第十一章 压杆稳定
第11章压杆的稳定性分析与设计
d
d
2
d
2 = 0
+
令 2 =
有
d 2
这样一个二阶常系数线性微分方程,其通解为
w
= sin + cos
式中,A、B为待定常数,可以通过压杆边界条件确定
w(0) = 0, w(l) = 0
大连大学
33
11.2.1 两端铰支的压杆
将边界条件w(0) = 0和 w(l) = 0代入 = sin + cos ,可求得
FF
F
F
F
F
F
F<Fcr
Fcr
Δ
F´
临界点
F>Fcr
Δ
O
稳定
大连大学
不稳定
22
11.1 弹性平衡稳定性的基本概念——
11.1.3 三种类型的压杆的不同临界状态
大连大学
23
11.1.3 三种类型的压杆的不同临界状态
▪ 不是所有受压杆件都会发生屈曲,也不是所有发生屈曲的压杆都是弹
性的。理论分析与试验结果都表明,根据不同的失效形式,受压杆件
形,或称为临界状态(critical state)。处于临界状态的平衡构形,有
的是稳定的,有的是不稳定的,也有的是中性的。
▪ 非线性弹性稳定理论已经证明了:对于细长压杆,临界平衡构形是稳
定的。
▪ 使杆件处于临界状态的压缩载荷称为临界载荷(critical load),用Fcr
表示。
大连大学
21
11.1.2 临界状态与临界载荷
=0
sin = 0
要使 sin = 0, 或者sin 必等于零。但若等于零,且由 = 0可知此
压杆稳定
受压极限应力。这是因为当临界应力达到材料的受压极限应
力时,压杆已因为强度不足而破坏。因此,对于由塑性材料
制成的压杆,其临界应力不允许超过材料的屈服应力 s ,即:
或
cr (aa bs)/ bs
令
s (as)/b
(11-15)
得 式中,
s
s
为临界应力等于材料的屈服点应力时压杆的柔度值。
但应工大力程于超中某过有个比许数 例多值 极压限 s杆的的,压压它杆杆们稳,的定称柔问为度题中往,长往其杆小临。于界这应P类,力压对一杆于般属用于由临实P界
验所得到的经验公式来计算,常用的有直线形经验公式和抛 物线形经验公式。
1.直线形经验公式
直线形经验公式把压杆的临界应力 下列线性关系:
上一页 下一页 返回
第二节压杆的临界力与临界应力
如果将式(11-9)和式(11-13)中的临界应力与柔度之间的函数
关的系曲绘线在图形cr,称直为角临坐界标应系力内总,图将。得如到图临11界-8应所力示随,柔图度中变曲化线
ACB是按欧拉临界应力公式(11-9)制的;曲线EC是按抛物线 形经验公式(11-17)绘制的。两曲线交于C点,C点的坐标可 由式(11-9)和式(11-17)联立解得。例如对Q235钢E = 200 GPa, a = 235 MPa, b= 0. 006 68MPa,此时
cr
与压杆的柔度
表示为
crab
(11-14)
上一页 下一页 返回
第二节压杆的临界力与临界应力
式中,a和b为与材料有关的常数,其单位为MPa。一些常用 材料的a、b值可见表11-2。
图11-7表示厂直线形经验公式与欧拉曲线。应当指出,经验 公式(11-14 )也有其适用范围,它要求临界应力不超过材料的
第十一章压杆的稳定 - 工程力学
第十一章压杆的稳定承受轴向压力的杆,称为压杆。
如前所述,直杆在轴向压力的作用下,发生的是沿轴向的缩短,杆的轴线仍然保持为直线,直至压力增大到由于强度不足而发生屈服或破坏。
直杆在轴向压力的作用下,是否发生屈服或破坏,由强度条件确定,这是我们已熟知的。
然而,对于一些受轴向压力作用的细长杆,在满足强度条件的情况下,却会出现弯曲变形。
杆在轴向载荷作用下发生的弯曲,称为屈曲,构件由屈曲引起的失效,称为失稳(丧失稳定性)。
本章研究细长压杆的稳定。
§11.1 稳定的概念物体的平衡存在有稳定与不稳定的问题。
物体的平衡受到外界干扰后,将会偏离平衡状态。
若在外界的微小干扰消除后,物体能恢复原来的平衡状态,则称该平衡是稳定的;若在外界的微小干扰消除后物体仍不能恢复原来的平衡状态,则称该平衡是不稳定。
如图11.1所示,小球在凹弧面中的平衡是稳定的,因为虚箭头所示的干扰(如微小的力或位移)消除后,小球会回到其原来的平衡位置;反之,小球在凸弧面上的平衡,受到干扰后将不能回复,故其平衡是不稳定的。
(a) 稳定平衡图11.1 稳定平衡与不稳定平衡上述小球是作为未完全约束的刚体讨论的。
对于受到完全约束的变形体,平衡状态也有稳定与不稳定的问题。
如二端铰支的受压直杆,如图11.2(a)所示。
当杆受到水平方向的微小扰动(力或位移)时,杆的轴线将偏离铅垂位置而发生微小的弯曲,如图11.2(b)所示。
若轴向压力F较小,横向的微小扰动消除后,杆的轴线可恢复原来的铅垂平衡位置,即图11.2(a),平衡是稳定的;若轴向压力F足够大,即使微小扰动已消除,在力F 作用下,杆轴线的弯曲挠度也仍将越来越大,如图11.2(c)所示,直至完全丧失承载能力。
在F =F cr 的临界状态下,压杆不能恢复原来的铅垂平衡位置,扰动引起的微小弯曲也不继续增大,保持微弯状态的平衡,如图11.2(b)所示,这是不稳定的平衡。
如前所述,直杆在轴向载荷作用下发生的弯曲称为屈曲,发生了屈曲就意味着构件失去稳定(失稳)。
第11章压杆稳定
材料力学
第29页/共63页
二、折减因数法
s
F A
[s w ]
s cr
nst
scr、nst与压杆柔度有关,[sw]是的 函数。
[sw]=j [s ]
[s ]——强度许用应力 j —— 折减因数 j 1
稳定条件
与柔度有关
s FP j[s ] 工作应力不大于
A
稳定许用应力
注 不必由柔度判断压杆属何种性质的杆,简化计算。 意
强度 条件
sr
[s ]
s0
n
相当应力不大 于许用应力
极限应力
s0
s
{
s
sb
塑性材料 脆性材料
极限应力和安全因数只与材料有关,与实 际应力状态无关,即强度许用应力为常数。
材料力学
第27页/共63页
稳定 条件
s
F A
[s
w
]
s0
nst
s cr
nst
工作应力不大于稳定许用应力。
极限应力(临界应力)和稳定安全因数不仅 与材料有关,而且与实际压杆的长度、约束 条件、横截面尺寸和形状有关,即与实际压 杆的柔度有关,所以稳定许用应力不是常数。
z
ml
iz
1 940 14.43
65.1
第36页/共63页
F A
z
材料力学
l1 z
B l1
y Fx
z
h
b
F x
x-z 面内,两端固定
绕y轴发生失稳
m = 0.5
iy
b 23
20 23
5.77 mm
y
ml
iy
0.5 880 5.77
76.3
第十一章压杆的稳定_工程力学
第十一章 压杆的稳定承受轴向压力的杆,称为压杆。
如前所述,直杆在轴向压力的作用下,发生的是沿轴向的缩短,杆的轴线仍然保持为直线,直至压力增大到由于强度不足而发生屈服或破坏。
直杆在轴向压力的作用下,是否发生屈服或破坏,由强度条件确定,这是我们已熟知的。
然而,对于一些受轴向压力作用的细长杆,在满足强度条件的情况下,却会出现弯曲变形。
杆在轴向载荷作用下发生的弯曲,称为屈曲,构件由屈曲引起的失效,称为失稳(丧失稳定性)。
本章研究细长压杆的稳定。
§11.1 稳定的概念物体的平衡存在有稳定与不稳定的问题。
物体的平衡受到外界干扰后,将会偏离平衡状态。
若在外界的微小干扰消除后,物体能恢复原来的平衡状态,则称该平衡是稳定的;若在外界的微小干扰消除后物体仍不能恢复原来的平衡状态,则称该平衡是不稳定。
如图11.1所示,小球在凹弧面中的平衡是稳定的,因为虚箭头所示的干扰(如微小的力或位移)消除后,小球会回到其原来的平衡位置;反之,小球在凸弧面上的平衡,受到干扰后将不能回复,故其平衡是不稳定的。
上述小球是作为未完全约束的刚体讨论的。
对于受到完全约束的变形体,平衡状态也有稳定与不稳定的问题。
如二端铰支的受压直杆,如图11.2(a )所示。
当杆受到水平方向的微小扰动(力或位移)时,杆的轴线将偏离铅垂位置而发生微小的弯曲,如图11.2(b)所示。
若轴向压力F 较小,横向的微小扰动消除后,杆的轴线可恢复原来的铅垂平衡位置,即图11.2(a ),平衡是稳定的;若轴向压力F 足够大,即使(a ) 稳定平衡 图11.1 稳定平衡与不稳定平衡微小扰动已消除,在力F 作用下,杆轴线的弯曲挠度也仍将越来越大,如图11.2(c)所示,直至完全丧失承载能力。
在F =F cr 的临界状态下,压杆不能恢复原来的铅垂平衡位置,扰动引起的微小弯曲也不继续增大,保持微弯状态的平衡,如图11.2(b)所示,这是不稳定的平衡。
如前所述,直杆在轴向载荷作用下发生的弯曲称为屈曲,发生了屈曲就意味着构件失去稳定(失稳)。
第11章 压杆稳定性问题
相等,则此压杆的临界压力又为多少?
(压杆满足欧拉公式计算条件)
h
动脑又动笔
解: 一端固定,一端自由,长度因数 μ=2 在应用欧拉公式时,截面的惯性
矩应取较小的I 值。
Iy 1 3 1 hb 90 403 mm 4 48 104 mm 4 12 12
b
F
l
1 3 1 I z bh 40 903 mm 4 243 104 mm 4 12 12
理解长细比、临界应力和临界应力总图的概念,熟 悉各类压杆的失效形式。
§11–1 压杆稳定性的基本概念
① 强度 衡量构件承载能力的指标 ② 刚度 ③ 稳定性 工程中有些构件具有足够的强度、刚度,却不一定能安全 可靠地工作。 杆件在各种基本变形下的强度和刚度问题在前述各章节中 已作了较详细的阐述,但均未涉及到稳定性问题。事实上, 杆件只有在受到压力作用时,才可能存在稳定性的问题。
屈曲曲线是偏离原直线轴线不远的微弯状态。
F F EI L
M d2w 2 EI dx
§11–2 细长压杆的临界荷载—欧拉临界力
一、两端铰支压杆的临界力
多大的轴向压力才会使压杆失稳?
d2w EI 2 Fw 0 dx
y
M EI x w L
记
F
k2
F EI
F
F
x
d2w 2 k w0 2 dx
§11–3长细比的概念 三类不同压杆的判断
三、临界应力总图
cr
S
P
cr s
cr a b
2E cr 2
粗短杆 s
s s a
b
中长杆
P
细长杆
第11章压杆稳定
压杆截面如图所示。两端为柱形铰链约束,
若绕 y 轴失稳可视为两端固定,若绕 z 轴失稳可视为 两端铰支。已知,杆长l=1m ,材料的弹性模量
E=200GPa,sp=200MPa。求压杆的临界应力。
解:
iy 1 3 ( 0 . 03 0 . 02 ) Iy 12 0.0058m A 0.03 0.02
3.压杆失稳:
弹性杆件 稳定直线平衡
F Fcr
F Fcr
F Fcr
F Fcr
微小扰动 恢复直线平衡 不稳定直线平衡
F Fcr
弯曲 除去扰动
v
弯曲
微小扰动
新的弯曲平衡 随遇平衡
除去扰动
F Fcr 除直线平衡形式外,无穷小邻域内,可能微弯平衡
压杆从直线平衡形式到弯曲平衡形式的转变,称为失稳
一、两端铰支的细长压杆:
x
Fcr
F M(x)=Fw
l m w B m
m
x
m
B y F
x
y
Fcr
压杆任一 x 截面沿 y 方向的位移 w f ( x ) 该截面的弯矩
M ( x ) Fw
杆的挠曲线近似微分方程
EIw '' M ( x ) Fw
2
( a)
m
F 令k 得 w '' k 2 w 0 (b) EI
16
4.压杆的临界压力: 稳 定 平 衡 临界状态
过 渡
临界压力:Fcr
不 即:使压杆保持在微 稳 弯状态下平衡的最小 定 轴向力。 平 衡
F Fcr —稳定平衡状态 F Fcr —临界平衡状态 F Fcr —不稳定平衡状态
材料力学-第11章 压杆稳定new
引言
压杆稳定的利用 - 柔性电子器件
材料力学-第11章 压杆稳定
引言
基本概念
F
压杆失稳(屈曲): 受压杆件由直线平衡状态变为弯曲平衡状态 临界载荷:
使得受压杆件由直线平衡态转为弯曲平衡态的临界力
材料力学-第11章 压杆稳定 受压杆件为什么会失稳?
F
引言
杆件压力超过临界载荷时,弯曲构型具有更 小的应变能
Fcr
π 2 EI
l
2
这一表达式称为欧拉公式。其中l为不同压杆屈曲后挠曲线上正弦 半波的长度,称为有效长度(effective length);
为反映不同支承影响的系数,称为长度因数(coefficient of
1ength),可由屈曲后的正弦半波长度确定。
材料力学-第11章 压杆稳定
FPcr
π 2 EI
l
2
需要注意的是, 临界载荷公式只有在压杆的微弯 曲状态下仍然处于弹性状态时才是成立的。
材料力学-第11章 压杆稳定
§11-3 两端非铰支细长压杆的临界载荷
例题
图示四根压杆,已知杆件横截面和材料完全相同。 试:将压杆按承载能力大小排序
5m
7m
(a)
(b)
3m
(c)
§11-3 两端非铰支细长压杆的临界载荷 长度因数 由屈曲后的正弦半波长度确定
欧拉公式可写为:
2 EI
正弦半波长
2
两端铰支 =1.0
一端自由, 一端固定 =2.0
一端铰支, 一端固定 =0.7
两端固定 =0.5
材料力学-第11章 压杆稳定
§11-3 两端非铰支细长压杆的临界载荷
F
Fcr
第 11 章 压杆的稳定性问题
直线形状平衡 稳定的
第 11 章 压杆的稳定性问题 2.不稳定性
F F>Fpcr
压杆稳定性的基本概念
直线平衡平衡状态转变为弯曲平 衡状态,扰动除去后,不能够恢 复到直线平衡状态,则称原来的 直线平衡状态是不稳定的。
FP<FPcr :在扰动作用下,
直线形状平衡 不稳定的
第 11 章 压杆的稳定性问题
第 11 章 压杆的稳定性问题
P
A
(a )
三类不同压杆的判断
h
y
b
h
B
y
P 解:正视图平 面弯曲截面绕 z 轴转。 3 P
x
P
z
l
A bh 1.0
iz Iz A
bh Iz 12
h 2 3
z
l
iz
1 2300 2
60
3
132.8 P 100
σp σe σs
压杆稳定性的基本概念
三、三种类型压杆的不同临界状态
σ
σb
ε
第 11 章 压杆的稳定性问题 欧拉临界力 §11-2 细长压杆的临界载荷---欧拉临界力
一、两端铰支的细长杆
F x F x
F
l M w x w w
压杆
微弯下平衡
内力与变形
第 11 章 压杆的稳定性问题
x
欧拉临界力
M =F w EI w〞= - M =-F w
欧拉临界力
二、其他刚性支承细长压杆临界载荷的通用公式
方法1: 同欧拉公式, 微分方程 + 边界条件 方法2: 相当长度法 在压杆中找出长度相当于两端铰支的 一段(即两端曲率为零或弯矩为零),该 段失稳曲线为半波正弦曲线,该段临界力 即压杆的临界力。
山东建筑大学期末工程力学第11章压杆稳定
对于等直杆
F N max [ ] max A
例题:一长为300 mm的钢板尺,横截面尺寸为 20mm 1mm 。钢 的许用应力为[ ]=196 MPa。按强度条件计算得钢板尺所能承受的 轴向压力为
一, 两端为绞支(球形绞支),长为 l 的 细长 压杆。
当 F 达到 FCr 时,压杆的特点是:保持微弯形式的平衡。
x
F cr
x
w
l
l 2
m w m
F cr
M ( x) F cr w
m m
x
o w o
x
w
F cr
FCr
x
w
m
M ( x) F cr w
m
x
o w
FCr
压杆任一 x 截面沿 w 方向的位移为 w = f (x) 该截面的弯矩为
E F cr cr A ( l / i )
l
i
称为压杆的柔度(长细比)。集中地反映了压杆的长度,杆端约
束,截面尺寸和形状对临界应力的影响。
2 E 2
cr
cr
E 2
2
越大,相应的 cr 越小,压杆越容易失稳。
F Cr A Cr
x
y
2 EI F cr 2 ( l )
z
2 EI y ( F Cr ) y ( l )2 y
2 EI z ( F Cr ) z ( l )2 z
F Cr {( F Cr ) y,( F Cr ) z}min
11-压杆稳定
3
10
12
4.1710
9
m
4
10 50
z
y
Fcr
2IminE (1l)2
2 4.17 200
(0.7 0.5)2
67.14kN
图(b)
L L
图(a)
(4545 6)
等边角钢
图(b)
IminI z 3.8910 8 m4
Fcr
2Im (2l
i)n2E
l 2l l 0.5l
Pcr
Pcr
Pcr
Pcr
Pcr
失
稳 时
B
B
B
挠
D
曲
线 形
C
C
状
A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
临界力Pcr 欧拉公式
Pcr
2Leabharlann lEI2Pcr
(0.27El)I2Pcr
2EI
(0.5l ) 2
Pcr
2EI
(2l ) 2
长度系数μ μ=1 μ0.7 μ=0.5 μ=2
kL2n
为求最小临界力,“k”应取除零以外的最小值,即取:
kL2
所以,临界力为:
Fcr
4 2EI
L2
2EI
(L / 2)2
= 0.5
11.3 不同约束条件下压杆的欧拉公式
支承情况
两端铰支
一端固定 另端铰支
两端固定
一端固定 两端固定但可沿 另端自由 横向相对移动
l l 0.7 l l 0.5 l
第11章 压杆稳定
(Buckling of Columns)
3、图示矩形截面细长压杆,两端用圆柱铰连接。其约束在纸平 面内可视为两端铰接,在垂直于纸面的平面内可视为两端固定, 从稳定性考虑,截面合理的长、宽比为h/b= `
压杆在纸平面内的工作柔度为λ=μL/i=1.0L/h/(2×1.732); 在垂直于纸面的平面内的工作柔度为λ’=μL/i=0.5L/b/(2×1.732);
(Buckling of Columns) 1、一受压的圆截面杆件,已知材料的机械性质参数σ p, σ s,σ b,E,杆长L,直径D,长度系数u,并设已知压杆临界应 力的线性经验公式常数a、b为已知。欲计算压杆的临界压力, 写明计算过程,列出有关的公式。 (1)计算工作柔度λ =μ L/i,计算第一特征柔度 λ 1=(π 2E/σ P)1/2 σ
(Buckling of Columns) 7、两根细长压杆a与b的长度、横截面面积、约束状态及材料均 相同,若其横截面形状分别为圆形和正方形,则二压杆的临界压 力Pacr和Pbcr的关系为( )。 C A.Pacr=Pbcr;B.Pacr<Pbcr;C.Pacr>Pbcr;D.不确定 8、材料和柔度都相同的两根压杆( A. B. C. D. )。A 临界应力一定相等,临界压力不一定相等; 临界应力不一定相等,临界压力一定相等; 临界应力和压力都一定相等; 临界应力和压力都不一定相等。
(Buckling of Columns)
1、图示中的桁架结构,两细长杆的长为L,与铅垂线的夹角相 等,均为α。但EI1>EI2,则结构的临界载荷为 。
Fcr=2 cosαπ2EI2/L2
2、在一般情况下,稳定安全系数比强度安全系数要大,这是因 为实际压杆总是不可避免地存在 , ,以及 等不利因素。
第十一章 压杆稳定
§ 11—3 不同杆端约束下细长压杆临界轴力的欧拉公式
F
cr
1、两端铰支
F
A
cr
Fcr
EI
2
l2
l
B
2、一端固定另端自由 l 2 EI Fcr ( 2l ) 2
F
cr
A
B
l
F
A
cr
3、一端固定,一端 夹支(两端固定)
0.5l
A
4、一端固定 另端铰支
0 .7 l
l
Fcr
2 EI
Fcr,1 : Fcr,2 : Fcr,3 I min,1 : I min,2 : I min,3 1: 9.34:17.32
例11.2 两端球铰支的中心受压细长压杆,长1m,材料的弹性 模量E=200GPa,考虑采用矩形、等边角钢∟45×6、环形三种 不同截面,如图11.5所示。试比较这三种截面压杆的稳定性。
2、若F 2k l ,即 F 2kl,则在干扰解除后,杆不仅不 能自动返回其初始位置,而且将继续偏转。说明在该荷载作 用下,杆在竖直位置的平衡是不稳定的。
一、弹性系统平衡的稳定性 1、若 F 2k l ,即 F 2kl ,则在干扰解除后,杆将自
动恢复至初始位置,说明在该荷载作用下,杆在竖直位置的 平衡是稳定的。 2、若F 2k l ,即 F 2kl,则在干扰解除后,杆不仅不 能自动返回其初始位置,而且将继续偏转。说明在该荷载作 用下,杆在竖直位置的平衡是不稳定的。 δ
F F
3、若F 2k l ,即 F 2kl, 则杆既可在竖直位置保持平衡, 也可在微小偏斜状态保持平衡, 说明在该荷载作用下,杆处于临 界平衡状态或称为随遇平衡状态。 弹性系统在某位置的平衡性质不但 与外荷载的大小有关,而且与系统 的自身构成特性有关。
建筑力学 第11章 压杆稳定
第11章压杆稳定[内容提要]稳定问题是结构设计中的重要问题之一。
本章介绍了压杆稳定的概念、压杆的临界力-欧拉公式,重点讨论了压杆临界应力计算和压杆稳定的实用计算,并介绍了提高压杆稳定性的措施。
11.1 压杆稳定的概念工程中把承受轴向压力的直杆称为压杆。
前面各章中我们从强度的观点出发,认为轴向受压杆,只要其横截面上的正应力不超过材料的极限应力,就不会因其强度不足而失去承载能力。
但实践告诉我们,对于细长的杆件,在轴向压力的作用下,杆内应力并没有达到材料的极限应力,甚至还远低于材料的比例极限σP时,就会引起侧向屈曲而破坏。
杆的破坏,并非抗压强度不足,而是杆件的突然弯曲,改变了它原来的变形性质,即由压缩变形转化为压弯变形(图11-1所示),杆件此时的荷载远小于按抗压强度所确定的荷载。
我们将细长压杆所发生的这种情形称为“丧失稳定”,简称“失稳”,而把这一类性质的问题称为“稳定问题”。
所谓压杆的稳定,就是指受压杆件其平衡状态的稳定性。
为了说明平衡状态的稳定性,我们取细长的受压杆来进行研究。
图11-2(a)为一细长的理想轴心受压杆件,两端铰支且作用压力P,并使杆在微小横向干扰力作用下弯曲。
当P较小时,撤去横向干扰力以后,杆件便来回摆动最后仍恢复到原来的直线位置上保持平衡(图11-2(b))。
因此,我们可以说杆件在轴向压力P的作用下处于稳定平衡状态。
P,杆件受到干扰后,总能回复到它原来的直线增大压力P,只要P小于某个临界值crP时,杆件虽位置上保持平衡。
但如果继续增加荷载,当轴向压力等于某个临界值,即P=cr然暂时还能在原来的位置上维持直线平衡状态,但只要给一轻微干扰,就会立即发生弯曲并停留在某一新的位置上,变成曲线形状的平衡(图11-2(c))。
因此,我们可以认为杆件在P的作用下处在临界平衡状态,这时的压杆实质上是处于不稳定平衡状态。
P=cr(a) (b) (c)图11-1 图11-2继续增大压力P ,当轴向压力P 略大于cr P 时,由于外界不可避免地给予压杆侧向的干扰作用(例如轻微的振动,初偏心存在,材料的不均匀性,杆件制作的误差等),该杆件将立即发生弯曲,甚至折断,从而杆件失去承载能力。
材料力学第11章 压杆稳定
长度系数
一端固定,另一端自由 两端铰支
2 1
一端固定,另一端铰支
2 0.7
3
两端固定
1 0.5
2
第十一章 压杆稳定
§11.3 欧拉公式的使用范围 临界应力总图
一、欧拉临界应力公式及其使用范围 二、中柔度压杆的临界应力 三、小柔度压杆的临界应力 四、临界应力总图
§11.3 欧拉公式的使用范围 临界应力总图
2E 2
O 小 0 中 p 大
柔柔
柔
度度
度
压压
压
杆杆
杆
可见:压杆的临界应力随着其柔度的增大而减小
§11.3 欧拉公式的使用范围 临界应力总图
例1 图示用No.28a工字钢制成的立柱,两端固定,
试求立柱的临界压力。
解:1.求
F
查表:i imin iy 2.50 cm, A 55.4 cm2
ymax
欧拉公式适用于小变形情况
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
1.一端固定、另一端自由
Fcr
Fcr
2EI
Fcr (2l)2
l
l
l
Fcr
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
2.两端固定
b=20
b 2.57 MPa
h=45
cr a b y 289.6 MPa
Fcr cr A 261 kN y
n
Fcr F
4.35
nst
∴ 连杆安全
l 1=800
第11章压杆稳定与.ppt
11.2压杆的临界应力
束之间,从而确定实际问题的长度系数几种理想杆端约束情况下的 长度系数见表11-1
2.临界应力
将细长压杆的临界压力除以横截面面积,便得到横截面上的应
力,称为临界应力,用 cr表示。
令式中的
称为压杆截面的惯性半径,代入上式得
4
上一页 下一页 返回
11.2压杆的临界应力
令
称为压杆的柔度,它是一个量纲为1的量代入上式得
稳定性
24
上一页 返回
11.5交变应力和疲劳破坏的概念
11.5.1动应力的概念
作用在结构上的载荷,如果是一种由零缓慢地增加到某一数值, 以后就保持不变或变化很小的载荷称为静载荷在静载荷作用下所产生 的应力叫静应力前面几章我们所讨论的问题都属于静应力问题 在工程中,我们会遇到另外一类载荷例如用汽锤打桩,桩在极短的时 间内受到了很大的载荷又如起重机加速起吊重物时,吊绳受到的载荷 与加速度有关,这些载荷都是动载荷
16
上一页 下一页 返回
11.3压杆的稳定性计算
杆(图10--6),故支承系数 =2.0,螺杆的惯性半径为
,
代入柔度公式得
(2) 计 算 螺 杆 临 界 应 力 并 校 核 其 稳 定 性 因
=100 , 且
=60,故螺杆为中长杆,查表11-2 ,a=578,b=3.744应用经验
公式计算其临界应力
种钢材的弹性模量E相差不大,因此,采用高强度钢并不能有效地提 高细长压杆的临界力工程上一般都采用普通碳素钢制造细长杆,这样 既经济又合理
但对于中长杆,其临界应力 cr与材料的强度有关材料的强度越
23
上一页 下一页 返回
11.4提高压杆稳定性的措施
高,临界应力 cr 也就越高所以,选用优质钢材,可提高中长压杆的
材料力学(单辉祖)第十一章压杆稳定问题
Pcr
=
π 2EI
l2
若杆端在各个方向的约束情况相同(如球形 铰),I 应取最小的形心主惯矩,得到直杆 的实际临界力
若杆端在不同方向的约束情况不同, I 应取 挠曲时横截面对其中性轴的惯性矩。即此 时要综合分析杆在各个方向发生失稳时的 临界压力,得到直杆的实际临界力(最小值)。
25
欧拉公式
求解上述非线性微分方程,得挠曲线中
点挠度δ 与压力P之间的近似关系
δ = 2 2l π
其图形为
P Pcr
⎡ − 1⎢1 −
⎣
1 2
⎛⎜⎜⎝
P Pcr
−1⎞⎟⎟⎠⎤⎥⎦
P
A
Pcr
可见,只有当P ≥Pcr时,压杆 B 才可能存在非直线的平衡态,
即直杆发生失稳,并且挠度δ
与压力P之间存在一对一关系,
M (x) = Pcrv(x) − Q(l − x)
x Pcr
Q A
M(x)
m
m
l
x
BQ MB y Pcr
39
Example-1
x
代入挠曲线近似微分方程
Pcr
EI
d 2v dx 2
=
−M
(x)
=
− Pcr v( x)
+
Q(l
−
x)
令 k 2 = Pcr
EI
则控制微分方程化简为
d 2v dx 2
+
k 2v
28
欧拉公式
思考题
29
不同约束下压杆临界力的 欧拉公式 • 压杆长度系数
30
长度系数
问题:
考虑下端固定、上端 自由并在上端承受轴 向压力作用等截面细 长杆,几何尺寸见图 确定此压杆临界压力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使Fcr最小的方向为实际弯曲方向,I为挠曲时横
截面对其中性轴的惯性矩。
如销孔类铰链,即所谓的柱状铰。约束特点为:
在垂直于轴销的平面内,轴销对杆的约束相当于铰支;
而在轴销平面内,轴销对杆的约束则接近于固定端。
第十一章 压杆稳定问题
思考:试判断下列压杆长度系数的取值范围
μ>2
0.7<μ<2
cr
2E 2
P
或
2E p
E
p
P
(10 10)
P值仅与弹性模量E及比例极限P 有关, P仅随材料
性质而异。柔度≥P的压杆称大柔度杆。
当 ≥P(大柔度压杆或细长压杆)时,才能应用欧
拉公式。
当<P时(中、小柔度压杆),不能应用欧拉公式。
第十一章 压杆稳定问题
P 的大小仅取决于压杆材料的 力学性能。例如,对于Q235 钢,E=206GPa, P=200MPa,得
0.7
0.5
欧拉临界压力公式的统一表达式:
Fcr
2EI (l)2
(10 6)
第十一章 压杆稳定问题
Fcr为维持微弯平衡状态最小的压力
各方向约束情况相同时:
Fcr
2EI (l)2
乘积l称为压杆的相当长度或有效长度。 为常数,称长度因素,代表支持方式对临界载荷的
影响。 I=Imin––– 最小形心主惯性矩
第十一章 压杆稳定问题
压杆的稳定(4学时)
教学内容:压杆稳定的概念,细长压杆的临界力和欧 拉公式,欧拉公式的适用范围,中、小柔度杆的临界 应力,压杆的稳定计算,提高压杆稳定性的措施。 教学要求: 1、了解丧失稳定、临界力的概念,中、小柔度杆的临 界应力,压杆的稳定条件,提高压杆稳定性的措施; 2、理解细长压杆的临界力和欧拉公式,临界应力、惯 性半径、柔度的概念,欧拉公式的适用范围。 重点:细长压杆的临界力和欧拉公式。 难点:细长压杆的临界力和欧拉公式。
故取
Fcr
2EI
(0.5a)2
第十一章 压杆稳定问题
练习: 求下列细长压杆的临界力。
y
y
xz
h
z
L1
解: ①绕
y
L2
轴,两端铰支:
b
=
1
.
0
,I
y
b3h 12
②绕 z 轴,左端固定,右端铰支:
,
Fcr, y
2 EI L22
y
=0.7,
I
z
bh3 12
,
Fcr , z
2EIz
(0.7 L1 )2
l22
(1) (2)
F ① 90 ②
将式(2)除以式(1)便得:
tg (l1 l2 )2 ctg2
l
由此得: arctg(ctg2 )
第十一章 压杆稳定问题
二、小绕度理论与理想压杆模型的实际意义
P322图11-6 直线AG与曲线AB的交点称为临界点,相应之载荷即为临
界载荷。临界点也称分支点,从该点开始,出现两种平衡 形态。按大挠度理论,当压杆处于临界状态时,其唯一的 平衡形态是直线,而非微弯。 在A点附近的很小一段范围内,可以近似地用水平线代替 曲衡线,。也从可力在学任上何,微当弯位F=置Fcr保时持,平压衡杆。既由可此在可直见线,位以置“保微持弯平 平衡”作为临界状态的特征,并根据挠曲轴近似微分方程 确定临界载荷的方法,是利用小变形对大挠度理论的一种 合理简化,它不仅正确,而且,由于求解简单,更为实用。 曲线AB在A点附近极为平坦,因此,当轴向压力F略高于 临界值Fcr时,挠度即急剧增长。由此可见,大挠度理论更 鲜明地说明了失稳的危险性。
(l)3 0.7 1.6a 1.12a
第十一章 压杆稳定问题
练习:已知图示压杆EI,且杆在B支承处不能转动 求:临界压力
F
解: l AB 0.5 a 0.5a
c
lBC 0.7 0.5a 0.35a
B
F AB cr
2EI
(0.5a)2
F BC cr
2EI
(0.35a)2
a\2
a
A
同,μ不同,视综合情况而定。
4、端约束越强,Fcr越大,越不易失稳。
5、为了保证不同的方向μ尽可能相同,端约束用球铰, 这样,各方向有较一致的约束。
6、Fcr非外力也非内力,是反映构件承载能力的力学量。
第十一章 压杆稳定问题
§11-4 中、小柔度杆的临界应力
一、临界应力与柔度 压杆处于临界状态时横截面上的平均应力,称为压杆
二、中心受压直杆稳定性分析
举例:一端固定,一端自由的钢板尺受轴向压力作用。
F
F<Fc干r
F>Fcr
扰
干
力
扰
直
稳 去不
力
线
定 除稳
去
平
平 ,定
除
衡
衡 恢平
,
状
复衡
继
态
直
续
线
弯
曲
第十一章 压杆稳定问题 三、稳定与失稳
1.压杆稳定性:压杆维持其原直线平衡状态的能力。
2.压杆失稳(屈曲):压杆丧失其原直线平衡状态, 不能稳定地工作。 3.临界状态:由稳定平衡向不稳定平衡过渡的状态。 4.临界载荷Fcr:使压杆直线形式的平衡开始由稳定转 变为不稳定的轴向压力值,或使压杆在微弯状态保持 平衡的最小轴向压力,称为压杆的临界载荷,用Fcr表 示。即压杆的压力逐渐上升,使压杆的平衡由稳定平衡 状态向不稳定状态的质变的转折点。
第十一章 压杆稳定问题
例: 图示各细长压杆材料和截面均相同,试问哪一 根杆能承受的压力最大, 哪一根的最小?
P P
P 因为 l 1 l 2 l 3
又
Fcr
2EI
l 2
a 1.3a
1.6a
可知 Fcr1 Fcr2 Fcr3
(1)
(2)
(l)1 2a (l)2 1.3a
(3)
杆(1)能承受的压力最小,最先失稳; 杆(3)能承受的压力最大,最稳定。
0<θ<π/2)。
F
解:由静力平衡条件可
解得两杆的压力分别为: ① 90 ②
N1 F cos ,N2 F sin
两杆的临界压力分别为 :
l
Fcr1
2E l12
I, F cr2
2EI
l22
第十一章 压杆稳定问题
要使F最大,只有
N1、N
都达到临界压力,即
2
F cos 2EI
l12
F
sin
2EI
两端铰支细长压杆的临界载荷与截面抗l弯刚度EI成正比,与杆件长度平方成反
比。在推导过程中,运用了边界条件,说明临界力与两端支座条件有关,惯性矩
I应为压杆横截面的最小惯性矩Imin。两端铰支细长压杆临界状态时的挠曲线为一 正弦曲线,最大挠度或幅值A则取决于压杆微弯的程度。由此可见,压杆在临界
状态时的平衡,是一种有条件的随遇平衡,微弯程度虽然可以任意,但挠曲轴形
实际压杆所能承受的最大压力必小于理想中心压杆 的临界力Fcr。
第十一章 压杆稳定问题
§11-2 两端铰支细长压杆的临界载荷
一、临界载荷的欧拉公式
1、分析思路:Fcr→临界状态(微弯)→弯曲变形→挠
曲线微分方程。
x
挠曲线微分方程:EIw" M (x) Fcr w
2、推导:Fcr
x
引用记号:k 2 Fcr ,得:w" k 2w 0 EI
二、两端固定的压杆
挠曲线:分成三段,两拐点与两端
相距均为l/4
中间段与两端铰支时一样,
相当长度为l/2
Fcr
2EI
(l / 2)2
2EI
(0.5l)2
第十一章 压杆稳定问题
3、一端固定,一端铰支的压杆
F
挠曲线:分成二段,拐点与一 端距离为0.7l
0.7l 较长的段与两端铰支时一样,
相当长度为0.7l
第十一章 压杆稳定问题
§11-1 引言 §11-2 两端铰支细长压杆的临界载荷 §11-3 两端非铰支细长压杆的临界载荷 §11-4 中、小柔度杆的临界应力 §11-5 压杆的稳定条件与合理设计 §11-6 提高压杆稳定的措施
第十一章 压杆稳定问题
§11-1 引言
①强度
构件的承载能力: ②刚度
③稳定性
0.3l
Fcr
2EI
(0.7l ) 2
统一表达式:Fcr
2EI (l)2
---相当长度系数,代表支持
方式对临界载荷的影响。µl称压 杆的相当长度或有效长度,即相 当的两端铰支压杆的长度,或压 杆挠曲轴拐点间的距离。
第十一章 压杆稳定问题
F
F
F
l
l
0.7l 0.3l
F
l/4 l/2 l/4
2
1
第十一章 压杆稳定问题
cr
Fcr A
2EI
l2 A
2E
l / i2
2E 2
l
i
称为压杆的柔度(细长比)。综合地 反映了压杆的长度l,支持方式 与截 面几何性质i对临界应力的影响。
cr
2E 2
Fcr
A cr
2EA 2
细长压杆的临界应力,与柔度的平方成反比, 越大,相应的 cr 越小,压杆越容易失稳。
压杆保持直线状态平衡 的最大力;使压杆失稳
第十一章 压杆稳定问题
在临界载荷作用下,压杆既可在直线状态下保持 平衡,也可在微弯状态下保持平衡。所以,当轴向压力 达到或超过压杆的临界载荷时,压杆将失稳。 5.压杆失稳原因:
①杆轴线本身不直(初曲率); ②加载偏心; ③压杆材质不均匀; ④外界干扰力。