π=π××16π=144;②底面周长为16π高为6,π×()2×6=π×64×6=384π.答:这个圆柱的体积可以是144或384π.故答案为:144或384π.【点评】本题考查了展开图折叠成几何体,本题关键是熟练掌握圆柱的体积公式,注意分类思想的运用.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.据《云南省生物物种名录()的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣4【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为2.5434×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠2【考点】函数自变量的取值范围.【分析】根据当函数表达式的分母中含有自变量时,自变量取值要使分母不为零,判断求解即可.【解答】解:∵函数表达式y=的分母中含有自变量x,∴自变量x的取值范围为:x﹣2≠0,即x≠2.故选D.【点评】本题考查了函数自变量取值范围的知识,求自变量的取值范围的关键在于必须使含有自变量的表达式都有意义.9.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱 B.圆锥 C.球 D.正方体【考点】由三视图判断几何体.【分析】利用三视图都是圆,则可得出几何体的形状.【解答】解:主视图、俯视图和左视图都是圆的几何体是球.故选C.【点评】本题考查了由三视图确定几何体的形状,学生的思考能力和对几何体三种视图的空间想象能力.10.下列计算,正确的是()A.(﹣2)﹣2=4 B. C.46÷(﹣2)6=64 D.【考点】二次根式的加减法;有理数的乘方;负整数指数幂;二次根式的性质与化简.【分析】依次根据负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并进行判断即可.【解答】解:A、(﹣2)﹣2=,所以A错误,B、=2,所以B错误,C、46÷(﹣2)6=212÷26=26=64,所以C正确;D、﹣=2﹣=,所以D错误,故选C【点评】此题是二次根式的加减法,主要考查了负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并同类二次根式,熟练掌握这些知识点是解本题的关键.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4 B.2 C.1 D.﹣2【考点】反比例函数系数k的几何意义.【分析】此题应先由三角形的面积公式,再求解k即可.【解答】解:因为位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,所以,解得:xy=2,所以:k=2,故选:B【点评】主要考查了反比例函数系数k的几何意义问题,关键是由三角形的面积公式,再求解k.12.某校随机抽查了10名参加云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)46 47 48 49 50人数(人) 1 2 1 2 4下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为48【考点】方差;加权平均数;中位数;众数.【分析】结合表格根据众数、平均数、中位数的概念求解即可.【解答】解:10名学生的体育成绩中50分出现的次数最多,众数为50;第5和第6名同学的成绩的平均值为中位数,中位数为: =49;平均数==48.6,方差= [(46﹣48.6)2+2×(47﹣48.6)2+(48﹣48.6)2+2×(49﹣48.6)2+4×(50﹣48.6)2]≠50;∴选项A正确,B、C、D错误;故选:A.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.13.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C. D.5【考点】相似三角形的判定与性质.【分析】首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为9,进而求出△ACD的面积.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为15,∴△ACD的面积∴△ACD的面积=5.故选D.【点评】本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.三.解答题(共9个小题,共70分)15.解不等式组.【考点】解一元一次不等式组.【分析】分别解得不等式2(x+3)>10和2x+1>x,然后取得这两个不等式解的公共部分即可得出答案.【解答】解:∵,∴解不等式①得:x>2,解不等式②得:x>﹣1,∴不等式组的解集为:x>2.【点评】本题主要考查了解一元一次不等式组的知识,要掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.17.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?【考点】二元一次方程组的应用.【分析】设A种饮料生产了x瓶,B种饮料生产了y瓶,根据:①A种饮料瓶数+B种饮料瓶数=100,②A种饮料添加剂的总质量+B种饮料的总质量=270,列出方程组求解可得.【解答】解:设A种饮料生产了x瓶,B种饮料生产了y瓶,根据题意,得:,解得:,答:A种饮料生产了30瓶,B种饮料生产了70瓶.【点评】本题主要考查二元一次方程组的应用能力,在解题时要能根据题意得出等量关系,列出方程组是本题的关键.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.【考点】矩形的判定;菱形的性质;解直角三角形.【专题】计算题;矩形菱形正方形.【分析】(1)由四边形ABCD是菱形,得到对边平行,且BD为角平分线,利用两直线平行得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出∠BDC度数,即可求出tan∠DBC的值;(2)由四边形ABCD是菱形,得到对角线互相垂直,利用两组对边平行的四边形是平行四边形,再利用有一个角为直角的平行四边形是矩形即可得证.【解答】(1)解:∵四边形ABCD是菱形,∴AD∥BC,∠DBC=∠ABC,∴∠ABC+∠BAD=180°,∵∠ABC:∠BAD=1:2,∴∠ABC=60°,∴∠BDC=∠ABC=30°,则tan∠DBC=tan30°=;(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠BOC=90°,∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC是平行四边形,则四边形OBEC是矩形.【点评】此题考查了矩形的判定,菱形的性质,以及解直角三角形,熟练掌握判定与性质是解本题的关键.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据喜欢篮球的人数有25人,占总人数的25%即可得出总人数;(2)根据总人数求出喜欢羽毛球的人数,补全条形统计图即可;(3)求出喜欢跳绳的人数占总人数的20%即可得出结论.【解答】解:(1)∵喜欢篮球的人数有25人,占总人数的25%,∴=100(人);(2)∵喜欢羽毛球的人数=100×20%=20人,∴条形统计图如图;(3)由已知得,1200×20%=240(人).答;该校约有240人喜欢跳绳.【点评】本题考查的是条形统计图,熟知从条形图可以很容易看出数据的大小,便于比较是解答此题的关键.20.如图,AB 为⊙O 的直径,C 是⊙O 上一点,过点C 的直线交AB 的延长线于点D ,AE ⊥DC ,垂足为E ,F 是AE 与⊙O 的交点,AC 平分∠BAE . (1)求证:DE 是⊙O 的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OC ,先证明∠OAC=∠OCA ,进而得到OC ∥AE ,于是得到OC ⊥CD ,进而证明DE 是⊙O 的切线;(2)分别求出△OCD 的面积和扇形OBC 的面积,利用S 阴影=S △COD ﹣S 扇形OBC 即可得到答案. 【解答】解:(1)连接OC , ∵OA=OC , ∴∠OAC=∠OCA , ∵AC 平分∠BAE , ∴∠OAC=∠CAE , ∴∠OCA=∠CAE , ∴OC ∥AE , ∴∠OCD=∠E , ∵AE ⊥DE , ∴∠E=90°, ∴∠OCD=90°, ∴OC ⊥CD ,∵点C 在圆O 上,OC 为圆O 的半径, ∴CD 是圆O 的切线;(2)在Rt △AED 中,∵∠D=30°,AE=6, ∴AD=2AE=12,在Rt △OCD 中,∵∠D=30°, ∴DO=2OC=DB+OB=DB+OC , ∴DB=OB=OC=AD=4,DO=8, ∴CD===4,∴S △OCD ===8,∵∠D=30°,∠OCD=90°, ∴∠DOC=60°, ∴S 扇形OBC =×π×OC 2=,∵S 阴影=S △COD ﹣S 扇形OBC ∴S 阴影=8﹣,∴阴影部分的面积为8﹣.【点评】本题主要考查了切线的判定以及扇形的面积计算,解(1)的关键是证明OC ⊥DE ,解(2)的关键是求出扇形OBC 的面积,此题难度一般.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.【考点】列表法与树状图法.【分析】(1)首先根据题意画出表格,然后由表格求得所有等可能的结果;(2)根据概率公式进行解答即可.【解答】解:(1)列表得:1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8(2)由列表可知,所有可能出现的结果一共有16种,这些结果出现的可能性相同,其中两次所得数字之和为8、6、5的结果有8种,所以抽奖一次中奖的概率为:P==.答:抽奖一次能中奖的概率为.【点评】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.【考点】二次函数的应用.【分析】(1)待定系数法求解可得;(2)根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答】解:(1)设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.【点评】本题主要考查待定系数法求一次函数解析式与二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键.23.(12分)(•云南)有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这个数的和,即,求证:.【考点】分式的混合运算;规律型:数字的变化类.【分析】(1)由已知规律可得;(2)先根据已知规律写出第n、n+1个数,再根据分式的运算化简可得;(3)将每个分式根据﹣=<<=﹣,展开后再全部相加可得结论.【解答】解:(1)由题意知第5个数a==﹣;(2)∵第n个数为,第(n+1)个数为,∴+=(+)=×=×=,即第n个数与第(n+1)个数的和等于;(3)∵1﹣=<=1,=<<=1﹣,﹣=<<=﹣,…﹣=<<=﹣,﹣=<<=﹣,∴1﹣<+++…++<2﹣,即<+++…++<,∴.【点评】本题主要考查分式的混合运算及数字的变化规律,根据已知规律=﹣得到﹣=<<=﹣是解题的关键.21 / 21。
2012年中考数学样题参考答案.doc
2012年中考数学样题参考答案选择题(每题3分,共30分)一、BADCD BADBA二、填空题(每题3分,共18分)11. 15; 12. 6; 13. (-4,3) 14.38; 15.53; 16. 4n ;三、解答题(每小题8分,共16分)17..解:原式21=····································································· 6分3=··················································································· 8分18. 解:原式=213(3)32(2)(2)a a a a a a a +---÷-++- ······················································ 2分 =213(2)(2)32(3)a a a a a a a +-+---+-· ··········································································· 3分 1233a a a a +-=--- ······························································································ 4分 =33a - ········································································································ 6分 a 取值时只要不取2,2-,3就可以. ······························································· 7分求值正确.原式 ····························································································· 9分四、解答题(每小题9分,共18分)19.(1)200 ······································································································· 2分 (2)补充图:扇形图中补充的 跳绳25% ························································· 3分 其它20% ······································································································ 4分 条形图中补充的高为50 ···················································································· 5分(3)54 ········································································································ 7分 (4)解:1860×40%=744(人)答:最喜欢“球类”活动的学生约有744人. ······················································ 9分 20.解:(1)根据题意可列表或树状图如下:第一次第二次12341 —— (1,2) (1,3) (1,4)2 (2,1) —— (2,3) (2,4)3 (3,1) (3,2) —— (3,4) 4(4,1)(4,2)(4,3)——·············································································· 5分···························································································· 5分从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种, ∴P (和为奇数)23= ···················································································· 7分 (2)不公平.∵小明先挑选的概率是P (和为奇数)23=,小亮先挑选的概率是P (和为偶数)13=,∵2133≠,∴不公平. ····················································································· 9分五、解答证明题(每小题8分,共16分) 21.(1)证明:∵AD 平分∠BAC∴∠BAD=21∠BAC . (1,2) (1,3) (1,4) 2341 (1,1) (2,3) (2,4) 1342 (3,1) (3,2) (3,4) 1243 (4,1) (4,2) (4,3)1234 第一次摸球第二次摸球∵AE 平分∠BAF . ∴∠BAE=21∠BAF . 2分 ∵∠BAC+∠BAF=180°∴∠BAD+∠BAE=21 (∠BAC+∠BAF )= 21×180°=90° ∴∠DAE=90°.即DA ⊥AE . 4分 (2)AB=DE 5分 理由是:∵AB=AC ,AD 平分∠BAC . ∴AD ⊥BC ,即∠ADB=90°. ∵BE ⊥AE .∴∠AEB=90° 又∵∠DAE=90°(已证),∴四边形AEBD 是矩形.故AB=DE . 8分22、解:(1)不同.理由如下:往、返距离相等,去时用了2小时,而返回时用了2.5小时,∴往、返速度不同. ··················································································· 2分(2)设返程中y 与x 之间的表达式为y kx b =+,则120 2.505.k b k b =+⎧⎨=+⎩,解之,得48240.k b =-⎧⎨=⎩,···················································································· 5分∴48240y x =-+.(2.55x x ≤≤)(评卷时,自变量的取值范围不作要求) ······ 6分 (3)当4x =时,汽车在返程中,48424048y ∴=-⨯+=.∴这辆汽车从甲地出发4h 时与甲地的距离为48km . ········································· 8分六、解答证明题(23小题10分,24小题12分,共22分) 23、证明:(1) 连结AC ,如图∵C 是弧BD 的中点∴∠BDC =∠DBC 1分 又∠BDC =∠BAC在三角形ABC 中,∠ACB =90°,CE ⊥AB ∴ ∠BCE=∠BAC∠BCE =∠DBC 3分 ∴ CF =BF 4分因此,CF =BF . (2)解法一:作CG ⊥AD 于点G , ∵C 是弧BD 的中点∴ ∠CAG =∠BAC , 即AC 是∠BAD 的角平分线.·············· 5分 ∴ CE =CG ,AE =AG 6分 在Rt △BCE 与Rt △DCG 中,CE =CG , CB =CD ∴Rt △BCE ≌Rt △DCG∴BE =DG 7分 ∴AE =AB -BE =AG =AD +DG 即 6-BE =2+DG∴2BE =4,即 BE =2 8分又 △BCE ∽△BAC∴ 212BC BEAB ==· 9分 32±=BC (舍去负值)∴32=BC 10分(2)解法二:∵AB 是⊙O 的直径,CE ⊥AB∴∠BEF=︒=∠90ADB , 5分 在Rt ADB △与Rt FEB △中,∵FBE ABD ∠=∠ ∴ADB △∽FEB △,则BFABEF AD =即BFEF 62=, ∴EF BF 3= 6分 又∵CF BF =, ∴EF CF 3= 利用勾股定理得:EF EF BF BE 2222=-= 7分又∵△EBC ∽△ECA 则CEBE AE CE =,即则BE AE CE ⋅=28分 ∴BE BE EF CF ⋅-=+)6()(2即EF EF EF EF 22)226()3(2⋅-=+∴22=EF 9分 ∴3222=+=CE BE BC 10分24.解:(1)解方程01682=+-x x ,得421==x x由实数m 是方程01682=+-x x 的一个实数根,得m=4 ∴点A ,C 的坐标分别是A (4,0)和C (0,4). 1分将A (4,0)和C (0,4)的坐标分别代人c bx x y ++-=221 得⎩⎨⎧==⇒⎩⎨⎧==++-414048c b c c b ∴抛物线的解析式为4212++-=x x y 3分 (2)由4212++-=x x y ,令y=0,得04212=++-x x ,解此方程得2,421-==x x∴点B 的坐标为B (2,0),故AB=6, S △ABC =21·AB ·CO=12 4分设AD=k (0≤k ≤6), ∵ED ∥BC ∴△ADE ∽△ABC ,从而36)6()(222k k AB AD S S ABC ADE ===∆∆ ∴32k S ADE=∆ (5分) 同理可知,3)6(2-=∆k S BDF6分∴S 四边形DECF =S △ABC -S △ADE -S △BDF=6)3(3243222+--=+-k k k (7分) 当且仅当k =3时,S 四边形DECF 有最大值为6,此时D (1,0) 8分 (3)存在满足条件的点N ,使得∠NOB=∠AMO ,设点N (y x ,) ∵若M 是⊙G 的优弧ACO 上的一个动点∴∠NOB=∠AMO=∠ACO=45° 9分 ①当点N 在x 轴上方时,tan45°=x y xy-=⇒=-1 又∵4212++-=x x y ∴4212++-x x 3220842±=⇒=--⇒-=x x x x ∵点N 在这个抛物线位于y 轴左侧的图象上,从而有N (232,322--) 10分 ②当点N 在x 轴下方时,tan45°=x y xy=⇒=--1 又∵4212++-=x x y ∴22842122±=⇒=⇒=++-x x x x x ∵点N 在这个抛物线位于y 轴左侧的图象上,从而有N (22,22--) 12分。
2012年云南省中考数学试卷-答案
【解析】(1)设一次函数解析式为 ;反比例函数解析式为 ,
∵将 、 代入 得: ,∴ ,
∴ ;∵将 代入 得 ,∴ ;
(2)∵ ,当 时, ,
∴ ,∴ ,∴ .
【提示】(1)设一次函数解析式为 ;反比例函数解析式为 ,将 、 代入 得到方程组 ,求出即可;将 代入 得出关于 的方程,求出即可;
17.【答案】该企业向甲学校捐了1200件矿泉水,向乙学校捐了800件矿泉水
【解析】设该企业向甲学校捐了x件矿泉水,向乙学校捐了y件矿泉水,
由题意得, ,
解得: .
【提示】设该企业向甲学校捐了x件矿泉水,向乙学校捐了y件矿泉,则根据总共捐赠2000件,及捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件可得出方程,联立求解即可.
符合条件的点M有5个,其坐标分别为: 、 、 、 或 .
【提示】(1)首先求出A点坐标,然后利用待定系数法求出抛物线的解析式;
(2)利用相似三角形( )比例线段之间的关系,求出线段OC的长度,从而得到C点的坐标,如题图所示;
(3)存在所求的M点,在x轴上有3个,y轴上有2个,注意不要遗漏.求点M坐标的过程并不复杂,但要充分利用相似三角形比例线段之间的关系.
如答图①所示,过点B作 轴于点D,则 , , .
点M在坐标轴上,且 是直角三角形,有以下几种情况:
①当点M在x轴上,且 ,如答图①所示.
设 ,则 .
∵ , 轴,∴ ,即 ,
解得 ,∴此时M点坐标为 ;
②当点M在x轴上,且 ,如答图①所示.
设 ,则 .
∵ ,易知 ,
∴ ,即 ,
化简得: ,
解得: , ,
3.【答案】D
【解析】A. ,故本选项错误;
2012年云南省中考数学试卷及解析
2012年云南省中考数学试卷及解析2012年云南省中考数学试卷一、选择题共8小题每小题3分满分24分15的相反数是A B5C D5*******云南如图是由6个形同的小正方体搭成的一个几何体则它的俯视图是A B C D3201261云南下列运算正确的是Ax261x36B326C x32x5D4014201261云南不等式组的解集是A x1B x4C4x1D x15201261云南如图在△ABC中∠B67°∠C33°AD是△ABC的角平分线则∠CAD的度数为A40°B45°C50°D55°6201261云南如图AB、CD是⊙O的两条弦连接AD、BC若∠BAD60°则∠BCD的度数为A40°B50°C60°D70°7201261云南我省五个5A级旅游景区门票票价如下表所示单位元关于这五个里边有景区门票票价下列说法中错误的是景区名称石林玉龙雪山丽江古城大理三塔文化旅游区西双版纳热带植物园票价元1751058012180A平均数是120B中位数是105C众数是80D极差是95 8201261云南若则ab的值为A B C1D2二、填空题共6小题每小题3分满分18分9201261云南国家统计局发布第六次全国人口普查主要数据公布报告显示云南省常住人口约为45960000人这个数据用科学记数法可表示为_________人10201261云南写出一个大于2小于4的无理数_________11因式分解3x26x3_________12函数中自变量x的取值范围是_________13201261重庆一个扇形的圆心角为120°半径为3则这个扇形的面积为_________结果保留π14201261云南观察下列图形的排列规律其中▲、■、★分别表示三角形、正方形、五角星若第一个图形是三角形则第18个图形是_________填图形的名称▲■★■▲★▲■★■▲★▲…三、解答题共9小题满分58分15201261云南化简求值其中16201261云南如图在△ABC中∠C90°点D是AB边上的一点DM⊥AB且DMAC过点M作ME‖BC交AB于点E求证△ABC∽△MED 172012 61云南某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件求该企业分别捐给甲、乙两所学校的矿泉水个多少件18201261云南某同学在学习了统计知识后就下表所列的5种用牙不良习惯对全班每一个同学进行了问卷调查每个被调查的同学必须选择而且只能在5种用牙不良习惯中选择一项调查结果如下统计图所示根据以上统计图提供的信息回答下列问题种类A B C D E不良习惯睡前吃水果喝牛奶用牙开瓶盖常喝饮料嚼冰常吃生冷零食磨牙1这个班有多少名学生2这个班中有C类用牙不良习惯的学生多少人占全班人数的百分比是多少3请补全条形统计图4根据调查结果估计这个年级850名学生中有B类用牙不良习惯的学生多少人19201261云南现有5个质地、大小完全相同的小球上分别标有数字12123先将标有数字213的小球放在第一个不透明的盒子里再将其余小球放在第二个不透明的盒子里现分别从两个盒子里各随即取出一个小球1请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果2求取出的两个小球上的数字之和等于0的概率20201261云南如图某同学在楼房的A处测得荷塘的一端B处的俯角为30°荷塘另一端D与点C、B在同一直线上已知AC32米CD16米求荷塘宽BD为多少米取结果保留整数21201261云南如图在平面直角坐标系中O为原点一次函数与反比例函数的图象相交于A21、B12两点与x轴交于点C1分别求反比例函数和一次函数的解析式关系式2连接OA求△AOC的面积22201261云南如图在矩形ABCD中对角线BD的垂直平分线MN与AD相交于点M与BD相交于点N连接BMDN1求证四边形BMDN是菱形2若AB4AD8求MD的长23201261云南如图在平面直角坐标系中直线yx2交x轴于点P交y轴于点A抛物线yx2bxc的图象过点E10并与直线相交于A、B两点1求抛物线的解析式关系式2过点A作AC⊥AB交x轴于点C求点C的坐标3除点C外在坐标轴上是否存在点M使得△MAB是直角三角形若存在请求出点M的坐标若不存在请说明理由2012年云南省中考数学试卷参考答案与试题解析一、选择题共8小题每小题3分满分24分15的相反数是A B5C D5考点相反数。
2012年云南省中考数学答案(正题)
−5−云南省2012年初中学业水平考试数学参考答案及评分标准一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)二、填空题(本大题共6个小题,每小题3分,满分18分) 9.4.596×10710.π…(答案不唯一) 11.3(x −1)212.x ≥2 13.3π14.五角星三、解答题(本大题共9个小题,满分58分)15.(本小题5分)解:原式11(1)(1)(1)(1)11x x x x x x =+-++-+-g g 11x x =-++ 2x =. …………………………………………4分当12x =时,原式=2x =2×12=1.……………………5分 16.(本小题5分)证明:在△ABC 和△MED 中,∵B C ∥EM ,∴M E D B ∠=∠,………………………………2分 ∵DM ⊥AB ,∴90M D E ∠=o,∴C M D E ∠=∠. ………………………3分 ∵A C M D =,∴△ABC ≌△MED .………………5分17.(本小题6分)解:方法一:设企业捐给乙校矿泉水x 件.…………………………1分18据题意,得 (2400)2000x x +-=.………………………………4分 解方程,得 800x =.答:该企业捐给甲校矿泉水1200件,乙校矿泉水800件.……………………6分 方法二:设企业捐给甲校矿泉水x 件,捐给乙校矿泉水y 件.………………1分据题意,得方程组 2000,2400.x y x y +=⎧⎨=-⎩………………………………4分解方程组,得1200,800.x y =⎧⎨=⎩答:该企业捐给甲校矿泉水1200件,乙校矿泉水800件.…………………6分 18.(本小题7分)解:(1)这个班共有学生 :610%60÷=(人);…………………2分 (2)有C 类用牙不良习惯的学生18人,所占百分比为30%;…………………4分 (3)补全条形统计图如图所示;…………………5分 (4)∵85010%85⨯=, ∴这个年级的学生中有B 类用牙不良习惯的学生约85人.……………7分19.(本小题7分)解:(1)列表或画树状图表示取出的两个小球上数字之和所有可能结果如下:列表得或树状图−21 3−12 −1 2 −1 2和−3 0 0 3 2 5−7−……………………………………………………………5分 (2)由表格或树状图可知,所有可能出现的结果共有6种,∴P (和为0)=21=63.…………………………………………7分20.(本小题6分)解:在Rt △ACB 中,60C A B ∠=o,t a n 6C B A C =⋅o∴1639D B C B =-≈(米). ………………………………5分答:荷塘宽DB 的长约为39米.………………………………6分 21.(本小题6分)解:(1)设反比例函数解析式为k y x=. 2k x y ==, 即2=y x. 设一次函数的解析式为y a x b =+, 21,2.a b a b +=⎧⎨-+=-⎩ 解方程组,得1,1.a b =⎧⎨=-⎩ 即1y x =-.………………………………4分 (2)∵1y x =-,∴当y =0时,x =1, 即(10)C ,. S △AOC =12×1×1=12.……………………6分 22.(本小题7分)(1)证明:∵MN 是BD 的垂直平分线,∴M B M D=,O B O D =,B O N D O M ∠=∠.−8−∵四边形A B C D 是矩形, ∴AD ∥BC . ∴∠OBN =∠ODM . ∴△BON ≌△DOM . ∴BN =MD .∴四边形BMDN 是平行四边形.∴平行四边形BMDN 是菱形. ……………3分(2)设M D x =,则8A M x =-,B M x =.在Rt △ABM 中,222B M A BA M=+. ∴2224(8)x x =+-,解得5x =. ∴5M D =.…………………7分23.(本小题9分)解:(1)∵123y x =-+,∴当0x =时,2y =;当0y =时,6x =. ∴点P 、A 的坐标分别为(6,0)P 、(0,2)A . ∵点A 、E 在抛物线上, ∴2,10.2c b c =⎧⎪⎨=--+⎪⎩ 解得32b =. ∴抛物线的解析式为213222y x x =-++.…………………3分(2)∵A C A B ⊥,A O O P⊥, ∴90C A P A O P ∠=∠=o ,90C A OP A O ∠+∠=o. ∵90P A OA P O ∠+∠=o∴C A O A P O ∠=∠. ∴A O C ∆∽P O A ∆. ∴OC OAOA OP=,222263O A O C O P === .−9−∴2(,0)3C -.…………………5分 (3)在x 轴和y 轴的正半轴上存在点M ,使△MAB 为直角三角形.Ⅰ.若90A B M ∠=o, 可求得点117(,)39B . 过点B 作1B M A B ⊥交x 轴于点M 1, 设1(,0)M m ,作B D x ⊥轴于点D ,则△BDM 1∽△PDB .∴21B D M D D P =⋅. ∴211117()(6)()339m --=,解得9227m =. ∴192(,0)27M . Ⅱ.若90A MB ∠=o,则M 点是以AB 为直径的圆与坐标轴的交点. 图中2M 、3M 、4M 为满足条件的点.①当点2M 在y 轴上时,连结2BM .∵∠290A M B =o, ∴四边形2O D B M 为矩形. ∴279O M B D ==.∴27(0,)9M . ②当点3M 在x 轴上时,连结3AM 、3B M .设3(,0)M n ,则3113D M n =-. ∵△AOM 3∽△M 3DB . ∴33OM OABD DM =,117()239n n -=⨯,解得1n,2n .−10−经检验1n ,2n均符合题意,故3,0)M,4,0)M . 综上所述,存在使△MAB 为直角三角形的点为192(,0)27M ,27(0,)9M ,3,0)M,4,0)M 共4个点.…………………9分。
云南省2012年中考数学模拟试题及答案
一元二次方程x 2-2A .2,021-==x x :对这两名运动员的成绩进行比较,下列四个结论中,不正确的是.甲运动员得分的极差大于乙运动员得分的极差
A
如图3,△ABC的周长为AC对折,使顶点
,有一块含有
点放在直尺的对边上
中
高
部
全
对
米,斜坡BC的长为400米,
30°. 已知A点海
图7
班勤工俭学活动中获得1800元,班委会决定拿出不少于270元但元的资金为参加勤工俭学活动的同学购买纪念品,其余资金用于在毕业晚会
y
1
1
O
图9
料
资
中
高
备
设
有
所
查
检
电
通
;
验
试
整
调
卷
试
料
资
中
高
行
进
后
束
结
装
安
及
以
中
程
过
装
安
在
,
备
设
气
电
卷
试
料
资
中
高
部
全
对
图3图4。
云南省2012届初中数学学业考试样卷
适用精选文件资料分享云南省 2012 届初中数学学业考试样卷云南省 2012 届初中学业考试样卷(二)罗平县板桥二中 2012 届放学期期中考试卷数学试题卷(金保林)说明 :1 、本卷共 3 个大题 ,共 23 个小题 , 全卷满分 100 分, 考试时间 120 分钟 . 2、曲靖市数学水平考试履行云南省 2012 初中学业考试卷,不考附带题,但分值按 120分(实质考试成绩乘以 1.2 ) 3 、本卷分试题卷和答题卷 , 答案要写在答题卷上, 不得在试卷上作答, 不然不给分 . 一、选择题(本大题共8小题,每题 3 分,共 24 分. 每题只有一个正确答案,请将正确答案的序号填在题后的括号内) 1 、按 100 分制 60 分及格来算,满分是 120 分的及格分是() A.60 分 B.72 分 C.90 分 D.105 分2、以下运算正确的选项是() A . B . C. D. 3 、以以下图的物体由两个紧靠在一起的圆柱构成,小刚准备画出它的三视图,那么他所画的三视图中的俯视图应当是() A .两个订交的圆 B.两个内切的圆 C.两个外切的圆D.两个外离的圆 4 、方程的根是( )A. B . C. D. 5 、假如等腰三角形两边长是 6 cm 和 3 cm,那么它的周长是 ( ) A .9 cm B .12 cm C.15 cm 或 12 cm D .15 cm 6 、如图5 是一个圆锥形冰淇淋,已知它的母线长是 13cm,高是 12cm,则这个圆锥形冰淇淋的底面面积是() A . cm2 B . cm2 C. cm2 D. cm2 7 、有以以下图形:①函数的图形;②函数的图像;③一段弧;④平行四边形,此中必定是轴对称图形的有() A.1 个 B.2个 C.3 个 D.4 个 8 、当时,反比率函数和一次函数的图象大体是()二、填空题(本大题共 6 小题,每题 3 分,共 18 分) 9 、因式分解:ma+mb=. 10 、函数中,自变量 x 的取值范围是. 11 、如图,点 A、B、C在圆 O上,且,则. 12 、如图, O为直线 AB上一点,∠COB=30°,则∠ 1= . 13 、罗平动物群是我国珍稀的三叠纪海洋生物化石库,生物门类的多样性、化石保存的完好性举世罕有。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南省2012中考年初中学业水平考试试题(全卷三个大题,共23小题,满分100分,考试用时120分钟)一、选择题(本大题共7个小题,每个小题只有一个正确选项,每小题3分,满分21分)⒈5的相反数是.A 15 B. -5 C. 15-D. 5[答案] B[解析] 正数的相反数是负数,所以5的相反数是是5-,故选B.⒉如图是由6个相同的小正方体搭成的一个几何体,则它的俯视图是[答案] A[解析] 俯视图只能看到三个联成横排的正方形,即图A ,故选A.⒊下列运算正确的是.A 236x x x ⋅= B . 236-=- C. 325()x x = D. 01=4[答案] D[解析] .A 23235x x x x +⋅== B.2211339-==C. 32236()x x x ⨯==D. 01=4 (任何非零数的零次方都等于0)故选D.⒋不等式10324x x x ->⎧⎨>-⎩的解集是.A 1x < B. 4x >- C. 41x -<< D. 1x > [答案] C[解析] 1011413243244x x x x x x x x x ->><⎧⎧⎧⇒⇒⇒-<<⎨⎨⎨>-->->-⎩⎩⎩ ,故选C.⒌如图,在∆ABC 中,∠︒B=67,∠︒C=33,AD 是∆ABC 的角平分线,则AD ∠C 的度数为.A 40︒ B. 45︒C. 50︒D. 55︒ [答案] .A [解析]11(1806733)4022AD BAC ∠=∠=︒-︒-︒=︒C故选A.⒍如图,AB 、CD 是O 的两条弦,连接AD 、 BC .若60AD ∠=︒B ,则CD ∠B 的度数为 .A 40︒ B. 50︒C. 60︒D. 70︒ [答案] C [解析]如图,AD ∠B 、CD ∠B 都是O 的所对的圆周角.60BCD AD ∴∠=∠=︒B (圆内同弧或等弧所对的圆周角相等).故选C.⒎我省五个5A 级旅游景区门票如下表所示(单位:元)关于这五个旅游景区门票票价,下列说法错误的是.A 平均数是120. B. 中位数是105. C. 众数是80. D. 极差是95.[答案] .A[解析]这五个旅游景区门票票价的平均数5100755202120561112.212055⨯++-+-===≠,说法.A 是错误的,故选A.验证:B.将这五个门票价从小到大排列为:80,80,105,121,175,五个数中105居中,故这五个数的中位数是105.︵ BDC.在这五个数中80出现两次,其它都只一只,故五数中的众数是80。
D.极差是样本中最大数与最小数的差,所以五数的极差是175-80=95.⒏若2214a b +=,12a b -=,则a b +的值为 .A 12-. B. 12. C. 1. D. 2.[答案] .B[解析]2212224111()20244a b a b a b a b ab ab +=-=⇒-=⇒+-=→=22211()242a b a b ab a b +=++=⇒+=±10002a b a b a a b -=>⇒>⇒>⇒+>,12a b ∴+=,故选B. 二、填空题(本大题共6全小题,每小题3分,满分18分)⒐国家统计局发布第六次全国人口普查主要数据公报显示:云南省常住人口约为45960000人,这个数据用科学记数法可表示为 人. [答案] 74.59610⨯[解析]7745960000 4.59610(0 4.59610)=⨯<<位.⒑定出一个大于2小于4的无理数: .[答案] [解析]24=,4=24(5,6,7,8,10,11,1213,14,15)x ∴=<<==,也可以填π.⒒分解因式:2363x x -+= .[答案] 23(1)x -[解析]2223633(21)3(1)x x x x x -+=-+=-⒓函数y =x 的取值范围是 .[答案] 2x ≥[解析]函数y =2x -⇒≥0x ≥2.⒔已知扇形的圆心角为120︒半径为3cm ,则该扇形的面积为 2m (结果保留π).[答案] 3π[解析] 2113333S S ππ==⋅=圆面积扇形面积.⒕观察下列图形的排列规律(其中▲、■、★分别表示三角形、正方形、五角星),若第一个图形是三角形,则第18个图形是 .(填图形名称)▲■★▲■★▲■★▲■★▲■★▲■★▲■★▲■★[答案] 五角星[解析] 图形的排列规律是3的循环,而1836÷=余数为0,所以是第三个图形,即五角星. 三、解答题(本大题共9个小题,满分58分)⒖(本小题5分)化简求值:211()(1)11x x x +⋅-+-,其中12x =. [答案] 1[解析]221111()(1)[](1)11211(1)(1)(1)(1)x x x x x x xx x x x x x -++⋅-=+⋅-=-++=+-+--+当12x =时,原式1212=⨯=⒗(本小题5分)如图,在ABC ∆中,90C ∠=︒ ,点D 是AB 边上的一点,DM AB ⊥,且DM A C =,过点M 作ME BC ∥交AB 于点E 。
求证:ABC MED ∆≅∆ [解析] 如图,ME BC ∥DEM B ∴∠=∠(两直线平行,同位角相等)90DM AB MDE C ⊥⇒∠=︒=∠在ABC MED ∆∆和中()()()B DEMC MDE AC DM ⎧∠=∠⎪∠=∠⎨⎪=⎩已证已证已知ABC MED ∴∆≅∆()AAS⒘(本小题6分)某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件,已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件,求该企业捐给甲、乙两所学校的矿泉水各多少件? [答案] 捐给甲校1200件,捐给乙校800件.[解析] (一元法)设该企业捐给乙校的矿泉水件数是x ,则捐给甲校的矿泉水件数是2400x -, 依题意得方程:(2400)2000x x -+=, 解得:800x =,24001200x -=所以,该企业捐给甲校的矿泉水1200件,捐给乙校的矿泉水800件. (二元法)设该企业捐给甲校的矿泉水件数是x ,捐给乙校的矿泉水件数是y ,依题意得方程组:20002400x y x y +=⎧⎨=-⎩解得:1200x =,800y =所以,该企业捐给甲校的矿泉水是1200件,捐给乙校的矿泉水是800件.⒙(本小题7分)某同学在学习了统计知识后,就下表所列的5种用牙不良习惯对全班每一个同学进行了问卷调查(每个被调查的同学必须选择而且只能在5种用牙不良习惯中选择一项),调查结果如下统计图所示:根据以上统计图提供的信息,回答下列问题: (1)这个班共有多少学生?(2)这个班中有C 类用牙不良习惯的学生多少人?占全班人数的百分比是多少? (3)请补全条形统计图.(4)根据调查结果,估计这个年级850名学生中有B 类用牙不良习惯的学生多少人? [答案] (1)60人;(2)18人,30%;(3)如图;(4)约85人.[解析] 如图,(1)因为这个班中有A 类用牙不良习惯的学生30人,点全班的50%, 所以这个班共有学生: 3050%60÷=(人).(2)这个班中有C 类用牙不良习惯的学生: 603063318----=(人) 占全班人数的百分比是:18100%30%60⨯=.(3)补全条形统计图如图所示.(4)这个年级850名学生中有B 类用牙不良习惯的学生约有:85010%85⨯=(人).⒚(本小题7分)现有5个质地、大小完全相同的小球上分别标有数字1,2,1,2,3--,先标有数字2,1,3-的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里,现分别从这两个盒子里各随机取出一个小球.⑴请利用列表或画树状图的方法表示取出的两个小球上的数字之和所有可能的结果;⑵求取出两个小球上的数字之和等于0的概率.[答案] ⑴如图;13⑵.[解析] ⑴利用列表的方法表示取出的两个小球上的数字之和所有可能的结果是或画树状图的方法表示取出的两个小球上的数字之和所有可能的结果是⑵由(1)可知所有可能出现的结果有6种,所取两个数字和为0的有2种情况,所以取出两个小球上的数字之和等于0的概率是:2163P ==.⒛(本小题6分)如图,某同学在楼房的A 处测得荷塘的一端B 处的俯角为30︒,荷塘另一端D 处与C 、B 在同一条直线上,已知32AC =米,16CD =米,求荷塘宽BD 为多少米?(1.73≈,结果保留整数)[答案]. 39米[解析] 如图,(三角法)依题意得:60BAC ∠=︒, 在Rt ABC ∆中,tan 32tan 60BCBAC BC AC ∠=⇒=⋅︒= ∴荷塘宽1639BD BC CD =-=≈(米) (勾股法)依题意得:30ABC ∠=︒, 在Rt ABC ∆中, 2AB AC =,BC AC ∴====∴荷塘宽1639BD BC CD =-=≈(米)21.(本小题6分)如图,在平面直角坐标系中,O 为原点,一次函数与反比例函数的图象相交于(2,1)A 、(1,2)B --两点,与x 轴相交于点C .(1)分别求反比例函数和一次函数的解析式(关系式); (2)连接OA ,求AOC ∆在面积.[答案]. ⑴2y x =、1y x =-;12⑵.[解析] ⑴ 设反比例函数的解析式为ky x =,因为(2,1)A 是反比例函数图象上的点,212k xy ∴==⨯=所以,反比例函数的解析式是2y x =设一次函数的解析式为y kx b =+,因为(2,1)A 、(1,2)B --是一次函数图象上的点,21121k b k k b b +==⎧⎧∴⇒⎨⎨-+=-=-⎩⎩所以,一次函数的解析式是1y x =-⑵ 由一次函数1y x =-与x 轴相交于点C ,得0C y =,1C x ∴=,即(1,0)CA O C S ∆()11111222A A OC y =⋅=⨯⨯=点有纵坐标. 22.(本小题7分)如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BD 相交于点O ,与BC 相交于点N ,连接BM 、DN .⑴ 求证:四边形BMDN 是菱形; ⑵ 若4AB =,8AD =,求MD 的长.[答案]. ⑴略;5⑵.[解析] ⑴如图,矩形MDO NBOABCD AD BC DMO BNO ∠=∠⎧⇒⇒⎨∠=∠⎩∥MN 是BD 的垂直平分线,DO BO ∴=在DOM BON ∆∆和中()()()MDO NBODMO BNO DO BO ⎧∠=∠⎪∠=∠⎨⎪=⎩已证已证已证()DOM BONAAS ∴∆≅∆DM BN ∴=(全等三角形对应边相等) 又,AD BC DM BN ⇒∥∥所以,四边形BMDN 是平行四边形.因为,N 是BD 的垂直平分线上的点,所以NB ND = 所以,四边形BMDN 是平行菱形.⑵设MD x =,则BM MD x ==,8AM x =-在Rt AMB ∆中,222BM AB AM =+,2224(8)5x x x ∴=+-⇒=,5MD ∴= 23.(本小题9分)如图,在平面直角坐标系中,直线123y x =-+交x 轴于点P ,交y 轴于点A ,抛物线212y x bx c=-++的图象过点(1,0)E -,并与直线相交于A 、B 两点. ⑴ 求抛物线的解析式(关系式);⑵ 过点A 作AC AB ⊥交x 轴于点C ,求点C 的坐标;⑶ 除点C 外,在坐标轴上是否存在点M ,使得MAB ∆是直角三角形?若存在,请求出点M 的坐标,若不存在,请说明理由.[答案] ⑴213222y x x =-++;⑵2(,0)3C -;⑶7(0,)9、或11(6、或11(6、或92(,0)27 [解析] ⑴如图,因为一次函数123y x =-+交y 轴于点A ,所以,0A x =,2A y ∴=,即(0,2)A .交x 轴于点P ,所以,0P y =,6P x ∴=,即(6,0)P .由(0,2)A 、(1,0)E -是抛物线212y x bx c=-++的图象上的点,2321022C b b C C =⎧⎧=⎪⎪∴⇒⎨⎨--+=⎪⎪=⎩⎩ 所以,抛物线的解析式是:213222y x x =-++⑵ 如图,()AC AB P ⊥、OA OP ⊥∴ 在Rt CAP ∆中,2222263AO AO CO OP CO OP =⋅⇒===∴点C 的坐标:2(,0)3C -⑶设除点C 外,在坐标轴上还存在点M ,使得MAB ∆是直角三角形Ⅰ.在Rt MAB ∆中,若AMB Rt ∠=∠,那么M 是以AB 为直径的圆与坐标轴的交点, ⅰ.若交点在y 上(如图),设(0,)M m ,则有,()B B m y =点的纵坐标2121173(,)1339222y x B y x x ⎧=-+⎪⎪⇒⎨⎪=-++⎪⎩79m ∴=,此时7(0,)9Mⅱ.若交点在x 上(如图),设(,0)M n ,此时过B 作BD 垂直x 于点D ,则有AOMMDB ∆∆,于是:AO OMOM MD AO DB MD DB =⇒⋅=⋅117()239n n ∴-=⨯,12111166n n -⇒==,此时,M或MⅡ.在Rt MAB ∆中,若ABM Rt ∠=∠,如图, 设(,0)M t ,同样过B 作BD 垂直x 于点D ,则在Rt PBM ∆中,- 11 - 有2BD MD DP =⋅ 27111192()()(6)93327t t ∴=--⇒=,此时, 92(,0)27M综上所述,除点C 外,在坐标轴上还存在点M ,使得MAB ∆是直角三角形,满足条件的点M 的坐标是:7(0,)9、或、或、或92(,0)27.。