抽象函数练习题

合集下载

2022届新高考数学抽象函数专题练习

2022届新高考数学抽象函数专题练习

专题8 抽象函数一、单选题1.函数()f x 是R 上的增函数,点()0,1A −,()3,1B 是其图象上的两点,则()11f x +<的解集为( ) A .()[),14,−∞−+∞ B .()[) ,12,−∞−+∞ C .1,2D .()1,42.已知函数()f x 在定义域R 上单调,且(0,)x ∈+∞时均有(()2)1f f x x +=,则(2)f −的值为( ) A .3B .1C .0D .1−3.单调增函数()f x 对任意,x y R ∈满足()()()f x y f x f y +=+,若()()33920x x xf k f ⋅+−−<恒成立,则k 的取值范围是( )A .()1− B .()1−∞C .(1⎤⎦D .)1,⎡+∞⎣4.定义在R 上的奇函数()f x 满足()()2f x f x −=,当(]0,1x ∈,()2log f x x x =−,则20212f ⎛⎫= ⎪⎝⎭( )A .32B .12C .12−D .32−5.已知定义在R 上的函数()f x 满足()()()f x y f x f y −=−,且当0x <时,()0f x >,则关于x 的不等式()()()()2222f mx f m f m x f x +>+(其中0m << )A .2x m x m ⎧⎫<<⎨⎬⎩⎭B .{|x x m <或2}x m > C .2x x m m ⎧⎫<<⎨⎬⎩⎭D .{|x x m >或2}x m<6.已知函数()f x 是R 上的偶函数,且()f x 的图象关于点()1,0对称,当[]0,1x ∈时,()22xf x =−,则()()()()0122020f f f f ++++的值为( )A .2−B .1−C .0D .17.已知奇函数()f x 的定义域为R ,若()2f x +为偶函数,且()11f −=−,则()()20172016f f += A .2−B .1−C .0D .18.已知函数()f x 是定义在R 上的奇函数,当0x >时,()2f x x x =+,则不等式()()ln 1f x f <−的解集为( ) A .()0,e B .1,e ⎛⎫−∞ ⎪⎝⎭C .(10,e ⎛⎫⎪⎝⎭D .1,e⎛⎫+∞ ⎪⎝⎭二、多选题9.已知函数()f x 满足x R ∀∈,有()(6)f x f x =−,且(2)(2)f x f x +=−,当[1,1]x ∈−时,)()lnf x x =,则下列说法正确的是( )A .(2021)0f =B .(2020,2022)x ∈时,()f x 单调递增C .()f x 关于点(1010,0)对称D .(1,11)x ∈−时,方程()sin 2f x x π⎛⎫=⎪⎝⎭的所有根的和为30 10.已知()f x 是定义在R 上的偶函数,()()11f x f x −=−+,且当[]0,1x ∈时,()22f x x x =+−,则下列说法正确的是( )A .()f x 是以4为周期的周期函数B .()()201820212f f +=−C .函数()2log 1y x =+的图象与函数()f x 的图象有且仅有3个交点D .当[]3,4x ∈时,()2918f x x x =−+11.已知函数()f x 的定义域为R ,且在R 上可导,其导函数记为()f x '.下列命题正确的有( ) A .若函数()f x 是奇函数,则()f x '是偶函数 B .若函数()'f x 是偶函数,则()f x 是奇函数 C .若函数()f x 是周期函数,则()f x '也是周期函数 D .若函数()f x '是周期函数,则()f x 也是周期函数12.已知函数()y f x =是R 上的奇函数,对于任意x ∈R ,都有(4)()(2)f x f x f +=+成立,当[)0,2x ∈时,()21=−x f x ,给出下列结论,其中正确的是( )A .(2)0f =B .点(4,0)是函数()y f x =的图象的一个对称中心C .函数()y f x =在[6,2]−−上单调递增D .函数()y f x =在[6,6]−上有3个零点 三、填空题13.写出一个满足()()2f x f x =−的奇函数()f x =______.14.已知函数()f x 是R 上的奇函数,且()y f x =的图象关于1x =对称,当[0,1]x ∈时,()21x f x =−,计算(0)(1)(2)(3)(2021)f f f f f +++++=________.15.函数()f x 为定义在R 上的奇函数,且满足()(2)f x f x =−,若(1)3f =,则(1)(2)(50)f f f +++=__________.16.设()f x 是定义在R 上的函数,且()()2f x f x =+,在区间[)1,1−上,(),102,015x a x f x x x +−≤<⎧⎪=⎨−≤<⎪⎩,其中a ∈R .若5922f f ⎛⎫⎛⎫−= ⎪ ⎪⎝⎭⎝⎭,则()5f a 的值是________.四、解答题17.已知定义在R 上的函数()f x ,()g x 满足: ①()01f =;②任意的x ,R y ∈,()()()()()f x y f x f y g x g y −=−.(1)求()()22f xg x −的值;(2)判断并证明函数()f x 的奇偶性.18.已知函数()f x 满足对,x y R ∀∈,都有()()()f x y f x f y +=+,且(1)2f =. (1)求(0)f 与(2)f −的值;(2)写出一个符合题设条件的函数()f x 的解析式(不需说明理由),并利用该解析式解关于x 的不等式(21)1()1f x f x +≥−.19.如果存在一个非零常数T ,使得对定义域中的任意的x ,总有f x Tf x 成立,则称()f x 为周期函数且周期为T .已知()f x 是定义在R 上的奇函数,且()y f x =的图象关于直线x a =(0a ≠,为常数)对称,证明:()f x 是周期函数.20.已知函数()()y f x x =∈R .(1)若()f x 满足(1)y f x =+为R 上奇函数且(1)=−y f x 为R 上偶函数,求(3)(5)f f −+的值;(2)若函数()()y g x x =∈R 满足1(3)2g x +=x ∈R 恒成立,函数()()()h x f x g x =+,求证:函数()h x 是周期函数,并写出()h x 的一个正周期;(3)对于函数()y f x =,()()y k x x =∈R ,若(())()f k x f x =对x ∈R 恒成立,则称函数()y f x =是“广义周期函数”, ()k x 是其一个广义周期,若二次函数2()(0)f x ax bx c a =++≠的广义周期为()k x (()k x x =不恒成立),试利用广义周期函数定义证明:对任意的12,x x ∈R ,12x x ≠,()()12f x f x =成立的充要条件是12b x x a+=−.参考答案1.C【解析】解法一:因为()f x 是R 上的增函数,()0,1A −,()3,1B 是其图象上的两点,所以函数()f x 的草图如图所示.由图象得,()()11111013f x f x x +<⇔−<+<⇔<+<,即12x −<<.解法二:因为()f x 是R 上的增函数,()0,1A −,()3,1B 是其图象上的两点,所以当03x ≤≤时,()11f x −≤≤.又已知()11f x +<,即()111f x −<+<, 所以013x <+<,解得12x −<<. 故选:C2.A【解析】根据题意,函数()f x 在定义域R 上单调,且(0,)x ∈+∞时均有(()2)1f f x x +=, 则()2f x x +为常数,设()2f x x t +=,则()2f x x t =−+,则有()21f t t t =−+=,解可得1t =−,则()21f x x =−−,故(2)413f −=−=; 故选:A. 3.B【解析】因为()()()f x y f x f y +=+,所以()()3392(3392)0x x x x x xf k f f k ⋅+−−=⋅+−−<又对任意,x y R ∈满足()()()f x y f x f y +=+, 所以(0)(0)(0)f f f =+, 解得(0)0f =,由()f x 为R 上单调增函数可得33920x x x k ⋅+−−<,令30x t =>,即2(1)20k t t +−−<恒成立, 即21k t t+<+,而2t t +≥,当且仅当2t t=,即t =所以1k +<1k <, 故选:B 4.D【解析】因为()f x 满足()()2f x f x −=,所以()f x 的图像关于x=1对称. 又()f x 为定义在R 上的奇函数,所以()()()22f x f x f x =−=−−, 所以()()()42f x f x f x +=−+=, 所以()f x 为周期函数,且周期T =4. 所以2021552524222f f f ⎛⎫⎛⎫⎛⎫=⨯+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,而25511132log 222222f f f⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=−=−=−−− ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 所以20212f ⎛⎫= ⎪⎝⎭32−.故选:D 5.A【解析】任取12x x <,由已知得()120f x x −>,即()()120f x f x −>,所以函数()f x 单调递减.由()()()()2222f mx f m f m x f x +>+可得()()()()2222f mx f x f m x f m −>−,即()22f mx x f −>()22m x m −,所以2222mx x m x m −<−,即()22220mx m x m −++<,即()()20mx x m −−<,又因为0m << 所以2m m>,此时原不等式解集为2x m x m ⎧⎫<<⎨⎬⎩⎭.故选:A 6.D【解析】因为()f x 是R 上的偶函数,所以()()f x f x −=, 又()f x 的图象关于点()1,0对称,则()(2)f x f x =−−,所以()(2)f x f x −=−−,则()(2)f x f x =−+,得(4)(2)()f x f x f x +=−+=, 即(4)()f x f x +=−,所以()f x 是周期函数,且周期4T =,由[]0,1x ∈时,()22xf x =−,则(0)1,(1)0f f ==,(2)(0)1f f =−=−,(3)(3)(1)0f f f =−==,则(0)(1)(2)(3)0f f f f +++=, 则()()()()0122020f f f f ++++(0)5050(0)1f f =+⨯==故选:D 7.D【解析】奇函数()f x 的定义域为R ,若(2)f x +为偶函数, (0)0f ∴=,且(2)(2)(2)f x f x f x −+=+=−−,则(4)()f x f x +=−,则(8)(4)()f x f x f x +=−+=, 则函数()f x 的周期是8,且函数关于2x =对称, 则(2017)(25281)f f f =⨯+=(1)(1)(1)1f =−−=−−=,(2016)(2528)(0)0f f f =⨯==,则(2017)(2016)011f f +=+=, 故选D . 8.C【解析】因为当0x >时,()2f x x x =+,且函数()f x 是定义在R 上的奇函数,所以0x <时,()()()()22f x f x x x x x ⎡⎤=−−=−−+−=−+⎣⎦, 所以()22,0,0x x x f x x x x ⎧−+<=⎨+>⎩,作出函数图象:所以函数()f x 是()+−∞∞,上的单调递增, 又因为不等式()()ln 1f x f <−,所以ln 10x x <−⎧⎨>⎩,即10x e <<,故选:C. 9.CD【解析】由题设知:2221()ln(1)lnln(1)()1f x x x x x f x x x−=++==−+−=−+−,故()f x 在[1,1]x ∈−上为奇函数且单调递减,又(2)(4)(2)f x f x f x +=−=−,即关于21x k =+、(2,0)k ,k Z ∈对称,且最小周期为4, A :(2021)(50541)(1)ln(21)0f f f =⨯+==−≠,错误;B :(2020,2022)x ∈等价于(0,2)x ∈,由上易知:(0,1)上递减,(1,2)上递增,故()f x 不单调,错误;C :由上知:()f x 关于(2,0)k 对称且k Z ∈,所以()f x 关于(1010,0)对称,正确;D :由题意,只需确定()f x 与sin 2xy π=在(1,11)x ∈−的交点,判断交点横坐标的对称情况即可求和,如下图示,∴共有6个交点且关于5x =对称,则16253410x x x x x x +=+=+=, ∴所有根的和为30,正确. 故选:CD 10.ACD【解析】对于A 选项,由已知条件可得()()()()1113f x f x f x f x +=−−=−−=−, 所以,函数()f x 是以4为周期的周期函数,A 选项正确;对于B 选项,()()()2018202f f f ==−=,()()202110f f ==,则()()201820212f f +=,B 选项错误;对于C 选项,作出函数()2log 1y x =+与函数()f x 的图象如下图所示:当[]0,1x ∈时,()[]221922,024f x x x x ⎛−=+⎫−=−∈− ⎪⎝⎭,结合图象可知,()22f x −≤≤.当3x >时,()2log 12x +>,即函数()2log 1y x =+与函数()f x 在()3,+∞上的图象无交点, 由图可知,函数()2log 1y x =+与函数()f x 的图象有3个交点,C 选项正确; 对于D 选项,当[]3,4x ∈时,[]41,0x −∈−,则[]40,1x −∈,所以,()()()()()2244442918f x f x f x x x x x =−=−=−+−−=−+,D 选项正确. 故选:ACD. 11.AC【解析】解:由导数的定义:()()()=lim x f x x f x f x x ∆→+∆−∆'选项A :()()()()()()00=lim=lim=x x f x x f x f x f x x f x f x xx∆→∆→−+∆−−−−∆∆∆''−,即()f x '是偶函数,故A 正确;选项B :如()sin 1f x x =+不是奇函数,而()cos f x x '=为偶函数;故B 错误, 选项C :()()()()()()00=lim=limx x f x T x f x T f x x f x f x T f x xx∆→∆→++∆−++∆−=∆∆''+即()f x '也是周期函数,故C 正确;选项D :如()sin f x x x =+不是周期函数,但()1cos f x x '=+是周期函数;故D 错误, 故选:AC. 12.AB【解析】在(4)()(2)f x f x f +=+中,令2x =−,得(2)0f −=,又函数()y f x =是R 上的奇函数,所以(2)(2)0f f =−=,(4)()f x f x +=,故()y f x =是一个周期为4的奇函数,因(0,0)是()f x 的对称中心,所以(4,0)也是函数()y f x =的图象的一个对称中心,故A 、B 正确;作出函数()f x 的部分图象如图所示,易知函数()y f x =在[6,2]−−上不具单调性,故C 不正确;函数()y f x =在[6,6]−上有7个零点,故D 不正确. 故选:AB 13.πsin2x (答案不唯一) 【解析】取()sin2f x x π=,下面为证明过程:显然,其定义域为R ; 由()sin sin ()22f x x x f x ππ⎛⎫⎛⎫−=−=−=− ⎪ ⎪⎝⎭⎝⎭,故()sin 2f x x π=为奇函数;又()(2)sin 2sin sin ()222f x x x x f x ππππ⎡⎤⎛⎫−=−=−== ⎪⎢⎥⎣⎦⎝⎭.故答案为:sin 2x π(答案不唯一).14.1【解析】由题意,()()f x f x −=−且(2)()f x f x −=,∴()(2)()(2)(2)f x f x f x f x f x −=+=−=−−=−,即()(4)f x f x =+, ∴()f x 是周期为4的函数.令10x −≤<,则01x <−≤,而[0,1]x ∈时()21x f x =−,∴1()()(21)12xxf x f x −=−−=−−=−, ∴(0)(2)0,(1)1,(3)(1)1f f f f f ====−=−,即(0)(1)(2)(3)0f f f f +++=, 而(0)(1)(2)(3)(2021)505[(0)(1)(2)(3)]f f f f f f f f f +++++=⨯+++(5054)f +⨯(50541)f +⨯+(0)(1)1f f =+=.故答案为:115.3【解析】()(2)f x f x =−,(2)()f x f x ∴+=−,又()f x 为奇函数,(2)()(),(4)(2)()f x f x f x f x f x f x ∴+=−=−+=−+=()f x ∴是周期为4的周期函数,()f x 是定义在R 上的奇函数,(0)0,(4)(0)0f f f ∴=∴==,(2)(0)0,(3)(1)(1)3f f f f f ===−=−=−(1)(2)(3)(4)0f f f f ∴+++=,()()()()()12...50012123f f f f f ∴+++=⨯++=.故答案为:3.16.25− 【解析】因为()()2f x f x =+, 所以511222f f a ⎛⎫⎛⎫−=−=−+ ⎪ ⎪⎝⎭⎝⎭,9112210f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,所以11210a −+=,解得35a =, 所以()()()25315f a f f ==−=−. 故答案为:25− 17.(1)1;(2)偶函数,证明见解析.【解析】(1)依题意,()()()()()()22f x g x f x f x g x g x −=−()()01f x x f =−==.(2)由(1)知()()22001f g −=,∴()()220010g f =−=,即()00g =,∴()()()()()()()000f x f x f f x g g x f x −=−=−=,又因为()f x 的定义域为R ,所以函数()f x 为偶函数.18.(1)(0)0f =,(2)4f −=−;(2)31(,](,)22−∞−+∞(答案不唯一). 【解析】(1)由()()()f x y f x f y +=+,令0x y ==,得(0)2(0)f f =,所以(0)0f =,令1,1x y ==−,得(0)(1)(1)f f f =+−,因为(1)2f =,所以(1)2f −=−,令1x y ==−,得(2)(1)(1)4f f f −=−+−=−,(2)答案不唯一,例如:()2f x x =满足条件.由(21)1()1f x f x +≥−,得2(21)2(21)23110212121x x x x x x +++≥⇔−=≥−−−, 解得:32x ≤−或12x >, 故解集为31(,](,)22−∞−+∞ 19.证明见解析【解析】∵()f x 是定义在R 上的奇函数,∴()()f x f x −=−,∵()y f x =的图象关于直线x a =(0a ≠,为常数)对称,所以()()f a x f a x +=−,∴(2)[()][()]()()f a x f a a x f a a x f x f x +=++=−+=−=−.从而(4)(2)()f a x f a x f x +=−+=.∴()f x 是周期函数,且周期为4a .20.(1)0;(2)证明见解析,正周期为24;(3)证明见解析.【解析】(1)因为()f x 满足(1)y f x =+为R 上奇函数,所以(1)(1)f x f x −=−+,所以()(2)0f x f x −++=,又因为()f x 满足(1)=−y f x 为R 上偶函数,所以(1)(1)f x f x −−=−,所以()(2)f x f x −=−,所以有(2)(2)0f x f x −++=,所以(2)(2)f x f x +=−−,所以(4)()f x f x +=−,所以(8)(4)()f x f x f x +=−+=,所以()f x 的一个周期为8,所以(3)(5)2(5)f f f −+=,在()(2)0f x f x −++=中令1x =−,得(1)(1)0f f +=,所以(1)0f =,在(4)()f x f x +=−中令1x =,得(5)(1)f f −=,所以(5)(1)0f f =−=,所以(3)(5)0f f −+=;(2)因为11(3)22g x +=≥,所以1(6)2g x +=12=因为[]11(3)1(3)122g x g x ⎡⎡+−+=+−⎢⎢⎣⎣ 21()()4g x g x =−+ 21()2g x ⎡⎤=−⎢⎥⎣⎦,所以111(6)()222g x g x +==+−()g x =,所以函数()g x 的一个周期为6,因为()()()h x f x g x =+,所以(24)(83)(64)()()()h x f x g x f x g x h x +=+⨯++⨯=+=,所以()h x 是周期函数,一个正周期为24;(3)充分性:当12b x x a +=−时,12b x x a=−−, 此时()()221222222b b b f x f x a x b x c ax bx c f x a a a ⎛⎫⎛⎫⎛⎫=−−=−−+−−+=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以充分性满足;必要性:因为二次函数2()(0)f x ax bx c a =++≠的广义周期为()k x ,所以(())()f k x f x =,所以22(())()a k x bk x c ax bx c ++=++,所以22()[()]0a k x x b k x x ⎡⎤−+−=⎣⎦,又因为()k x x =不恒成立,所以[()]0a k x x b ++=,所以()b k x x a =−−,又因为()()12f x f x =,且()()()11f k x f x =,所以()()()21f k x f x =,因为12x x ≠,所以1212()b b k x x x x a a +=−−+≠−, 所以()12k x x =,即12b x x a −−=,也即12b x x a +=−, 所以必要性满足.所以:对任意的12,x x ∈R ,12x x ≠,()()12f x f x =成立的充要条件是12b x x a +=−.。

抽象函数专题练习题

抽象函数专题练习题

抽象函数专题(1)抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊条件的函数 抽象函数知识点:1、抽象函数的定义域:①已知()f x 的定义域,求[]()f g x 的定义域②已知[]()f g x 的定义域,求()f x 的定义域2、抽象函数表达式与函数值3、抽象函数的模型构造①线性函数型抽象函数f (x )=kx (k ≠0)----f (x ±y )=f (x )±f (y )②指数函数型的抽象函数f (x )=a x ---- f (x +y )=f (x )f (y );f (x -y )=)()(y f x f ③对数函数型的抽象函数f (x )=lo g a x (a >0且a ≠1)-f (x ·y )=f (x )+f (y );f (yx )= f (x )-f (y ) ④幂函数型的抽象函数2()f x x = ---------()()()f xy f x f y =,()()()xf x f y f y =; 练习题:1、已知函数)(x f 对任意实数x ,y ,均有)()()(y f x f y x f +=+,且当0>x 时,0)(>x f ,2)1(-=-f ,求)(x f 在区间[-2,1]上的值域。

2、定义在R 上的函数)(x f 满足:对任意实数,m n ,总有)()()(n f m f n m f ⋅=+,且当0x >时,1)(0<<x f .(1)试求)0(f 的值;(2)判断)(x f 的单调性并证明你的结论;(3)试举出一个满足条件的函数)(x f .3、已知函数)(x f 满足定义域在),0(+∞上的函数,对于任意的),0(,+∞∈y x ,都有)()()(y f x f xy f +=,当且仅当1>x 时,0)(<x f 成立,(1)设),0(,+∞∈y x ,求证)()()(x f y f xy f -=; (2)设),0(,21+∞∈x x ,若)()(21x f x f <,试比较1x 与2x 的大小;(3)解关于x 的不等式[]01)1(2>+++-a x a x f4.已知定义在()()-,00,+∞⋃∞上的函数f(x)对任何x,y 都有f(xy)=f(x)f(y),且f(x)>0,当x>1时,有f(x)<1.(1)判断f(x)的奇偶性(2)判断并证明f(x)在(0,+∞)上的单调性.(3)求解不等式f (23-4x x )≥1抽象函数问题(2)1、下列结论:①函数y =2y =是同一函数;②函数(1)f x -的定义域为[1,2],则函数2(3)f x 的定义域为;③函数22log (23)y x x =+-的递增区间为(1,)-+∞;④若函数(21)f x -的最大值为3,那么(12)f x -的最小值就是3-其中正确的个数为 ( )A. 0个B. 1个C. 2个D. 3个2、定义在R 上的函数()f x 满足1(0)0,()(1)1,()()52xf f x f x f f x =+-==,且当1201x x ≤<≤时,12()()f x f x ≤,则1()2007f 等于( ) A. 12 B. 116 C. 132 D. 1643、已知()f x 是定义在R 上的函数,且3()[1()]1()2f x f x f x +-=+,(2)2f =,则()2009f 值为( )A. 2+B. 22 D. 2-4、已知(1)(1),()(2)f x f x f x f x +=-=-+,方程()0f x =在[0,1]内有且只有一个根12x =,则()0f x =在区间[]0,2013内根的个数为( ) A. 2011 B. 1006 C. 2013 D. 1007 5、已知函数()f x 对任意实数x ,y 满足()()()f x y f x f y +=+,且(1)2f ≥.若存在整数m ,使得2(2)40f m m ---+= ,则m 取值的集合为______.6、定义在R 上的函数()f x 满足:(2)()0f x f x ++=,且函数(1)f x +为奇函数,对于下列命题:①函数()f x 满足(4)()f x f x +=;②函数()f x 图象关于点(1,0)对称;③函数()f x 的图象关于直线2x =对称;④函数()f x 的最大值为(2)f ;⑤(2009)0f =. 其中正确的序号为_________.7、定义在R 上的函数()f x ,(0)0f ≠,当0x >时,()1f x >,且对任意实数,a b ,有()()()f a b f a f b +=⋅,求证:(1)(0)1f = (2)证明:()f x 是R 上的增函数;(3)若2()(2)1f x f x x ⋅->,求x 的取值范围.8、已知()f x 是定义在(0,)+∞上的增函数,且满足 ()()()f xy f x f y =+, 1()12f =- (1)求证:(2)1f = (2)求不等式()(3)1f x f x -->的解集.9、已知函数f (x )对任意实数x 、y 均有f (x +y )+2=f (x )+f (y ),且当x >0时,f (x )>2,f (3)= 5,求不等式3)22(2<--a a f 的解.。

[练习]抽象函数的对称性与周期性

[练习]抽象函数的对称性与周期性

抽象函数的对称性与周期性性质1若函数y=f(x)关于直线x=a轴对称,则以下三个式子成立且等价:(1)f(a+x)=f(a-x) (2)f(2a-x)=f(x) (3)f(2a+x)=f(-x)性质2若函数y=f(x)关于点(a,0)中心对称,则以下三个式子成立且等价:(1)f(a+x)=-f(a-x) (2)f(2a-x)=-f(x) (3)f(2a+x)=-f(-x)易知,y=f(x)为偶(或奇)函数分别为性质1(或2)当a=0时的特例。

定义1若对于定义域内的任一变量x,均有f[g(-x)]=f[g(x)],则复数函数y=f[g(x)]为偶函数。

定义2若对于定义域内的任一变量x,均有f[g(-x)]=-f[g(x)],则复合函数y=f[g(x)]为奇函数。

说明:(1)复数函数f[g(x)]为偶函数,则f[g(-x)]=f[g(x)]而不是f[-g(x)]=f[g(x)],复合函数y=f[g(x)]为奇函数,则f[g(-x)]=-f[g(x)]而不是f[-g(x)]=-f[g(x)]。

(2)两个特例:y=f(x+a)为偶函数,则f(x+a)=f(-x+a);y=f(x+a)为奇函数,则f(-x+a)=-f(a+x)。

(3)y=f(x+a)为偶(或奇)函数,等价于单层函数y=f(x)关于直线x=a轴对称(或关于点(a,0)中心对称)。

性质3 复合函数y =f(a +x)与y =f(b -x)关于直线2b ax -=轴对称。

性质4 复合函数y =f(a +x)与y =-f(b -x)关于点(,0)2b a-中心对称。

证明性质3:设(m ,n )为y =f(a +x)上任一点,则n =f(a +m), 由于点(m ,n )关于2b ax -=的对称点为(b-a-m ,n )恰好在y =f(b -x)上, ∴y =f(a +x)与y =f(b -x) 关于直线2b ax -=轴对称。

证明性质4 :由y =f(a +x)与y =f(b -x) 关于直线2b ax -=轴对称, 又y =f(b -x)与y =-f(b -x)关于x 轴对称, ∴函数y =f(a +x)与y =-f(b -x)关于点(,0)2b a-中心对称。

抽象函数-题型大全(例题-含答案)

抽象函数-题型大全(例题-含答案)

下考抽象函数本领归纳之阳早格格创做由于函数观念比较抽象,教死对付解有闭函数暗号()f x 的问题感触艰易,教佳那部分知识,能加深教死对付函数观念的明白,更佳天掌握函数的本量,培植机动性;普及解题本领,劣化教死数教思维素量.现将罕睹解法及意义归纳如下:一、供表白式:1.换元法:即用中间变量表示本自变量x 的代数式,从而供出()f x ,那也是证某些公式大概等式时常使用的要领,此法解培植教死的机动性及变形本领.例1:已知 ()211x f x x =++,供()f x . 解:设1x u x =+,则1u x u =-∴2()2111u uf u u u -=+=--∴2()1x f x x-=- 2.拼集法:正在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可供()f x .此解法简净,还能进一步复习代换法.例2:已知3311()f x x x x +=+,供()f x解:∵22211111()()(1)()(()3)f x x x x x x xx x x +=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先决定函数典型,设定函数闭系式,再由已知条件,定出闭系式中的已知系数.例3. 已知()f x 二次真函数,且2(1)(1)f x f x x ++-=+2x +4,供()f x . 解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数本量法:主要利用函数的奇奇性,供分段函数的剖析式.y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,供()f x解:∵()f x 为奇函数,∴()f x 的定义域闭于本面对付称,故先供x <0时的表白式.∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-,∵()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0x x f x x x +≥⎧=⎨--<⎩例5.一已知()f x 为奇函数,()g x 为奇函数,且有()f x +1()1g x x =-, 供()f x ,()g x . 解:∵()f x 为奇函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,无妨用-x 代换()f x +()g x =11x -………①中的x , ∴1()()1f xg x x -+-=--即()f x -1()1g x x =-+……② 隐睹①+②即可消去()g x ,供出函数21()1f x x =-再代进①供出2()1xg x x =- 5.赋值法:给自变量与特殊值,从而创造顺序,供出()f x 的表白式例6:设()f x 的定义域为自然数集,且谦脚条件(1)()()f x f x f y xy +=++,及(1)f =1,供()f x解:∵()f x 的定义域为N ,与y =1,则有(1)()1f x f x x +=++∵(1)f =1,∴(2)f =(1)f +2,(3)(2)3f f =+……()(1)f n f n n =-+以上各式相加,有()f n =1+2+3+……+n =(1)2n n +∴1()(1),2f x x x x N =+∈ 二、利用函数本量,解()f x 的有闭问题1.推断函数的奇奇性:例7 已知()()2()()f x y f x y f x f y ++-=,对付一确真数x 、y 皆创造,且(0)0f ≠,供证()f x 为奇函数.道明:令x =0, 则已知等式形成()()2(0)()f y f y f f y +-=……①正在①中令y =0则2(0)f =2(0)f ∵(0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为奇函数.例8:奇函数()f x 正在定义域(-1,1)内递减,供谦脚2(1)(1)0f m f m -+-<的真数m 的与值范畴. 解:由2(1)(1)0f m f m -+-<得2(1)(1)f m f m -<--,∵()f x 为函数,∴2(1)(1)f m f m -<-又∵()f x 正在(-1,1)内递减,∴221111110111m m m m m -<-<⎧⎪-<-<⇒<<⎨⎪->-⎩3.解大概式的有闭题目例9:如果()f x =2ax bx c ++对付任性的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小 解:对付任性t 有(2)2)f t f t +=-∴x =2为扔物线y =2ax bx c ++的对付称轴 又∵其启心进与∴f (2)最小,f (1)=f (3)∵正在[2,+∞)上,()f x 为删函数∴f (3)<f (4),∴f (2)<f (1)<f (4)五类抽象函数解法1、线性函数型抽象函数线性函数型抽象函数,是由线性函数抽象而得的函数.例1、已知函数f(x)对付任性真数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,供f(x)正在区间[-2,1]上的值域.领会:由题设可知,函数f(x)是的抽象函数,果此供函数f(x)的值域,闭键正在于钻研它的单调性.解:设,∵当,∴,∵,∴,即,∴f(x)为删函数.正在条件中,令y=-x,则,再令x=y=0,则f(0)=2 f(0),∴f(0)=0,故f(-x)=f(x),f(x)为奇函数,∴f(1)=-f(-1)=2,又f(-2)=2 f(-1)=-4,∴f(x)的值域为[-4,2].例2、已知函数f(x)对付任性,谦脚条件f(x)+f(y)=2 + f(x+y),且当x>0时,f(x)>2,f(3)=5,供不等式的解.领会:由题设条件可预测:f(x)是y=x+2的抽象函数,且f(x)为单调删函数,如果那一预测精确,也便不妨脱去不等式中的函数标记,从而可供得不等式的解. 解:设,∵当,∴,则,即,∴f(x)为单调删函数.∵,又∵f(3)=5,∴f(1)=3.∴,∴,即,解得不等式的解为-1 < a < 3.2、指数函数型抽象函数例3、设函数f(x)的定义域是(-∞,+∞),谦脚条件:存留,使得,对付所有x战y,创造.供:(1)f(0);(2)对付任性值x,推断f(x)值的正背.领会:由题设可预测f(x)是指数函数的抽象函数,从而预测f (0)=1且f(x)>0.解:(1)令y=0代进,则,∴.若f(x)=0,则对付任性,有,那与题设冲突,∴f(x)≠0,∴f(0)=1.(2)令y=x≠0,则,又由(1)知f(x)≠0,∴f(2x)>0,即f(x)>0,故对付任性x,f(x)>0恒创造.例4、是可存留函数f(x),使下列三个条件:①f(x)>0,x∈N;②;③f(2)=4.共时创造?若存留,供出f (x)的剖析式,如不存留,道明缘由.领会:由题设可预测存留,又由f(2)=4可得a=2.故预测存留函数,用数教归纳法道明如下:(1)x=1时,∵,又∵x∈N时,f(x)>0,∴,论断精确.(2)假设时有,则x=k+1时,,∴x=k+1时,论断精确.综上所述,x为十足自然数时.3、对付数函数型抽象函数对付数函数型抽象函数,即由对付数函数抽象而得到的函数.例5、设f(x)是定义正在(0,+∞)上的单调删函数,谦脚,供:(1)f(1);(2)若f(x)+f(x-8)≤2,供x的与值范畴.领会:由题设可预测f(x)是对付数函数的抽象函数,f(1)=0,f(9)=2.解:(1)∵,∴f(1)=0.(2),从而有f(x)+f(x-8)≤f(9),即,∵f(x)是(0,+∞)上的删函数,故,解之得:8<x≤9.例6、设函数y=f(x)的反函数是y=g(x).如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是可精确,试道明缘由.领会: 由题设条件可预测y=f(x)是对付数函数的抽象函数,又∵y =f(x)的反函数是y=g(x),∴y=g(x)必为指数函数的抽象函数,于是预测g(a+b)=g(a)·g(b)精确.解:设f(a)=m,f(b)=n,由于g(x)是f(x)的反函数,∴g (m)=a,g(n)=b,从而,∴g (m)·g(n)=g(m+n),以a、b分别代替上式中的m、n即得g (a+b)=g(a)·g(b).4、三角函数型抽象函数三角函数型抽象函数即由三角函数抽象而得到的函数.例7、己知函数f(x)的定义域闭于本面对付称,且谦脚以下三条件:①当是定义域中的数时,有;②f(a)=-1(a>0,a是定义域中的一个数);③当0<x<2a时,f(x)<0.试问:(1)f(x)的奇奇性怎么样?道明缘由.(2)正在(0,4a)上,f(x)的单调性怎么样?道明缘由.领会: 由题设知f(x)是的抽象函数,从而由及题设条件预测:f(x)是奇函数且正在(0,4a)上是删函数(那里把a瞅成举止预测).解:(1)∵f(x)的定义域闭于本面对付称,且是定义域中的数时有,∴正在定义域中.∵,∴f(x)是奇函数.(2)设0<x1<x2<2a,则0<x2-x1<2a,∵正在(0,2a)上f(x)<0,∴f(x1),f(x2),f(x2-x1)均小于整,从而知中的,于是f(x1)<f(x2),∴正在(0,2a)上f(x)是删函数.又,∵f(a)=-1,∴,∴f (2a)=0,设2a<x<4a,则0<x-2a<2a,,于是f(x)>0,即正在(2a,4a)上f(x)>0.设2a<x1<x2<4a,则0<x2-x1<2a,从而知f(x1),f (x2)均大于整.f(x2-x1)<0,∵,∴,即f(x1)<f(x2),即f(x)正在(2a,4a)上也是删函数.综上所述,f(x)正在(0,4a)上是删函数.5、幂函数型抽象函数幂函数型抽象函数,即由幂函数抽象而得到的函数.例8、已知函数f(x)对付任性真数x、y皆有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当时,.(1)推断f(x)的奇奇性;(2)推断f(x)正在[0,+∞)上的单调性,并给出道明;(3)若,供a的与值范畴.领会:由题设可知f(x)是幂函数的抽象函数,从而可预测f(x)是奇函数,且正在[0,+∞)上是删函数.解:(1)令y=-1,则f(-x)=f(x)·f(-1),∵f(-1)=1,∴f(-x)=f(x),f(x)为奇函数.(2)设,∴,,∵时,,∴,∴f(x1)<f(x2),故f(x)正在0,+∞)上是删函数.(3)∵f(27)=9,又,∴,∴,∵,∴,∵,∴,又,故.抽象函数罕睹题型解法综述抽象函数是指不给出函数的简曲剖析式,只给出了一些体现函数个性的式子的一类函数.由于抽象函数表示形式的抽象性,使得那类问题成为函数真量的易面之一.本文便抽象函数罕睹题型及解法评析如下:一、定义域问题例1. 已知函数的定义域是[1,2],供f(x)的定义域.解:的定义域是[1,2],是指,所以中的谦脚从而函数f(x)的定义域是[1,4]评析:普遍天,已知函数的定义域是A,供f(x)的定义域问题,相称于已知中x的与值范畴为A,据此供的值域问题.例2. 已知函数的定义域是,供函数的定义域.解:的定义域是,意义是凡是被f效率的对付象皆正在中,由此可得所以函数的定义域是评析:那类问题的普遍形式是:已知函数f(x)的定义域是A,供函数的定义域.精确明白函数标记及其定义域的含意是供解此类问题的闭键.那类问题真量上相称于已知的值域B,且,据此供x 的与值范畴.例2战例1形式上正好同.二、供值问题例3. 已知定义域为的函数f(x),共时谦脚下列条件:①;②,供f(3),f(9)的值.解:与,得果为,所以又与得评析:通过瞅察已知与已知的通联,巧妙天赋值,与,那样便把已知条件与欲供的f(3)相通了起去.赋值法是解此类问题的时常使用本领.三、值域问题例4. 设函数f(x)定义于真数集上,对付于任性真数x、y,总创造,且存留,使得,供函数的值域.解:令,得,即有大概.若,则,对付任性均创造,那与存留真数,使得创造冲突,故,必有.由于对付任性均创造,果此,对付任性,有底下去道明,对付任性设存留,使得,则那与上头已证的冲突,果此,对付任性所以评析:正在处理抽象函数的问题时,往往需要对付某些变量举止符合的赋值,那是普遍背特殊转移的需要脚法.四、剖析式问题例5. 设对付谦脚的所有真数x,函数谦脚,供f(x)的剖析式.解:正在中以代换其中x,得:再正在(1)中以代换x,得化简得:评析:如果把x战分别瞅做二个变量,何如真止由二个变量背一个变量的转移是解题闭键.常常情况下,给某些变量符合赋值,使之正在闭系中“消得”,从而死存一个变量,是真止那种转移的要害战术.五、单调性问题例6. 设f(x)定义于真数集上,当时,,且对付于任性真数x、y,有,供证:正在R上为删函数.道明:正在中与,得若,令,则,与冲突所以,即有当时,;当时,而所以又当时,所以对付任性,恒有设,则所以所以正在R上为删函数.评析:普遍天,抽象函数所谦脚的闭系式,应瞅做给定的运算规则,则变量的赋值大概变量及数值的领会与拉拢皆应尽管与已知式大概所给闭系式及所供的截止相闭联.六、奇奇性问题例7. 已知函数对付任性不等于整的真数皆有,试推断函数f(x)的奇奇性.解:博得:,所以又博得:,所以再与则,即果为为非整函数,所以为奇函数.七、对付称性问题例8. 已知函数谦脚,供的值.解:已知式即正在对付称闭系式中与,所以函数的图象闭于面(0,2002)对付称.根据本函数与其反函数的闭系,知函数的图象闭于面(2002,0)对付称.所以将上式中的x用代换,得评析:那是共一个函数图象闭于面成核心对付称问题,正在解题中使用了下述命题:设a、b均为常数,函数对付一确真数x皆谦脚,则函数的图象闭于面(a,b)成核心对付称图形.八、搜集概括问题例9. 定义正在R上的函数f(x)谦脚:对付任性真数m,n,总有,且当x>0时,0<f(x)<1.(1)推断f(x)的单调性;(2)设,,若,试决定a的与值范畴.解:(1)正在中,令,得,果为,所以.正在中,令果为当时,所以当时而所以又当x=0时,,所以,综上可知,对付于任性,均有.设,则所以所以正在R上为减函数.(2)由于函数y=f(x)正在R上为减函数,所以即有又,根据函数的单调性,有由,所以曲线与圆里无大众面.果此有,解得.评析:(1)要计划函数的单调性必定波及到二个问题:一是f(0)的与值问题,二是f(x)>0的论断.那是解题的闭键性步调,完毕那些要正在抽象函数式中举止.由特殊到普遍的解题思维,奇像类比思维皆有帮于问题的思索妥协决.定义正在R 上的函数f x ()谦脚:f x f x ()()=-4且f x f x ()()220-+-=,供f ()2000的值.解:由f x f x ()()220-+-=, 以t x =-2代进,有f t f t ()()-=,∴f x ()为奇函数且有f ()00=又由f x f x ()[()]+=--44故f x ()是周期为8的周期函数,例2 已知函数f x ()对付任性真数x y ,皆有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,供f x ()正在[]-21,上的值域.解:设x x 12< 且x x R 12,∈, 则x x 210->,由条件当x >0时,f x ()>0 又f x f x x x ()[()]2211=-+∴f x ()为删函数,令y x =-,则f f x f x ()()()0=+-又令x y ==0得f ()00=∴-=-f x f x ()(),故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214∴-f x ()[]在,21上的值域为[]-42,二. 供参数范畴那类参数隐含正在抽象函数给出的运算式中,闭键是利用函数的奇奇性战它正在定义域内的删减性,去掉“f ”标记,转移为代数不等式组供解,但是要特天注意函数定义域的效率.例3 已知f x ()是定义正在(-11,)上的奇函数,且正在(0,1)上为删函数,谦脚f a f a ()()---<2402,试决定a 的与值范畴. 解: f x ()是奇函数,且正在(0,1)上是删函数,∴f x ()正在()-10,上是减函数,由-<-<-<-<⎧⎨⎩1211412a a 得35<<a . (1)当a =2时,f a f a f ()()()-=-=2402,不等式不可坐.(2)当32<<a 时,(3)当25<<a 时,综上所述,所供a 的与值范畴是()()3225,, . 例 4 已知f x ()是定义正在(]-∞,1上的减函数,若f m x f m x (sin )(cos )221-≤++对付x R ∈恒创造,供真数m 的与值范畴.解: m x m x m x m x 22223131-≤++≤-≥++⎧⎨⎪⎩⎪sin cos sin cos对付x R ∈恒创造⇔-≤-≥++⎧⎨⎪⎩⎪m x m x m x22231sin sin cos 对付x R ∈恒创造⇔ 对付x R ∈恒创造, 三. 解不等式那类不等式普遍需要将常数表示为函数正在某面处的函数值,再通过函数的单调性去掉函数标记“f ”,转移为代数不等式供解.例5 已知函数f x ()对付任性x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=,供不等式f a a ()2223--<的解集. 解:设x x R 12、∈且x x 12< 则x x 210-> ∴->f x x ()212, 即f x x ()2120-->, 故f x ()为删函数, 又f f f f f ()()()()()3212123145=+=+-=-=果此不等式f a a ()2223--<的解集为{}a a |-<<13. 四. 道明某些问题例6 设f x ()定义正在R 上且对付任性的x 有f x f x f x ()()()=+-+12,供证:f x ()是周期函数,并找出它的一个周期.领会:那共样是不给出函数表白式的抽象函数,其普遍解法是根据所给闭系式举止递推,若能得出f x T f x ()()+=(T 为非整常数)则f x ()为周期函数,且周期为T. 道明: f x f x f x ()()()()=+-+121()()12+得f x f x ()()()=-+33由(3)得f x f x ()()()+=-+364 由(3)战(4)得f x f x ()()=+6.上式对付任性x R ∈皆创造,果此f x ()是周期函数,且周期为6. 例7 已知f x ()对付十足x y ,,谦脚f f x y f x f y ()()()()00≠+=⋅,,且当x <0时,f x ()>1,供证:(1)x >0时,01<<f x ();(2)f x ()正在R 上为减函数.道明: 对付十足x y R ,∈有f x y f x f y ()()()+=⋅.且f ()00≠,令x y ==0,得f ()01=, 现设x >0,则-<x 0,f x ()->1, 而f f x f x ()()()01=⋅-=∴<<01f x (),设x x R 12,∈且x x 12<, 则0121<-<f x x (),∴>f x f x ()()12,即f x ()为减函数. 五. 概括问题供解抽象函数的概括问题普遍易度较大,常波及到多个知识面,抽象思维程度央供较下,解题时需掌控佳如下三面:一是注意函数定义域的应用,二是利用函数的奇奇性去掉函数标记“f ”前的“背号”,三是利用函数单调性去掉函数标记“f ”.例8 设函数y f x =()定义正在R 上,当x >0时,f x ()>1,且对付任性m n ,,有f m n f m f n ()()()+=⋅,当m n ≠时f m f n ()()≠.(1)道明f ()01=;(2)道明:f x ()正在R 上是删函数; (3)设{}A x y f x f y f =⋅<()|()()(),221,B x y f ax by c a b c R a =++=∈≠{()|()},,,,,10,若A B =∅,供a b c ,,谦脚的条件.解:(1)令m n ==0得f f f ()()()000=⋅, ∴=f ()00大概f ()01=.若f ()00=,当m ≠0时,有fm fm f ()()()+=⋅00,那与当m n ≠时,f m f n ()()≠冲突, ∴=f ()01. (2)设x x 12<,则x x 210->,由已知得f x x ()211->,果为x 10≥,f x ()11>,若x 10<时,->->x f x 1101,(),由f fx f x ()()()011=⋅- (3)由f x f y f ()()()221⋅<得x y 2211+<()由f a x b y c ()++=1得a x b y c ++=0(2) 从(1)、(2)中消去y 得()a b x a c x c b 2222220+++-<,果为AB =∅ ∴=-+-<∆()()()24022222a c ab cb , 即a bc 222+<例9 定义正在(-11,)上的函数f x ()谦脚(1),对付任性x y ,,∈-()11皆有f x f y f x yx y()()()+=++1,(2)当x ∈-()10,时,有f x ()>0,(1)试推断f x ()的奇奇性;(2)推断f x ()的单调性;(3)供证f f f n nf ()()()()15111131122+++++>…. 领会:那是一讲以抽象函数为载体,钻研函数的单调性与奇奇性,再以那些本量为前提去钻研数列供战的概括题.解:(1)对付条件中的x y ,,令x y ==0,再令y x =-可得f f f f x f x f f x f x ()()()()()()()()000000+=+-=⎧⎨⎩⇒=-=-⎧⎨⎩,所以f x ()是奇函数. (2)设-<<<1012x x ,则fx fx fx f x f x x x x ()()()()()121212121-=+-=-- x x x x 1212001-<<<,, ∴--<x x x x 121210,由条件(2)知f x xx x ()121210-->,从而有f x f x ()()120->,即f x f x ()()12>,故f x ()()在,-10上单调递减,由奇函数本量可知,f x ()正在(0,1)上仍是单调减函数. (3) f n n ()1312++ 抽象函数问题分类剖析咱们将不精确给出剖析式的函数称为抽象函数.连年去抽象函数问题频频出现于百般考查题中,由于那类问题抽象性强,机动性大,普遍共教感触狐疑,供解无从下脚.本文试图通过真例做分类剖析,供教习参照. 1. 供定义域那类问题只消紧紧抓住:将函数f g x [()]中的g x ()瞅做一个完全,相称于f x ()中的x 那一个性,问题便会迎刃而解.例1. 函数y f x =()的定义域为(]-∞,1,则函数y f x =-[l o g ()]222的定义域是___.领会:果为l o g()22x 2-相称于f x ()中的x ,所以l o g()2221x -≤,解得 22<≤x 大概-≤<-22x . 例2. 已知f x ()的定义域为(0),1,则y f x a f x a a =++-≤()()(||)12的定义域是______.领会:果为x a +及x a -均相称于f x ()中的x ,所以 (1)当-≤≤120a 时,则x a a ∈-+(),1 (2)当012<≤a 时,则x a a ∈-(),12. 推断奇奇性根据已知条件,通过妥当的赋值代换,觅供f x ()与f x ()-的闭系. 例 3. 已知f x ()的定义域为R ,且对付任性真数x ,y 谦脚fx y fx f y()()()=+,供证:f x ()是奇函数. 领会:正在fx y fx f y ()()()=+中,令x y ==1, 得f f f f ()()()()11110=+⇒= 令x y ==-1,得f f f f ()()()()11110=-+-⇒-= 于是fx f x f f x f x ()()()()()-=-⋅=-+=11 故f x ()是奇函数.例4. 若函数y f xf x =≠()(())0与y f x =-()的图象闭于本面对付称,供证:函数y f x =()是奇函数.道明:设y f x =()图象上任性一面为P (x y 00,)y f x =()与y f x=-()的图象闭于本面对付称, ∴P x y ()00,闭于本面的对付称面()--x y 00,正在y f x =-()的图象上,又y f x 00=() 即对付于函数定义域上的任性x 皆有f x f x ()()-=,所以y f x =()是奇函数.3. 推断单调性根据函数的奇奇性、单调性等有闭本量,绘出函数的示企图,以形帮数,问题赶快获解.例5. 如果奇函数f x ()正在区间[]37,上是删函数且有最小值为5,那么f x ()正在区间[]--73,上是A. 删函数且最小值为-5B. 删函数且最大值为-5C. 减函数且最小值为-5D. 减函数且最大值为-5 领会:绘出谦脚题意的示企图1,易知选B.图1例6. 已知奇函数f x ()正在(0),+∞上是减函数,问f x ()正在()-∞,0上是删函数仍旧减函数,并道明您的论断.领会:如图2所示,易知f x ()正在()-∞,0上是删函数,道明如下: 任与xx x x 121200<<⇒->-> 果为f x ()正在(0),+∞上是减函数,所以f x f x ()()-<-12. 又f x ()是奇函数,所以f x f xf x f x ()()()()-=-=1122,, 从而f x f x ()()12<,故f x ()正在()-∞,0上是删函数. 图24. 探供周期性那类问题较抽象,普遍解法是小心领会题设条件,通过类似,奇像出函数本型,通过对付函数本型的领会大概赋值迭代,赢得问题的解.例7. 设函数f x()的定义域为R,且对付任性的x,y有f x y f x y f x f y()()()()++-=⋅2,并存留正真数c,使f c()2=.试问f x()是可为周期函数?假如,供出它的一个周期;若不是,请道明缘由.领会:小心瞅察领会条件,奇像三角公式,便会创造:y x=c o s谦脚题设条件,且cosπ2=,预测f x()是以2c为周期的周期函数.故f x()是周期函数,2c是它的一个周期.5. 供函数值紧扣已知条件举止迭代变更,经有限次迭代可曲交供出截止,大概者正在迭代历程中创造函数具备周期性,利用周期性使问题巧妙获解.例8. 已知f x()的定义域为R+,且fxy fx fy()()()+=+对付十足正真数x,y皆创造,若f()84=,则f(2)=_______.领会:正在条件fxy fx fy()()()+=+中,令x y==4,得f f f f()()()()844244=+==,又令x y==2,得f f f(4)(2)(2)=+=2,例9. 已知f x()是定义正在R上的函数,且谦脚:f x f x f x()[()]()+-=+211,f()11997=,供f(2001)的值.领会:紧扣已知条件,并多次使用,创造f x()是周期函数,隐然f x()≠1,于是f x f x f x()() ()+=+ -211,所以f x f x f x ()()()+=-+=814 故f x ()是以8为周期的周期函数,从而 6. 比较函数值大小利用函数的奇奇性、对付称性等本量将自变量转移到函数的单调区间内,而后利用其单调性使问题获解.例10. 已知函数f x ()是定义域为R 的奇函数,x <0时,f x ()是删函数,若x 10<,x 20>,且||||x x 12<,则f x f x ()()--12,的大小闭系是_______. 领会: x x 1200<>,且||||x x 12<, 又x <0时,f x ()是删函数,f x ()是奇函数,故f x f x ()()->-12 7. 计划圆程根的问题例11. 已知函数f x ()对付一确真数x 皆谦脚f x f x ()()11+=-,而且f x ()=0有三个真根,则那三个真根之战是_______.领会:由f x f x ()()11+=-知曲线x =1是函数f x ()图象的对付称轴. 又f x ()=0有三个真根,由对付称性知x 11=必是圆程的一个根,其余二根x x 23,闭于曲线x =1对付称,所以x x 23212+=⨯=,故x x x 1233++=. 8. 计划不等式的解供解那类问题利用函数的单调性举止转移,脱去函数标记.例12. 已知函数f x ()是定义正在(]-∞,1上的减函数,且对付一确真数x ,不等式fk x fk x(s i n )(s i n)-≥-22恒创造,供k 的值. 领会:由单调性,脱去函数暗号,得由题意知(1)(2)二式对付十足x R ∈恒创造,则有 9. 钻研函数的图象那类问题只消利用函数图象变更的有闭论断,便可获解.例13. 若函数y f x =+()2是奇函数,则y f x =()的图象闭于曲线_______对付称.领会:y f x =()的图象右移个单位左移个单位22y f x =+()2的图象,而y f x =+()2是奇函数,对付称轴是x =0,故y f x =()的对付称轴是x =2.例14. 若函数f x ()的图象过面(0,1),则f x ()+4的反函数的图象必过定面______.领会:f x ()的图象过面(0,1),从而f x ()+4的图象过面()-41,,由本函数与其反函数图象间的闭系易知,f x ()+4的反函数的图象必过定面()14,-. 10. 供剖析式例15. 设函数f x ()存留反函数,g x f x h x ()()()=-1,与g x ()的图象闭于曲线x y +=0对付称,则函数h x ()=A. -f x ()B. --f x ()C. --f x 1()D. ---f x 1()领会:央供y h x =()的剖析式,真量上便是供y h x =()图象上任一面Px y ()00,的横、纵坐标之间的闭系.面Px y ()00,闭于曲线y x =-的对付称面()--y x 00,符合y f x =-1(),即-=-x g y 00(). 又gxf x ()()=-1, 即h x f x ()()=--,选B.抽象函数的周期问题2001年下考数教(文科)第22题:设f x ()是定义正在R 上的奇函数,其图象闭于曲线x =1对付称.对付任性x x 12012,,∈[]皆有f xx f xf x ()()()1212+=⋅. (I )设f ()12=,供f f ()()1214,; (II )道明f x ()是周期函数. 剖析:(I )解略.(II )道明:依题设y f x =()闭于曲线x =1对付称 故f x f x x R ()()=-∈2, 又由f x ()是奇函数知 将上式中-x 以x 代换,得那标明f x ()是R 上的周期函数,且2是它的一个周期 f x ()是奇函数的真量是f x ()的图象闭于曲线x =0对付称 又f x ()的图象闭于x =1对付称,可得f x ()是周期函数 且2是它的一个周期由此举止普遍化推广,咱们得到思索一:设f x ()是定义正在R 上的奇函数,其图象闭于曲线x aa =≠()0对付称,道明f x ()是周期函数,且2a 是它的一个周期. 道明: f x ()闭于曲线xa =对付称 又由f x ()是奇函数知f x f x x R ()()-=∈,将上式中-x 以x 代换,得 ∴f x ()是R 上的周期函数且2a 是它的一个周期思索二:设f x ()是定义正在R 上的函数,其图象闭于曲线x a=战x ba b =≠()对付称.道明f x ()是周期函数,且2()b a -是它的一个周期. 道明: f x ()闭于曲线x a x b ==和对付称 将上式的-x 以x 代换得∴f x ()是R 上的周期函数且2()b a -是它的一个周期若把那讲下考题中的“奇函数”换成“奇函数”,f x ()仍旧不是周期函数?通过探索,咱们得到思索三:设f x ()是定义正在R 上的奇函数,其图象闭于曲线x =1对付称.道明f x ()是周期函数,且4是它的一个周期., 道明: f x ()闭于x =1对付称∴=-∈fx f x xR ()()2, 又由f x ()是奇函数知f x f x x R f x f x x R()()()()-=-∈∴-=--∈,,2将上式的-x 以x 代换,得∴f x ()是R 上的周期函数 且4是它的一个周期f x ()是奇函数的真量是f x ()的图象闭于本面(0,0)核心对付称,又f x ()的图象闭于曲线x =1对付称,可得f x ()是周期函数,且4是它的一个周期.由此举止普遍化推广,咱们得到思索四:设f x ()是定义正在R 上的函数,其图象闭于面M a (),0核心对付称,且其图象闭于曲线x bb a =≠()对付称.道明f x ()是周期函数,且4()b a -是它的一个周期.道明: f x ()闭于面M a (),0对付称 ∴-=-∈f a x f x x R ()()2, f x ()闭于曲线x b =对付称∴=-∈∴-=--∈f x f b x x R f b x f a x x R()()()()222,,将上式中的-x 以x 代换,得f b x f a x x R f x b a f b x b a f a x b a f b x a f a x a f x x R()()[()][()][()][()][()]()2242242242222+=-+∈∴+-=++-=-++-=-+-=+-=∈,,∴f x ()是R 上的周期函数 且4()b a -是它的一个周期由上咱们创造,定义正在R 上的函数f x (),其图象若有二条对付称轴大概一个对付称核心战一条对付称轴,则f x ()是R 上的周期函数.进一步咱们料到,定义正在R 上的函数f x (),其图象如果有二个对付称核心,那么f x ()是可为周期函数呢?通过探索,咱们得到思索五:设f x ()是定义正在R 上的函数,其图象闭于面M a (),0战N b a b ()(),0≠对付称.道明f x ()是周期函数,且2()b a -是它的一个周期.道明: f x ()闭于Ma Nb ()(),,,00对付称 ∴-=-∈-=-∈∴-=-∈f a x f x x R f b x f x x Rf a x f b x x R()()()()()()2222,,,将上式中的-x以x 代换,得 f a x f b x x Rf x b a f b x a f a x a f x x R()()[()][()][()]()2222222+=+∈∴+-=+-=+-=∈,,∴f x ()是周期函数且2()b a -是它的一个周期抽象函数解规则道抽象函数是指不给出简曲的函数剖析式大概图像,只给出一些函数标记及其谦脚的条件的函数,如函数的定义域,剖析递推式,特定面的函数值,特定的运算本量等,它是下中函数部分的易面,也是大教下等数教函数部分的一个贯串面,由于抽象函数不简曲的剖析表白式动做载体,果此明白钻研起去比较艰易.但是由于此类试题即能考查函数的观念战本量,又能考查教死的思维本领,所以备受命题者的青睐,那么,何如供解抽象函数问题呢,咱们不妨利用特殊模型法,函数本量法,特殊化要领,奇像类比转移法,等多种要领从多角度,多层里去领会钻研抽象函数问题, 一:函数本量法函数的个性是通过其本量(如奇奇性,单调性周期性,特殊面等)反应出去的,抽象函数也是如许,惟有充分掘掘战利用题设条件战隐含的本量,机动举止等价转移,抽象函数问题才搞转移,化易为易,时常使用的解题要领有:1,利用奇奇性完全思索;2,利用单调性等价转移;3,利用周期性返回已知4;利用对付称性数形分离;5,借帮特殊面,布列圆程等. 二:特殊化要领1正在供解函数剖析式大概钻研函数本量时,普遍用代换的要领,将x 换成-x 大概将x 换成等 2正在供函数值时,可用特殊值代进3钻研抽象函数的简曲模型,用简曲模型解采用题,挖空题,大概由简曲模型函数对付概括题,的解问提供思路战要领.总之,抽象函数问题供解,用惯例要领普遍很易凑效,但是咱们如果能通过对付题脚法疑息领会与钻研,采与特殊的要领战脚法供解,往往会支到事半功倍之成果,真有些山贫火复疑无路,柳暗花明又一村的快感. 1. 已知函数f(x)对付任性x 、y ∈R 皆有f(x+y)=f(x)+ f(y)+3xy(x+y+2)+3,且f(1)=1 ①若t 为自然数,(t>0)试供f(t)的表白式②谦脚f(t)=t 的所有整数t 是可形成等好数列?若能供出此数列,若不克不迭道明缘由 ③若t 为自然数且t≥4时, f(t) ≥mt2+(4m+1)t+3m,恒创造,供m 的最大值. 2. 已知函数f(x)=1)(1)(+-x g x g ,且f(x),g(x)定义域皆是R,且g(x)>0, g(1) =2,g(x) 是删函数. g(m) · g(n)=g(m+n)(m 、n ∈R) 供证:①f(x)是R 上的删函数②当n ∈N,n≥3时,f(n)>1+n n 解: ①设x1>x2g(x)是R 上的删函数, 且g(x)>0 ∴ g(x1) > g(x2) >0 ∴g(x1)+1 > g(x2)+1 >0∴1)(22+x g >1)(21+x g >0∴1)(22+x g -1)(21+x g >0∴f(x1)- f(x2)=1)(1)(11+-x g x g - 1)(1)(22+-x g x g =1-1)(21+x g -(1-1)(22+x g )=1)(22+x g -1)(21+x g >0∴ f(x1) >f(x2)∴ f(x)是R 上的删函数②g(x) 谦脚g(m) · g(n)= g(m+n)(m 、n ∈R) 且g(x)>0 ∴ g(n)=[ g(1)]n=2n 当n ∈N,n≥3时, 2n>n ∴f(n)=1212+-n n=1-122+n ,1+n n =1-11+n2n =(1+1)n =1+n+…+i nC +…+n+1>2n+1∴ 2n+1>2n+2∴122+n<11+n ,即1-122+n>1-11+n∴当n ∈N,n≥3时,f(n)>1+n n3. 设f1(x) f2(x)是(0,+∞)上的函数,且f1(x)单删,设f(x)= f1(x) +f2(x) ,且对付于(0,+∞)上的任性二相同真数x1, x2 恒有| f1(x1)- f1(x2)| >| f2(x1)- f2(x2)|①供证:f (x)正在(0,+∞)上单删. ②设F(x)=x f (x), a>0、b>0. 供证:F(a+b)> F(a)+F(b) . ①道明:设 x1>x2>0f1(x) 正在(0,+∞)上单删f1(x1)- f1(x2)>0∴| f1(x1)- f1(x2)|= f1(x1)- f1(x2)>0| f1(x1)- f1(x2)| >| f2(x1)- f2(x2)|∴f1(x2)- f1(x1)<f2(x1)- f2(x2)< f1(x1)- f1(x2) ∴f1(x1)+f2(x1)> f1(x2)+ f2(x2) ∴f(x1)> f(x2)f (x)正在(0,+∞)上单删 ②F(x)=x f (x), a>0、b>0a+b>a>0,a+b>b>0F(a+b)=(a+b)f(a+b)=af(a+b)+bf(a+b)f (x)正在(0,+∞)上单删∴F(a+b)>af(a)+bf(b)= F(a)+F(b)4. 函数y =f(x)谦脚 ①f(a+b)=f (a)·f (b),②f(4)=16, m 、n 为互量整数,n≠0 供f(nm)的值 f(0) =f(0+0)=f(0) ·f(0)=f2(0)∴f(0) =0大概1.若f(0)=0则f(4)=16=f(0+4)=f(0) ·f(4)=0.(冲突)∴f(1)=1f(4)=f(2) ·f(2)=f(1) ·f(1) ·f(1) ·f(1)=16f(1)=f2(21)≥0 ∴f(1)=2.仿此可证得f(a)≥0.即y=f(x)利害背函数.f(0)=f(a+(-a))=f(a) ·f(-a)∴f(-a)=)(1a f n ∈N*时f(n)=fn(1)=2n,f(-n)=2-nf(1)=f(n 1+n 1+…+n 1)=fn(n1)=2 ∴f(n 1)= n12∴f(nm )=[f(n1)]m= nm 25. 定义正在(-1,1)上的函数f (x)谦脚 ① 任性x 、y ∈(-1,1)皆有f(x)+ f(y)=f (xyyx ++1),②x ∈(-1,0)时, 有f(x) >01) 判决f(x)正在(-1,1)上的奇奇性,并道明缘由 2) 判决f(x)正在(-1,0)上的单调性,并给出道明3) 供证:f (1312++n n )=f (11+n )-f (21+n ) 大概f (51)+f (111)+…+f (1312++n n )> f (21) (n ∈N*)解:1)定义正在(-1,1)上的函数f (x)谦脚任性x 、y ∈(-1,1)皆有f(x)+ f(y)=f (xyyx ++1),则当y=0时, f(x)+ f(0)=f(x) ∴f(0)=0当-x=y 时, f(x)+ f(-x)=f(0)∴f(x)是(-1,1)上的奇函数2) 设0>x1>x2>-1f(x1)-f(x2)= f(x1)+ f(-x2)=)1(2121x x xx f --0>x1>x2>-1 ,x ∈(-1,0)时,有f(x) >0,1-x1 x2>0, x1-x2>0∴)1(2121x x xx f -->0即f(x)正在(-1,0)上单调递加.3)f (1312++n n )=f(12312-++n n ) =f()2)(1(11)2)(1(1++-++n n n n )=f(211112111+•+-+-+n n n n )=f(11+n )-f(21+n ) ∴f (51)+f (111)+…+f (1312++n n ) =f(21)-f(31)+f(31)-f(41)+f(41)+…+f(11+n )-f(21+n )= f(21) -f(21+n )=f(21)+f(-21+n )x ∈(-1,0)时,有f(x) >0∴f(-21+n )>0, f(21)+f(-21+n )>f(21)即f (51)+f (111)+…+f (1312++n n )> f (21)6. 设 f (x)是定义正在R 上的奇函数,其图像闭于曲线x=1对付称, 对付任性x1、x2∈[0,12]皆有f (x1+ x2)=f(x1) ·f(x2), 且f(1)=a>0. ①供f (12)及 f (14);②道明f(x)是周期函数③记an=f(2n+12n ), 供lim ∞→n (lnan)解: ①由f (x)= f (x 2 + x2)=[f(x)]2≥0,f(x)a= f(1)=f(2n·12n )=f(12n +12n +…+12n )=[f (12n )]2解得f (12n)=n a 21∴ f (12)=21a,f (14)=41a . ②f(x)是奇函数,其图像闭于曲线x=1对付称, ∴f(x)=f(-x),f(1+x)=f(1-x).∴f(x+2)=f[1+(1+x)]= f[1-(1+x)]= f(x)=f(-x).∴f(x)是以2为周期的周期函数.③ an=f(2n+12n )= f (12n )=na 21 ∴lim ∞→n (lnan)= lim ∞→n aa 2ln =0 7. 设)(x f y =是定义正在R 上的恒不为整的函数,且对付任性x 、y ∈R 皆有 f(x+y)=f(x)f(y)①供f(0),②设当x<0时,皆有f(x)>f(0)道明当x>0时0<f(x)<1,③设a1=21,an=f(n)(n ∈N* ),sn 为数列{an }前n 项战,供lim ∞→n sn.解:①②仿前几例,略.③ an =f(n), ∴ a1=f(1)=21an+1=f(n+1)=f(n)f(1)=21an ∴数列{an }是尾项为21公比为21的等比数列 ∴sn =1-n ⎪⎭⎫ ⎝⎛21 ∴lim ∞→n sn =18. 设)(x f y =是定义正在区间]1,1[-上的函数,且谦脚条件:(i );0)1()1(==-f f(ii )对付任性的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有(Ⅰ)道明:对付任性的;1)(1],1,1[x x f x x -≤≤--∈都有 (Ⅱ)道明:对付任性的;1|)()(|],1,1[,≤--∈v f u f v u 都有(Ⅲ)正在区间[-1,1]上是可存留谦脚题设条件的奇函数)(x f y =,且使得⎪⎪⎩⎪⎪⎨⎧∈-=-∈-<-].1,21[,|,||)()(|].21,0[,.|||)()(|v u v u v f u f v u v u v f u f 当当。

高中数学抽象函数经典综合题33例

高中数学抽象函数经典综合题33例

抽象函数经典综合题抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查能力的较好途径;抽象函数问题既是难点,又是近几年来高考的热点;1.定义在R 上的函数)(x f y =,0)0(≠f ,当0>x 时,1)(>x f ,且对任意的R b a ∈、,有)()()(b f a f b a f ⋅=+;I .求证1)0(=f ; Ⅱ.求证:R x ∈∀,0)(>∃x f ;Ⅲ.证明:)(x f 是R 上的增函数;Ⅳ.若1)2()(2>-⋅x x f x f ,求x 的取值范围;2.已知函数()f x ,()g x 在R 上有定义,对任意的,x y R ∈有()()()()()f x y f x g y g x f y -=-且0)1(≠f ;I .求证:()f x 为奇函数;II .若(1)(2)f f =,求(1)(1)g g +-的值;3.已知函数)(x f 对任意实数x ,y 恒有)()()(y f x f y x f +=+且当0>x ,0)(<x f ,又2)1(-=f .I .判断)(x f 的奇偶性;Ⅱ.求)(x f 在区间]3,3[-上的最大值;4.已知)(x f 在)1,1(-上有定义,1)21(-=f ,且满足x ,)1,1(-∈y 有)1()()(xyyx f y f x f ++=+; I .证明:)(x f 在)1,1(-上为奇函数;II .对数列211=x ,2112nn n x x x +=+,求)(n x f ;III .求证+)(11x f +)(12x f +)(13x f 252)(1++->+n n x f n ;5.已知函数N x f N x x f y ∈∈=)(,),(,满足:对任意,,,2121x x N x x ≠∈都有)()()()(12212211x f x x f x x f x x f x +>+;I .试证明:)(x f 为N 上的单调增函数;II .n N ∀∈,且(0)1f =,求证:()1f n n ≥+;Ⅲ.若(0)1f =,对任意,m n N ∈,有1)())((+=+n f m f n f ,证明:∑=<-ni if 141)13(12.6.已知函数()f x 的定义域为[]0,1,且同时满足:(1)对任意[]0,1x ∈,总有()2f x ≥;(2)(1)3f =;(3)若120,0x x ≥≥且121x x +≤,则有1212()()()2f x x f x f x +≥+-.I .求(0)f 的值;II .求()f x 的最大值;III .设数列{}n a 的前n 项和为n S ,且满足*12(3),n n S a n N =--∈.求证:123112332()()()()2n n f a f a f a f a n -⨯++++≤+-.7. 对于定义域为[]0,1的函数()f x ,如果同时满足以下三条:①对任意的[]0,1x ∈,总有()0f x ≥;②(1)1f =;③若12120,0,1x x x x ≥≥+≤,都有1212()()()f x x f x f x +≥+成立,则称函数()f x 为理想函数. I .若函数()f x 为理想函数,求(0)f 的值;Ⅱ.判断函数()21xg x =-])1,0[(∈x 是否为理想函数,并予以证明; Ⅲ. 若函数()f x 为理想函数,假定∃[]00,1x ∈,使得[]0()0,1f x ∈,且00(())f f x x =,求证00()f x x =.8.已知定义在R 上的单调函数()f x ,存在实数0x ,使得对于任意实数12,x x ,总有0102012()()()()f x x x x f x f x f x +=++恒成立;I .求0x 的值;Ⅱ.若0()1f x =,且对任意正整数n ,有1()12n n a f =+,求数列{}n a 的通项公式;Ⅲ.若数列{}n b 满足1221n n b log a =+,将数列{}n b 的项重新组合成新数列{}n c ,具体法则如下:112233456,,,c b c b b c b b b ==+=++478910,c b b b b =+++……,求证:12311112924n c c c c ++++<; 9.设函数)(x f 是定义域在),0(+∞上的单调函数,且对于任意正数y x ,有)()()(y f x f y x f +=⋅,已知1)2(=f .I .求)21(f 的值;II .一个各项均为正数的数列}{n a 满足:)(1)1()()(*∈-++=N n a f a f S f n n n ,其中n S 是数列}{n a 的前n 项的和,求数列}{n a 的通项公式; Ⅲ.在II的条件下,是否存在正数M,使)12()12()12(12221321--⋅-+≥n n na a a n M a a a a ,对一切*∈Nn 成立?若存在,求出M 的取值范围;若不存在,说明理由.10.定义在R 上的函数f (x )满足fxy fx fy f ()()()()++=+=1120,,且x >12时,0)(<x f ; I .设a fnn N n=∈()()*,求数列的前n 项和S n ; II .判断)(x f 的单调性,并证明;11.设函数)(x f 定义在R 上,对于任意实数m ,n ,恒有fm n fm fn ()()()+=·,且当0>x 时,1)(0<<x f ; I .求证:1)0(=f ,且当0<x 时,1)(>x f ;II .求证:)(x f 在R 上单调递减; Ⅲ.设集合{}A x y f xf y f =>(,)|()()()221·,{}B x y f a x y a R =-+=∈(,)|()21,,若A B ∩=∅,求a 的取值范围;12.定义在R 上的函数)(x f 对任意实数a .b 都有)()(2)()(b f a f b a f b a f ⋅=-++成立,且f ()00≠; I .求)0(f 的值;II .试判断)(x f 的奇偶性;Ⅲ.若存在常数0>c 使f c()20=,试问)(x f 是否为周期函数?若是,指出它的一个周期;若不是,请说明理由;13.已知函数)(x f 的定义域关于原点对称,且满足:①f x x f x f x f x f x ()()()()()1212211-=+-·②存在正常数a ,使1)(=a f , 求证:I .)(x f 是奇函数;II .)(x f 是周期函数,并且有一个周期为a 4;14.已知f x ()对一切x y ,,满足f f x y f x f y ()()()()00≠+=⋅,,且当x <0时,f x ()>1,求证:I .x >0时,01<<f x ();II .f x ()在R 上为减函数;即f x ()为减函数; 15.已知函数f x ()是定义在(]-∞,1上的减函数,且对一切实数x ,不等式fk x fk x (s i n )(s i n)-≥-22恒成立,求k 的值;16.设定义在R 上的函数()f x 对于任意,x y 都有()()()f x y f x f y +=+成立,且(1)2f =-,当0x >时,()0f x <; I .判断)(x f 的奇偶性,并加以证明;II .试问:当20032003≤≤-x 时,()f x 是否有最值?如果有,求出最值;如果没有,说明理由; III .解关于x 的不等式2211()()()()22f bx f x f b x f b ->-,其中22b ≥. 17.已知定义在R 上的函数()f x 满足:(1)值域为()1,1-,且当0x >时,()10f x -<<;(2)对于定义域内任意的实数,x y ,均满足:)()(1)()()(n f m f n f m f n m f ++=+,试回答下列问题:I .试求)0(f 的值;Ⅱ.判断并证明函数)(x f 的单调性;Ⅲ.若函数)(x f 存在反函数)(x g ,求证:+)51(g +)111(g )21()131(2g n n g >+++.18.已知函数)(x f 对任意实数x .y 都有)()()(y f x f xy f ⋅=,且1)1(-=-f ,9)27(=f ,当10<≤x 时,)1,0[)(∈x f ;I .判断)(x f 的奇偶性;II .判断)(x f 在),0[+∞上的单调性,并给出证明;Ⅲ.若0≥a 且39)1(≤+a f ,求a 的取值范围;19.设函数)(x f y =的定义域为全体R ,当0<x 时,1)(>x f ,且对任意的实数x ,R y ∈,有)()()(y f x f y x f =+成立,数列}{n a 满足)0(1f a =,且)12(1)(1+-=+n n n a a f a f (*∈N n )I .求证:)(x f y =是R 上的减函数; Ⅱ.求数列}{n a 的通项公式;Ⅲ.若不等式0121)1()1)(1(21≤+-+++n a a a k n 对一切*∈N n 均成立,求k 的最大值.20.函数)(x f 的定义域为D {}0x x =>, 满足: 对于任意,m n D ∈,都有()()()f mn f m f n =+,且1)2(=f .I .求)4(f 的值;II .如果3)62(≤-x f ,且)(x f 在),0(+∞上是单调增函数,求x 的取值范围.21.函数)(x f 的定义域为R ,并满足以下条件:①对任意R x ∈,有0)(>x f ;②对任意x .R y ∈,有yx f xy f )]([)(=;③1)31(>f ;I .求)0(f 的值;II .求证:)(x f 在R 上是单调增函数; Ⅲ.若ac b c b a =>>>2,0且,求证:).(2)()(b f c f a f >+22.定义在区间),0(∞上的函)(x f 满足:(1).)(x f 不恒为零;(2).对任何实数x .q ,都有)()(x qf x f q =.I .求证:方程0)(=x f 有且只有一个实根;II .若1>>>c b a ,且a .b .c 成等差数列,求证:)()()(2b fc f a f <⋅; Ⅲ.若)(x f 单调递增,且0>>n m 时,有)2(2)()(nm f n f m f +==,求证:32m << 23. 设)(x f 是定义域在]1,1[-上的奇函数,且其图象上任意两点连线的斜率均小于零.I .求证)(x f 在]1,1[-上是减函数;Ⅱ.如果)(c x f -,)(2c x f -的定义域的交集为空集,求实数c 的取值范围;Ⅲ.证明若21≤≤-c ,则)(c x f -,)(2c x f -存在公共的定义域,并求这个公共的空义域.24.已知函数1)(1)()(+-=x g x g x f ,且)(x f ,)(x g 定义域都是r ,且0)(>x g ,2)1(=g ,)(x g 是增函数,)()()(n m g n g m g +=⋅(m .R n ∈) ;求证:)(x f 是R 上的增函数25.定义在+R 上的函数)(x f 满足: ①对任意实数m ,)()(x mf x f m =;②1)2(=f .求证:I .)()()(y f x f xy f +=对任意正数x ,y 都成立;II .证明)(x f 是*R 上的单调增函数;Ⅲ.若2)3()(≤-+x f x f ,求x 的取值范围.26.已知)(x f 是定义在R 上的函数,1)1(=f ,且对任意R x ∈都有5)()5(+≥+x f x f ,1)()1(+≤+x f x f ,若x x f x g -+=1)()(,求)2002(g ;27.设定义在R 上的函数)(x f ,满足当0>x 时,1)(>x f ,且对任意x ,R y ∈,有)()()(y f x f y x f =+,2)1(=f ;I .解不等式4)3(2>-x x f ;Ⅱ.解方程组1)2()3(21)]([2+=++f x f x f ;28、定义域为R 的函数)(x f 满足:对于任意的实数x ,y 都有)()()(y f x f y x f +=+成立,且当0>x 时0)(<x f 恒成立. I .判断函数)(x f 的奇偶性,并证明你的结论;Ⅱ.证明)(x f 为减函数;若函数)(x f 在)3,3[-上总有6)(≤x f 成立,试确定)1(f 应满足的条件;Ⅲ.解关于x 的不等式)()(1)()(122a f x a f nx f ax f n ->-,n 是一个给定的自然数,0<a ; 29.已知)(x f 是定义在R 上的不恒为零的函数,且对于任意的,a b R ∈都满足:()()()f a b af b bf a ⋅=+I .求()()0,1f f 的值;Ⅱ.判断)(x f 的奇偶性,并证明你的结论;Ⅲ.若2)2(=f ,nf u n n )2(-=)(*∈N n ,求数列{}n u 的前n 项的和n S .30.设函数()f x 在(,)-∞+∞上满足(2)(2)f x f x -=+,(7)(7)f x f x -=+,且在闭区间]7,0[上,只有(1)(3)0f f ==. I .试判断函数()y f x =的奇偶性;Ⅱ.试求方程()0f x =在闭区间]2005,2005[-上的根的个数,并证明你的结论.31.设f x ()定义在R 上且对任意的x 有f x f x f x ()()()=+-+12,求证:f x ()是周期函数,并找出它的一个周期;32.设f x ()是定义在R 上的偶函数,其图象关于直线x =1对称;对任意x x 12012,,∈[]都有f x x f x f x ()()()1212+=⋅; I .设f ()12=,求f f ()()1214,;II .证明)(x f 是周期函数;33.已知函数)(x f 的定义域关于原点对称,且满足: ①当1x ,2x 是定义域中的数时,有)()(1)()()(122121x f x f x f x f x x f -+=-;②1)(-=a f (0>a ,a 是定义域中的一个数); ③当a x 20<<时,0)(<x f ;试问:I .)(x f 的奇偶性如何?说明理由;II .在)4,0(a 上,)(x f 的单调性如何?说明理由;。

抽象函数专题讲解与训练

抽象函数专题讲解与训练
3)求证: 是R上的增函数;
4)若 ,求x的取值范围。
四、抽象函数的奇偶性
对于抽象函数的奇偶性,通常是利用赋值法得到 与 的关系,然后来判断。
例题4、定义在R上的函数 ,对任意x,y ,都满足 ,且 ,试判断 的奇偶性。
练习4、已知函数 在R上有意义,且对任意实数x,y都有 ,试判断函数 的奇偶性。
例题1.1、若函数 的定义域为[-1,2],则 的定义域为。
例题1.2、若函数 的定义域为[1,3],则 的定义域为。
例题1.3、若函数 的定义域为[1,3],则 的定义域为。
例题1.4、若函数 的定义域为[3,8],则函数 的定义域为。
练习1.1、已知函数 的定义域为(0,1),求函数 的定义域;
练习2.6、已知函数 ,求 的值;若 ,求a的值。
三、抽象函数的单调性
抽象函数单调性的判断通常用定义法。
例题3、已知函数 对任意x,y ,满足 ,当x 时, ,求证函数 在R上为增函数。
练习3、定义在R上的函数 , ,当x 时, ,,且对任意的a,b ,都有 .
1)求证 ;
2)求证:都任意实数x,恒有 ;
练习1.2、已知函数 的定义域为(2,4),求函数 的定义域;
练习1.3、已知函数 的定义域为(1,2),求函数 的定义域。
二、抽象函数表达式与函数值
例题2.1、已知 ,求函数 ;
例题2.2、已知函数 满足 ,则 的表达式为;
例题2.3、已知二次函数 满足 ,求 的表达式;
例题2.4、已知函数 满足 ,求函数 的表达式;
五、线性函数型抽象函数
抽象函数满足 ,或 ,则说明该函数是一次函数 。
例题5、已知函数 对任意实数x,y,均有 ,且当 时, , ,求 在区间[-2,1]上的值域。

抽象函数解题-题型大全(例题-含答案)

抽象函数解题-题型大全(例题-含答案)

高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1xf x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

定义域,抽象函数习题

定义域,抽象函数习题

定义域抽象函数一.选择题(共30小题)1.(2011•江西)若,则f(x)的定义域为()A.B.C.D.(0,+∞)2.(2011•广东)函数f(x)=+lg(1+x)的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)∪(1,+∞)D.(﹣∞,+∞)3.(2009•陕西)设不等式x2﹣x≤0的解集为M,函数f(x)=ln(1﹣|x|)的定义域为N,则M∩N为()A.[0,1)B.(0,1)C.[0,1] D.(﹣1,0]4.使代数式有意义的x的取值范围为()A.|x|≥1 B.﹣1<x<1 C.|x|>1 D.x≠±15.设a∈(0,1),则函数y=的定义域是()A.(1,2] B.(1,+∞)C.[2,+∞)D.(﹣∞,2]6.函数y=的定义域为()A.[﹣3,4] B.(1,4] C.(1,)∪(,4] D.(﹣3,)∪(,4]7.函数的定义域为()A.[1,2)∪(2,+∞)B.(1,+∞)C.[1,2)D.[1,+∞)8.函数的定义域为()A.(﹣1,+∞)B.[﹣1,+∞)C.[﹣1,0)∪(0,+∞)D.(﹣1,0)∪(0,+∞)9.函数的定义域是()A.B.C.D.10.若函数f(x)的定义域为[0,2],则f(2x﹣2)的定义域为()A.[0,1] B.[log23,2] C.[1,log23] D.[1,2]11.(2011•江西)若,则f(x)的定义域为()A.B.C.D.12.(2010•湖北)函数的定义域为()A.(,1)B.(,∞)C.(1,+∞)D.(,1)∪(1,+∞)13.(2010•广东)函数f(x)=lg(x+1)的定义域为()A.(﹣∞,+∞)B.(﹣∞,﹣1] C.(﹣1,+∞)D.[﹣1,+∞)14.函数y=的定义域为()A.(﹣B.C.D.15.(2005•湖南)函数f(x)=的定义域是()A.(﹣∞,0] B.[0,+∞)C.(﹣∞,0)D.(﹣∞,+∞)16.函数的定义域为()A.∅B.R C.[﹣1,1] D.x=117.函数f(x)=的定义域是()A.(﹣∞,2log23] B.(3,+∞)C.(3,2log23] D.(2log23,+∞)18.已知,则f(x)的定义域是()A.[﹣2,2] B.[0,2] C.[0,1)∪(1,2] D.19.函数的定义域为()A.(,1]B.(﹣∞,1]C.(﹣∞,)D.(,1)20.若两个函数的对应关系相同,值域相同,但定义域不同,则称这两个函数为同族函数.那么与函数y=x2,x∈{﹣3,3}为同族函数的个数有()A.1个B.2个C.3个D.4个21.已知函数f(x)的定义域是(0,1),那么f(2x)的定义域是()A.(0,1)B.(,1)C.(﹣∞,0)D.(0,+∞)22.设f(x)=,则f()+f(2x﹣1)的定义域为()A.[﹣3,3] B.[﹣3,3)C.[﹣1,]∪[,2] D.[﹣1,]∪(,2)23.(2011•广东)设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),则下列等式恒成立的是()A.((f°g)•h)(x)=((f•h)°(g•h))(x)B.((f•g)°h)(x)=((f°h)•(g°h))(x)C.((f°g)°h)(x)=((f°h)°(g°h))(x)D.((f•g)•h)(x)=((f•h)•(g•h))(x)24.函数y=f(x)与y=g(x)有相同的定义域,且都不是常数函数,对定义域中任意x,有f(x)+f(﹣x)=0,g (x)g(﹣x)=1,且x≠0,g(x)≠1,则F(x)=+f(x)()A.是奇函数但不是偶函数B.是偶函数但不是奇函数C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数25.函数y=f(x)的定义域为(0,+∞),且对于定义域内的任意x,y都有f(x•y)=f(x)+f(y),且f(2)=1,则的值为()A.B.C.2 D.﹣226.定义在R上的单调函数f(x)满足f(3)=log23且对任意x,y∈R都有f(x+y)=f(x)+f(y),若f(k•3x)+f(3x﹣9x﹣2)<0对任意x∈R恒成立,则实数k的取值范围为()A.(﹣1,﹣1+2)B.(﹣∞,﹣1+2)C.(﹣∞,﹣1)D.[﹣1+2,+∞)27.已知函数y=f(x),对于任意两个不相等的实数x1、x2,都有f(x1+x2)=f(x1)f(x2)成立,且f(0)≠0,则f(﹣2009)•f(﹣2008)…f(2008)•f(2009)的值是()A.0 B.1 C.2 D.328.已知f(x+y)=f(x)﹣f(y)对于任意实数x都成立,在区间[0,+∞)单调递增,则满足的x取值范围是()A.B.C.D.29.函数f(x)的定义域为R+,若f(x+y)=f(x)+f(y),f(8)=3,则f(2)=()A.B.C.D.30.定义在R的函数f(x)满足f(x+y)=f(x)+f(y),x,y∈R,且f(1)=2,有下面的四个式子:①f(1)+2f(1)+…+nf(1);②f[];③n(n+1);④n(n+1)f(1),则其中与f(1)+f(2)+…+f(n)相等的有()A.①③B.①②C.①②③D.①②③④答案与评分标准一.选择题(共30小题)1.(2011•江西)若,则f(x)的定义域为()A.B.C.D.(0,+∞)考点:函数的定义域及其求法。

抽象函数-题型大全(例题-含答案)

抽象函数-题型大全(例题-含答案)

高考抽象函数技能总结因为函数概念比较抽象,学生对解有关函数记号()f x 的问题觉得艰苦,学好这部分常识,能加深学生对函数概念的懂得,更好地控制函数的性质,造就灵巧性;进步解题才能,优化学生数学思维本质.现将罕有解法及意义总结如下:一.求表达式:1.换元法:即用中央变量暗示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式经常运用的办法,此法解造就学生的灵巧性及变形才能.例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x-=- 2.凑正当:在已知(())()f g x h x =的前提下,把()h x 并凑成以()g u 暗示的代数式,再运用代换即可求()f x .此解法简练,还能进一步温习代换法.例2:已知3311()f x x xx +=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x xx x x x +=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先肯定函数类型,设定函数关系式,再由已知前提,定出关系式中的未知系数.例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.运用函数性质法:重要运用函数的奇偶性,求分段函数的解析式.y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的界说域关于原点对称,故先求x <0时的表达式.∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-,∵()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0x x f x x x +≥⎧=⎨--<⎩例5.一已知()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x . 解:∵()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,无妨用-x 代换()f x +()g x =11x -………①中的x , ∴1()()1f xg x x -+-=--即()f x -1()1g x x =-+……②显见①+②即可消去()g x ,求出函数21()1f x x =-再代入①求出2()1xg x x =-5.赋值法:给自变量取特别值,从而发明纪律,求出()f x 的表达式例6:设()f x 的界说域为天然数集,且知足前提(1)()()f x f x f y xy +=++,及(1)f =1,求()f x解:∵()f x 的界说域为N,取y =1,则有(1)()1f x f x x +=++∵(1)f =1,∴(2)f =(1)f +2,(3)(2)3f f =+……()(1)f n f n n =-+ 以上各式相加,有()f n =1+2+3+……+n =(1)2n n +∴1()(1),2f x x x x N =+∈ 二.运用函数性质,解()f x 的有关问题 1.断定函数的奇偶性:例7 已知()()2()()f x y f x y f x f y ++-=,对一切实数x .y 都成立,且(0)0f ≠,求证()f x 为偶函数.证实:令x =0, 则已知等式变成()()2(0)()f y f y f f y +-=……① 在①中令y =0则2(0)f =2(0)f ∵(0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为偶函数.例8:奇函数()f x 在界说域(-1,1)内递减,求知足2(1)(1)0f m f m -+-<的实数m 的取值规模.解:由2(1)(1)0f m f m -+-<得2(1)(1)f m f m -<--,∵()f x 为函数,∴2(1)(1)f m f m -<-又∵()f x 在(-1,1)内递减,∴221111110111m m m m m -<-<⎧⎪-<-<⇒<<⎨⎪->-⎩3.解不定式的有关标题例9:假如()f x =2ax bx c ++对随意率性的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小解:对随意率性t 有(2)2)f t f t +=-∴x =2为抛物线y =2ax bx c ++的对称轴 又∵其启齿向上∴f (2)最小,f (1)=f (3)∵在[2,+∞)上,()f x 为增函数∴f (3)<f (4),∴f (2)<f (1)<f (4) 五类抽象函数解法 1.线性函数型抽象函数线性函数型抽象函数,是由线性函数抽象而得的函数.例1.已知函数f(x)对随意率性实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域.剖析:由题设可知,函数f(x)是的抽象函数,是以求函数f(x)的值域,症结在于研讨它的单调性.解:设,∵当,∴,∵,∴,即,∴f(x)为增函数.在前提中,令y=-x,则,再令x=y=0,则f(0)=2 f(0),∴f (0)=0,故f(-x)=f(x),f(x)为奇函数,∴f(1)=-f(-1)=2,又f(-2)=2 f(-1)=-4,∴f(x)的值域为[-4,2].例2.已知函数f(x)对随意率性,知足前提f(x)+f(y)=2 + f (x+y),且当x>0时,f(x)>2,f(3)=5,求不等式的解. 剖析:由题设前提可猜测:f(x)是y=x+2的抽象函数,且f(x)为单调增函数,假如这一猜测准确,也就可以脱去不等式中的函数符号,从而可求得不等式的解. 解:设,∵当,∴,则, 即,∴f(x)为单调增函数.∵,又∵f(3)=5,∴f(1)=3.∴,∴,即,解得不等式的解为-1 < a < 3.2.指数函数型抽象函数例3.设函数f(x)的界说域是(-∞,+∞),知足前提:消失,使得,对任何x和y,成立.求:(1)f(0); (2)对随意率性值x,断定f(x)值的正负.剖析:由题设可猜测f(x)是指数函数的抽象函数,从而猜测f(0)=1且f(x)>0.解:(1)令y=0代入,则,∴.若f(x)=0,则对随意率性,有,这与题设抵触,∴f(x)≠0,∴f(0)=1.(2)令y=x≠0,则,又由(1)知f(x)≠0,∴f (2x)>0,即f(x)>0,故对随意率性x,f(x)>0恒成立.例4.是否消失函数f(x),使下列三个前提:①f(x)>0,x∈N;②;③f(2)=4.同时成立?若消失,求出f(x)的解析式,如不消失,解释来由.剖析:由题设可猜测消失,又由f(2)=4可得a=2.故猜测消失函数,用数学归纳法证实如下:(1)x=1时,∵,又∵x∈N时,f(x)>0,∴,结论准确.(2)假设时有,则x=k+1时,,∴x=k+1时,结论准确.综上所述,x为一切天然数时.3.对数函数型抽象函数对数函数型抽象函数,即由对数函数抽象而得到的函数.例5.设f(x)是界说在(0,+∞)上的单调增函数,知足,求:(1)f(1);(2)若f(x)+f(x-8)≤2,求x的取值规模.剖析:由题设可猜测f(x)是对数函数的抽象函数,f(1)=0,f(9)=2.解:(1)∵,∴f(1)=0.(2),从而有f(x)+f(x-8)≤f(9),即,∵f(x)是(0,+∞)上的增函数,故,解之得:8<x≤9.例6.设函数y=f(x)的反函数是y=g(x).假如f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否准确,试解释来由.剖析: 由题设前提可猜测y=f(x)是对数函数的抽象函数,又∵y=f(x)的反函数是y=g(x),∴y=g(x)必为指数函数的抽象函数,于是猜测g(a +b)=g(a)·g(b)准确.解:设f(a)=m,f(b)=n,因为g(x)是f(x)的反函数,∴g(m)=a,g (n)=b,从而,∴g(m)·g(n)=g(m +n),以a.b分离代替上式中的m.n即得g(a+b)=g(a)·g(b).4.三角函数型抽象函数三角函数型抽象函数即由三角函数抽象而得到的函数.例7.己知函数f(x)的界说域关于原点对称,且知足以下三前提:①当是界说域中的数时,有;②f(a)=-1(a>0,a是界说域中的一个数);③当0<x<2a时,f(x)<0.试问:(1)f(x)的奇偶性若何?解释来由.(2)在(0,4a)上,f(x)的单调性若何?解释来由.剖析: 由题设知f(x)是的抽象函数,从而由及题设前提猜测:f(x)是奇函数且在(0,4a)上是增函数(这里把a算作进行猜测).解:(1)∵f(x)的界说域关于原点对称,且是界说域中的数时有,∴在界说域中.∵,∴f(x)是奇函数.(2)设0<x1<x2<2a,则0<x2-x1<2a,∵在(0,2a)上f(x)<0,∴f(x1),f(x2),f(x2-x1)均小于零,进而知中的,于是f(x1)< f(x2),∴在(0,2a)上f(x)是增函数.又,∵f(a)=-1,∴,∴f(2a)=0,设2a<x<4a,则0<x-2a<2a,,于是f(x)>0,即在(2a,4a)上f(x)>0.设2a<x1<x2<4a,则0<x2-x1<2a,从而知f(x1),f(x2)均大于零.f(x2-x1)<0,∵,∴,即f(x1)<f(x2),即f(x)在(2a,4a)上也是增函数.综上所述,f(x)在(0,4a)上是增函数.5.幂函数型抽象函数幂函数型抽象函数,即由幂函数抽象而得到的函数.例8.已知函数f(x)对随意率性实数x.y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当时,.(1)断定f(x)的奇偶性;(2)断定f(x)在[0,+∞)上的单调性,并给出证实;(3)若,求a的取值规模.剖析:由题设可知f(x)是幂函数的抽象函数,从而可猜测f(x)是偶函数,且在[0,+∞)上是增函数.解:(1)令y=-1,则f(-x)=f(x)·f(-1),∵f(-1)=1,∴f(-x)=f(x),f(x)为偶函数.(2)设,∴,,∵时,,∴,∴f(x1)<f(x2),故f(x)在0,+∞)上是增函数.(3)∵f(27)=9,又,∴,∴,∵,∴,∵,∴,又,故.抽象函数罕有题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些表现函数特点的式子的一类函数.因为抽象函数表示情势的抽象性,使得这类问题成为函数内容的难点之一.本文就抽象函数罕有题型及解法评析如下:一.界说域问题例1. 已知函数的界说域是[1,2],求f(x)的界说域.解:的界说域是[1,2],是指,所以中的知足从而函数f(x)的界说域是[1,4]评析:一般地,已知函数的界说域是A,求f(x)的界说域问题,相当于已知中x的取值规模为A,据此求的值域问题.例2. 已知函数的界说域是,求函数的界说域.解:的界说域是,意思是凡被f感化的对象都在中,由此可得所以函数的界说域是评析:这类问题的一般情势是:已知函数f(x)的界说域是A,求函数的界说域.准确懂得函数符号及其界说域的寄义是求解此类问题的症结.这类问题本质上相当于已知的值域B,且,据此求x的取值规模.例2和例1情势上正相反.二.求值问题例3. 已知界说域为的函数f(x),同时知足下列前提:①;②,求f(3),f(9)的值.解:取,得因为,所以又取得评析:经由过程不雅察已知与未知的接洽,奇妙地赋值,取,如许便把已知前提与欲求的f(3)沟通了起来.赋值法是解此类问题的经常运用技能.三.值域问题例4. 设函数f(x)界说于实数集上,对于随意率性实数x.y,总成立,且消失,使得,求函数的值域.解:令,得,即有或.若,则,对随意率性均成立,这与消失实数,使得成立抵触,故,必有.因为对随意率性均成立,是以,对随意率性,有下面来证实,对随意率性设消失,使得,则这与上面已证的抵触,是以,对随意率性所以评析:在处理抽象函数的问题时,往往须要对某些变量进行恰当的赋值,这是一般向特别转化的须要手腕.四.解析式问题例5. 设对知足的所有实数x,函数知足,求f(x)的解析式.解:在中以代换个中x,得:再在(1)中以代换x,得化简得:评析:假如把x和分离看作两个变量,如何实现由两个变量向一个变量的转化是解题症结.平日情形下,给某些变量恰当赋值,使之在关系中“消掉”,进而保存一个变量,是实现这种转化的重要计谋.五.单调性问题例6. 设f(x)界说于实数集上,当时,,且对于随意率性实数x.y,有,求证:在R上为增函数.证实:在中取,得若,令,则,与抵触所以,即有当时,;当时,而所以又当时,所以对随意率性,恒有设,则所以所以在R上为增函数.评析:一般地,抽象函数所知足的关系式,应看作给定的运算轨则,则变量的赋值或变量及数值的分化与组合都应尽量与已知式或所给关系式及所求的成果相接洽关系.六.奇偶性问题例7. 已知函数对随意率性不等于零的实数都有,试断定函数f(x)的奇偶性.解:取得:,所以又取得:,所以再取则,即因为为非零函数,所认为偶函数.七.对称性问题例8. 已知函数知足,求的值.解:已知式即在对称关系式中取,所以函数的图象关于点(0,2002)对称.依据原函数与其反函数的关系,知函数的图象关于点(2002,0)对称.所以将上式中的x用代换,得评析:这是统一个函数图象关于点成中间对称问题,在解题中运用了下述命题:设a.b均为常数,函数对一切实数x都知足,则函数的图象关于点(a,b)成中间对称图形.八.收集分解问题例9. 界说在R上的函数f(x)知足:对随意率性实数m,n,总有,且当x>0时,0<f(x)<1.(1)断定f(x)的单调性;(2)设,,若,试肯定a的取值规模.解:(1)在中,令,得,因为,所以.在中,令因为当时,所以当时而所以又当x=0时,,所以,综上可知,对于随意率性,均有.设,则所以所以在R上为减函数.(2)因为函数y=f(x)在R上为减函数,所以即有又,依据函数的单调性,有由,所以直线与圆面无公共点.是以有,解得. 评析:(1)要评论辩论函数的单调性必定涉及到两个问题:一是f(0)的取值问题,二是f(x)>0的结论.这是解题的症结性步调,完成这些要在抽象函数式中进行.由特别到一般的解题思惟,联想类比思维都有助于问题的思虑息争决.界说在R 上的函数f x ()知足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值.解:由f x f x ()()220-+-=, 以t x =-2代入,有f t f t ()()-=, ∴f x ()为奇函数且有f ()00=又由f x f x ()[()]+=--44故f x ()是周期为8的周期函数,例2 已知函数f x ()对随意率性实数x y ,都有f x y f x f y ()()()+=+,且当x >0时,f x f ()()>-=-012,,求f x ()在[]-21,上的值域.解:设x x 12< 且x x R 12,∈, 则x x 210->,由前提当x >0时,f x ()>0 又f x f x x x ()[()]2211=-+∴f x ()为增函数,令y x =-,则f f x f x ()()()0=+- 又令x y ==0 得f ()00=∴-=-f x f x ()(),故f x ()为奇函数,∴=-=f f ()()112,f f ()()-=-=-2214∴-f x ()[]在,21上的值域为[]-42,二. 求参数规模这类参数隐含在抽象函数给出的运算式中,症结是运用函数的奇偶性和它在界说域内的增减性,去掉落“f ”符号,转化为代数不等式组求解,但要特别留意函数界说域的感化.例3 已知f x ()是界说在(-11,)上的偶函数,且在(0,1)上为增函数,知足f a f a ()()---<2402,试肯定a 的取值规模.解: f x ()是偶函数,且在(0,1)上是增函数,∴f x ()在()-10,上是减函数,由-<-<-<-<⎧⎨⎩1211412a a 得35<<a . (1)当a =2时,f a f a f ()()()-=-=2402,不等式不成立.(2)当32<<a 时, (3)当25<<a 时,综上所述,所求a 的取值规模是()()3225,, .例 4 已知f x ()是界说在(]-∞,1上的减函数,若f m x f m x (sin )(cos )221-≤++对x R ∈恒成立,求实数m 的取值规模. 解: m x m x m x m x 22223131-≤++≤-≥++⎧⎨⎪⎩⎪sin cos sin cos对x R ∈恒成立⇔-≤-≥++⎧⎨⎪⎩⎪m x m x m x22231sin sin cos 对x R ∈恒成立⇔ 对x R ∈恒成立, 三. 解不等式这类不等式一般须要将常数暗示为函数在某点处的函数值,再经由过程函数的单调性去掉落函数符号“f ”,转化为代数不等式求解.例 5 已知函数f x ()对随意率性x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=,求不等式f a a ()2223--<的解集. 解:设x x R 12、∈且x x 12< 则x x 210-> ∴->f x x ()212, 即f x x ()2120-->, 故f x ()为增函数,又f f f f f ()()()()()3212123145=+=+-=-=是以不等式f a a ()2223--<的解集为{}a a |-<<13. 四. 证实某些问题例6 设f x ()界说在R 上且对随意率性的x 有f x f x f x ()()()=+-+12,求证:f x ()是周期函数,并找出它的一个周期.剖析:这同样是没有给出函数表达式的抽象函数,其一般解法是依据所给关系式进行递推,若能得出f x T f x ()()+=(T 为非零常数)则f x ()为周期函数,且周期为T.证实: f x f x f x ()()()()=+-+121()()12+得f x f x ()()()=-+33由(3)得f x f x ()()()+=-+364由(3)和(4)得f x f x ()()=+6.上式对随意率性x R ∈都成立,是以f x ()是周期函数,且周期为6.例7 已知f x ()对一切x y ,,知足f f x y f x f y ()()()()00≠+=⋅,,且当x <0时,f x ()>1,求证:(1)x >0时,01<<f x ();(2)f x ()在R 上为减函数. 证实: 对一切x y R ,∈有f x y f x f y ()()()+=⋅. 且f ()00≠,令x y ==0,得f ()01=, 现设x >0,则-<x 0,f x ()->1, 而f f x f x ()()()01=⋅-=∴<<01f x (),设x x R 12,∈且x x 12<, 则0121<-<f x x (),∴>f x f x ()()12,即f x ()为减函数. 五. 分解问题求解抽象函数的分解问题一般难度较大,常涉及到多个常识点,抽象思维程度请求较高,解题时需掌控好如下三点:一是留意函数界说域的运用,二是运用函数的奇偶性去掉落函数符号“f ”前的“负号”,三是运用函数单调性去掉落函数符号“f ”.例8 设函数y f x =()界说在R 上,当x >0时,f x ()>1,且对随意率性m n ,,有f m n f m f n ()()()+=⋅,当m n ≠时f m f n ()()≠.(1)证实f ()01=;(2)证实:f x ()在R 上是增函数;(3)设{}A x y f x f y f =⋅<()|()()(),221,B x y f ax by c a b c R a =++=∈≠{()|()},,,,,10,若A B =∅,求a b c ,,知足的前提.解:(1)令m n ==0得f f f ()()()000=⋅, ∴=f ()00或f ()01=.若f ()00=,当m ≠0时,有fm fm f ()()()+=⋅00,这与当m n ≠时,f m f n ()()≠抵触, ∴=f ()01. (2)设x x 12<,则x x 210->,由已知得f x x ()211->,因为x 10≥,f x ()11>,若x 10<时,->->x f x 1101,(),由f fx f x ()()()011=⋅- (3)由f x f y f ()()()221⋅<得x y 2211+<()由f a x b y c ()++=1得a x b y c ++=0(2) 从(1).(2)中消去y 得()a b x a c x c b 2222220+++-<,因为AB =∅ ∴=-+-<∆()()()24022222a c ab cb , 即a b c222+< 例9 界说在(-11,)上的函数f x ()知足(1),对随意率性x y ,,∈-()11都有f x f y f x yx y()()()+=++1, (2)当x ∈-()10,时,有f x ()>0,(1)试断定f x ()的奇偶性;(2)断定f x ()的单调性;(3)求证ff f n nf ()()()()15111131122+++++>….剖析:这是一道以抽象函数为载体,研讨函数的单调性与奇偶性,再以这些性质为基本去研讨数列乞降的分解题.解:(1)对前提中的x y ,,令x y ==0,再令y x =-可得f f f f x f x f f x f x ()()()()()()()()000000+=+-=⎧⎨⎩⇒=-=-⎧⎨⎩,所所以f x ()奇函数. (2)设-<<<1012x x ,则fx fx fx f x f x x x x ()()()()()121212121-=+-=-- x x x x 1212001-<<<,, ∴--<x x x x 121210,由前提(2)知f x xx x ()121210-->,从而有f x f x ()()120->,即f x f x ()()12>,故f x ()()在,-10上单调递减,由奇函数性质可知,f x ()在(0,1)上仍是单调减函数.(3) f n n ()1312++抽象函数问题分类解析我们将没有明白给出解析式的函数称为抽象函数.近年来抽象函数问题一再消失于各类测验题中,因为这类问题抽象性强,灵巧性大,多半同窗觉得迷惑,求解无从下手.本文试图经由过程实例作分类解析,供进修参考. 1. 求界说域这类问题只要紧紧抓住:将函数f g x [()]中的g x ()看作一个整体,相当于f x ()中的x这一特点,问题就会水到渠成.例 1. 函数y f x =()的界说域为(]-∞,1,则函数y f x =-[l o g ()]222的界说域是___.剖析:因为l o g()22x 2-相当于f x ()中的x,所以l o g()2221x -≤,解得 22<≤x 或-≤<-22x .例 2. 已知f x ()的界说域为(0),1,则y f x a f x a a =++-≤()()(||)12的界说域是______.剖析:因为x a +及x a-均相当于f x ()中的x,所以(1)当-≤≤120a 时,则x a a ∈-+(),1 (2)当012<≤a 时,则x a a ∈-(),1 2. 断定奇偶性依据已知前提,经由过程恰当的赋值代换,追求f x ()与f x ()-的关系. 例3. 已知f x ()的界说域为R,且对随意率性实数x,y 知足fx y fx f y ()()()=+,求证:f x ()是偶函数.剖析:在fx y fx f y ()()()=+中,令x y ==1, 得f f f f ()()()()11110=+⇒= 令x y ==-1,得f f f f ()()()()11110=-+-⇒-= 于是fx f x f f x f x ()()()()()-=-⋅=-+=11 故f x ()是偶函数.例4. 若函数y f xf x =≠()(())0与y f x =-()的图象关于原点对称,求证:函数 y f x =()是偶函数.证实:设y f x =()图象上随意率性一点为P (x y 00,)y f x =()与y f x=-()的图象关于原点对称, ∴P x y ()00,关于原点的对称点()--x y 00,在y f x =-()的图象上, 又y f x 00=() 即对于函数界说域上的随意率性x 都有f x f x ()()-=,所所以y f x =()偶函数.3. 断定单调性依据函数的奇偶性.单调性等有关性质,画出函数的示意图,以形助数,问题敏捷获解.例5. 假如奇函数f x ()在区间[]37,上是增函数且有最小值为5,那么f x ()在区间[]--73,上是A. 增函数且最小值为-5B. 增函数且最大值为-5C. 减函数且最小值为-5D. 减函数且最大值为-5 剖析:画出知足题意的示意图1,易知选B.图1例6. 已知偶函数f x ()在(0),+∞上是减函数,问f x ()在()-∞,0上是增函数照样减函数,并证实你的结论.剖析:如图2所示,易知f x ()在()-∞,0上是增函数,证实如下: 任取xx x x 121200<<⇒->-> 因为f x ()在(0),+∞上是减函数,所以f x f x ()()-<-12. 又f x ()是偶函数,所以 f x f xf x f x ()()()()-=-=1122,, 从而f x f x ()()12<,故f x ()在()-∞,0上是增函数. 图24. 寻找周期性这类问题较抽象,一般解法是细心剖析题设前提,经由过程相似,联想出函数原型,经由过程对函数原型的剖析或赋值迭代,获得问题的解. 例7. 设函数f x ()的界说域为R,且对随意率性的x,y 有f x y f x y f x f y ()()()()++-=⋅2,并消失正实数c,使f c ()20=.试问f x ()是否为周期函数?若是,求出它的一个周期;若不是,请解释来由.剖析:细心不雅察剖析前提,联想三角公式,就会发明:y x =c o s 知足题设前提,且cos π20=,猜测f x ()是以2c 为周期的周期函数.故f x()是周期函数,2c是它的一个周期.5. 求函数值紧扣已知前提进行迭代变换,经有限次迭代可直接求出成果,或者在迭代进程中发明函数具有周期性,运用周期性使问题奇妙获解.例8. 已知f x()的界说域为R+,且fxy fx fy()()()+=+对一切正实数x,y都成立,若f()84=,则f(2)=_______.剖析:在前提fxy fx fy()()()+=+中,令x y==4,得f f f f()()()()844244=+==,又令x y==2,得f f f(4)(2)(2)=+=2,例9. 已知f x()是界说在R上的函数,且知足:f x f x f x()[()]()+-=+211,f()11997=,求f(2001)的值.剖析:紧扣已知前提,并多次运用,发明f x()是周期函数,显然f x()≠1,于是f x f x f x()() ()+=+ -211,所以f xf x f x()()()+=-+=81 4故f x()是以8为周期的周期函数,从而6. 比较函数值大小运用函数的奇偶性.对称性等性质将自变量转化到函数的单调区间内,然后运用其单调性使问题获解.例10. 已知函数f x()是界说域为R的偶函数,x<0时,f x()是增函数,若x 1<,x20>,且||||x x12<,则f x f x()()--12,的大小关系是_______.剖析: x x 1200<>,且||||x x 12<, 又x <0时,f x ()是增函数,f x ()是偶函数,故f x f x ()()->-127. 评论辩论方程根的问题例11. 已知函数f x ()对一切实数x 都知足f x f x ()()11+=-,并且f x ()=0有三个实根,则这三个实根之和是_______.剖析:由f x f x ()()11+=-知直线x =1是函数f x ()图象的对称轴. 又f x ()=0有三个实根,由对称性知x 11=必是方程的一个根,其余两根x x 23,关于直线x =1对称,所以x x 23212+=⨯=,故x x x 1233++=. 8. 评论辩论不等式的解求解这类问题运用函数的单调性进行转化,脱去函数符号.例12. 已知函数f x ()是界说在(]-∞,1上的减函数,且对一切实数x,不等式fk x fk x(s i n )(s i n)-≥-22恒成立,求k 的值. 剖析:由单调性,脱去函数记号,得由题意知(1)(2)两式对一切x R ∈恒成立,则有 9. 研讨函数的图象这类问题只要运用函数图象变换的有关结论,就可获解.例13. 若函数y f x =+()2是偶函数,则y f x =()的图象关于直线_______对称.剖析:y f x =()的图象右移个单位左移个单位22y f x =+()2的图象,而y f x =+()2是偶函数,对称轴是x =0,故y f x =()的对称轴是x =2.例14. 若函数f x ()的图象过点(0,1),则f x ()+4的反函数的图象必过定点______.剖析:f x ()的图象过点(0,1),从而f x ()+4的图象过点()-41,,由原函数与其反函数图象间的关系易知,f x ()+4的反函数的图象必过定点()14,-. 10. 求解析式例15. 设函数f x ()消失反函数,g x f x h x ()()()=-1,与g x ()的图象关于直线x y +=0对称,则函数h x ()=A. -f x ()B. --f x ()C. --f x 1()D. ---f x 1()剖析:请求y h x =()的解析式,本质上就是求y h x =()图象上任一点Px y ()00,的横.纵坐标之间的关系.点Px y ()00,关于直线y x =-的对称点()--y x 00,合适y f x =-1(),即-=-x g y 00(). 又gx f x ()()=-1,即h x f x ()()=--,选B. 抽象函数的周期问题2001年高考数学(文科)第22题:设f x ()是界说在R 上的偶函数,其图象关于直线x =1对称.对随意率性x x 12012,,∈[]都有f xx f xf x ()()()1212+=⋅. (I )设f ()12=,求f f ()()1214,; (II )证实f x ()是周期函数. 解析:(I )解略.(II )证实:依题设y f x =()关于直线x =1对称 故f x f x x R ()()=-∈2, 又由f x ()是偶函数知 将上式中-x以x 代换,得 这标明f x ()是R 上的周期函数,且2是它的一个周期f x ()是偶函数的本质是f x ()的图象关于直线x =0对称 又f x ()的图象关于x =1对称,可得f x ()是周期函数 且2是它的一个周期由此进行一般化推广,我们得到思虑一:设f x ()是界说在R 上的偶函数,其图象关于直线x aa =≠()0对称,证实f x ()是周期函数,且2a 是它的一个周期.证实: f x ()关于直线x a=对称 又由f x ()是偶函数知f x f x x R ()()-=∈, 将上式中-x以x 代换,得 ∴f x ()是R 上的周期函数且2a 是它的一个周期思虑二:设f x ()是界说在R 上的函数,其图象关于直线x a =和x ba b =≠()对称.证实f x ()是周期函数,且2()b a -是它的一个周期. 证实: f x ()关于直线x a x b ==和对称 将上式的-x以x 代换得 ∴f x ()是R 上的周期函数且2()b a -是它的一个周期若把这道高考题中的“偶函数”换成“奇函数”,f x ()照样不是周期函数?经由摸索,我们得到思虑三:设f x ()是界说在R 上的奇函数,其图象关于直线x =1对称.证实f x ()是周期函数,且4是它的一个周期.,证实: f x ()关于x =1对称∴=-∈fx f x xR ()()2, 又由f x ()是奇函数知f x f x x R f x f x x R()()()()-=-∈∴-=--∈,,2将上式的-x以x 代换,得 ∴f x ()是R 上的周期函数 且4是它的一个周期f x ()是奇函数的本质是f x ()的图象关于原点(0,0)中间对称,又f x ()的图象关于直线x =1对称,可得f x ()是周期函数,且4是它的一个周期.由此进行一般化推广,我们得到思虑四:设f x ()是界说在R 上的函数,其图象关于点M a (),0中间对称,且其图象关于直线x bb a =≠()对称.证实f x ()是周期函数,且4()b a -是它的一个周期.证实: f x ()关于点M a (),0对称 ∴-=-∈f a x f x x R ()()2, f x ()关于直线x b =对称∴=-∈∴-=--∈f x f b x x Rf b x f a x x R()()()()222,,将上式中的-x以x 代换,得 f b x f a x x Rf x b a f b x b a f a x b a f b x a f a x a f x x R()()[()][()][()][()][()]()2242242242222+=-+∈∴+-=++-=-++-=-+-=+-=∈,,∴f x ()是R 上的周期函数 且4()b a -是它的一个周期由上我们发明,界说在R 上的函数f x (),其图象如有两条对称轴或一个对称中间和一条对称轴,则f x ()是R 上的周期函数.进一步我们想到,界说在R 上的函数f x (),其图象假如有两个对称中间,那么f x ()是否为周期函数呢?经由摸索,我们得到思虑五:设f x ()是界说在R 上的函数,其图象关于点M a (),0和N b a b ()(),0≠对称.证实f x ()是周期函数,且2()b a -是它的一个周期.证实: f x ()关于Ma Nb ()(),,,00对称 ∴-=-∈-=-∈∴-=-∈f a x f x x R f b x f x x R f a x f b x x R()()()()()()2222,,,将上式中的-x 以x 代换,得f a x f b x x Rf x b a f b x a f a x a f x x R()()[()][()][()]()2222222+=+∈∴+-=+-=+-=∈,,∴f x ()是周期函数且2()b a -是它的一个周期抽象函数解法规谈抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其知足的前提的函数,如函数的界说域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高级数学函数部分的一个连接点,因为抽象函数没有具体的解析表达式作为载体,是以懂得研讨起来比较艰苦.但因为此类试题即能考核函数的概念和性质,又能考核学生的思维才能,所以备受命题者的青睐,那么,如何求解抽象函数问题呢,我们可以运用特别模子法,函数性质法,特别化办法,联想类比转化法,等多种办法从多角度,多层面去剖析研讨抽象函数问题, 一:函数性质法函数的特点是经由过程其性质(如奇偶性,单调性周期性,特别点等)反响出来的,抽象函数也是如斯,只有充分发掘和运用题设前提和隐含的性质,灵巧进行等价转化,抽象函数问题才干转化,化难为易,经常运用的解题办法有:1,运用奇偶性整体思虑;2,运用单调性等价转化;3,运用周期性回归已知4;运用对称性数形联合;5,借助特别点,布列方程等. 二:特别化办法1在求解函数解析式或研讨函数性质时,一般用代换的办法,将x 换成-x 或将x 换成等 2在求函数值时,可用特别值代入3研讨抽象函数的具体模子,器具体模子解选择题,填空题,或由具体模子函数对分解题,的解答供给思绪和办法.总之,抽象函数问题求解,用通例办法一般很难凑效,但我们假如能经由过程对标题标信息剖析与研讨,采取特别的办法和手腕求解,往往会收到事半功倍之功能,真有些山穷水复疑无路,柳暗花明又一村的快感. 1. 已知函数f(x)对随意率性x.y ∈R 都有f(x+y)=f(x)+ f(y)+3xy(x+y+2)+3,且f(1)=1 ①若t 为天然数,(t>0)试求f(t)的表达式②知足f(t)=t 的所有整数t 可否组成等差数列?若能求出此数列,若不克不及解释来由 ③若t 为天然数且t≥4时, f(t) ≥mt2+(4m+1)t+3m,恒成立,求m 的最大值. 2. 已知函数f(x)=1)(1)(+-x g x g ,且f(x),g(x)界说域都是R,且g(x)>0, g(1) =2,g(x) 是增函数. g(m) · g(n)=g(m+n)(m.n ∈R)求证:①f(x)是R 上的增函数②当n ∈N,n≥3时,f(n)>1+n n 解: ①设x1>x2g(x)是R 上的增函数, 且g(x)>0 ∴ g(x1) > g(x2) >0 ∴g(x1)+1 > g(x2)+1 >0∴1)(22+x g >1)(21+x g >0∴1)(22+x g -1)(21+x g >0∴f(x1)- f(x2)=1)(1)(11+-x g x g - 1)(1)(22+-x g x g =1-1)(21+x g -(1-1)(22+x g )=1)(22+x g -1)(21+x g >0∴ f(x1) >f(x2)∴ f(x)是R 上的增函数②g(x) 知足g(m) · g(n)= g(m+n)(m.n ∈R) 且g(x)>0 ∴ g(n)=[ g(1)]n=2n 当n ∈N,n≥3时, 2n>n ∴f(n)=1212+-n n=1-122+n ,1+n n =1-11+n2n =(1+1)n =1+n+…+i nC +…+n+1>2n+1 ∴ 2n+1>2n+2∴122+n<11+n ,即1-122+n>1-11+n∴当n ∈N,n≥3时,f(n)>1+n n3. 设f1(x) f2(x)是(0,+∞)上的函数,且f1(x)单增,设f(x)= f1(x) +f2(x) ,且对于(0,+∞)上的随意率性两相异实数x1, x2 恒有| f1(x1)- f1(x2)| >| f2(x1)- f2(x2)|①求证:f (x)在(0,+∞)上单增. ②设F(x)=x f (x), a>0.b>0. 求证:F(a+b)> F(a)+F(b) . ①证实:设 x1>x2>0f1(x) 在(0,+∞)上单增f1(x1)- f1(x2)>0∴| f1(x1)- f1(x2)|= f1(x1)- f1(x2)>0| f1(x1)- f1(x2)| >| f2(x1)- f2(x2)|∴f1(x2)- f1(x1)<f2(x1)- f2(x2)< f1(x1)- f1(x2) ∴f1(x1)+f2(x1)> f1(x2)+ f2(x2) ∴f(x1)> f(x2)f (x)在(0,+∞)上单增 ②F(x)=x f (x), a>0.b>0a+b>a>0,a+b>b>0F(a+b)=(a+b)f(a+b)=af(a+b)+bf(a+b)f (x)在(0,+∞)上单增∴F(a+b)>af(a)+bf(b)= F(a)+F(b)4. 函数y =f(x)知足 ①f(a+b)=f (a)·f (b),②f(4)=16, m.n 为互质整数,n≠0 求f(nm)的值 f(0) =f(0+0)=f(0) ·f(0)=f2(0)∴f(0) =0或1.若f(0)=0则f(4)=16=f(0+4)=f(0) ·f(4)=0.(抵触)∴f(1)=1f(4)=f(2) ·f(2)=f(1) ·f(1) ·f(1) ·f(1)=16f(1)=f2(21)≥0 ∴f(1)=2.仿此可证得f(a)≥0.即y=f(x)长短负函数.f(0)=f(a+(-a))=f(a) ·f(-a)∴f(-a)=)(1a f n ∈N*时f(n)=fn(1)=2n,f(-n)=2-nf(1)=f(n 1+n 1+…+n 1)=fn(n1)=2 ∴f(n 1)= n12∴f(nm )=[f(n1)]m= nm 25. 界说在(-1,1)上的函数f (x)知足 ① 随意率性x.y ∈(-1,1)都有f(x)+ f(y)=f (xyyx ++1),②x ∈(-1,0)时, 有f(x) >01) 剖断f(x)在(-1,1)上的奇偶性,并解释来由 2) 剖断f(x)在(-1,0)上的单调性,并给出证实3) 求证:f (1312++n n )=f (11+n )-f (21+n )或f (51)+f (111)+…+f (1312++n n )> f (21) (n ∈N*) 解:1)界说在(-1,1)上的函数f (x)知足随意率性x.y ∈(-1,1)都有f(x)+ f(y)=f (xyyx ++1),则当y=0时, f(x)+ f(0)=f(x) ∴f(0)=0当-x=y 时, f(x)+ f(-x)=f(0)∴f(x)是(-1,1)上的奇函数2) 设0>x1>x2>-1f(x1)-f(x2)= f(x1)+ f(-x2)=)1(2121x x xx f --0>x1>x2>-1 ,x ∈(-1,0)时,有f(x) >0,1-x1 x2>0, x1-x2>0∴)1(2121x x xx f -->0即f(x)在(-1,0)上单调递增.3)f (1312++n n )=f(12312-++n n ) =f()2)(1(11)2)(1(1++-++n n n n )=f(211112111+•+-+-+n n n n )=f(11+n )-f(21+n ) ∴f (51)+f (111)+…+f (1312++n n ) =f(21)-f(31)+f(31)-f(41)+f(41)+…+f(11+n )-f(21+n )= f(21) -f(21+n )=f(21)+f(-21+n )x ∈(-1,0)时,有f(x) >0∴f(-21+n )>0, f(21)+f(-21+n )>f(21)即f (51)+f (111)+…+f (1312++n n )> f (21)6. 设 f (x)是界说在R 上的偶函数,其图像关于直线x=1对称, 对随意率性x1.x2∈[0,12]都有f (x1+ x2)=f(x1) ·f(x2), 且f(1)=a>0. ①求f (12)及 f (14);②证实f(x)是周期函数③记an=f(2n+12n ), 求lim ∞→n (lnan)解: ①由f (x)= f (x 2 + x2)=[f(x)]2≥0,f(x)a= f(1)=f(2n·12n )=f(12n +12n +…+12n )=[f (12n )]2解得f (12n)=n a 21∴ f (12)=21a,f (14)=41a . ②f(x)是偶函数,其图像关于直线x=1对称, ∴f(x)=f(-x),f(1+x)=f(1-x).∴f(x+2)=f[1+(1+x)]= f[1-(1+x)]= f(x)=f(-x). ∴f(x)是以2为周期的周期函数.③an=f(2n+12n )= f (12n)=n a 21∴lim ∞→n (lnan)= lim ∞→n aa 2ln =07. 设)(x f y =是界说在R 上的恒不为零的函数,且对随意率性x.y ∈R 都有f(x+y)=f(x)f(y)①求f(0),②设当x<0时,都有f(x)>f(0)证实当x>0时0<f(x)<1, ③设a1=21,an=f(n)(n ∈N* ),sn 为数列{an }前n 项和,求lim ∞→n sn.解:①②仿前几例,略. ③an =f(n),∴ a1=f(1)=21an+1=f(n+1)=f(n)f(1)=21an∴数列{an }是首项为21公比为21的等比数列∴sn =1-n⎪⎭⎫ ⎝⎛21∴lim ∞→n sn =18. 设)(x f y =是界说在区间]1,1[-上的函数,且知足前提: (i );0)1()1(==-f f(ii )对随意率性的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有 (Ⅰ)证实:对随意率性的;1)(1],1,1[x x f x x -≤≤--∈都有 (Ⅱ)证实:对随意率性的;1|)()(|],1,1[,≤--∈v f u f v u 都有 (Ⅲ)在区间[-1,1]上是否消失知足题设前提的奇函数)(x f y =,且使得⎪⎪⎩⎪⎪⎨⎧∈-=-∈-<-].1,21[,|,||)()(|].21,0[,.|||)()(|v u v u v f u f v u v u v f u f 当当 若消失,请举一例:若不消失,请解释来由.(Ⅰ)证实:由题设前提可知,当]1,1[-∈x 时,有,1|1|)1()(|)(|x x f x f x f -=-≤-=即.1)(1x x f x -≤≤-(Ⅱ)证法一:对随意率性的 1.|v -u ||f(v)-f(u)|,1||],1,1[,≤≤≤--∈有时当v u v u当0,u ,1|v -u |<⋅>v 时无妨设,0<u 则1,u -0>>v v 且 所以,|1||1||)1()(||)1()(||)()(|-++≤-+--≤-v u f v f f u f v f u f.1)(211<--=-++=u v v u 综上可知,对随意率性的],1,1[,-∈v u 都有.1|)()(|≤-v f u f证法二:由(Ⅰ)可得,当.||11)1()(||)(|,]0,1[x,-1f(x),]1,0[x x f x f x f x x -=+≤--=-∈≤∈时时 所以,当.||1)(|,]1,1[x x f x -≤-∈时是以,对随意率性的],1,1[,-∈v u当1||≤-v u 时,.1|||)()(|≤-≤-v u v f u f 当1||>-v u 时,有0<⋅v u 且.2||||||1≤+=-<v u v u所以.1)||(|2||1||1|)(||)(||)()(|≤+-=-+-≤+≤-v u v u v f u f v f u f 综上可知,对随意率性的],1,1[,-∈v u 都有.1|)()(|≤-v f u f(Ⅲ)答:知足所述前提的函数不消失.来由如下,假设消失函数)(x f 知足前提,则由],1,21[,|,||)()(|∈-=-v u v u v f u f得.21|121||)1()21(|=-=-f f 又,0)1(=f 所以.21|)21(|=f ①。

专题:抽象函数的对称性练习题

专题:抽象函数的对称性练习题

例1、()y f x =对一切实数x 满足(4)()f x f x +=-,若方程()0f x =恰好有4个不同的实根、则这些实根之和为( )。

(A )0; (B )2; (C )4; (D )8。

例2.f(x)是定义在R 上的偶函数,且f(1+x)= f(1-x),当-1≤x ≤0时,f (x) = -12x ,则f (8.6 ) = _________例3:定义在R 上的非常数函数满足:f (10+x)为偶函数,且f (5-x) = f (5+x),则f (x)一定是( )(A)是偶函数,也是周期函数(B)是偶函数,但不是周期函数(C)是奇函数,也是周期函数(D)是奇函数,但不是周期函数*例4:函数()f x 满足条件()(6)f x f x =--和()(2)f x f x +-,若()(2000)f a f =-,[5,9]a ∈,且()f x 在[5,9]上单调,则a 的值为( )(A )5;(B )6;(C )7;(D )8。

**例5:设定义域为R 的函数y = f (x)、y = g(x)都有反函数,并且f(x -1)和g -1(x -2)函数的图像关于直线y = x 对称,若g(5) = 1999,那么f(4)=( )。

(A ) 1999; (B )2000; (C )2001; (D )2002。

1、定义在实数集上的奇函数)(x f 恒满足)1()1(x f x f -=+,且)0,1(-∈x 时,512)(+=x x f ,则=)20(log 2f ________。

2、已知函数)(x f y =满足0)2()(=-+x f x f ,则)(x f y =图象关于__________对称。

3、函数)1(-=x f y 与函数)1(x f y -=的图象关于关于__________对称。

4、设函数)(x f y =的定义域为R ,且满足)1()1(x f x f -=-,则)(x f y =的图象关于__________对称。

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答)抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。

抽象函数问题既是教学中的难点,又是近几年来高考的热点。

本资料精选抽象函数经典综合问题33例(含详细解答)1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1;(2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数;(4)若f(x)·f(2x-x 2)>1,求x 的取值范围。

解 (1)令a=b=0,则f(0)=[f(0)]2∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴)(1)(x f x f =- 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0)(1)(>-=x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0(3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴1)()()()()(121212>-=-⋅=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数(4)f(x)·f(2x-x 2)=f[x+(2x-x 2)]=f(-x 2+3x)又1=f(0), f(x)在R 上递增∴由f(3x-x 2)>f(0)得:3x-x 2>0 ∴ 0<x<3 2.已知函数()f x ,()g x 在R 上有定义,对任意的,x y R ∈有()()()()()f x y f x g y g x f y -=- 且(1)0f ≠(1)求证:()f x 为奇函数(2)若(1)(2)f f =, 求(1)(1)g g +-的值解(1)对x R ∈,令x=u-v 则有f(-x)=f(v-u)=f(v)g(u)-g(v)f(u)=f(u-v)=-[f(u)g(v)- g(u)f(v)]=-f(x)(2)f(2)=f{1-(-1)}=f(1)g(-1)-g(1)f(-1)=f(1)g(-1)+g(1)f(1)=f(1){g(-1)+g(1)} ∵f(2)=f(1)≠0∴g(-1)+g(1)=13.已知函数)(x f 对任意实数y x ,恒有)()()(y f x f y x f +=+且当x >0,.2)1(.0)(-=<f x f 又(1)判断)(x f 的奇偶性;(2)求)(x f 在区间[-3,3]上的最大值; (3)解关于x 的不等式.4)()(2)(2+<-ax f x f ax f解(1)取,0==y x 则0)0()0(2)00(=∴=+f f f取)()()(,x f x f x x f x y -+=--=则)()(x f x f -=-∴对任意R x ∈恒成立 ∴)(x f 为奇函数. (2)任取2121),(,x x x x <+∞-∞∈且, 则012>-x x0)()()(1212<-=-+∴x x f x f x f),()(12x f x f --<∴ 又)(x f 为奇函数 )()(21x f x f >∴ ∴)(x f 在(-∞,+∞)上是减函数. ∴对任意]3,3[-∈x ,恒有)3()(-≤f x f而632)1(3)1()2()12()3(-=⨯-==+=+=f f f f f 6)3()3(=-=-∴f f ∴)(x f 在[-3,3]上的最大值为6(3)∵)(x f 为奇函数,∴整理原式得 )2()()2()(2-+<-+f ax f x f ax f进一步可得)2()2(2-<-ax f x ax f而)(x f 在(-∞,+∞)上是减函数,222->-∴ax x ax.0)1)(2(>--∴x ax∴当0=a 时,)1,(-∞∈x当2=a 时,}1|{R x x x x ∈≠∈且当0<a 时,}12|{<<∈x ax x当20<<a 时, }12|{<>∈x a x x x 或 当a>2时,}12|{><∈x ax x x 或4.已知f (x )在(-1,1)上有定义,f (21)=-1,且满足x ,y ∈(-1,1)有f (x )+f (y )=f (xyy x ++1) ⑴证明:f (x )在(-1,1)⑵对数列x 1=21,x n +1=212nn x x +,求f (x n ); ⑶求证252)(1)(1)(121++->+++n n x f x f x f n(Ⅰ)证明:令x =y =0,∴2f (0)=f (0),∴f (0)=0令y =-x ,则f (x )+f (-x )=f (0)=0 ∴f (x )+f (-x )=0 ∴f (-x )=-f (x )∴f (x )为奇函数 (Ⅱ)解:f (x 1)=f (21)=-1,f (x n +1)=f (212n n x x +)=f (nn n n x x x x ⋅++1)=f (x n )+f (x n )=2f (x n ) ∴)()(1n n x f x f +=2即{f (x n )}是以-1为首项,2为公比的等比数列∴f (x n )=-2n -1 (Ⅲ)解:)2121211()(1)(1)(11221-++++=+++n nx f x f x f 2212)212(21121111->+-=--=---=--n n n而2212)212(252-<+--=++-=++-n n n n ∴252)(1)(1)(121++->+++n n x f x f x f n5.已知函数N x f N x x f y ∈∈=)(,),(,满足:对任意,,,2121x x N x x ≠∈都有)()()()(12212211x f x x f x x f x x f x +>+;(1)试证明:)(x f 为N 上的单调增函数; (2)n N ∀∈,且(0)1f =,求证:()1f n n ≥+;(3)若(0)1f =,对任意,m n N ∈,有1)())((+=+n f m f n f ,证明:∑=<-ni if 141)13(12. 证明:(1)由①知,对任意*,,a b a b ∈<N ,都有0))()()((>--b f a f b a ,由于0<-b a ,从而)()(b f a f <,所以函数)(x f 为*N 上的单调增函数. (2)由(1)可知n N ∀∈都有f(n+1)>f(n),则有f(n+1)≥f(n)+1 ∴f(n+1)-f(n)1≥, ∴f(n)-f(n-1)1≥ ∙∙∙ ∴ f(2)-f(1)1≥∴f(1)-f(0)1≥由此可得f(n)-f(0)≥n ∴f(n)≥n+1命题得证(3)由任意,m n N ∈,有1)())((+=+n f m f n f 得()1f m = 由f(0)=1得m=0 则f(n+1)=f(n)+1,则f(n)=n+121)311(21311)311(31313131)13(121<-=--=+∙∙∙++=-∑=n n n ni if6.已知函数()f x 的定义域为[]0,1,且同时满足:(1)对任意[]0,1x ∈,总有()2f x ≥; (2)(1)3f =(3)若120,0x x ≥≥且121x x +≤,则有1212()()()2f x x f x f x +≥+-. (I)求(0)f 的值; (II)求()f x 的最大值;(III)设数列{}n a 的前n 项和为n S ,且满足*12(3),n n S a n N =--∈.求证:123112332()()()()2n n f a f a f a f a n -⨯++++≤+-.解:(I )令120x x ==,由(3),则(0)2(0)2,(0)2f f f ≥-∴≤由对任意[]0,1x ∈,总有()2,(0)2f x f ≥∴= (II )任意[]12,0,1x x ∈且12x x <,则212101,()2x x f x x <-≤∴-≥22112111()()()()2()f x f x x x f x x f x f x ∴=-+≥-+-≥max ()(1)3f x f ∴==(III)*12(3)()n n S a n N =--∈1112(3)(2)n n S a n --∴=--≥1111133(2),10n n n n a a n a a --∴=≥=≠∴= 111112113333333()()()()()23()4n n n n n n nn f a f f f f f -∴==+≥+-≥-+ 111143333()()n n f f -∴≤+,即11433())(n n f a f a +≤+。

抽象函数-题型大全(例题-含答案)

抽象函数-题型大全(例题-含答案)

高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x -=- 2.凑合法:在已知(())()fg xh x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x xx+=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x xx x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

必修一数学抽象函数习题精选含答案

必修一数学抽象函数习题精选含答案

抽象函数单调性和奇偶性1.抽象函数的图像判断单调性例1.如果奇函数f(x)在区间[3, 7]上是增函数且有最小值为5,那么f (x)在区间[7,3]上是()A.增函数且最小值为5B.增函数且最大值为5C.减函数且最小值为 5D.减函数且最大值为5分析:画出满足题意的示意图,易知选Bo2、抽象函数的图像求不等式的解集例2、已知定义在R上的偶函数f (x)满足f(2) 0,并且f (x)在(,0)上为增函数。

若(a 1)f(a) 0 ,则实数a的取值范围二、抽象函数的单调性和奇偶性1.证明单调性例3.已知函数f(x)= ,且f(x),g(x)定义域都是R,且g(x)>0,g(x) 1g(1) =2,g(x) 是增函数.g(m)g(n) g(m n)(m,n R)求证:f(x)是R上的增函数.解:设X1>X2因为,g(x)是R上的增函数,且g(x)>0。

故g(x 1) > g(x 2) >0 o g(X1)+1 > g(x 2)+1 >0 ,2 22> 2>0g(X2)1 g(xj 1g(x2) 1 g(xj 1>0 o增函数。

2.证明奇偶性例5.已知f(x)的定义域为R,且对任意实数x,y 满足f(xy) f(x) 求证:f(x)是偶函数。

分析:在 f(xy) f (x) f(y)中,令 x y 1,得 f(1) f (1) f (1) f (1) 0 令 x y 1,得 f (1) f( 1) f( 1) f( 1) 0于是 f( x) f( 1 x) f( 1) f (x) f (x),故 f (x)是偶函数。

三、求参数范围这类参数隐含在抽象函数给出的运算式中, 关键是利用函数的奇 偶性和它在定义域内的增减性,去掉“ f ”符号,转化为代数不等式 组求解,但要特别注意函数定义域的作用。

f(x 1)- f(x 2)=皿Jg(xj 1gg) 1 g%) 122=1——2——(1-2)g(xj 1 gg) 1>0 g(xj 1可以推出: f(x 1)>f(x 2),所以 f(x)是 R 上的上为减函数。

高中数学函数的解析式和抽象函数定义域练习题

高中数学函数的解析式和抽象函数定义域练习题

高中数学函数的解析式和抽象函数定义域练习题1、分段函数⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f那么 〔1〕假设=)(x f 10,那么x= ;〔2〕)(x f 的值域为 _____.2、画出以下函数的图象〔请使用直尺〕(1) Z x x y ∈-=,22且 2≤x (2) x x y -=23、动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A ,试写出线段AP 的长度y 与P 点的行路程x4、根据以下条件分别求出函数)(x f 的解析式观察法(1)221)1(xx x x f +=+方程组法x x f x f 3)1(2)()2(=+换元法〔3〕13)2(2++=-x x x fA P B待定系数法〔4〕()x f 是一次函数,且满足()()1721213+=--+x x f x f ,求()x f 。

〔复合函数的解析式〕---代入法〔5〕1)(2-=x x f ,1)(+=x x g ,求)]([x g f ]和)]([x f g 的解析式。

5、抽象函数的定义域的求解1、假设函数)(x f 的定义域为]2,1[-,那么函数)1(-x f 的定义域为 。

2、假设函数)1(2-x f 的定义域为]2,1[-,那么函数)1(+x f 的定义域为。

练习:1、假设x x x f 2)1(+=+,求)(x f 。

2、函数)(x f 满足条件10)()(+-=x xf x f ,求)(x f 的解析式。

3、)(x f 是二次函数,且满足()10=f ,()()x x f x f 21=-+,求()x f 的表达式。

4、假设()32+=x x f ,)()2(x f x g =+,求函数)(x g 的解析式5、二次函数()h x 与x 轴的两交点为(2,0)-,(3,0),且(0)3h =-,求()h x ;【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。

抽象函数_题型大全(例题_含答案)

抽象函数_题型大全(例题_含答案)

高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x -=- 2.凑合法:在已知(())()fg xh x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x xx+=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x xx x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

抽象函数及应用13种常考题型总结(原卷版)

抽象函数及应用13种常考题型总结(原卷版)

抽象函数及应用13种常考题型总结题型1抽象函数的定义域问题题型2抽象函数的值域问题题型3求抽象函数的值题型4求抽象函数的解析式题型5抽象函数的奇偶性问题题型6抽象函数的单调性问题题型7抽象函数周期性问题题型8抽象函数的对称性问题题型9解抽象不等式题型10抽象函数比较大小题型11抽象函数的最值问题题型12抽象函数的零点问题题型13双函数混合型1.抽象函数概念:我们把没有给出具体解析式的函数称为抽象函数,题目中往往只给出函数的特殊条件或特征.2.抽象函数定义域的确定所谓抽象函数是指用()f x 表示的函数,而没有具体解析式的函数类型,求抽象函数的定义域问题,关键是注意对应法则。

在同一对应法则的作用下,不论接受法则的对象是什么字母或代数式,其制约条件是一致的,都在同一取值范围内。

抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出.(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.注:求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示.3.“赋值法”求抽象函数的值赋值法就是根据题目的具体情况,合理、巧妙地对某些元素赋予确定的特殊值(0,1,-1等),从而使问题获得简捷有效的解决。

注:(1)第一层次赋值:常常令字母取0,-1,1等.(2)第二层次赋值:若题中有条件0f x =t (),则再令字母取0x .(3)第三层次赋值:拆分赋值,根据抽象式子运算,把赋值数拆成某两个值对应的和与积(较多)或者差与商(较少).4.“赋值法”求抽象函数的解析式赋值法求抽象函数的解析式,首先要对题设中的有关参数进行赋值,再得到函数解析式的某种递推关系,最后求得函数的解析式。

5.“赋值法”探究抽象函数的奇偶性判断抽象函数的奇偶性的关键是得到()f x 与()f x -的关系,解题时要对有关变量进行赋值,使其最后只保留()f x 与()f x -的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽象函数练习题1.(08全国一9)设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( ) A .(10)(1)-+∞,, B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,, 2.(08四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( )(A)13 (B)2 (C)132 (D)2133.(08陕西卷11)定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),(1)2f =,则(3)f -等于( )A .2B .3C .6D .94.(08重庆卷6)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,,则下列说法一定正确的是 ( )(A)f (x )为奇函数(B )f (x )为偶函数 (C) f (x )+1为奇函数(D )f (x )+1为偶函数 5.(08辽宁卷12)设()f x 是连续的偶函数,且当x >0时()f x 是单调函数,则满足3()4x f x f x +⎛⎫= ⎪+⎝⎭的所有x 之和为( ) A .3- B .3 C .8- D .86.(07天津)在R 上定义的函数()x f 是偶函数,且()()x f x f -=2,若()x f 在区间[]2,1是减函数,则函数()x f ( )A.在区间[]1,2--上是增函数,区间[]4,3上是增函数B.在区间[]1,2--上是增函数,区间[]4,3上是减函数C.在区间[]1,2--上是减函数,区间[]4,3上是增函数D.在区间[]1,2--上是减函数,区间[]4,3上是减函数7.(07福建)已知函数()x f 为R 上的减函数,则满足()11f x f <⎪⎪⎭⎫⎝⎛的实数x 的取值范围是( ) A.()1,1- B.()1,0 C.()()1,00,1 - D.()()+∞-∞-,11,8.(07重庆)已知定义域为R 的函数()x f 在区间()+∞,8上为减函数,且函数()8+=x f y 为偶函数,则( )A.()()76f f >B. ()()96f f >C. ()()97f f >D. ()()107f f >9.(07安徽)定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为( )A.0B.1C.3D.510.(2009全国卷Ⅰ理)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( )(A) ()f x 是偶函数 (B) ()f x 是奇函数(C) ()(2)f x f x =+ (D) (3)f x +是奇函数11.(2009山东卷文)已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( ).A.(25)(11)(80)f f f -<<B. (80)(11)(25)f f f <<-C. (11)(80)(25)f f f <<-D. (25)(80)(11)f f f -<<12.(2009四川卷文)已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有 )()1()1(x f x x xf +=+,则)25(f 的值是A. 0B. 21C. 1D. 25 13.(2009山东卷理)已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=抽象函数练习题答案1.(08全国一9)设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( D ) A .(10)(1)-+∞,, B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,, 2.(08四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( C )(A)13 (B)2 (C)132 (D)2133.(08陕西卷11)定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),(1)2f =,则(3)f -等于( C )A .2B .3C .6D .94.(08重庆卷6)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,,则下列说法一定正确的是 ( C )(A)f (x )为奇函数(B )f (x )为偶函数 (C) f (x )+1为奇函数(D )f (x )+1为偶函数 5.(08辽宁卷12)设()f x 是连续的偶函数,且当x >0时()f x 是单调函数,则满足3()4x f x f x +⎛⎫= ⎪+⎝⎭的所有x 之和为( C ) A .3- B .3 C .8- D .86.(07天津)在R 上定义的函数()x f 是偶函数,且()()x f x f -=2,若()x f 在区间[]2,1是减函数,则函数()x f ( B )A.在区间[]1,2--上是增函数,区间[]4,3上是增函数B.在区间[]1,2--上是增函数,区间[]4,3上是减函数C.在区间[]1,2--上是减函数,区间[]4,3上是增函数D.在区间[]1,2--上是减函数,区间[]4,3上是减函数7.(07福建)已知函数()x f 为R 上的减函数,则满足()11f x f <⎪⎪⎭⎫⎝⎛的实数x 的取值范围是( C )A.()1,1-B.()1,0C.()()1,00,1 -D.()()+∞-∞-,11,8.(07重庆)已知定义域为R 的函数()x f 在区间()+∞,8上为减函数,且函数()8+=x f y 为偶函数,则( D )A.()()76f f >B. ()()96f f >C. ()()97f f >D. ()()107f f >9.(07安徽)定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为( D )A.0B.1C.3D.5 10.(2009全国卷Ⅰ理)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( D )(A) ()f x 是偶函数 (B) ()f x 是奇函数(C) ()(2)f x f x =+ (D) (3)f x +是奇函数解: (1)f x +与(1)f x -都是奇函数,(1)(1),(1)(1)f x f x f x f x ∴-+=-+--=--,∴函数()f x 关于点(1,0),及点(1,0)-对称,函数()f x 是周期2[1(1)]4T =--=的周期函数.(14)(14)f x f x ∴--+=--+,(3)(3)f x f x -+=-+,即(3)f x +是奇函数。

故选D11.(2009山东卷文)已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( ).A.(25)(11)(80)f f f -<<B. (80)(11)(25)f f f <<-C. (11)(80)(25)f f f <<-D. (25)(80)(11)f f f -<<【解析】:因为)(x f 满足(4)()f x f x -=-,所以(8)()f x f x -=,所以函数是以8为周期的周期函数, 则)1()25(-=-f f ,)0()80(f f =,)3()11(f f =,又因为)(x f 在R 上是奇函数, (0)0f =,得0)0()80(==f f ,)1()1()25(f f f -=-=-,而由(4)()f x f x -=-得)1()41()3()3()11(f f f f f =--=--==,又因为)(x f 在区间[0,2]上是增函数,所以0)0()1(=>f f ,所以0)1(<-f ,即(25)(80)(11)f f f -<<,故选D.答案:D.12.(2009四川卷文)已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有 )()1()1(x f x x xf +=+,则)25(f 的值是A. 0B.21 C. 1 D. 25 【答案】A【解析】若x ≠0,则有)(1)1(x f x x x f +=+,取21-=x ,则有: )21()21()21(21211)121()21(f f f f f -=--=---=+-=(∵)(x f 是偶函数,则)21()21(f f =- ) 由此得0)21(=f 于是,0)21(5)21(]21211[35)121(35)23(35)23(23231)123()25(==+=+==+=+=f f f f f f f 13.(2009山东卷理)已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=【解析】:因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,所以, 由)(x f 为奇函数,所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为)(x f 在区间[0,2]上是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,不妨设1234x x x x <<<由对称性知1212x x +=-344x x +=所以12341248x x x x +++=-+=-。

相关文档
最新文档