有限差分法的原理与计算步骤

合集下载

有限差分法的原理与计算步骤

有限差分法的原理与计算步骤

有限差分法的原理与计算步骤有限差分法(Finite Difference Method)是一种常用的数值计算方法,用于求解偏微分方程的数值解。

其基本原理是将连续的偏微分方程转化为差分方程,通过逼近导数,使用离散的点代替连续的点,从而将问题转化为代数问题。

下面将详细介绍有限差分法的原理和计算步骤:一、基本原理:有限差分法基于Taylor级数展开,通过利用函数在其中一点附近的导数信息来逼近函数在该点处的值。

该方法将连续的偏微分方程转化为差分方程,使用离散的点代替连续的点,从而将问题转化为代数问题。

在有限差分法中,常用的差分逼近方式有前向差分、后向差分和中心差分。

二、计算步骤:1.网格划分:将求解区域划分为有限个离散点,并定义网格上的节点和网格尺寸。

通常使用等距离网格,即每个网格点之间的间距相等。

2.离散化:将偏微分方程中的各个导数项进行逼近,利用差分近似来替代和求解。

一般采用中心差分逼近方式,即通过函数值在两侧点的差来逼近导数。

3.代数方程系统:利用离散化的差分方程,将偏微分方程转化为代数方程系统。

根据问题的边界条件和初值条件,构建代数方程系统的系数矩阵和常数向量。

4. 求解代数方程:利用求解线性方程组的方法求解代数方程系统,常用的方法有直接法(如高斯消元法、LU分解法)和迭代法(如Jacobi迭代法、Gauss-Seidel迭代法)。

求解得到各个离散点的解。

5.后处理:根据求解结果进行后处理,包括结果的插值和可视化。

将离散点的解通过插值方法进行平滑处理,并进行可视化展示,以得到连续的函数解。

三、优缺点:1.直观:有限差分法基于网格划分,易于理解和实现。

2.精度可控:可通过调整网格大小和差分逼近方式来控制计算的精度。

3.广泛适用性:可用于求解各种偏微分方程,适用于不同的边界条件和初值条件。

然而,有限差分法也存在一些缺点:1.精度依赖网格:计算结果的精度受到网格划分的影响,因此需要谨慎选择网格大小。

2.限制条件:有限差分法适用于边界对应点处导数有定义的问题,不适用于奇异点和非线性问题。

有限差分法的基本原理

有限差分法的基本原理

f (x) ≈
2h
中心二阶差商
′′
f (x+h)−2f (x)+f (x−h)
f (x) ≈
h2
O(h) O(h)
2
O(h )
2
O(h )
其中,h表示网格间距,O(hn)表示截断误差与hn成正比。可以看出,中心差商比前向或后向差商具有更高的精度。
误差分析
有限差分法求得的数值解与真实解之间存在误差,这些误差主要来源于以下几个方面:
常用差分格式
有限差分法中最重要的步骤是构造合适的差分格式来近似微分项。根据泰勒展开式,可以得到以下常用的一阶和二阶差分格式:
差分格式
表达式
截断误差
前向一阶差商

f (x+h)−f (x)
f (x) ≈
h
后向一阶差商

f (x)−f (x−h)
f (x) ≈
h
中心一阶差商

f (x+h)−f (x−h)
截断误差:由于使用有限项级数来近似无穷级数而产生的误差; 舍入误差:由于计算机对小数进行四舍五入而产生的误差;
离散误差:由于对连续区域进行离散化而产生的误差; 稳定性误差:由于数值格式的稳定性不足而导致误差的累积或放大。
为了减小误差,一般可以采取以下措施:
选择更高阶或更精确的差分格式; 减小网格间距或时间步长; 选择合适的初始条件和边界条件; 选择稳定且收敛的数值格式。
+
。 2
h)
为了验证上述方法的正确性,我们取M = 10, N = 100,则原问题可以写为如下形式:
则该问题对应的递推关系式为:
⎧ut (x, t) − uxx (x, t) = 0,

matlab有限差分法

matlab有限差分法

matlab有限差分法一、前言Matlab是一种广泛应用于科学计算和工程领域的计算机软件,它具有简单易学、功能强大、易于编程等优点。

有限差分法(Finite Difference Method)是一种常用的数值解法,它将微分方程转化为差分方程,通过对差分方程进行离散化求解,得到微分方程的数值解。

本文将介绍如何使用Matlab实现有限差分法。

二、有限差分法基础1. 有限差分法原理有限差分法是一种通过将微分方程转化为离散形式来求解微分方程的数值方法。

其基本思想是将求解区域进行网格划分,然后在每个网格点上进行逼近。

假设要求解一个二阶常微分方程:$$y''(x)=f(x,y(x),y'(x))$$则可以将其转化为离散形式:$$\frac{y_{i+1}-2y_i+y_{i-1}}{h^2}=f(x_i,y_i,y'_i)$$其中$h$为网格步长,$y_i$表示在$x_i$处的函数值。

2. 一维情况下的有限差分法对于一维情况下的常微分方程:$$\frac{d^2 y}{dx^2}=f(x,y,y')$$可以使用中心差分法进行离散化:$$\frac{y_{i+1}-2y_i+y_{i-1}}{h^2}=f(x_i,y_i,y'_i)$$这个方程可以写成矩阵形式:$$A\vec{y}=\vec{b}$$其中$A$为系数矩阵,$\vec{y}$为函数值向量,$\vec{b}$为右端项向量。

三、Matlab实现有限差分法1. 一维情况下的有限差分法假设要求解的方程为:$$\frac{d^2 y}{dx^2}=-\sin(x)$$首先需要确定求解区域和网格步长。

在本例中,我们将求解区域设为$[0,2\pi]$,网格步长$h=0.01$。

则可以通过以下代码生成网格:```matlabx = 0:0.01:2*pi;```接下来需要构造系数矩阵和右端项向量。

根据上面的公式,系数矩阵应该是一个三对角矩阵,可以通过以下代码生成:```matlabn = length(x)-2;A = spdiags([-ones(n,1), 2*ones(n,1), -ones(n,1)], [-1 0 1], n, n); ```其中`spdiags`函数用于生成一个稀疏矩阵。

abaqus有限差分法

abaqus有限差分法

abaqus有限差分法Abaqus有限差分法是一种广泛应用于工程和科学计算领域的数值计算方法。

它是一种基于离散化的方法,将连续问题转化为离散问题,从而可以通过计算机程序求解。

以下是围绕“abaqus有限差分法”分步骤阐述:第一步,了解有限差分法的原理有限差分法是一种求解微分方程或偏微分方程的数值方法。

它通过将连续问题离散化,将空间和时间上的连续变量转化为有限个离散点。

有限差分法将微分方程转化为差分方程,从而可以借助计算机程序求解。

第二步,学习abaqus软件的基本知识Abaqus软件是一种通用的有限元分析软件,它可以用于求解非线性问题、动态问题、多物理场问题等。

它提供了一种简单的界面以及强大的求解器,可以大大简化复杂问题的求解。

在使用abaqus软件求解问题时,需要了解它的基本知识,如模型的建立、边界条件的设置、材料的定义、负载的施加等。

第三步,使用abaqus实现有限差分法在abaqus中使用有限差分法,需要按照以下步骤进行:1. 创建模型:在abaqus中创建模型,选择适当的材料和几何结构。

2. 离散化:将模型离散化,将连续的结构转化为有限个离散点。

3. 定义边界:定义边界条件,包括约束和负载。

4. 定义材料:定义材料的属性和本构关系。

5. 求解问题:将问题转化为差分方程,通过求解器求解。

第四步,实例演示下面以一个简单的悬臂梁为例,介绍在abaqus中使用有限差分法求解问题的具体步骤:1. 创建模型:在abaqus软件中创建一个悬臂梁的模型,包括几何结构和材料属性。

2. 离散化:将连续的悬臂梁离散化为离散点。

3. 定义边界:定义边界条件,使得悬臂梁的一个端点固定,另一个端点施加一个力。

4. 定义材料:定义悬臂梁的材料属性,如弹性模量、泊松比等参数。

5. 求解问题:通过求解器求解问题,得到悬臂梁的应力和位移等结果。

通过上述步骤,可以使用abaqus软件实现有限差分法求解问题。

需要注意的是,在实际应用中,需要对模型的建立、材料定义、边界条件的设置等进行合理的调整,才能得到准确的结果。

有限差分法基本原理

有限差分法基本原理

流体力学
模拟流体在各种情况下的运动和传输现象, 如空气动力学、水力学等。
热传导
用于研究材料中的热传导现象,如传热设 备的设计和材料的热特性分析。
结构力学
分析结构中的应力、应变等力学性质,用 于优化结构设计和评估结构的稳定性。
电磁场
分析电磁场的分布和变化规律,用于电磁 波传播、电路设计等领域。
有限差分法的优缺点
有限差分法在实际工程中的应用
流体动力学
模拟流体在航空、航天等领 域的流动性能,评估气动设 计和分 析材料的热传导特性、预测 温度场的分布。
结构分析
评估结构的稳定性和强度, 优化结构设计,分析材料的 力学性能。
3 差分法程式
利用节点上的差分近 似替代连续的偏微分 方程,从而得到离散 的差分方程。
有限差分法的基本步骤
网格划分
将求解域划分为离散的节 点,构建求解网格。
边界条件
明确边界上的条件,用于 确定差分方程的边界值。
离散方程
利用节点上的差分近似, 将偏微分方程转化为离散 的差分方程。
有限差分法的应用领域
有限差分法基本原理
有限差分法是一种数值计算方法,用于求解偏微分方程的数值逼近解。它通 过将连续的偏微分方程转化为差分方程,从而实现数值求解。
有限差分法的概述
1 定义
有限差分法是一种将 连续的偏微分方程离 散化为差分方程的数 值方法。
2 离散化
通过在网格上对偏微 分方程进行离散化, 将求解域划分为有限 个离散的节点。
隐式-显式格式
结合了显式和隐式格式的 优点,兼顾计算速度和稳 定性。
有限差分法的误差分析
1
稳定误差
2
主要由数值格式和边界条件的选择 引起,不会随网格精度改变而改变。

二阶偏微分方程组的有限差分解法

二阶偏微分方程组的有限差分解法

二阶偏微分方程组的有限差分解法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!二阶偏微分方程组的有限差分解法引言在科学与工程领域中,二阶偏微分方程组的求解是一项重要而又具有挑战性的任务。

4.有限差分法基本原理

4.有限差分法基本原理
以对流方程说明差分方程的建立过程。
0 t x ( x,0) ( x)
差分方程的建立过程
1.划分网格 选定步长 x和 t ,然后在坐标平面用平行于坐标轴 的两族直线划分网格: xi x0 ix, i 0, 1, 2, ...,
t
n in 1 i 1
2x
0
差分方程和其定解条件一起,称为相应微分方程 问题的差分格式。上述初值问题的差分格式可改写为:
t n 1 n n (in i i i 1 ) 1 2x 0 i ( xi )
观察上述差分格式可看出:若知道第 n 层的 ,可 由一个差分式子直接算出第 n 1层的 ,故称这类格式 为显示格式。
0 t x
2 2 对流-扩散方程: t x x
热传导方程:
2 2 t x
Poisson方程:
2 2 2 f 2 y x 2 0 2 x y
2 2
Laplace方程:
差分方程的建立过程
• 方程的一般变换
• 方程的一般变换
• 拉伸(压缩)网格
dy e d y e
• 椭圆网格
• 椭圆网格
• 自适应网格
• 自适应网格
• 非结构网格和笛卡尔网格
t
误差及稳定性分析
收敛性 收敛性研究的是差分方程的解与微分方程的解之间的差别问 题。如果在求解区域中的任一离散点 ( x, t ) 上,当网格步长 x、t 趋于零时,有限差分方程的解趋近于所近似的微分方程解,则称有 限差分方程的解是收敛的。
T (i, n)
x 0 , t 0
lim
小结
小结

有限差分法的原理与计算步骤

有限差分法的原理与计算步骤

一、有限差分法的原理与计算步骤
1.原理
基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。

然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。

2. 计算步骤
在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即所谓的有限差分法。

有限差分法求解偏微分方程的步骤如下:
(1)区域离散化,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格;
(2)近似替代,即采用有限差分公式替代每一个格点的导数;
(3)逼近求解。

换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程
二、有限差分法的程序流程图。

有限差分法原理

有限差分法原理

有限差分法原理有限差分法(Finite Difference Method)是一种常见的数值计算方法,广泛应用于工程、物理、地质等领域的数值模拟和求解偏微分方程。

它的原理是将连续的微分方程转化为离散的差分方程,通过对网格节点上的数值进行逼近,从而求解微分方程的数值解。

在本文中,我们将介绍有限差分法的基本原理及其在实际问题中的应用。

首先,我们来看一维热传导方程的数值求解。

假设我们要求解一个长为L的均匀材料棒上的温度分布,其热传导方程可以写为:\[ \frac{\partial u}{\partial t} = \alpha\frac{\partial^2 u}{\partial x^2} \]其中,u(x, t)表示位置x上的温度分布,t表示时间,α为热扩散系数。

为了使用有限差分法求解这个方程,我们需要将空间和时间进行离散化。

假设我们在空间上取N个网格点,将材料棒分为N个小区间,每个小区间的长度为Δx。

在时间上也进行离散化,取时间步长为Δt。

这样,我们可以用u_i^n来表示位置为x_i的温度在时间t_n的值。

将热传导方程在离散点上进行近似,我们可以得到如下的差分格式:\[ \frac{u_i^{n+1} u_i^n}{\Delta t} = \alpha\frac{u_{i+1}^n 2u_i^n + u_{i-1}^n}{(\Delta x)^2} \]通过对时间和空间上的离散点进行迭代计算,我们可以逐步求解出温度在空间上的分布随时间的演化。

这就是有限差分法的基本原理。

除了一维热传导方程,有限差分法还可以应用于更加复杂的偏微分方程,比如二维热传导方程、波动方程、扩散方程等。

在这些情况下,我们需要在空间上取二维甚至三维的网格点,并相应地修改差分格式。

有限差分法的优点在于它简单易实现,而且可以直接应用于一般的偏微分方程,因此在实际工程和科学计算中得到了广泛的应用。

需要指出的是,有限差分法也有一些局限性。

有限差分法基本原理

有限差分法基本原理

有限差分法基本原理有限差分法(Finite Difference Method)是一种常用的数值计算方法,用于求解偏微分方程的近似解。

其基本原理是将连续的偏微分方程转化为网格上的差分方程,通过对差分方程进行数值求解,得到问题的数值解。

首先,有限差分法将求解区域划分为一个个小网格。

通常使用矩形网格(二维)或立方体网格(三维),这些小网格称为离散点。

每个离散点上的函数值表示在该点处的近似解。

然后,将偏微分方程中的导数用差商来代替。

对于一阶导数,可以使用中心差商、前向差商或后向差商等。

中心差商是最常用的一种,它使用左右两个离散点的函数值来逼近导数的值。

例如,对于一维情况下的导数,中心差商定义为:f'(x)≈(f(x+h)-f(x-h))/(2h)其中,h表示网格的步长。

通过调整步长h的大小,可以控制逼近的精度。

对于高阶导数,可以使用更复杂的差分公式。

例如,对于二阶导数,可以使用中心差商的差商来逼近。

具体公式为:f''(x)≈(f(x+h)-2f(x)+f(x-h))/h^2通过将导数用差商代替,将偏微分方程转化为差分方程。

例如,对于二维泊松方程:∇²u(x,y)=f(x,y)其中,∇²表示拉普拉斯算子。

u(i,j)=1/4[u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1)]-h²/4*f(i,j)其中,u(i,j)表示离散点(i,j)处的近似解,f(i,j)表示离散点(i,j)处的右端项。

最后,通过求解差分方程,得到问题的数值解。

可以使用迭代方法,例如Jacobi迭代法、Gauss-Seidel迭代法或SOR迭代法等,来求解差分方程。

迭代过程通过更新离散点上的函数值,直到满足收敛条件或达到指定的迭代次数。

总结来说,有限差分法通过将连续的偏微分方程转化为网格上的差分方程,然后通过数值求解差分方程,得到问题的近似解。

它是一种简单且高效的数值计算方法,广泛应用于科学计算、工程计算和物理仿真等领域。

有限差分法的原理及应用

有限差分法的原理及应用

有限差分法的原理及应用1. 前言有限差分法(Finite Difference Method)是一种常见的数值计算方法,用于求解偏微分方程(Partial Differential Equations,简称PDE)。

它通过在求解域中采用离散点来逼近微分算子,将连续的微分方程转换为离散的代数方程,从而实现对PDE的数值求解。

有限差分法具有简单易懂、易于实现的优点,被广泛应用于科学计算、工程分析等领域。

2. 原理有限差分法的原理基于以下两个基本思想: - 寻找定义域上的离散点,并通过这些离散点来近似表示原方程中的未知函数。

- 使用差分格式来近似微分算子,从而将偏微分方程转化为代数方程组。

具体而言,有限差分法将定义域按照均匀的网格划分为一个个网格点,这些点被称为节点。

同时,有限差分法还使用网格点上的函数值来近似表示原方程中的未知函数。

通过将对原方程中的微商用差商来近似表示,然后将差商带入到原方程中,得到离散的代数方程。

3. 应用有限差分法广泛应用于各个科学领域和工程领域中的数值计算问题。

以下列举几个常见的应用领域:3.1 流体力学在流体力学中,有限差分法被用来模拟流体的运动。

通过将流体领域离散化,将流体的速度、压力等参数表示为离散点上的函数值,可以使用有限差分法求解Navier-Stokes方程,从而得到流体的流动行为。

3.2 热传导有限差分法可以用于求解热传导方程。

通过将传热领域离散化,并将温度表示为离散点上的函数值,可以使用有限差分法求解热传导方程,从而得到材料内的温度分布。

3.3 结构力学有限差分法也被广泛用于求解结构力学中的问题。

例如,在弹性力学中,可以通过将结构域离散化,并将结构的位移、应力等参数表示为离散点上的函数值,使用有限差分法求解相应的弹性方程,从而得到结构的应力分布和变形情况。

3.4 电磁场分析在电磁场分析中,有限差分法被用来求解麦克斯韦方程组。

通过将电磁场的定义域离散化,并将电场、磁场等参数表示为离散点上的函数值,可以使用有限差分法求解麦克斯韦方程组,从而得到电磁场的分布情况。

有限差分法在数值计算中的应用

有限差分法在数值计算中的应用

有限差分法在数值计算中的应用有限差分法是一种常用的数值计算方法,广泛应用于各个领域,包括物理学、工程学、金融学等。

本文将介绍有限差分法的基本原理,以及其在数值计算中的应用。

一、有限差分法的基本原理有限差分法是通过近似计算导数、积分等运算的一种方法,其基本思想是将函数在某一点处展开成一个泰勒级数,然后用有限个点处的函数值来逼近原函数。

有限差分法的核心是将连续的函数转化为离散的数据点,然后通过有限个离散点之间的差分来近似原函数的性质。

有限差分法的主要步骤包括以下几个:1. 网格划分:将计算区域划分为均匀的网格,即将连续的空间划分为一系列离散的点。

2. 逼近函数:将原函数在每个网格点处做泰勒级数展开,得到对应的近似函数。

3. 差分近似:根据泰勒级数展开的结果,利用有限个网格点之间的差分,来近似计算导数、积分等运算。

4. 求解方程:根据差分结果,可以得到离散的代数方程组,通过求解这个方程组得到数值解。

二、1. 偏微分方程求解:有限差分法可以用来求解各种类型的偏微分方程,包括抛物型、椭圆型和双曲型方程。

通过将偏微分方程离散化为代数方程组,再通过求解方程组得到数值解。

2. 数值积分:有限差分法可以用来近似计算函数的积分。

通过将积分区间划分为一系列小区间,并用离散点上的函数值来近似替代原函数,可以得到积分的数值结果。

3. 非线性方程求解:有限差分法也可以用来求解非线性方程。

通过将非线性方程转化为离散的代数方程组,并利用迭代方法求解方程组,可以得到非线性方程的数值解。

4. 边值问题求解:有限差分法可以应用于求解各类边值问题,如求解热传导方程的边值问题、求解电场分布的边值问题等。

通过将边值问题离散化为代数方程组,再通过求解方程组得到边值问题的数值解。

5. 优化问题求解:有限差分法可以用来求解各种类型的优化问题。

通过将优化问题转化为非线性方程组,并利用有限差分法求解方程组,可以得到优化问题的数值解。

总结:有限差分法作为一种常用的数值计算方法,在各个领域中有着广泛的应用。

有限差分法基本原理-较好

有限差分法基本原理-较好

如折射、反射、散射等现象。
电磁波控制
03
在电磁场模拟中,有限差分法还可以用于研究电磁波的调控技
术,如波导、滤波器等器件的设计和优化。
有限差分法在气候模拟中的应用
气候模型
气候模拟是有限差分法的另一个重要应用领域,用于研究地球气 候系统的演变和预测。
大气环流模型
通过有限差分法,可以建立大气环流模型,模拟大气中温度、湿 度、风速等变量的变化和传播。
有限差分法的稳定性分析
稳定性定义
有限差分法的稳定性是指当时间步长趋于无 穷小时,数值解的误差不会发散,而是趋于 零。
稳定性条件
为了确保有限差分法的稳定性,需要满足一定的条 件,例如CFL条件(Courant-Friedrichs-Lewy条件 )等。
不稳定性分析
对于某些初始条件和参数,有限差分法可能 会出现数值不稳定的情况,需要进行不稳定 性分析并采取相应的措施。
3
边界条件处理
在流体动力学应用中,有限差分法需要考虑复杂 的边界条件,如固壁、滑移边界等,以实现准确 的数值模拟。
有限差分法在电磁场模拟中的应用
麦克斯韦方程
01
有限差分法可以用于求解电磁场中的麦克斯韦方程,以模拟电
磁波的传播和散射等行为。
电磁波传播
02
通过有限差分法,可以模拟电磁波在复杂介质中的传播特性,
THANKS FOR WATCHING
感谢您的观看
未来研究方向与展望
研究方向 展望
针对有限差分法的局限性和不足,未来的研究可 以关注如何改进算法,提高计算精度和稳定性, 以及如何拓展该方法的应用范围。
随着计算机技术的不断发展和数值计算方法的进 步,有限差分法有望在未来得到更广泛的应用和 更深入的研究,为解决各种科学和工程问题提供 更加有效的数值计算方法。

第4章 有限差分法

第4章 有限差分法

第 4 章
有 限 差 分 法
4.3.2 定解条件的离散化——各类差分计算格式
对于场域边界上给定的三类边界条件(见 1.7 节), 由于第二类边界条 件可以看作为第三类边界条件的特殊情况,因此,这里只需讨论第一、第三 类边界条件的差分离散化处理。 (1) 第一类边界条件的差分离散化 若如图 4-2 点 M 所示, 划分网格时相应的网格节点恰好落在边界 L 上,则 只要直接把位函数 u| M∈ L = f(rM)的值赋给该对应的边界节点 M 即可。 若划分网格时引入的节点不落在边界 L 上, 则如图 4-3所示, 对于邻近边界的典型节点 o, 由于 h1≠ h2≠ h, 这样, o点及其周围相邻的 1、 2、 3 和 4 点构成一个不对称的星形。此时, 可仿照 4.2 节, 采用泰勒公式进行差分离散化 处理,即能相当精确地导出关于 o 点的差分计 算格式。
截断于 2hf′(x0)项, 略去了 h3项以及更高幂次的项。很明显,三种差商表达 式中以式(4-4)所示的中心差商的截断误差最小,其误差大致和 h 的二次方 成正比。 二阶导数同样可近似为差商的差商,即
这相当于把泰勒公式
截断于 h2f″(x)项, 略去了 h4项以及更高幂次的项,其误差亦大致和 h 的 二次方成正比。
理方法是依据式(4-3), 这样, 第三类边界条件在此情况下的差分计算 格式为
第 4 章
有 限 差 分 法
当边界 L 在边界节点 o 处的外法向 n 与网格线不重合时,如图 4-5 所 示, 显然有
于是, 关于 o 点的差分计算格式是
第 4 章
有 限 差 分 法
第二种情况是在边界处引入的相应节点不落在边界 L 上, 这时如图 4-6 所示,可在邻近边界的节点 o 上仍按上述方法列出差分计算格式,只是需引 入与节点 o 相关的边界节点 o′,取点 o′处的外法向 n 作为点 o 处的“外法向 n”, 且近似地认为边界条件中给定的函数f1(ro)和 f2(ro)均在点 o′上取值。这 样,将式(4-14)中的 f1(ro)和 f2(ro)改记为 f1(ro′)和f2(ro′),即得此种情况下关 于 o 点的差分计算格式。

有限差分法

有限差分法

有限差分法一、有限差分法的定义有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。

其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数ϕ的泊松方程的问题转换为求解网格节点上ϕ的差分方程组的问题。

二、有限差分法的应用例3.7.1 有一个无限长直的金属槽,截面为正方形,两侧为正方形,两侧面及底板接地,上盖板与侧面绝缘,其上的电位为ϕ=100V, 试用有限差分法计算槽内电位。

(1)用Matlab 中的有限差分法计算槽内电位;(2)对比解析法和数值法的异同点;(3)选取一点,绘制收敛曲线;(4)总的三维电位图;1、根据有限差分公式计算出电位最终近似值为1,12,13,11,22,23,21,32,33,3=7.144=9.823=7.144=18.751=25.002=18.751=42.857=52.680=42.857ϕϕϕϕϕϕϕϕϕ,,,,,,用Matlab有限差分法计算出来结果:(见附录程序一)2、解析法和数值法的异同点解析法数值法定义在分析具体问题的基础上,抽取出一个数学模型,这个数学模型能用若干个解析表达式表示出来,解决了这些表达式,问题也就得以解决。

数值法是用高性能的计算机以数值的、程序的形式解决问题,主要是指有限元法和差分法相同点都是在具体问题的基础上取一个用解析表达式表示的数学模型来解决问题;数值法是在解析法的基础上在不同尺度上进行有限元离散,离散单元尺度不同,进行有限元计算时要满足的连续性条件不同,预测结果的精确度就不同不同点解析法可以计算出精确的数值结果;可以作为近似解和数值解的检验标准;解析法过程可以观察到问题的内在和各个参数对数值结果起的作用。

但是分析过程困难又复杂使其仅能解决很少量的问题。

数值法求解过程简单,普遍性强,用户拥有的弹性大;用户不必具备高度专业化的理论知识就可以用提供的程序解决问题。

但求解结果没有解析法精确。

数值计算中的有限元和有限差分方法

数值计算中的有限元和有限差分方法

数值计算中的有限元和有限差分方法数值计算是一种利用数字来求解数学问题的技术。

在各个领域中,数值计算都被广泛应用,尤其是在工程计算中具有重要的地位。

有限元和有限差分方法是数值计算的两个重要工具,本文将介绍它们的原理、优缺点以及应用。

一、有限元方法有限元方法(Finite Element Method,简称FEM)是一种适用于工程力学、流体力学、热传导等问题的数值计算方法。

首先将问题区域离散化成若干个小区域,每个小区域称为有限元;然后通过对每个有限元的变形、应力和应变的计算,得到整个问题的解。

有限元方法的基本原理是建立一个局部变形和应力的数学模型,借助于位移和应力的离散函数来代表局部信息,并将不连续的位移和应力函数在结点处相互连接,形成一个连续作用的整体模型,从而求解整个问题的解。

通过该方法可以精确地求解各种材料构件的形变、应变以及应力分布等问题,并且具有灵活性和广泛性。

有限元方法的优点是求解精度较高,分析结果可靠。

可以分析复杂的问题以及非线性问题,并可进行多物理场耦合分析。

此外,还可以基于现有的有限元软件进行建模分析,避免重复造轮子。

然而,它也存在限制,例如建模时需要对问题进行适当的假设,并且需要对材料力学性质等信息有一定的了解。

此外,考虑更复杂的物理现象时,需要使用更高阶的元来表示求解方程,这会导致计算量增加,计算时间增长。

二、有限差分法有限差分方法(Finite Difference Method,简称FDM)是一种常用的求解微分方程的数值计算方法。

该方法将微分方程中的导数用有限差分的形式表示出来,从而将连续问题离散化成为一个离散点问题,并通过计算在各个离散点上函数值的差分,从而得到微分方程的数值解。

有限差分方法的基本思想是将连续函数转化为离散函数,然后在离散点上近似求解微分方程。

该方法简单易懂,计算量小,代码实现相对容易。

因此,将微分方程离散化是数值计算中经常采用的方法。

与有限元方法相比,有限差分方法在处理一些简单问题的时候表现更好,计算速度快,精度也有保障。

04有限差分法.ppt

04有限差分法.ppt
uin n 1 n 1 a n n n ui ui ui 1 ui 1 2 ui 1 2uin uin 1 2h h uin n a n n 1 n n ui ui ui 1 ui 1 2 ui 1 2uin uin 1 或 2h h
n Rj
O t x

2

无条件稳定
2.一维混合问题
u 2u 2 0 t x u x ,0 F x u a, t t u b, t t
0 x b, t 0, 0
对于[a,b]区间的内点,可以构造以上各种格式。 如四点显式
例:驱动腔内的流体流动。
3.网格划分
x h y l xi ih
-----称为步长。
u x, y u i , j
xi , y j i, j
y j jl
4.差分格式 将u在(i,j)附近展成Taylor级数
ui 1, j ui , j ui 1, j ui , j 1 2u 1 3u u h 2 h 2 3 h 3 ... 2 x 3! x x i , j i, j i, j 1 2u 1 3u u h 2 h 2 3 h 3 ... 2 x 3! x x i , j i, j i, j


-----中心差分式
O h 表示具有二阶精度。

2
两Taylor展式相加
2u 1 ui 1, j 2ui , j ui 1, j O h 2 x 2 h2 i, j

有限差分方法基础

有限差分方法基础

2!
3!
4!
(1-14)
f (x x) f (x) f (x) f (x) x f (x) (x)2 f IV (x) (x)3 O((x)4 )
x
2!
3!
4!
f (x) O(x)
(1-15)
11
第一节 差分原理及逼近误差/逼近误差(2/9)
f (x x) f (x) x f (x) (x)2 f (x) (x)3 f (x) (x)4 f IV (x) O((x)5 ),
t i
t
空间导数用一阶中心差商近似替代,即
n
n i 1
n i 1
x i
2x
则在 (xi ,tn )点旳对流方程就可近似地写作
n1 i
n i
n i 1
n i 1
0
t
2x
(2-2) (2-3) (2-4)
25
第二节 差分方程、截断误差和相容性/截断误差(1/6)
按照前面有关逼近误差旳分析懂得,用时间向前差商替代时间导数时旳误差为 O(t) ,
用空间中心差商替代空间导数时旳误差为 O((x)2 ),因而对流方程与相应旳差分方程之间也存在一种误差,它是
Rin O(t) O((x)2 ) O(t, (x)2 )
(2-5)
这也可由Taylor展开得到。因为
(xi , tn t) (xi , tn ) (xi x, tn ) (xi x, tn )
0
t x
(2-1)
23
第二节 差分方程、截断误差和相容性/差分方程(2/3)
xi x0 ix, i 0,1, 2,
tn nt,
n 0,1, 2,
图2-1 差分网格
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
一、有限差分法的原理与计算步骤
1.原理
基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。

然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。

2. 计算步骤
在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即所谓的有限差分法。

有限差分法求解偏微分方程的步骤如下:
(1)区域离散化,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格;
(2)近似替代,即采用有限差分公式替代每一个格点的导数;
(3)逼近求解。

换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程
二、有限差分法的程序流程图
.。

相关文档
最新文档