(完整版)中考数学二次函数压轴题题型归纳(学生版)

合集下载

备战2024年中考数学压轴题之二次函数篇(全国通用)专题13 二次函数-费马点求最小值(学生版)

备战2024年中考数学压轴题之二次函数篇(全国通用)专题13 二次函数-费马点求最小值(学生版)

第十三讲二次函数--费马点最值必备知识点费马点:三角形内的点到三个顶点距离之和最小的点【结论】如图,点M 为锐角△ABC 内任意一点,连接AM 、BM 、CM ,当M 与三个顶点连线的夹角为120°时,MA+MB+MC的值最小【证明】以AB 为一边向外作等边三角形△ABE ,将BM 绕点B 逆时针旋转60°得到BN ,连接EN .∵△ABE 为等边三角形,∴AB =BE ,∠ABE =60°.而∠MBN =60°,∴∠ABM =∠EBN .在△AMB 与△ENB 中,∵,∴△AMB ≌△ENB (SAS ).连接MN .由△AMB ≌△ENB 知,AM =EN .∵∠MBN =60°,BM =BN ,∴△BMN 为等边三角形.∴BM =MN .知识导航∴AM+BM+CM=EN+MN+CM.∴当E、N、M、C四点共线时,AM+BM+CM的值最小.此时,∠BMC=180°﹣∠NMB=120°;∠AMB=∠ENB=180°﹣∠BNM=120°;∠AMC=360°﹣∠BMC﹣∠AMB=120°.分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点。

点P 为锐角△ABC 内任意一点,连接AP 、BP 、CP ,求xAP+yBP+zCP 最小值解决办法:第一步,选定固定不变线段;第二步,对剩余线段进行缩小或者放大。

如:保持BP 不变,xAP+yBP+zCP=)(y CP yz BP AP y x ,如图所示,B 、P 、P 2、A 2四点共线时,取得最小值。

例:点P 为锐角△ABC 内任意一点,∠ACB=30°,BC=6,AC=5,连接AP 、BP 、CP ,求3AP+4BP+5CP 的最小值【分析】将△APC 绕C 点顺时针转90°到△A 1P 1C ,过P 2作P 1A 1的平行线,交CA 1于点A 2,且满足A 2P 2:P 1A 1=3:4.在Rt △PCP 2中,设PC=a ,由△CA 2P 2∽△CA 1P 1得CP 2=3a/4,则PP2=5a/4。

中考二次函数压轴题题型总结(一)

中考二次函数压轴题题型总结(一)

中考二次函数压轴题题型总结(一)中考二次函数压轴题题型总结前言二次函数作为中考数学的重要内容之一,经常作为压轴题出现。

对于考生来说,熟练掌握二次函数的基本知识和解题方法是非常重要的。

本文将对中考二次函数压轴题题型进行总结,帮助考生更好地备考。

一、基本概念回顾1.二次函数的标准形式:y=ax2+bx+c2.二次函数的图像特征:–开口方向(参数a的正负)–顶点坐标(x=−b2a ,y=−D4a)–对称轴方程(x=−b2a)–判别式(D=b2−4ac)二、题型分析与解题技巧1. 求解二次函数的解•求解二次函数的零点:–根据方程y=0,列出二次方程并求解;–利用零点和对称轴的关系求解。

2. 求解二次函数图像的特征•开口方向:–根据参数a的正负判断开口方向;–利用顶点和对称轴的关系判断开口方向。

•顶点坐标:求解。

–利用x=−b2a•对称轴方程:求解。

–利用x=−b2a3. 利用图像解题•区间范围:–根据图像的开口方向确定y的取值范围。

•最值问题:–利用顶点坐标求解函数的最值。

通过以上总结,我们可以看出,二次函数压轴题在中考中占据了重要的位置。

对于考生来说,熟练掌握二次函数的基本概念和解题技巧是提高数学成绩的关键。

希望本文能对考生复习备考有所帮助。

4. 利用判别式解二次函数的性质•判别式D=b2−4ac可以判断二次函数的根的情况:–当D>0时,方程有两个不相等的实根;–当D=0时,方程有两个相等的实根;–当D<0时,方程没有实根。

•利用判别式的性质解题:–求解满足条件的参数;–求解满足条件的x的取值范围。

5. 利用二次函数的性质解实际问题•利用二次函数的最值性质解实际问题:–求解物体的最高点、最低点等位置;–求解时间、速度、距离等相关问题。

通过本文的总结,我们可以看出,在中考二次函数压轴题中,考察的内容主要包括基本概念、解题技巧、图像特征、判别式和实际问题的应用。

考生在备考时应该注重理解二次函数的概念和性质,掌握解题的方法和技巧,加强对图像特征和判别式的理解和应用,同时培养解实际问题的能力。

初三二次函数压轴题题型归纳及方法

初三二次函数压轴题题型归纳及方法

初三二次函数压轴题题型归纳及方法一、题型归纳初三二次函数压轴题主要包括以下几种题型:1. 解二次方程:给出一个二次方程,要求求出其解。

2. 求顶点坐标:给出一个二次函数,要求求出其顶点坐标。

3. 求零点:给出一个二次函数,要求求出其零点。

4. 求最值:给出一个二次函数,要求求出其最大值或最小值。

5. 综合应用:将上述各种题型结合起来进行综合应用。

二、方法1. 解二次方程(1)将方程化为标准形式ax²+bx+c=0;(2)判断Δ=b²-4ac的正负性:如果Δ>0,则有两个不相等的实数根;如果Δ=0,则有两个相等的实数根;如果Δ<0,则无实数根,但可以得到一对共轭复数根;(3)根据公式x1=(-b+√Δ)/2a和x2=(-b-√Δ)/2a求得解。

2. 求顶点坐标(1)将二次函数化为标准形式y=ax²+bx+c;(2)利用公式x=-b/2a求得顶点的横坐标;(3)将横坐标代入原函数中求得顶点的纵坐标。

3. 求零点(1)将二次函数化为标准形式y=ax²+bx+c;(2)令y=0,解出方程ax²+bx+c=0;(3)根据解出的方程,用上述方法求出零点。

4. 求最值(1)将二次函数化为标准形式y=ax²+bx+c;(2)如果a>0,则函数有最小值,最小值为y0=c-b²/4a,顶点坐标为(-b/2a,y0);如果a<0,则函数有最大值,最大值为y0=c-b²/4a,顶点坐标为(-b/2a,y0)。

5. 综合应用综合应用题目一般会给出一个实际问题,并要求利用二次函数进行建模和求解。

解决这类题目需要结合实际情况进行分析,并运用上述各种方法进行计算和推导。

三、注意事项1. 在解二次方程时,需要注意判别式Δ的正负性,以确定是否有实数根。

2. 在求顶点坐标时,需要注意顶点横坐标的符号和范围。

3. 在求零点时,需要注意解方程的过程和方法,并判断是否存在实数根。

(完整版)中考数学二次函数压轴题题型归纳(最新整理)

(完整版)中考数学二次函数压轴题题型归纳(最新整理)

中考二次函数综合压轴题型归类一、常考点汇总1、两点间的距离公式: AB =2、中点坐标:线段 AB 的中点C 的坐标为:⎛ x A + x By A + y B ⎫, ⎪⎝22 ⎭直线 y = k 1 x + b 1 ( k 1 ≠ 0 )与 y = k 2 x + b 2 ( k 2 ≠ 0 )的位置关系:(1)两直线平行⇔ k 1 = k 2 且b 1 ≠ b 2(2)两直线相交⇔ k 1 ≠ k 2(3)两直线重合⇔ k 1 = k 2 且b 1 = b 23、一元二次方程有整数根问题,解题步骤如下:① 用∆ 和参数的其他要求确定参数的取值范围;(4) 两直线垂直⇔ k 1k 2 = -1② 解方程,求出方程的根;(两种形式:分式、二次根式)③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。

例:关于 x 的一元二次方程 x 2-2(m + 1)x + m 2=0 有两个整数根, m <5 且 m 为整数,求 m 的值。

4、二次函数与 x 轴的交点为整数点问题。

(方法同上)例:若抛物线 y = mx 2 + (3m +1)x + 3 与 x 轴交于两个不同的整数点,且 m 为正整数,试确定此抛物线的解析式。

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。

举例如下:已知关于 x 的方程 mx 2 - 3(m -1)x + 2m - 3 = 0 ( m 为实数),求证:无论 m 为何值,方程总有一个固定的根。

解:当 m = 0 时, x = 1;当 m ≠ 0 时, ∆ = (m - 3)2≥ 0 , x =2m综上所述:无论 m 为何值,方程总有一个固定的根是 1。

, x 1= 2 - 3 、 x m 2= 1 ;6、函数过固定点问题,举例如下:已知抛物线 y = x 2 - mx + m - 2 ( m 是常数),求证:不论 m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。

中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)

中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)

中考压轴题-二次函数综合 (八大题型+解题方法)1、求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x 轴y 轴的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等;2、“平行于y 轴的动线段长度的最大值”的问题:由于平行于y 轴的线段上各个点的横坐标相等常设为t,借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t 的代数式表示出来,再由两个端点的高低情况,运用平行于y 轴的线段长度计算公式-y y 下上,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标;3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式或称K ,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可;4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题:方法1先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式注意该直线与定直线的斜率相等,因为平行直线斜率k 相等,再由该直线与抛物线的解析式组成方程组,用代入法把字母y 消掉,得到一个关于x 的的一元二次方程,由题有△=2b -4ac=0因为该直线与抛物线相切,只有一个交点,所以2b -4ac=0从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x 、y 的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离; 方法2该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离;方法3先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出;5、常数问题:1点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个 固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了;2三角形面积中的常数问题:“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点其坐标需用一个字母表示到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了;3几条线段的齐次幂的商为常数的问题:用K 点法设出直线方程,求出与抛物线或其它直线的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可;6、“在定直线常为抛物线的对称轴,或x 轴或y 轴或其它的定直线上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出利用求交点坐标的方法;7、三角形周长的“最值最大值或最小值”问题:① “在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题简称“一边固定两边动的问题:由于有两个定点,所以该三角形有一定边其长度可利用两点间距离公式计算,只需另两边的和最小即可;② “在抛物线上是否存在一点,使之到定直线的垂线,与y 轴的平行线和定直线,这三线构成的动直角三角形的周长最大”的问题简称“三边均动的问题:在图中寻找一个和动直角三角形相似的定直角三角形,在动点坐标一母示后,运用=C C 动动定定斜边斜边,把动三角形的周长转化为一个开口向下的抛物线来破解;8、三角形面积的最大值问题:① “抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题简称“一边固定两边动的问题”:方法1:先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离;最后利用三角形的面积公式= 12底×高;即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点;方法2:过动点向y 轴作平行线找到与定线段或所在直线的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到)()(左(定)右(定)下(动)上(动)动三角形x x y y 21−⋅−=S ,转化为一个开口向下的二次函数问题来求出最大值;②“三边均动的动三角形面积最大”的问题简称“三边均动”的问题:先把动三角形分割成两个基本模型的三角形有一边在x 轴或y 轴上的三角形,或者有一边平行于x 轴或y 轴的三角形,称为基本模型的三角形面积之差,设出动点在x 轴或y 轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似常为图中最大的那一个三角形;利用相似三角形的性质对应边的比等于对应高的比可表示出分割后的一个三角形的高;从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了;9、“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,,即可得到一个定三角形的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同;10、“定四边形面积的求解”问题: 有两种常见解决的方案:方案一:连接一条对角线,分成两个三角形面积之和;方案二:过不在x 轴或y 轴上的四边形的一个顶点,向x 轴或y 轴作垂线,或者把该点与原点连结起来,分割成一个梯形常为直角梯形和一些三角形的面积之和或差,或几个基本模型的三角形面积的和差11、“两个三角形相似”的问题: 两个定三角形是否相似:(1)已知有一个角相等的情形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例 若成比例,则相似;否则不相似;(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例若成比例,则相似;否则不相似;一个定三角形和动三角形相似:(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来一母示,然后把两个目标三角形题中要相似的那两个三角形中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例要注意是否有两种情况,列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点;2不知道是否有一个角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标“一母示”后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例若成比例,则所求动点坐标符合题意,否则这样的点不存在;简称“找特角,求动点标,再验证”;或称为“一找角,二求标,三验证”;12、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:首先弄清题中是否规定了哪个点为等腰三角形的顶点;若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形则有三种情况;先借助于动点所在图象的解析式,表示出动点的坐标一母示,按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程;解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点就是不能构成三角形这个题意;13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标,任选一个已知点作为对角线的起点,列出所有可能的对角线显然最多有3条,此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可;进一步有:①若是否存在这样的动点构成矩形呢先让动点构成平行四边形,再验证两条对角线相等否若相等,则所求动点能构成矩形,否则这样的动点不存在;②若是否存在这样的动点构成棱形呢先让动点构成平行四边形,再验证任意一组邻边相等否若相等,则所求动点能构成棱形,否则这样的动点不存在;③若是否存在这样的动点构成正方形呢先让动点构成平行四边形,再验证任意一组邻边是否相等和两条对角线是否相等若都相等,则所求动点能构成正方形,否则这样的动点不存在;14、“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形;先用动点坐标“一母示”的方法设出直接动点坐标,分别表示如果图形是动图形就只能表示出其面积或计算如果图形是定图形就计算出它的具体面积,然后由题意建立两个图形面积关系的一个方程,解之即可;注意去掉不合题意的点,如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可;15、“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:若夹直角的两边与y轴都不平行:先设出动点坐标一母示,视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线没有与y轴平行的直线垂直的斜率结论两直线的斜率相乘等于-1,得到一个方程,解之即可;若夹直角的两边中有一边与y 轴平行,此时不能使用斜率公式;补救措施是:过余下的那一个点没在平行于y轴的那条直线上的点直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定;16、“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题;①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程,利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否若等,该交点合题,反之不合题,舍去;②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1 若为-1,则就说明所求交点合题;反之,舍去;17、“题中含有两角相等,求相关点的坐标或线段长度”等的问题:题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口;18、“在相关函数的解析式已知或易求出的情况下,题中又含有某动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或线段长”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,本类型实际上是前面14的特殊情形;先把动图形化为一些直角梯形或基本模型的三角形有一边在x 轴或y轴上,或者有一边平行于x 轴或y 轴面积的和或差,设出相关点的坐标一母示,按化分后的图形建立一个面积关系的方程,解之即可;一句话,该问题简称“单动问题”,解题方法是“设点动点标,图形转化分割,列出面积方程”;19、“在相关函数解析式不确定系数中还含有某一个参数字母的情况下,题中又含有动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或参数的值”的问题:此为“双动问题”即动解析式和动图形相结合的问题;如果动图形不是基本模型,就先把动图形的面积进行转化或分割转化或分割后的图形须为基本模型,设出动点坐标一母示,利用转化或分割后的图形建立面积关系的方程或方程组;解此方程,求出相应点的横坐标,再利用该点所在函数图象的解析式,表示出该点的纵坐标注意,此时,一定不能把该点坐标再代入对应函数图象的解析式,这样会把所有字母消掉;再注意图中另一个点与该点的位置关系或其它关系,方法是常由已知或利用2问的结论,从几何知识的角度进行判断,表示出另一个点的坐标,最后把刚表示出来的这个点的坐标再代入相应解析式,得到仅含一个字母的方程,解之即可;如果动图形是基本模型,就无须分割或转化了,直接先设出动点坐标一母式,然后列出面积方程,往下操作方式就与不是基本模型的情况完全相同;一句话,该问题简称“双动问题”,解题方法是“转化分割,设点标,建方程,再代入,得结论”;常用公式或结论:1横线段的长 = 横标之差的绝对值 =-x x 大小=-x x 右左纵线段的长=纵标之差的绝对值=-y y 大小=-y y 下上 2点轴距离:点P 0x ,0y 到X 轴的距离为0y ,到Y 轴的距离为o x ; 3两点间的距离公式:若A 11,x y ,B 2,2x y , 则AB=目录:题型1:存在性问题 题型2:最值问题 题型3:定值问题 题型4:定点问题题型5:动点问题综合 题型6:对称问题 题型7:新定义题 题型8:二次函数与圆题型1:存在性问题1.(2024·四川广安·二模)如图,抛物线2y x bx c =−++交x 轴于()4,0A −,B 两点,交y 轴于点()0,4C .(1)求抛物线的函数解析式.(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P ,连接AP 、CP ,求四边形AOCP 的面积的最大值.(3)在抛物线的对称轴上是否存在点M ,使得以点A 、C 、M 为顶点的三角形是直角三角形?若存在,请求出点M【答案】(1)234y x x =−−+;(2)四边形AOCP 的面积最大为16;(3)点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.【分析】本题主要考查了二次函数综合,熟练掌握用待定系数法求解函数解析式的方法和步骤,以及二次函数的图象和性质,是解题的关键. (1)把()4,0A −,()0,4C 代入2y x bx c =−++,求出b 和c 的值,即可得出函数解析式; (2)易得182AOCSOA OC =⋅=,设()2,34P t t t −−+,则(),4Q t t +,求出24PQ t t =−−,则()()212282ACP C A S PQ x x t =⋅−=−++,根据四边形AOCP 的面积()22216ACP AOCS St =+=−++,结合二次函数的增减性,即可解答;(3)设3,2M m ⎛⎫− ⎪⎝⎭,根据两点之间距离公式得出232AC =,22254AM m =+,229(4)4CM m =+−,然后分情况根据勾股定理列出方程求解即可.【解析】(1)解:把()4,0A −,()0,4C 代入2y x bx c =−++得:01644b c c =−−+⎧⎨=⎩,解得:34b c =−⎧⎨=⎩,∴该二次函数的解析式234y x x =−−+;(2)解:∵()4,0A −,()0,4C ,∴4,4OA OC ==,∴1144822AOC S OA OC =⋅=⨯⨯=△,设直线AC 的解析式为4y kx =+, 代入()4,0A −得,044k =−+,解得1k =,∴直线AC 的解析式为4y x =+, 设()2,34P t t t −−+,则(),4Q t t +,∴()223444PQ t t t t t=−−+−+=−−∴()()()22114422822ACPC A SPQ x x t t t =⋅−=−−⨯=−++,∴四边形AOCP 的面积()22216ACP AOCSSt =+=−++,∵20−<,∴当2t =−时,四边形AOCP 的面积最大为16; (3)解:设3,2M m ⎛⎫− ⎪⎝⎭,∵()4,0A −,()0,4C ,∴2224432AC =+=,2222325424AM m m ⎛⎫=−++=+ ⎪⎝⎭,()()2222394424CM m m ⎛⎫=−+−=+− ⎪⎝⎭,当斜边为AC 时,AM CM AC 222+=,即()2225943244m m +++−=,整理得:24150m m ++=,无解;当斜边为AM 时,222AC CM AM +=,即2292532(4)44m m ++−=+,解得:112m =;∴311,22M ⎛⎫− ⎪⎝⎭当斜边为CM 时,222AC AM CM +=,即2225932(4)44m m ++=+−, 解得:52m =−;∴35,22M ⎛⎫−− ⎪⎝⎭综上:点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.2.(2024·内蒙古乌海·模拟预测)如图(1),在平面直角坐标系中,抛物线()240y ax bx a =+−≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为()1,0−,且OC OB =,点D 和点C 关于抛物线的对称轴对称.(1)分别求出a ,b 的值和直线AD 的解析式;(2)直线AD 下方的抛物线上有一点P ,过点P 作PH AD ⊥于点H ,作PM 平行于y 轴交直线AD 于点M ,交x 轴于点E ,求PHM 的周长的最大值;(3)在(2)的条件下,如图2,在直线EP 的右侧、x 轴下方的抛物线上是否存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似?如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)1a =,3b =−,=1y x −−(2)4+(3)存在,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭【分析】本题主要考查的是二次函数的综合应用,掌握二次函数的交点式、配方法求二次函数的最值、相似三角形的判定、等腰直角三角形的判定、一元二次方程的求根公式,列出PM 的长与a 的函数关系式是解题的关键.(1)先求得C 的坐标,从而得到点B 的坐标,设抛物线的解析式为()()14y a x x =+−,将点C 的坐标代入求解即可;先求得抛物线的对称轴,从而得到点()3,4D −,然后可求得直线AD 的解析式=1y x −−;(2)求得45BAD ∠=︒,接下来证明PMD △为等腰直角三角形,所当PM 有最大值时三角形的周长最大,设()2,34P a a a −−,()1M a −−,则223PM aa =−++,然后利用配方可求得PM 的最大值,最后根据MPH△的周长(1PM=求解即可;(3)当90EGN ∠=︒时,如果OA EG OC GN = 或OA GNOC EN =时,则AOC ∽EGN △,设点G 的坐标为(),0a ,则()2,34N a a a −−,则1EG a =−,234NG aa =−++,然后根据题意列方程求解即可.【解析】(1)点A 的坐标为()1,0−,1OA ∴=.令0x =,则4y =−,()0,4C ∴−,4OC =,OC OB =Q , 4OB ∴=,()4,0B ∴,设抛物线的解析式为()()14y a x x =+−,将0x =,4y =−代入得:44a −=−,解得1a =,∴抛物线的解析式为234y x x =−−;1a ∴=,3b =−; 抛物线的对称轴为33212x −=−=⨯,()0,4C −,点D 和点C 关于抛物线的对称轴对称,()3,4D ∴−;设直线AD 的解析式为y kx b =+.将()1,0A −、()3,4D −代入得:034k b k b −+=⎧⎨+=−⎩,解得1k =−,1b =-,∴直线AD 的解析式=1y x −−;(2)直线AD 的解析式=1y x −−,∴直线AD 的一次项系数1k =−,45BAD ∴∠=︒. PM 平行于y 轴,90AEP ∴∠=︒,45PMH AME ∴∠=∠=︒.MPH ∴的周长(122PM MH PH PM MP PM PM =++=++=. 设()2,34P a a a −−,则(),1M a a −−, 则()22213423(1)4PM a a a a a a =−−−−−=−++=−−+.∴当1a =时,PM 有最大值,最大值为4.MPH ∴的周长的最大值(414=⨯=+(3)在直线EP 的右侧、x 轴下方的抛物线上存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似;理由如下:设点G 的坐标为(),0a ,则()2,34N a a a −−①如图2.1,若OA EG OC GN = 时,AOC ∽EGN △. 则 211344a a a −=−++,整理得:280a a +−=.得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭; ②如图2.2,若OA GN OC EN =时,AOC ∽NGE ,则21434a a a −=−++,整理得:2411170a a −−=,得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭, 综上所述,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭. 3.(2024·重庆·一模)如图,在平面直角坐标系中,抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B ,与y 轴交于点C ,连接BC ,AC .(1)求抛物线的表达式;(2)P 为直线BC 上方抛物线上一点,过点P 作PD BC ⊥于点D ,过点P 作PE x 轴交抛物线于点E,求4+PD PE 的最大值及此时点P 的坐标; (3)点C 关于抛物线对称轴对称的点为Q ,将抛物线沿射线CAy ',新抛物线y '与y 轴交于点M ,新抛物线y '的对称轴与x 轴交于点N ,连接AM ,MN ,点R 在直线BC 上,连接QR .当QR 与AMN 一边平行时,直接写出点R 的坐标,并写出其中一种符合条件的解答过程.【答案】(1)2y x x =++(2)当154t =时,PE的最大值,15,416P ⎛ ⎝⎭, (3)R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(.【分析】(1)利用待定系数法求抛物线解析式即可;(2)先求得2y x =2x =,过点P 作PG x ⊥轴交BC 于点F ,利用勾股定理求得BC ==DPF OBC ∽,得PF DP BC OB =即PF PD=,从而得PF =,求出设直线BC的解析式后,设2,P t ⎛+ ⎝,则,F t ⎛+ ⎝,从而2PF =+,当点P在E 点右侧时()424PE t t t =−−=−,从而得2154t ⎫=−⎪⎝⎭,利用二次函数的性质即可求解;当点P 在E 点左侧时:442PE t t t =−−=−时,同理可求.然后比较4+PE 的最大值即可得出答案. (3)先求得1OA=,OC AC =设抛物线2y =H ⎛ ⎝⎭平移后为P ,过点P 作PW ⊥直线2x =,则AOC PWH ∽,得1OA OC AC WP HW PH ====,进而得平移后的抛物线2y x +'=,从而求得()1,0N,M ⎛ ⎝⎭,然后分QR AM ∥,QR MN ∥,QR AN ∥三种情况,利用二次函数的性质及一次函数的与二元一次方程的关系求解即可得解.【解析】(1)解:∵抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B 两点,代入坐标得:02550a b a b ⎧−=⎪⎨+=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为255y x x =−++(2)解:∵)2225555y x x x =−+=−−+,∴2y x =2x=,顶点为⎛ ⎝⎭ 过点P 作PG x ⊥轴交BC 于点F ,当0x =时,200y =∴(C ∵()5,0B ∴BC ==∵PG x ⊥轴,PD BC ⊥,x 轴y ⊥轴,∴909090CBO BFG DPF PFD PDF BOC ∠∠∠∠∠∠+=︒+=︒==︒,,∵PFD BFG ∠∠=∴DPF CBO ∠∠=∴DPF OBC ∽,∴PF DP BC OB =即PF PD =,∴PF PD =∴44+PD PE =PF +PE ,设直线BC :y kx b =+,把(C ,()5,0B 代入得:05k b b =+⎧⎪=,解得5k b ⎧=−⎪⎨⎪=⎩, ∴直线BC:y =设2,P t ⎛ ⎝,则,F t ⎛+ ⎝,∴22PF ⎛⎛=−+=+ ⎝⎝,∵2y x =2x =,PE x 轴,∴24,E t ⎛−+ ⎝当点P 在E 点右侧时:()424PE t t t =−−=−,当24PE t =−时:∴+PD PE =PF +()221524545416t t ⎛⎫=−+−=−−+ ⎪⎝⎭ ∴当154t =时,的最大值∴2151544⎛⎫= ⎪⎝⎭,∴154P ⎛ ⎝⎭; 当点P 在E 点左侧时:442PE t t t =−−=−时,∴+PD PE =PF +()225424t t ⎫=−=−⎪⎝⎭, ∴当54t =时,的最大值.2,55P t ⎛−+ ⎝∴25544⎛⎫ ⎪⎝⎭∴5,416P ⎛ ⎝⎭,∵> 综上所诉,当点P 在E 点右侧时:即154t =时,的最大值,154P ⎛ ⎝⎭, (3)解:设直线AC :y mx n =+,把()1,0A −,(C , ∴1OA =,OC =∴AC ==设抛物线2y x =H ⎛ ⎝⎭平移后为P , 过点P 作PW ⊥直线2x =,则AOC PWH ∽,∴1OA OC AC WP HW PH ====∴1PW =,HW=∴21,5P ⎛−⎝即1,5P ⎛ ⎝⎭,∴平移后的抛物线)22155555y x x x =−−+=−++', ∴()1,0N令0x =,y '=,∴M ⎛ ⎝⎭ 如图,当QR AM ∥时,设直线AM 的解析式为:y px q =+,把M ⎛ ⎝⎭,()1,0A −代入得:0p q q =−+⎧=解得p q ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AM的解析式为:y =, ∴设直线QR的解析式为:y x n =∵(C ,Q 和C 关于2x =对称,∴(Q把(Q代入5y x n =+45n +,解得n =,∴直线QR的解析式为:y = 联立直线QR的解析式y =与直线BC:y x =+55y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得3x y =⎧⎪⎨=⎪⎩,∴R ⎛ ⎝⎭ 同理可得:当QR MN ∥时,6,5R ⎛− ⎝⎭ 当QR AN ∥时,(R所有符合条件的R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(. 【点睛】本题考查待定系数法求抛物线解析式,勾股定理,抛物线的性质,抛物线平移,一次函数的平移,相似三角形的判定及性质,图形与坐标,掌握待定系数法求抛物线解析式,抛物线的性质,抛物线平移,相似三角形的判定及性质,图形与坐标,利用辅助线画出准确图形是解题关键.题型2:最值问题4.(2024·安徽合肥·二模)在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+−与x 轴交于()1,0A −,()3,0B 两点,与y 轴交于点C ,连接BC .(1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ⊥轴于点P ,交抛物线于点N . (ⅰ)如图1,当3PA PB=时,求线段MN 的长; (ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN V 与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.【答案】(1)1a =,2b =−(2)(ⅰ)2MN =;(ⅱ)m 的值为32或12【分析】本题考查诶粗函数的图象和性质,掌握待定系数法和利用函数性质求面积是解题的关键.(1)运用待定系数法求函数解析式即可;(2)(ⅰ)先计算BC 的解析式,然后设(),3M m m −,则3PM PB m ==−,1PA m =+,根据题意得到方程133m m +=−求出m 值,即可求出MN 的长;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,然后分为点Q 在PN 的左侧和点Q 在PN 的右侧两种情况,根据勾股定理解题即可.【解析】(1)由题意得309330a b a b −−=⎧⎨+−=⎩,解得12a b =⎧⎨=−⎩;(2)(ⅰ)当0x =时,3y =−,∴()0,3C −,设直线BC 为3y kx =−,∵点()3,0B ,∴330k −=,解得1k =,∴直线BC 为3y x =−,设(),3M m m −,则3PM PB m ==−,1PA m =+, ∵3PA PB =, ∴133m m +=−,解得2m =,经检验2m =符合题意,当2m =时,222233y =−⨯−=−, ∴3PN =,31PM PB m ==−=,∴2MN =;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,PQN V 的面积为()21232m m QR −++⋅,APM △的面积为()()1312m m −+,∴()()()211233122m m QR m m −++⋅=−+,解得1QR =;当点Q 在PN 的左侧时,如图1,Q 点的横坐标为1m QR m −=−,纵坐标为()()2212134m m m m −−⨯−−=−,∴R 点的坐标为()2,4m mm−,∵N 点坐标为()2,23m mm −−,∴32RN m =−,∴()22231NQ m =−+,∴当32m =时,NQ 取最小值;当点Q 在PN 的右侧时,如图2,Q 点的横坐标为1m QR m +=+,纵坐标为()()2212134m m m +−⨯+−=−,∴R 点的坐标为()2,4m m−,∵N 点的坐标为()2,23m mm −−,∴21RN m =−, ∴()222211NQ m =−+,∴当12m =时,NQ 取最小值.综上,m 的值为32或12.。

2025年中考复习 二次函数综压轴题专题训练——关于线段周长问题(学生版)

2025年中考复习  二次函数综压轴题专题训练——关于线段周长问题(学生版)

2025年中考复习二次函数综压轴题专题训练--关于线段周长问题1.如图,抛物线y=-13x2+43x+4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接BC.(1)求A,B,C三点的坐标,并直接写出线段BC所在直线的函数表达式;(2)点P是线段BC上方抛物线上的一个动点,过点P作PM⊥x轴于点M,交BC于点N求线段PN长的最大值.2.已知关于x的二次函数y=ax2+2ax+3.(1)若该函数图象经过(-1,4).①求a的值;②设抛物线与x轴正半轴交于点B,交y轴于点C,点P是直线x=-1上的动点,求PB+PC的最小值.(2)在-2≤x≤1时,该函数的最大值与最小值之差为12,求a的值.3.如图,二次函数的图象交x轴于A,B两点,交y轴于点D,点B的坐标为5,0.,顶点C的坐标为2,9(1)求二次函数的解析式和直线BD的函数解析;(2)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.(3)P是线段BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限内时,求线段PM长度的最大值.4.如图,在平面直角坐标系中,抛物线y=ax2+bx-3的图像交x轴于点A-3,0,交y和点B33,0轴于点C,连接BC.(1)求该抛物线的函数表达式;(2)如图1,点P是直线BC下方抛物线上一点,过点P作y轴的平行线交直线BC于点D,点E是直线BC上一点,且在PD右侧,满足DE=DP,求△DEP周长的最大值及此时点P的坐标;(3)将抛物线y=ax2+bx-3沿BC方向平移2个单位后,得到一个新的抛物线y ,点M为新抛物线y 上一点,点M关于直线BC的对称点为M ,连接MM ,CM ,当∠CM M=60°时,直接写出所有符合条件的点M的横坐标.5.在平面直角坐标系中,抛物线y=-x2+bx+c=与x轴交于点A-5,0,B(点A在点B的左侧),与y 轴交于点C0,5.(1)求该抛物线的解析式;(2)如图1,若点P是第二象限内抛物线上一动点,求△P AC面积的最大值;(3)在对称轴上找一点Q,使△BCQ的周长最小,求点Q的坐标;(4)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,A、C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标,请说明理由.6.综合探究如图,在平面直角坐标系中.直线y =kx k ≠0 与抛物线y =ax 2+c a ≠0 交于A 8,6 ,B 两点,点B 的横坐标为-2.(1)求抛物线的解析式;(2)点P 是直线AB 下方抛物线上一动点,过点P 作x 轴的平行线,与直线AB 交于点C .连接PO ,设点P 的横坐标为m .①若点P 在x 轴上方,当m 为何值时,OC =CP ;②若点P 在x 轴下方,求△POC 周长的最大值.7.在平面直角坐标系中,已知抛物线y=ax2+bx+4与x轴交于点A4,0,B-3 2 ,0,与y轴交于点C.(1)求抛物线的解析式;(2)如图1,点D是OC的中点,点E为x轴上一点,F为对称轴上一点,一动点P从点D出发,沿D-E -F-C运动,若要使点P走过的路径最短,请求出点E、F坐标,并求出最短路径;(3)如图2,直线y=x与抛物线交于点M,问抛物线上是否存在点Q(点M除外),使得∠QCA=∠MCA?若存在,请求出点Q坐标;若不存在,说明理由.8.如图,在平面直角坐标系中,二次函数y =-x 2+bx +c 的图象经过点A -1,0 ,点B 2,3 .(1)求此二次函数的解析式;(2)当-2≤x ≤2时,求二次函数y =-x 2+bx +c 的最大值和最小值;(3)点M 为此函数图象上任意一点,其横坐标为m ,过点M 作MN ∥x 轴,点N 的横坐标为-m +3.已知点M 与点N 不重合,且线段MN 的长度随m 的增大而减小.①求m 的取值范围;②当MN ≤5时,直接写出线段MN 与二次函数y =-x 2+bx +c -1≤x <32的图象交点个数及对应的m 的取值范围.9.如图1,在平面直角坐标系中,抛物线y=x2+bx+c(b和c是常数)与x轴交于点A,B,与y轴交于点C,且OB>OA,OB=OC=3.(1)求b,c的值;(2)如图2,点P是直线BC下方抛物线上的一点(不与点B,C重合),过点P作PD⊥x轴于点D,PD与BC交于点Q.若PQ=2DQ,求点P的坐标;(3)当二次函数y=x2+bx+c的自变量x满足m≤x≤m+1时,此函数的最大值与最小值的差为3,求此时m的值.10.如图,抛物线y=x2+bx+c与x轴交于A,B两点,其中点A的坐标为-3,0,与y轴交于点C,点D-2,-3在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出P A+PD的最小值;(3)若抛物线上有一动点Q,使△ABQ的面积为6,求点Q的坐标.11.如图,在平面直角坐标系中,等腰直角△ABC的直角顶点C和另一个顶点A-1,0均在x轴上,AC= BC=5,抛物线y=ax2-2ax+c经过A、B两点.(1)求抛物线的解析式;(2)若点P是Rt△ABC斜边AB上一动点(不与A、B重合),过点P作x轴的垂线交抛物线于点Q,当线段PQ的长度最大时,求点P的坐标;(3)若点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点Q,是否存在点P,使以P、Q、B、C为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标:如果不存在,请说明理由.12.如图1,在平面直角坐标系中,抛物线y=ax2+bx+2a≠0与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为-2,0,直线BC的解析式为y=-12x+2.(1)求抛物线的解析式;(2)如图1,点P为线段BC上方抛物线上的任意一点,过点P作PD∥AC交AB于点D,求2PD+ DB的最大值及此时点P的坐标;(3)如图2,将原抛物线水平向右平移,使得平移后的抛物线y 恰好经过原点,则抛物线与原抛物线交于点K,连接AK,过B作直线BE∥AK交y轴于点E,设F是直线BE上一点,点K关于直线AF的对称点为K ,试探究,是否存在满足条件的点F,使得点K 恰好落在直线BE上,如果存在,求出点K 的坐标;如果不存在,请说明理由.13.如图,二次函数y=ax2+bx+c a≠0,的图象交x轴于A、B两点,交y轴于点D,点B的坐标为3,0顶点C的坐标为1,4.(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于点B、D的点Q,使△BDQ中BD边上的高为22?若存在求出点Q的坐标;若不存在请说明理由.14.如图,已知抛物线y=ax2+bx+c经过点A-3,0两点,且与x轴的另一个交点为B,对称轴,C0,4为直线x=-1.(1)求抛物线的表达式;(2)已知点M是抛物线对称轴上一点,当△MBC的周长最小时,求M点的坐标.(3)D是第二象限内抛物线上的动点,设点D的横坐标为m,求四边形ABCD面积S的最大值及此时D点的坐标;(4)若点P在抛物线对称轴上,是否存在点P,使以点B,C,P为顶点的三角形是等腰三角形?若存在,请求出P点的坐标;若不存在,请说明理由.15.如图,已知抛物线经过原点O,与x轴上另一交点为A,它的对称轴为x=2与x轴交于点C,直线y=-2x-1经过抛物线上一点B-2,m,且与y轴、直线x=2分别交于点D、E.(1)求m的值及该抛物线对应的函数关系式;(2)求证:①CB=CE;②D是BE的中点;(3)在该抛物线上是否存在一点P,使得PB=PE.若存在,求出点P的横坐标m;若不存在,请说明理由.16.已知,如图在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=23.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M.问:是否存在点P,使得PD=MC?若存在,请求出此时点P的坐标;若不存在,请说明理由.17.如图,二次函数的图像与x轴交于A-3,0,点C,D是二次函数图两点,交y轴与点C0,3和B1,0象上的一对对称点,一次函数的图像过点B,D.(1)求二次函数解析式;(2)求出顶点坐标和点D的坐标;(3)二次函数的对称轴上是否存在的一点M,使△BCM的周长最小?若存在,求出M点坐标;若不存在,请说明理由.(4)若Q是线段BD上任意一点,过点Q作PQ⊥x轴交抛物线于点P,则点P坐标为多少时,PQ最长?18.综合与探究如图,已知抛物线y=-x2-2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,其顶点为D,对称轴是直线l,且与x轴交于点H.(1)求点A,B,C,D的坐标;(2)若点P是该抛物线对称轴l上的-个动点,求△PBC周长的最小值;(3)若点E是线段AC上的一个动点(E与A,C不重合),过点E作x轴的垂线,与抛物线交于点F,与x轴交于点C.则在点E运动的过程中,是否存在EF=2EG?若存在,求出此时点E的坐标;若不存在,请说明理由.19.如图,抛物线与y轴交于点A(0,-2),顶点为B(1,-3).(1)求抛物线对应的函数解析式.(2)抛物线的对称轴上是否存在一点C,使△ABC的面积为3?若存在,求出点C的坐标;若不存在,请说明理由.(3)在x轴上有一点P,使得△P AB的周长取最小值,求出点P的坐标.20.如图1,在平面直角坐标系中,抛物线y =ax 2+bx +c 与x 轴分别交于A -2,0 、B 6,0 两点,与y 轴交于点C 0,4 ,顶点为点G ,连接AC 、BC ,点P 为直线BC 上方抛物线上一动点,连接AP 交BC 于点M .(1)求抛物线的函数表达式及顶点G 的坐标;(2)当PM AM 的值最大时,求点P 的坐标及PM AM的最大值;(3)如图2,在(2)的条件下,EF 是此抛物线对称轴上长为2的一条动线段(点E 在点F 上方),连接CE 、AF ,当四边形ACEF 周长取最小值时,求点E 的坐标;在此条件下,以点G 、E 、H 、P 为顶点的四边形为平行四边形,直接写出点H 的坐标.21.如图,已知抛物线y=ax2+bx+c a≠0两点,的对称轴为直线x=-1,且抛物线经过A1,0,C0,3与x轴交于点B.(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=-1上找一点M,使MA+MC的值最小,求点M的坐标;(3)设P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.22.如图1,抛物线y=-x2+bx+c与直线y=-x+3相交于点B和C,点B在x轴上,点C在y轴上,抛物线与x轴的另一个交点为A.(1)求抛物线y=-x2+bx+c的解析式;(2)如图2,将直线BC绕点B逆时针旋转90°交y轴于点D,在直线BD上有一点P,求△ACP周长的最小值及此时点P的坐标;(3)如图3,将抛物线y=-x2+bx+c沿射线CB方向平移2个单位长度得到新抛物线y ,在新抛物线y 上有一点N,在x轴上有一点M,试问是否存在以点B、M、C、N为顶点的平行四边形?若存在,写出所有符合条件的点M的坐标;若不存在,请说明理由.23.如图,抛物线y=-x2+bx+c经过B(3,0)、C(0,3)两点,与x轴负半轴相交于点A.(1)求抛物线的解析式:(2)D为抛物线的顶点.P为对称轴右侧抛物线上一点,连接PC、BD交于点E,若BE=CE,求点P的坐标:(3)点Q为x轴上方抛物线上一动点,点G是抛物线对称轴与x轴的交点.直线AQ、BQ分别交抛物线的对称轴于点M、N.以下两个结论:①GM+GN为定值:②GM-GN为定值.请找出正确的结论,并求出该定值.24.如图1,抛物线y=43x2+83x-4与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,∠BAC的平分线与y轴交于点D,与抛物线交于点Q,点P是线段AB上一点,过点P作x轴的垂线,分别交AD,AC于点E、F,连接OE,OF.(1)当△OEF面积最大时,求P点的坐标.(2)在(1)的条件下,在直线PF上取点M,在y轴上取点N,当BN+MN+MQ最小时,求出N的坐标.(3)如图2,将抛物线y沿着射线AC方向平移得到y ,y 的图象恰好经过点C,在抛物线y 的对称轴上取点G,在抛物线y 上取点K,在(2)的条件下,是否存在以P、N、K、G为顶点的平行四边形,如果存在直接写出k点坐标,如果不存在请说明理由.25.如图,抛物线y=ax2+bx+3与x轴交于A-1,0,与y轴交于点C.,B3,0(1)求抛物线的解析式;(2)设点P是第一象限内的抛物线上的一个动点.①当P为抛物线的顶点时,求证:△PBC直角三角形;②求出△PBC的最大面积及此时点P的坐标;③过点P作PN⊥x轴,垂足为N,PN与BC交于点E.当PE+2CE的值最大时,求点P的坐标.26.已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C(0,2),点D在y轴负半轴上,且OD=OB,点P,Q为抛物线上的点.(1)求抛物线的解析式;(2)如图1,当PC⊥BD时,求点P的坐标;(3)如图2,若∠QBD=90°,点E,F分别为△BDQ的边DQ,BD上的动点,且QE=DF,连接BE,QF,求BE+QF的最小值.27.如图1,已知抛物线y=ax2-2ax+3与x轴交于点A-1,0和点B,与y轴交于点C,连接AC,过B、C两点作直线.(1)求a的值.(2)如图1,将直线BC向下平移m m>0个单位长度,交抛物线于B 、C 两点.在直线B C 上方的抛物线上是否存在定点D,无论m取何值时,都是点D到直线B C 的距离最大,若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P在抛物线上,且∠PBC+∠ACO=45°请直接写出直线BP的表达式.28.如图,在平面直角坐标系xOy中,直线l:y=x-2与x轴,y轴分别交于点A,B,抛物线y=x2+bx+c经过点B,且与直线l的另一个交点为C8,n.(1)求n的值和抛物线的解析式.(2)已知P是抛物线上位于直线BC下方的一动点(不与点B,C重合),过P点作PF垂直于x轴交直线BC于点F,设点P的横坐标为a.当a为何值时,线段PF有最大值,求出其最大值及此时点P的坐标.(3)在抛物线上是否存在点M,使△BMC是以BC为直角边的直角三角形?若存在,直接写出点M的坐标;若不存在,请说明理由.29.如图,抛物线y=-12x2+bx+c与x轴交于A、B两点,与y轴交于点C,直线y=-12x+2过B、C两点,连接AC.(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,求线段DE的长度最大值.(3)点M3,2是抛物线上的一点,点D为抛物线上位于直线BC上方的一点,点P为抛物线对称轴上一动点,在(2)的条件下,(即当线段DE的长度最大时),求△PDM的周长最小值.(4)在抛物线上找点P,x轴上找点Q,使以点A、C、P、Q为顶点的四边形为平行四边形,直接写出点P 的坐标.30.如图1,在平面直角坐标系中,抛物线y=ax2+bx+2与x轴交于两点A-12,0,B(点A在B左边),交y轴于C,点P3,7 2是抛物线上一点.(1)求抛物线的关系式;(2)在对称轴上找一点M,使MA+MC的值最小,求点M的坐标;(3)如图2,抛物线上是否存在点Q,使∠QCP=45°?若存在,请求出点Q的坐标;若不存在,请说明理由.31.如图,已知抛物线y=x2+bx+c与x轴交于A(-1,0),B两点,与y轴交于点C(0,-3).(1)求抛物线的解析式;(2)如图1,点P是抛物线上位于第四象限内一动点,PD⊥BC于点D,求PD的最大值及此时点P的坐标;(3)如图2,点E是抛物线的顶点,点M是线段BE上的动点(点M不与B重合),过点M作MN⊥x轴于N,是否存在点M,使△CMN为直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.31。

中考数学中二次函数压轴题分类总结[超经典.无重复][附答案]

中考数学中二次函数压轴题分类总结[超经典.无重复][附答案]

中考数学中二次函数压轴题分类总结[超经典.无重复][附答案](总11页)-本页仅作为预览文档封面,使用时请删除本页-中考数学专题训练 二次函数压轴题一、抛物线关于三角形面积问题例题 二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,4-).(1)求出图象与x 轴的交点A ,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.练习:1. 如图.平面直角坐标系xOy 中,点A 的坐标为(-2,2),点B 的坐标为(6,6),抛物线经过A 、O 、B 三点,线段AB 交y 轴与点E . (1)求点E 的坐标;(2)求抛物线的函数解析式; (3)点F 为线段OB 上的一个动点(不与O 、B 重合),直线EF 与抛物线交与M 、N 两点(点N 在y 轴右侧),连结ON 、BN ,当点F 在线段OB 上运动时,求∆BON 的面积的最大值,并求出此时点N 的坐标;2. 如图,已知抛物线4212++-=x x y 交x 轴的正半轴于点A ,交y 轴于点B . (1)求A 、B 两点的坐标,并求直线AB 的解析式;(2)设),(y x P (0>x )是直线x y =上的一点,Q 是OP 的中点(O 是原点),以PQ 为对角线作正方形PEQF .若正方形PEQF 与直线AB 有公共点,求x 的取值范围;(3)在(2)的条件下,记正方形PEQF 与△OAB 公共部分的面积为S ,求S 关于x 的函数解析式,并探究S 的最大值.二、抛物线中线段长度最小问题例题 如图,对称轴为直线x =-1的抛物线y =ax 2+bx +c (a ≠0)与x 轴相交于A 、B 两点,其中点A 的坐标为(-3,0). (1)求点B 的坐标;(2)已知a =1,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且S △POC =4S △BOC ,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴,QD 交抛物线于点D ,求线段QD 长度的最大值. OABP EQ FxyEN MDCBAOyx练习:1. 如图, Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(3-,0)、(0,4),抛物线223y x bx c =++经过B 点,且顶点在直线52x =上. (1)求抛物线对应的函数关系式;(2)若△DCE 是由△ABO 沿x 轴向右平移得到的,当四边形ABCD 是菱形时,试判断点C 和点D 是否在该抛物线上,并说明理由;(3)若M 点是CD 所在直线下方该抛物线上的一个动点,过点M 作MN 平行于y 轴交CD 于点N .设点M 的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系式,并求l 取最大值时,点M 的坐标.三、抛物线与线段和最小的问题例题 如图,已知抛物线()()()120y x x a a a=-+>与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线过点M (﹣2,﹣2),求实数a 的值;(2)在(1)的条件下,解答下列问题;①求出△BCE 的面积;②在抛物线的对称轴上找一点H ,使CH+EH 的值最小,直接写出点H 的坐标.练习:1. 如图,已知二次函数24y ax x c =-+的图象与坐标轴交于点A (-1, 0)和点B (0,-5).(1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P ,使得△ABP(3)在(2)的条件下,在x 轴上找一点M ,使得△APM 条件的点M 的坐标.2. 如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G .(1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出H 的坐标;(3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时,△EFK 的面积最大?并求出最大面积.四、抛物线与等腰三角形例题:已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式; (2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习:1. .如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线12 x=-(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.2. 如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B 三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.3. 如图,已知抛物线于x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3). (1)求抛物线的解析式;(2)设抛物线的顶点为D ,在其对称轴的右侧的抛物线上是否存在点P ,使得△PDC 是等腰三角形,若存在,求出符合条件的点P 的坐标;若不存在,请说明理由:(3)若点M 是抛物线上一点,以B 、C 、D 、M 为顶点的四边形是直角梯形,试求出点M 的坐标。

初中二次函数压轴题题型归纳及方法(一)

初中二次函数压轴题题型归纳及方法(一)

初中二次函数压轴题题型归纳及方法(一)初中二次函数压轴题题型归纳及方法常见的二次函数问题类型•求函数的零点或交点•求函数的最大值或最小值以及取值范围•求函数的对称轴•求函数的图像与坐标系的交点•求函数在某个区间的单调性•求函数的定义域和值域解决问题的方法1.求函数的零点或交点•将二次函数以f(x)=ax2+bx+c的形式表示,并令f(x)=0解方程即得到零点•求交点则可通过两个二次函数相交时相等的条件ax12+bx1+ c=ax22+bx2+c来解出•可以利用公式x1,2=−b±√b2−4ac2a 直接求出,但需要注意判别式的正负情况2.求函数的最值以及取值范围•可以通过求导数来得到函数的极值点,然后通过比较找到最值•如果函数的开口方向向上,最小值为f(−b2a),最大值不存在;开口方向向下,则最大值为f(−b2a),最小值不存在•取值范围就是函数的最值所在的值域3.求函数的对称轴•二次函数的对称轴为x=−b2a4.求函数的图像与坐标系的交点•可以通过将函数与坐标系的x和y轴交点代入函数,从而求出函数与坐标系的交点5.求函数在某个区间的单调性•先求出函数的导数,然后通过分析导数在该区间的符号变化情况,判断函数的单调性6.求函数的定义域和值域•定义域为一般情况下的实数集R,但也需要注意不能出现分母为0的情况•值域需要通过函数的开口方向和最值来判断注意事项•求解零点和交点时需要注意判别式的正负情况•求解最值时需要先求导数,并注意二次函数开口的方向•求解定义域和值域时需要注意不能出现分母为0的情况•求解单调性需要注意导数的符号变化情况•在解题过程中,需要注意符号的代数运算,以及代入值时需要注意计算过程中的精度问题例题分析已知二次函数f(x)=ax2+bx+c关于x=3对称,且f(1)=2,f(5)=8。

求该二次函数的解析式。

由对称性可得:f(x)−f(3)=a(x−3)2将f(1)=2,f(5)=8代入得:2−f(3)=a(1−3)2=4a8−f(3)=a(5−3)2=4a解方程得:a=1,b=−6,c=17因此,该二次函数的解析式为f(x)=x2−6x+17。

压轴题05 二次函数中三种线段问题(学生版) 2023-2024学年九年级数学上册培优题型(人教版)

压轴题05 二次函数中三种线段问题(学生版) 2023-2024学年九年级数学上册培优题型(人教版)

压轴题05 二次函数中三种线段问题目录解题知识必备..............................................................Error! Bookmark not defined.压轴题型讲练 (2)题型一、线段的数量关系 (2)题型二、线段最值问题 (11)题型三、周长最值问题 (20)压轴能力测评(13题) (28)一、线段的数量关系此类问题一般是求满足线段数量关系的点的坐标,针对这种情况应先在图中找出对应线段,弄清已知点和未知点;再联系二次函数和一次函数,设出未知点的坐标,使其只含一个未知数;最后表示出线段的长度,列出满足线段数量关系的等式,从而求出未知数的值;二、线段最值问题此类问题通常有两类:①设出关键的点的未知数(通常是一个跟所求线段关系紧密的点的横坐标),通过题目中的函数和图形关系,用该点的横坐标表示出有关线段端点的坐标,进而表示出线段的长,通过二次函数的性质求最值,继而得到线段的最大值或最小值;②在求线段最小值的时候可以利用轴对称模型.此类问题一般是要寻找一个动点,使其到两个顶点的距离最小,通常是作一个定点关于动点所在直线的对称点,连接这个对称点与另一个定点的线段即为所求的最小值;三、周长最值问题此类问题一般为所求图形中有一动点,对其求周长最值,解决此类问题时应利用转化思想,即先观察图形,结合题目,分清楚定线段和不定线段,然后将其所求图形周长的最值转化到求不定线段和的最值,进而转化为求线段最值问题,其方法同(2).题型一、线段的数量关系【例1】.(23-24九年级上·山东滨州·期末)如图1,抛物线2144y x =-+交x 轴于A ,B 两点,交y 轴于点C .(1)求 A ,B 两点的坐标和直线BC 的解析式;(2)D 是直线BC 上的点,过点D 作x 轴的平行线,交抛物线于M ,N 两点(点M 在点N 的左侧),若3DM DN =,求点D 的横坐标.【变式1】.(23-24九年级上·湖北武汉·期末)如图,抛物线2y x bx c =++与x 轴交于()()1,0,4,0A B -两点,与y 轴交于点C .(1)直接写出抛物线的解析式;(2)点P 是x 轴上的一个动点,过点P 作x 轴的垂线交抛物线于点Q ,交直线BC 于点M ,如果2PQ PM =,求点P 的坐标;(3)点D 在抛物线上,点E 在抛物线的对称轴上,如果以点,,,B C D E 为顶点的四边形是平行四边形,直接写出点E 的坐标.【变式2】.(23-24九年级上·河南新乡·期末)如图,抛物线22y ax bx =++与x 轴交于点()1,0A -,()2,0B ,与y 轴交于点C ,P 是直线BC 上方抛物线上的一个动点(与点B ,C 不重合).连接OP 交BC 于点Q .(1)求抛物线的表达式.(2)当3OP PQ =时,求点P 的坐标.(3)试探究在点P 的运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形?若存在,请直接写出此时点Q 的坐标;若不存在,请说明理由.【变式3】.(23-24九年级上·天津和平·期末)在平面直角坐标系中,点()0,0O ,()30A -,,()3,0B .已知抛物线254y ax ax =-+(a 为常数,0a ¹),与y 轴相交于点C ,P 为顶点.(1)当抛物线过点A 时,求该抛物线的顶点P 的坐标;(2)若点P 在x 轴上方,当45POB Ð=°时,求a 的值;(3)在(1)的情况下,连接AC ,BC ,点E ,点F 分别是线段CO ,BC 上的动点,且CE BF =,连接AE ,AF ,求AE AF +最小值,并求此时点E 和点F 的坐标.题型二、线段最值问题【例2】.(23-24九年级下·江西吉安·期中)如图,抛物线()21y x k =++与x 轴交于A 、B 两点,与y 轴交于点C (0,−3).(1)求抛物线的对称轴及k 的值;(2)抛物线的对称轴上存在一点P ,使得PA PC +的值最小,求此时点P 的坐标;(3)点M 是抛物线上一动点,且在第三象限,过点M 作PM x ^轴交线段AC 于点P ,求出线段PM 长度的最大值.【变式1】.(23-24九年级上·贵州遵义·期末)如图,二次函数2y ax bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的横坐标为4,当32x =时,y 有最大值254:(1)求二次函数的表达式;(2)点P 在对称轴上,当PA PC +的值最小时,求点P 的坐标.【变式2】.(23-24九年级上·山东日照·期末)在平面直角坐标系中,抛物线2y ax 2x c =++与y 轴交于点A (0,3),与x 轴交于点()1,0B -和点C ,抛物线的顶点为P .(1)求此抛物线的解析式和顶点P 的坐标;(2)若点D ,E 均在此抛物线上,其横坐标分别为m ,2m (0m >).且D ,E 两点的纵坐标的差为8.①求m 的值;②将点C 向上平移2m 个单位得到点C ¢,将抛物线沿x 轴向右平移n 个单位得到新抛物线,点D 的对应点为点D ¢,点E 的对应点为点E ¢,顶点P 的对应点为点P ¢,在抛物线平移过程中,求C D C E +¢¢¢¢的最小值,并求出新抛物线的顶点P ¢的坐标.【变式3】.(23-24八年级下·重庆九龙坡·期中)如图,抛物线2y ax bx c =++与x 轴交于点A (−2,0)和点B (4,0),与y 轴交于点()0,4C ,作直线BC .(1)求该抛物线的解析式;(2)如图1,已知直线BC 上方抛物线上有一点P ,过点P 作PE y P 轴与BC 交于点E ,过点P 作PF x ∥轴与y 轴交于点F ,求PE PF +的最大值和此时点P 的坐标;(3)如图2,将原抛物线向下平移1个单位长度得到新抛物线,新抛物线与y 轴交于点D ,已知点M 为新抛物线上的一点,且290ODB MDB Ð+Ð=°,请直接写出所有符合条件的点M 的横坐标.题型三、周长最值问题【例3】.(23-24九年级下·内蒙古赤峰·期中)如图,抛物线过点O (0,0),()10,0E ,矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上.设(),0B t ,当2t =时,4BC =.(1)求抛物线的函数表达式;(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持2t =时的矩形ABCD 不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形ABCD 的面积时,求平移后的拋物线的顶点坐标.(直接写出结果即可)【变式1】.(23-24九年级上·云南昆明·期末)如图,抛物线()20y ax bx c a =++¹与x 轴交于()3,0A -、B (4,0)两点,且OB OC =.(1)求抛物线解析式;(2)点H 是抛物线对称轴上的一个动点,连接AH 、CH 、AC ,求出当ACH V 的周长最小时点H 的坐标.【变式2】.(23-24九年级上·重庆·期末)如图,抛物线223y x x =--与x 轴交于A 、B 两点,与y 轴交于点C ,连接AC ,BC .(1)求ABC V 的面积;(2)直线23y x =-与抛物线交于点C 、D ,在抛物线的对称轴上是否存在点P ,使PBD △的周长最小?如果存在,请求出点P 坐标;如不存在,请说明理由.【变式3】.(23-24九年级上·广东梅州·期末)如图所示,抛物线交x 轴于点()()3,0,1,0A B --,交y 轴于点C (0,−3)(1)求抛物线的解析式;(2)若抛物线的顶点为P ,求ABP V 的面积(3)点Q 是抛物线对称轴上的一个动点,是否存在点Q ,使QBC △的周长最小?若存在,求出点Q 的坐标;若不存在,请说明理由.1.(23-24九年级上·山东聊城·期末)如图,二次函数24y ax bx =++的图象与x 轴交于点()1,0A -,B (4,0),与y 轴交于点C ,P 为BC 上方抛物线上一动点,过P 作垂直于x 轴的直线l 交线段BC 于点F .(1)求出二次函数24y ax bx =++和BC 所在直线的表达式;(2)在动直线l 移动的过程中,试求线段PF 长度的最大值,并求出此时点P 的坐标;(3)抛物线上是否存在点Q ,使ABQ V 的面积等于ABC V 的面积,若存在,请直接写出点Q 的坐标;如果不存在,请说明理由.2.(23-24九年级上·云南大理·期末)如图,抛物线2y x bx c =++与y 轴交于点10,2A æö-ç÷èø,顶点坐标为13,24B æö--ç÷èø.(1)求b ,c 的值;(2)若C 是x 轴上一动点,求ABC V 周长的最小值;(3)m 是抛物线2y x bx c =++与x 轴的交点的横坐标,求5433610322024m m m m m ++++-的值.3.(23-24九年级上·安徽滁州·期末)如图,抛物线2()30y ax bx a =++¹与x 轴交于A ,B 两点,与y 轴交于点C .已的点A 的坐标是(1,0)-,抛物线的对称轴是直线1x =.(1)求抛物线的解析式,及点B 的坐标;(2)在对称轴上找一点P ,使PA PC +的值最小,求点P 的坐标;(3)当1n x n ££+时.最大值为154,直接写出n 的值.4.(23-24九年级下·重庆长寿·期中)如图,在平面直角坐标系中,抛物线22=++与x轴交于y ax bx()6,0B两点.交y轴于点C.1,0A-,()(1)求抛物线的表达式;P轴交BC于点E,在y轴上取一点F,使得(2)点P是直线BC上方抛物线上的一动点,过点P作PE yEF EC=,求PE CF+的最大值及此时点P坐标;(3)将该抛物线沿射线BC个单位长度,在平移后的抛物线上确定一点M,使得2Ð=Ð.写出所有符合条件的点M的横坐标.井写出求解点M的横坐标的其中一种情况的过程.BCM OBC5.(23-24九年级上·天津宁河·期末)如图,在平面直角坐标系中,抛物线2=++与直线AB交于点y x bx c()2,0B.A-,()0,2(1)求该抛物线的解析式;(2)点P是直线AB下方抛物线上的一个动点,过点P作x轴的平行线交AB于点C,求PC的最大值及此时点P的坐标;V的周长最小,求点N的坐标.(3)已知点M是抛物线的顶点,若在x轴上存在一点N,使AMN6.(23-24九年级上·河南周口·期末)如图,抛物线2y ax 2x c =++经过点(3,0)A -和点(1,0)B ,与y 轴交于点C ,点P 在直线AC 下方的抛物线上,过点P 作PQ y ∥轴交AC 于点Q ,连接PA ,PC ,设点P 的横坐标为m .(1)求抛物线的解析式及点C 的坐标;(2)求线段PQ 长度的最大值.7.(23-24九年级上·重庆武隆·期末)如图,已知抛物线2y x bx c =-++经过()()3,0,0,3B C -两点,与x 轴的另一个交点为A .(1)求抛物线的解析式;(2)在抛物线对称轴上找一点E ,使得AE CE +的值最小,求点E 的坐标;(3)设点P 为x 轴上的一个动点,写出所有使BPC V 为等腰三角形的点P 的坐标,并把求其中一个点P 的坐标的过程写出来.8.(23-24九年级上·安徽合肥·期末) 如图,抛物线2y ax bx c =++()0a ¹经过点A (−4,0)、()2,0B ,交y 轴于点80,3C æö-ç÷èø.D 为抛物线在第三象限部分上的一点,作DE x ^轴于点E ,交线段AC 于点F ,连接AD .(1)求抛物线的表达式;(2)求线段DF 长度的最大值,并求此时点D 的坐标;(3)若线段AF 把ADE V 分成面积比为1:2的两部分,求此时点E 的坐标.9.(23-24九年级上·重庆沙坪坝·期末)如图,在平面直角坐标系中,抛物线212y x bx c =-++交x 轴于()4,0A ,B 两点,交y 轴于点4(0)C ,.(1)求抛物线的表达式;(2)点P 是直线AC 过点P 作y 轴的平行线交AC 于点E ,过点P 作AC 的平行线交x轴于点F ,求PE 的最大值及此时点P 的坐标;(3)将该抛物线y 沿射线CA 方向平移1y ,点G 是新抛物线1y 的顶点,点M 为新抛物线1y 的对称轴上一点,在平面内确定一点N ,使得以点C ,G ,M ,N 为顶点的四边形是以MG 为边的菱形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.10.(23-24九年级上·重庆江津·期末)如图,在平面直角坐标系中,抛物线2142y x x =--+与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C .连接AC 、BC .(1)求ABC V 的面积;(2)点P 是直线AC 上方抛物线上一点,过点P 作PE x ^轴于点E ,交AC 于点D ,求PD AD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将抛物线向右平移4个单位,向下平移4.5个单位,点M 为点P 的对应点,平移后的抛物线与y 轴交于点N ,点Q 为平移后的抛物线对称轴上任意一点.写出所有使得以QM 为腰的QMN V 是等腰三角形的点Q 的坐标,并把求其中一个点Q 的坐标的过程写出来.11.(23-24九年级上·广西贺州·期末)如图,已知抛物线2y x bx c =++与y 轴交于点C ,与x 轴交于,A B 两点,点A 在点B 左侧.点B 的坐标为(1,0),点C 的坐标为()0,3-.(1)求抛物线的解析式;(2)当点M 是抛物线对称轴l 上的一个动点时,求当MB MC +最小时,点M 的坐标;(3)若点D 是线段AC 下方抛物线上的动点,求ADC △面积的最大值.12.(23-24九年级上·湖北随州·期末)已知抛物线22y ax bx =+-与x 轴交于点A (−2,0)和()3,0B ,与y 轴交于点C .(1)直接写出抛物线的解析式;(2)如图1,在抛物线的对称轴上找一点P ,使点P 到点A 的距离与到点C 的距离之和最小,求出点P 的坐标;(3)如图2,若点M 是OA 的中点,点N 是抛物线上一点,其横坐标为t ,试探究是否存在点N ,使45NMC Ð=°?若存在,求出t 的值(只要求条理清楚地简要写出求解思路即可,不需要写出详细计算过程);若不存在,请说明理由.13.(23-24九年级上·重庆渝中·期末)如图,在平面直角坐标系中,抛物线2y x bx c =-++过点(2,3),与x 轴交于点()1,0A -和点B ,与y 轴交于点C .(1)求抛物线的表达式;(2)点P 是直线BC 上方抛物线上的一动点,过点P 作PD x ^轴于点D ,交BC 于点E ,求PE 的最大值及此时点P 的坐标;(3)在(2)中PE 取得最大值时,将该抛物线沿射线AC P 的对应点为点N ,点Q 为平移后的抛物线的对称轴上一点,在平面内确定一点H ,使得以点P ,N ,Q ,H 为顶点的四边形是菱形,且线段PN 是菱形的一条边,请直接写出所有符合条件的点H 的坐标.。

(完整版)中考数学二次函数压轴题题型归纳

(完整版)中考数学二次函数压轴题题型归纳

中考二次函数综合压轴题型归类一、常考点汇总1、两点间的距离公式:()()22B A B A x x y y AB -+-=2、中点坐标:线段AB 的中点C 的坐标为:⎪⎭⎫⎝⎛++22B A B A y y x x ,直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系:(1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠ (3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k3、一元二次方程有整数根问题,解题步骤如下:① 用∆和参数的其他要求确定参数的取值范围;② 解方程,求出方程的根;(两种形式:分式、二次根式)③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。

例:关于x 的一元二次方程()01222=-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。

4、二次函数与x 轴的交点为整数点问题。

(方法同上)例:若抛物线()3132+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式。

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。

举例如下:已知关于x 的方程23(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。

解:当0=m 时,1=x ;当0≠m 时,()032≥-=∆m ,()m m x 213∆±-=,mx 321-=、12=x ;综上所述:无论m 为何值,方程总有一个固定的根是1。

6、函数过固定点问题,举例如下:已知抛物线22-+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个解:把原解析式变形为关于m 的方程()x m x y -=+-122;∴ ⎩⎨⎧=-=+-01 02 2x x y ,解得:⎩⎨⎧=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。

2023年九年级数学中考专题:二次函数综合压轴题附答案附答案

2023年九年级数学中考专题:二次函数综合压轴题附答案附答案

2023年九年级数学中考专题:二次函数综合压轴题附答案1.如图,已知抛物线2y x bx c =++(b ,c 是常数)与x 轴交于()1,0A ,()3,0B -两点,顶点为C ,点P 为线段AB 上的动点(不与A 、B 重合),过P 作PQ BC ∥交抛物线于点Q ,交AC 于点D .(1)求该抛物线的表达式;(2)求CPD △面积的最大值;(3)连接CQ ,当CQ PQ ⊥时,求点Q 的坐标;(4)点P 在运动过程中,是否存在以A 、O 、D 为顶点的三角形是等腰三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由2.在平面直角坐标系中,抛物线24y x x c =--+与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,且点A 的坐标为()5,0-.(1)求点C 的坐标;(2)如图1,若点P 是第二象限内抛物线上一动点,求点P 到直线AC 距离的最大值,并求出此时点P 的坐标;(3)如图2,若点M 是抛物线上一点,点N 是抛物线对称轴上一点,是否存在点M 使以A ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.3.已知:如图,抛物线()2430y mx mx m =++>交x 轴于E 、F 两点,交y 轴于A 点,直线AE :y x b =+交x 轴于E 点,交y 轴于A 点.(1)求抛物线的解析式;(2)若Q 为抛物线上一点,连接,QE QA ,设点Q 的横坐标为()3t t <-,QAE 的面积为S ,求S 与t 函数关系式;(不要求写出自变量t 的取值范围)(3)在(2)的条件下,点M 在线段QA 上,点N 是位于Q 、E 两点之间的抛物线上一点,15S =,QMN AEM ∠=∠,且MN EM =,求点N 的坐标.4.如图,抛物线22y ax ax c =++经过()()1003B C ,,,两点,与x 轴交于另一点A ,点D 是抛物线的顶点.(1)求抛物线的解析式及点D 的坐标;(2)如图1,连接AC ,点E 在直线AC 上方的抛物线上,连接EA EC ,,当EAC 面积最大时,求点E 坐标;(3)如图2,连接AC BC 、,在抛物线上是否存在点M ,使ACM BCO ∠=∠,若存在,求出M 点的坐标;若不存在,请说明理由.5.抛物线21164y ax x =+-与x 轴交于(,0),(8,0)A t B 两点,与y 轴交于点C ,直线6y kx =-经过点B .点P 在抛物线上,设点P 的横坐标为m .(1)求二次函数与一次函数的解析式;(2)如图1,连接AC ,AP ,PC ,若APC △是以CP 为斜边的直角三角形,求点P 的坐标;(3)如图2,若点P 在直线BC 上方的抛物线上,过点P 作PQ BC ⊥,垂足为Q ,求12CQ PQ +的最大值.6.在平面直角坐标系中,抛物线223y x x =-++与x 轴交于点A 、B (A 在B 左侧),与y 轴交于点C ,顶点为D ,对称轴为直线l ,点P 是抛物线上位于点B 、C 之间的动点.(1)求ABC ∠的度数;(2)若PBC ACO ∠=∠,求点P 的坐标;(3)已知点(),P p n ,若点(),Q q n 在抛物线上,且p q >;①仅用无刻度的直尺在图2中画出点Q ;②若2PQ t =,求232022p tq t +-+的值.7.如图,在平面直角坐标系中,抛物线2y x bx c =-++经过()0,1A ,()4,1B -.直线AB 交x 轴于点C ,P 是直线AB 上方且在对称轴右侧的一个动点,过P 作PD AB ⊥,垂足为D ,E 为点P 关于抛物线的对称轴的对应点.(1)求抛物线的函数表达式;(2)PE +的最大值时,求此时点P PE +的最大值;(3)将抛物线y 关于直线3x =作对称后得新抛物线y ',新抛物线与原抛物线相交于点F ,M 是新抛物线对称轴上一点,N 是平面中任意一点,是否存在点N ,使得以C ,F ,M ,N 为顶点的四边形是菱形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.8.如图所示,在平面直角坐标系中,直线3y x =-+交坐标轴于B 、C 两点,抛物线23y ax bx =++经过B 、C 两点,且交x 轴于另一点()1,0A -.点D 为抛物线在第一象限内的一点,过点D 作DQ CO ∥,DQ 交BC 于点P ,交x 轴于点Q .(1)求抛物线的解析式;(2)设点P 的横坐标为m ,在点D 的移动过程中,存在DCP DPC ∠=∠,求出m 值;(3)在抛物线上取点E ,在平面直角坐标系内取点F ,问是否存在以C 、B 、E 、F 为顶点且以CB 为边的矩形?如果存在,请求出点F 的坐标;如果不存在,请说明理由.9.在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于点()1,0A -和点B ,与y 轴交于点C ,顶点D 的坐标为()1,4-.(1)求出抛物线的解析式;(2)如图1,若点P 在抛物线上且满足PCB CBD ∠=∠,求点P 的坐标;(3)如图2,M 是线段CB 上一个动点,过点M 作MN x ⊥轴交抛物线于点N ,Q 是直线AC 上一个动点,当QMN 为等腰直角三角形时,直接写出此时点M 的坐标.10.二次函数2y ax bx c =++交x 轴于点()10A -,和点()30B -,,交y 轴于点()03C -,.(1)求二次函数的解析式;(2)如图1,点E 为抛物线的顶点,点()0T t ,为y 轴负半轴上的一点,将抛物线绕点T 旋转180︒,得到新的抛物线,其中B ,E 旋转后的对应点分别记为B E '',,当四边形BEB E ''的面积为12时,求t 的值;(3)如图2,过点C 作CD x ∥轴,交抛物线于另一点D .点M 是直线CD 上的一个动点,过点M 作x 轴的垂线,交抛物线于点P .是否存在点M 使PBC 为直角三角形,若存在,请直接写出点M 的坐标,若不存在,请说明理由.11.如图,已知抛物线2y ax 2x c =++交x 轴于点()10A -,和点()30B ,,交y 轴于点C ,点D 与点C 关于抛物线的对称轴对称.(1)求该抛物线的表达式,并求出点D 的坐标;(2)若点E 为该抛物线上的点,点F 为直线AD 上的点,若EF x ∥轴,且1EF =(点E 在点F 左侧),求点E 的坐标;(3)若点P 是该抛物线对称轴上的一个动点,是否存在点P ,使得APD △为直角三角形?若不存在,请说明理由;若存在,直接写出点P 坐标.12.在平面直角坐标系中,O 为坐标原点,直线3y x =-+与x 轴、y 轴分别交于B 、C 两点,抛物线2y x bx c =-++经过B 、C 两点,与x 轴的另一个交点为A .(1)如图1,求b 、c 的值;(2)如图2,点P 是第一象限抛物线2y x bx c =-++上一点,直线AP 交y 轴于点D ,设点P 的横坐标为t ,ADC △的面积为S ,求S 与t 的函数关系式;(3)如图3,在(2)的条件下,E 是直线BC 上一点,45EPD ∠=︒,ADC △的面积S 为54,求E 点坐标.13.抛物线24y ax =-经过A 、B 两点,且OA OB =,直线EC 过点()41E -,,()03C -,,点D 是线段OA (不含端点)上的动点,过D 作PD x ⊥轴交抛物线于点P ,连接PC 、PE .(1)求抛物线与直线CE 的解析式;(2)求证:PC PD +为定值;(3)在第四象限内是否存在一点Q ,使得以C 、P 、E 、Q 为顶点的平行四边形面积最大,若存在,求出Q 点坐标;若不存在,请说明理由.14.如图,已知抛物线()230y ax bx a =++≠与x 轴交于()1,0A 、()4,0B 两点,与y 轴交于点C ,点D 为抛物线的顶点.(1)求抛物线的函数表达式及点D 的坐标;(2)若四边形BCEF 为矩形,3CE =.点M 以每秒1个单位的速度从点C 沿CE 向点E 运动,同时点N 以每秒2个单位的速度从点E 沿EF 向点F 运动,一点到达终点,另一点随之停止.当以M 、E 、N 为顶点的三角形与BOC 相似时,求运动时间t 的值;(3)抛物线的对称轴与x 轴交于点P ,点G 是点P 关于点D 的对称点,点Q 是x 轴下方抛物线上的动点.若过点Q 的直线l :94y kx m k ⎛⎫=+< ⎪⎝⎭与抛物线只有一个公共点,且分别与线段GA 、GB 相交于点H 、K ,求证:GH GK +为定值.15.在平面直角坐标系中,已知抛物线2y ax bx =+经过(40)(13)A B ,,,两点.P 是抛物线上一点,且在直线AB的上方.(1)求抛物线的表达式;(2)若OAB 面积是PAB 面积的2倍,求点P 的坐标;(3)如图,OP 交AB 于点C ,PD BO ∥交AB 于点D .记CPB △,BCO 的面积分别为12S S ,,判断12S S 是否存在最大值.若存在,求出最大值;若不存在,请说明理由.16.已知抛物线212y x bx c =-++(b 、c 是常数)的顶点B 坐标为()1,2-,抛物线的对称轴为直线l ,点A 为抛物线与x 轴的右交点,作直线AB .点P 是抛物线上的任意一点,其横坐标为m ,过点P 作x 轴的垂线交直线AB 于点Q ,过点P 作PN l ⊥于点N ,以PQ PN 、为边作矩形PQMN .(1)b =___________,c =___________.(2)当点Q 在线段AB 上(点Q 不与A 、B 重合)时,求PQ 的长度d 与m 的函数关系式,并直接写出d 的最大值.(3)当抛物线被矩形PQMN 截得的部分图象的最高点纵坐标与最低点纵坐标的距离为2时,求点P 的坐标.(4)矩形PQMN 的任意两个顶点到直线AB 的距离相等时,直接写出m 的值.17.如图1.在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠与x 轴交于点()2,0A -,点()4,0B ,与y 轴交于点()0,2C .(2)点P 是第一象限内的抛物线上一点.过点P 作PH x ⊥轴于点H ,交直线BC 于点Q ,求PQ 的最大值,并求出此时点P 的坐标;(3)如图2.将地物线沿射线BC()2111110y a x b x c a =++≠,新抛物线与原抛物线交于点G ,点M 是x 轴上一点,点N 是新抛物线上一点,若以点C 、G 、M 、N 为顶点的四边形是平行四边形时,请直接写出点N 的坐标.18.如图,抛物线()20y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于点()0,6C ,顶点为D ,且()1,8D .(1)求抛物线的解析式;(2)若在线段BC 上存在一点M ,过点O 作OH OM ⊥交BC 的延长线于H ,且MO HO =,求点M 的坐标;(3)点P 是y 轴上一动点,点Q 是在对称轴上一动点,是否存在点P ,Q ,使得以点P ,Q ,C ,D 为顶点的四边形是菱形?若存在,求出点Q 的坐标;若不存在,请说明理由.参考答案:1.(1)223y x x =+-(2)2(3)11524Q ⎛⎫-- ⎪⎝⎭(4)1,05⎛⎫- ⎪ ⎪⎝⎭或()0,0或1,05⎛⎫ ⎪⎝⎭2.(1)()0,5(2)点P 到直线AC 距离为8,此时535,24P ⎛⎫- ⎪⎝⎭(3)点M 的坐标为()3,8-或()7,16--或()3,16-3.(1)243y x x =++(2)23922S t t =+(3)()2N -4.(1)223y x x =--+,()14D -,(2)E 的坐标为31524⎛⎫- ⎪⎝⎭,(3)存在,()45M --,或5724⎛⎫- ⎪⎝⎭,5.(1)2111644y x x =-+-;364y x =-(2)710,2P ⎛⎫- ⎪⎝⎭(3)169166.(1)45︒(2)(1,4)P(3)①见解析;②20237.(1)2712y x x =-++PE +的最大值为1,此时点P 的坐标为961,416⎛⎫ ⎪⎝⎭(3)存在点N ,使以C ,F ,M ,N 为顶点的四边形是菱形,此时点N 的坐标为215,424N ⎛+ ⎝⎭或215,424⎛- ⎝⎭或13,544N ⎛⎫+ ⎪ ⎪⎝⎭或13,544N ⎛- ⎝⎭或299,204N ⎛⎫ ⎪⎝⎭8.(1)223y x x =-++(2)2m =(3)存在,此时点F 的坐标为()4,1或()5,2--9.(1)2=23y x x --(2)满足PCB CBD ∠=∠,点P 的坐标为(4,5)或(2,2)-(3)M 点的坐标为(1,2)-或(2,5)--或924,55⎛⎫-- ⎪⎝⎭10.(1)243y x x =---(2)3t =-(3)存在,532⎛⎫-- ⎪ ⎪⎝⎭或532⎛⎫-- ⎪ ⎪⎝⎭或(23)--,或(53)--,11.(1)223y x x =-++,()23D ,(2)11024E ++⎝⎭,或1124E --+⎝⎭,(3)存在点P ,使得APD △为直角三角形,此时点P 的坐标为312⎛⎫+ ⎪⎝⎭,或312⎛ ⎝⎭,或()12-,或()14,12.(1)2b =,3c =(2)12S t =(3)3513,1616⎛⎫ ⎪⎝⎭13.(1)2144y x =-;132y x =-(2)见解析(3)存在,754Q ⎛⎫- ⎪⎝⎭,14.(1)2315344y x x =-+,527,216D ⎛⎫- ⎪⎝⎭(2)当911t =或65t =时(3)见解析15.(1)24y x x=-+(2)(24)P ,或(3,3)(3)见解析16.(1)1-,32(2)21122d m =-+()11m -<<,d 最大值为12(3)()3,0-或1--(4)3-或0或317.(1)211242y x x =-++;(2)5PQ +最大值为94,此时点5(3,4P ;(3)(1-,14-或(1-,1)4-或(1-+1)4或(1--1)4.18.(1)2246y x x =-++(2)129,55⎛⎫ ⎪⎝⎭(3)(1,8或(1,8或271,4⎛⎫ ⎪⎝⎭。

二次函数解答压轴题(共62题)(学生版)-2023年中考数学真题分项汇编(全国通用)

二次函数解答压轴题(共62题)(学生版)-2023年中考数学真题分项汇编(全国通用)

二次函数解答压轴题(62题)一、解答题1(2023·浙江绍兴·统考中考真题)已知二次函数y=-x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标.②当-1≤x≤3时,求y的取值范围.(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.2(2023·浙江·统考中考真题)已知点-m,0和3m,0在二次函数y=ax2+bx+3(a,b是常数,a≠0)的图像上.(1)当m=-1时,求a和b的值;(2)若二次函数的图像经过点A n,3且点A不在坐标轴上,当-2<m<-1时,求n的取值范围;(3)求证:b2+4a=0.3(2023·浙江嘉兴·统考中考真题)在二次函数y=x2-2tx+3(t>0)中,(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为-2,求出t的值:(3)如果A(m-2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3,求m的取值范围.4(2023·浙江杭州·统考中考真题)设二次函数y=ax2+bx+1,(a≠0,b是实数).已知函数值y和自变量x的部分对应取值如下表所示:x⋯-10123⋯y⋯m1n1p⋯(1)若m=4,求二次函数的表达式;(2)写出一个符合条件的x的取值范围,使得y随x的增大而减小.(3)若在m、n、p这三个实数中,只有一个是正数,求a的取值范围.5(2023·湖南常德·统考中考真题)如图,二次函数的图象与x轴交于A-1,0,B5,0两点,与y轴交于点C,顶点为D.O为坐标原点,tan∠ACO=1 5.(1)求二次函数的表达式;(2)求四边形ACDB的面积;(3)P是抛物线上的一点,且在第一象限内,若∠ACO=∠PBC,求P点的坐标.6(2023·山东烟台·统考中考真题)如图,抛物线y=ax2+bx+5与x轴交于A,B两点,与y轴交于点C,AB=4.抛物线的对称轴x=3与经过点A的直线y=kx-1交于点D,与x轴交于点E.(1)求直线AD及抛物线的表达式;(2)在抛物线上是否存在点M,使得△ADM是以AD为直角边的直角三角形?若存在,求出所有点M的坐标;若不存在,请说明理由;(3)以点B为圆心,画半径为2的圆,点P为⊙B上一个动点,请求出PC+1PA的最小值.27(2023·江苏苏州·统考中考真题)如图,二次函数y=x2-6x+8的图像与x轴分别交于点A,B(点A 在点B的左侧),直线l是对称轴.点P在函数图像上,其横坐标大于4,连接PA,PB,过点P作PM⊥l,垂足为M,以点M为圆心,作半径为r的圆,PT与⊙M相切,切点为T.(1)求点A,B的坐标;(2)若以⊙M的切线长PT为边长的正方形的面积与△PAB的面积相等,且⊙M不经过点3,2,求PM长的取值范围.8(2023·山东东营·统考中考真题)如图,抛物线过点O0,0,矩形ABCD的边AB在线段,E10,0OE上(点B在点A的左侧),点C,D在抛物线上,设B t,0,当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形ABCD的面积时,求抛物线平移的距离.9(2023·内蒙古通辽·统考中考真题)在平面直角坐标系中,已知抛物线y=ax2+83x+c a≠0与x轴交于点A1,0和点B,与y轴交于点C0,-4.(1)求这条抛物线的函数解析式;(2)P是抛物线上一动点(不与点A,B,C重合),作PD⊥x轴,垂足为D,连接PC.①如图,若点P在第三象限,且tan∠CPD=2,求点P的坐标;②直线PD交直线BC于点E,当点E关于直线PC的对称点E 落在y轴上时,请直接写出四边形PECE 的周长.10(2023·四川自贡·统考中考真题)如图,抛物线y=-43x2+bx+4与x轴交于A(-3,0),B两点,与y轴交于点C.(1)求抛物线解析式及B,C两点坐标;(2)以A,B,C,D为顶点的四边形是平行四边形,求点D坐标;(3)该抛物线对称轴上是否存在点E,使得∠ACE=45°,若存在,求出点E的坐标;若不存在,请说明理由.11(2023·四川达州·统考中考真题)如图,抛物线y =ax 2+bx +c 过点A -1,0 ,B 3,0 ,C 0,3 .(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出△PBC 的最大面积及此时点P 的坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以BC 为边,点B 、C 、M 、N 为顶点的四边形是菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.12(2023·四川泸州·统考中考真题)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+2x+c与坐标轴分别相交于点A,B,C0,6三点,其对称轴为x=2.(1)求该抛物线的解析式;(2)点F是该抛物线上位于第一象限的一个动点,直线AF分别与y轴,直线BC交于点D,E.①当CD=CE时,求CD的长;②若△CAD,△CDE,△CEF的面积分别为S1,S2,S3,且满足S1+S3=2S2,求点F的坐标.13(2023·全国·统考中考真题)如图,在平面直角坐标系中,抛物线y=-x2+2x+c经过点A(0,1).点P,Q在此抛物线上,其横坐标分别为m,2m(m>0),连接AP,AQ.(1)求此抛物线的解析式.(2)当点Q与此抛物线的顶点重合时,求m的值.(3)当∠PAQ的边与x轴平行时,求点P与点Q的纵坐标的差.(4)设此抛物线在点A与点P之间部分(包括点A和点P)的最高点与最低点的纵坐标的差为h1,在点A与点Q之间部分(包括点A和点Q)的最高点与最低点的纵坐标的差为h2.当h2-h1=m时,直接写出m的值.14(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线y=14x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B3,0,C0,-3.(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.15(2023·四川凉山·统考中考真题)如图,已知抛物线与x轴交于A1,0两点,与y轴交于和B-5,0点C.直线y=-3x+3过抛物线的顶点P.(1)求抛物线的函数解析式;(2)若直线x=m-5<m<0与抛物线交于点E,与直线BC交于点F.①当EF取得最大值时,求m的值和EF的最大值;②当△EFC是等腰三角形时,求点E的坐标.16(2023·四川成都·统考中考真题)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+c经过点P (4,-3),与y轴交于点A(0,1),直线y=kx(k≠0)与抛物线交于B,C两点.(1)求抛物线的函数表达式;(2)若△ABP是以AB为腰的等腰三角形,求点B的坐标;(3)过点M(0,m)作y轴的垂线,交直线AB于点D,交直线AC于点E.试探究:是否存在常数m,使得OD⊥OE始终成立?若存在,求出m的值;若不存在,请说明理由.17(2023·安徽·统考中考真题)在平面直角坐标系中,点O是坐标原点,抛物线y=ax2+bx a≠0经过点A3,3,对称轴为直线x=2.(1)求a,b的值;(2)已知点B,C在抛物线上,点B的横坐标为t,点C的横坐标为t+1.过点B作x轴的垂线交直线OA于点D,过点C作x轴的垂线交直线OA于点E.(ⅰ)当0<t<2时,求△OBD与△ACE的面积之和;(ⅱ)在抛物线对称轴右侧,是否存在点B,使得以B,C,D,E为顶点的四边形的面积为32若存在,请求出点B的横坐标t的值;若不存在,请说明理由.18(2023·浙江金华·统考中考真题)如图,直线y =52x +5与x 轴,y 轴分别交于点A ,B ,抛物线的顶点P 在直线AB 上,与x 轴的交点为C ,D ,其中点C 的坐标为2,0 .直线BC 与直线PD 相交于点E .(1)如图2,若抛物线经过原点O .①求该抛物线的函数表达式;②求BEEC的值.(2)连接PC ,∠CPE 与∠BAO 能否相等?若能,求符合条件的点P 的横坐标;若不能,试说明理由.19(2023·湖南·统考中考真题)如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于C点,其中B1,0.,C0,3(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点P,使得S△PAC=S△ABC若存在,请求出P点坐标;若不存在,请说明理由;(3)点Q是对称轴l上一点,且点Q的纵坐标为a,当△QAC是锐角三角形时,求a的取值范围.20(2023·四川遂宁·统考中考真题)在平面直角坐标系中,O 为坐标原点,抛物线y =14x 2+bx +c 经过点O (0,0),对称轴过点B (2,0),直线l 过点C 2,-2 ,且垂直于y 轴.过点B 的直线l 1交抛物线于点M 、N ,交直线l 于点Q ,其中点M 、Q 在抛物线对称轴的左侧.(1)求抛物线的解析式;(2)如图1,当BM :MQ =3:5时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线l 1下方的抛物线上一动点,连接PQ 、PO ,其中PO 交l 1于点E ,设△OQE 的面积为S 1,△PQE 的面积为S 2.求S2S 1的最大值.21(2023·四川眉山·统考中考真题)在平面直角坐标系中,已知抛物线y =ax 2+bx +c 与x 轴交于点A -3,0 ,B 1,0 两点,与y 轴交于点C 0,3 ,点P 是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点P 在直线AC 上方的抛物线上时,连接BP 交AC 于点D .如图1.当PDDB的值最大时,求点P 的坐标及PDDB的最大值;(3)过点P 作x 轴的垂线交直线AC 于点M ,连接PC ,将△PCM 沿直线PC 翻折,当点M 的对应点M '恰好落在y 轴上时,请直接写出此时点M 的坐标.22(2023·江西·统考中考真题)综合与实践问题提出:某兴趣小组开展综合实践活动:在Rt△ABC中,∠C=90°,D为AC上一点,CD=2,动点P 以每秒1个单位的速度从C点出发,在三角形边上沿C→B→A匀速运动,到达点A时停止,以DP为边作正方形DPEF设点P的运动时间为ts,正方形DPEF的而积为S,探究S与t的关系(1)初步感知:如图1,当点P由点C运动到点B时,①当t=1时,S=.②S关于t的函数解析式为.(2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象请根据图象信息,求S关于t的函数解析式及线段AB的长.(3)延伸探究:若存在3个时刻t1,t2,t3(t1<t2<t3)对应的正方形DPEF的面积均相等.①t1+t2=;②当t3=4t1时,求正方形DPEF的面积.23(2023·新疆·统考中考真题)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC ⊥BC ,AB ⊥BE ,ED ⊥BD ,垂足分别为C ,B ,D ,AB =BE .求证:△ACB ≌△BDE ;【类比迁移】(2)如图2,一次函数y =3x +3的图象与y 轴交于点A 、与x 轴交于点B ,将线段AB 绕点B 逆时针旋转90°得到BC 、直线AC 交x 轴于点D .①求点C 的坐标;②求直线AC 的解析式;【拓展延伸】(3)如图3,抛物线y =x 2-3x -4与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C点,已知点Q (0,-1),连接BQ .抛物线上是否存在点M ,使得tan ∠MBQ =13,若存在,求出点M 的横坐标.24(2023·甘肃武威·统考中考真题)如图1,抛物线y=-x2+bx与x轴交于点A,与直线y=-x交于点B4,-4在y轴上.点P从点B出发,沿线段BO方向匀速运动,运动到点O时停止.,点C0,-4(1)求抛物线y=-x2+bx的表达式;(2)当BP=22时,请在图1中过点P作PD⊥OA交抛物线于点D,连接PC,OD,判断四边形OCPD 的形状,并说明理由.(3)如图2,点P从点B开始运动时,点Q从点O同时出发,以与点P相同的速度沿x轴正方向匀速运动,点P停止运动时点Q也停止运动.连接BQ,PC,求CP+BQ的最小值.25(2023·四川乐山·统考中考真题)已知x 1,y 1 ,x 2,y 2 是抛物C 1:y =-14x 2+bx (b 为常数)上的两点,当x 1+x 2=0时,总有y 1=y 2(1)求b 的值;(2)将抛物线C 1平移后得到抛物线C 2:y =-14(x -m )2+1(m >0).探究下列问题:①若抛物线C 1与抛物线C 2有一个交点,求m 的取值范围;②设抛物线C 2与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线C 2的顶点为点E ,△ABC 外接圆的圆心为点F ,如果对抛物线C 1上的任意一点P ,在抛物线C 2上总存在一点Q ,使得点P 、Q 的纵坐标相等.求EF 长的取值范围.26(2023·内蒙古·统考中考真题)如图,在平面直角坐标系中,抛物线y =-x 2+3x +1交y 轴于点A ,直线y =-13x +2交抛物线于B ,C 两点(点B 在点C 的左侧),交y 轴于点D ,交x 轴于点E .(1)求点D ,E ,C 的坐标;(2)F 是线段OE 上一点OF <EF ,连接AF ,DF ,CF ,且AF 2+EF 2=21.①求证:△DFC 是直角三角形;②∠DFC 的平分线FK 交线段DC 于点K ,P 是直线BC 上方抛物线上一动点,当3tan ∠PFK =1时,求点P 的坐标.27(2023·上海·统考中考真题)在平面直角坐标系xOy中,已知直线y=34x+6与x轴交于点A,y轴交于点B,点C在线段AB上,以点C为顶点的抛物线M:y=ax2+bx+c经过点B.(1)求点A,B的坐标;(2)求b,c的值;(3)平移抛物线M至N,点C,B分别平移至点P,D,联结CD,且CD∥x轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.28(2023·江苏扬州·统考中考真题)在平面直角坐标系xOy中,已知点A在y轴正半轴上.(1)如果四个点0,0中恰有三个点在二次函数y=ax2(a为常数,且a≠0)的图象、-1,1、1,1、0,2上.①a=;②如图1,已知菱形ABCD的顶点B、C、D在该二次函数的图象上,且AD⊥y轴,求菱形的边长;③如图2,已知正方形ABCD的顶点B、D在该二次函数的图象上,点B、D在y轴的同侧,且点B在点D的左侧,设点B、D的横坐标分别为m、n,试探究n-m是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD的顶点B、D在二次函数y=ax2(a为常数,且a>0)的图象上,点B在点D的左侧,设点B、D的横坐标分别为m、n,直接写出m、n满足的等量关系式.29(2023·湖南岳阳·统考中考真题)已知抛物线Q1:y=-x2+bx+c与x轴交于A-3,0,B两点,交y 轴于点C0,3.(1)请求出抛物线Q1的表达式.(2)如图1,在y轴上有一点D0,-1,点E在抛物线Q1上,点F为坐标平面内一点,是否存在点E,F使得四边形DAEF为正方形?若存在,请求出点E,F的坐标;若不存在,请说明理由.(3)如图2,将抛物线Q1向右平移2个单位,得到抛物线Q2,抛物线Q2的顶点为K,与x轴正半轴交于点H,抛物线Q1上是否存在点P,使得∠CPK=∠CHK?若存在,请求出点P的坐标;若不存在,请说明理由.30(2023·湖南永州·统考中考真题)如图1,抛物线y =ax 2+bx +c (a ,b ,c 为常数)经过点F 0,5 ,顶点坐标为2,9 ,点P x 1,y 1 为抛物线上的动点,PH ⊥x 轴于H ,且x 1≥52.(1)求抛物线的表达式;(2)如图1,直线OP :y =y 1x 1x 交BF 于点G ,求S △BPG S △BOG的最大值;(3)如图2,四边形OBMF 为正方形,PA 交y 轴于点E ,BC 交FM 的延长线于C ,且BC ⊥BE ,PH =FC ,求点P 的横坐标.31(2023·山东枣庄·统考中考真题)如图,抛物线y=-x2+bx+c经过A(-1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.32(2023·湖北随州·统考中考真题)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(-1,0),B(2,0)和C(0,2),连接BC,点P(m,n)(m>0)为抛物线上一动点,过点P作PN⊥x轴交直线BC 于点M,交x轴于点N.(1)直接写出抛物线和直线BC的解析式;(2)如图2,连接OM,当△OCM为等腰三角形时,求m的值;(3)当P点在运动过程中,在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与以B,C,N为顶点的三角形相似(其中点P与点C相对应),若存在,直接写出点P和点Q的坐标;若不存在,请说明理由.33(2023·四川内江·统考中考真题)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 与x 轴交于B 4,0 ,C -2,0 两点.与y 轴交于点A 0,-2 .(1)求该抛物线的函数表达式;(2)若点P 是直线AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点K ,过点P 作y 轴的平行线交x 轴于点D ,求与12PK +PD 的最大值及此时点P 的坐标;(3)在抛物线的对称轴上是否存在一点M ,使得△MAB 是以AB 为一条直角边的直角三角形:若存在,请求出点M 的坐标,若不存在,请说明理由.34(2023·湖南·统考中考真题)已知二次函数y =ax 2+bx +c a >0 .(1)若a =1,c =-1,且该二次函数的图像过点2,0 ,求b 的值;(2)如图所示,在平面直角坐标系Oxy 中,该二次函数的图像与x 轴交于点A x 1,0 ,B x 2,0 ,且x 1<0<x 2,点D 在⊙O 上且在第二象限内,点E 在x 轴正半轴上,连接DE ,且线段DE 交y 轴正半轴于点F ,∠DOF =∠DEO ,OF =32DF .①求证:DO EO=23.②当点E 在线段OB 上,且BE =1.⊙O 的半径长为线段OA 的长度的2倍,若4ac =-a 2-b 2,求2a +b 的值.35(2023·山西·统考中考真题)如图,二次函数y =-x 2+4x 的图象与x 轴的正半轴交于点A ,经过点A 的直线与该函数图象交于点B 1,3 ,与y 轴交于点C .(1)求直线AB 的函数表达式及点C 的坐标;(2)点P 是第一象限内二次函数图象上的一个动点,过点P 作直线PE ⊥x 轴于点E ,与直线AB 交于点D ,设点P 的横坐标为m .①当PD =12OC 时,求m 的值;②当点P 在直线AB 上方时,连接OP ,过点B 作BQ ⊥x 轴于点Q ,BQ 与OP 交于点F ,连接DF .设四边形FQED 的面积为S ,求S 关于m 的函数表达式,并求出S 的最大值.36(2023·湖北武汉·统考中考真题)抛物线C1:y=x2-2x-8交x轴于A,B两点(A在B的左边),交y 轴于点C.(1)直接写出A,B,C三点的坐标;(2)如图(1),作直线x=t0<t<4,分别交x轴,线段BC,抛物线C1于D,E,F三点,连接CF.若△BDE 与△CEF相似,求t的值;(3)如图(2),将抛物线C1平移得到抛物线C2,其顶点为原点.直线y=2x与抛物线C2交于O,G两点,过OG的中点H作直线MN(异于直线OG)交抛物线C2于M,N两点,直线MO与直线GN交于点P.问点P是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.37(2023·湖北宜昌·统考中考真题)如图,已知A(0,2),B(2,0).点E位于第二象限且在直线y=-2x 上,∠EOD=90°,OD=OE,连接AB,DE,AE,DB.(1)直接判断△AOB的形状:△AOB是三角形;(2)求证:△AOE≌△BOD;(3)直线EA交x轴于点C(t,0),t>2.将经过B,C两点的抛物线y1=ax2+bx-4向左平移2个单位,得到抛物线y2.①若直线EA与抛物线y1有唯一交点,求t的值;②若抛物线y2的顶点P在直线EA上,求t的值;③将抛物线y2再向下平移,2(t-1)2个单位,得到抛物线y3.若点D在抛物线y3上,求点D的坐标.38(2023·湖南郴州·统考中考真题)已知抛物线y=ax2+bx+4与x轴相交于点A1,0,与y,B4,0轴相交于点C.(1)求抛物线的表达式;(2)如图1,点P是抛物线的对称轴l上的一个动点,当△PAC的周长最小时,求PAPC的值;(3)如图2,取线段OC的中点D,在抛物线上是否存在点Q,使tan∠QDB=12若存在,求出点Q的坐标;若不存在,请说明理由.39(2023·湖北黄冈·统考中考真题)已知抛物线y =-12x 2+bx +c 与x 轴交于A ,B (4,0)两点,与y 轴交于点C (0,2),点P 为第一象限抛物线上的点,连接CA ,CB ,PB ,PC .(1)直接写出结果;b =,c =,点A 的坐标为,tan ∠ABC =;(2)如图1,当∠PCB =2∠OCA 时,求点P 的坐标;(3)如图2,点D 在y 轴负半轴上,OD =OB ,点Q 为抛物线上一点,∠QBD =90°,点E ,F 分别为△BDQ 的边DQ ,DB 上的动点,QE =DF ,记BE +QF 的最小值为m .①求m 的值;②设△PCB 的面积为S ,若S =14m 2-k ,请直接写出k 的取值范围.40(2023·湖南·统考中考真题)如图,在平面直角坐标系中,抛物线y=ax2+x+c经过点A-2,0和点B4,0,且与直线l:y=-x-1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M 的横坐标为t.(1)求抛物线的解析式.(2)过点M作x轴的垂线,与拋物线交于点N.若0<t<4,求△NED面积的最大值.(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.41(2023·四川·统考中考真题)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+4的图象与x 轴交于点A-2,0,B4,0,与y轴交于点C.(1)求抛物线的解析式;(2)已知E为抛物线上一点,F为抛物线对称轴l上一点,以B,E,F为顶点的三角形是等腰直角三角形,且∠BFE=90°,求出点F的坐标;(3)如图2,P为第一象限内抛物线上一点,连接AP交y轴于点M,连接BP并延长交y轴于点N,在点P运动过程中,OM+12ON是否为定值?若是,求出这个定值;若不是,请说明理由.42(2023·山东聊城·统考中考真题)如图①,抛物线y=ax2+bx-9与x轴交于点A-3,0,,B6,0与y轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P m,0从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.43(2023·湖北荆州·统考中考真题)已知:y关于x的函数y=a-2x+b.x2+a+1(1)若函数的图象与坐标轴有两个公共点,且a=4b,则a的值是;(2)如图,若函数的图象为抛物线,与x轴有两个公共点A-2,0,B4,0,并与动直线l:x=m(0<m<4)交于点P,连接PA,PB,PC,BC,其中PA交y轴于点D,交BC于点E.设△PBE的面积为S1,△CDE 的面积为S2.①当点P为抛物线顶点时,求△PBC的面积;②探究直线l在运动过程中,S1-S2是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.44(2023·福建·统考中考真题)已知抛物线y=ax2+bx+3交x轴于A1,0,B3,0两点,M为抛物线的顶点,C,D为抛物线上不与A,B重合的相异两点,记AB中点为E,直线AD,BC的交点为P.(1)求抛物线的函数表达式;(2)若C4,3,D m,-3 4,且m<2,求证:C,D,E三点共线;(3)小明研究发现:无论C,D在抛物线上如何运动,只要C,D,E三点共线,△AMP,△MEP,△ABP中必存在面积为定值的三角形.请直接写出其中面积为定值的三角形及其面积,不必说明理由.45(2023·山东·统考中考真题)如图,直线y=-x+4交x轴于点B,交y轴于点C,对称轴为x=32的抛物线经过B,C两点,交x轴负半轴于点A.P为抛物线上一动点,点P的横坐标为m,过点P作x轴的平行线交抛物线于另一点M,作x轴的垂线PN,垂足为N,直线MN交y轴于点D.(1)求抛物线的解析式;(2)若0<m<32,当m为何值时,四边形CDNP是平行四边形?(3)若m<32,设直线MN交直线BC于点E,是否存在这样的m值,使MN=2ME?若存在,求出此时m 的值;若不存在,请说明理由.46(2023·山东·统考中考真题)已知抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C 0,4 ,其对称轴为x =-32.(1)求抛物线的表达式;(2)如图1,点D 是线段OC 上的一动点,连接AD ,BD ,将△ABD 沿直线AD 翻折,得到△AB D ,当点B 恰好落在抛物线的对称轴上时,求点D 的坐标;(3)如图2,动点P 在直线AC 上方的抛物线上,过点P 作直线AC 的垂线,分别交直线AC ,线段BC 于点E ,F ,过点F 作FG ⊥x 轴,垂足为G ,求FG +2FP 的最大值.47(2023·辽宁大连·统考中考真题)如图,在平面直角坐标系中,抛物线C 1:y =x 2上有两点A 、B ,其中点A 的横坐标为-2,点B 的横坐标为1,抛物线C 2:y =-x 2+bx +c 过点A 、B .过A 作AC ∥x 轴交抛物线C 1另一点为点C .以AC 、12AC 长为边向上构造矩形ACDE .(1)求抛物线C 2的解析式;(2)将矩形ACDE 向左平移m 个单位,向下平移n 个单位得到矩形A C D E ,点C 的对应点C 落在抛物线C 1上.①求n 关于m 的函数关系式,并直接写出自变量m 的取值范围;②直线A E 交抛物线C 1于点P ,交抛物线C 2于点Q .当点E 为线段PQ 的中点时,求m 的值;③抛物线C 2与边E D 、A C 分别相交于点M 、N ,点M 、N 在抛物线C 2的对称轴同侧,当MN =2103时,求点C 的坐标.48(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中,已知二次函数y=ax2+bx+c的图象与x轴交于点A-2,0.点D为线段BC上的一动点. 和点B6,0两点,与y轴交于点C0,6(1)求二次函数的表达式;(2)如图1,求△AOD周长的最小值;(3)如图2,过动点D作DP∥AC交抛物线第一象限部分于点P,连接PA,PB,记△PAD与△PBD的面积和为S,当S取得最大值时,求点P的坐标,并求出此时S的最大值.49(2023·黑龙江绥化·统考中考真题)如图,抛物线y1=ax2+bx+c的图象经过A(-6,0),B(-2,0),C (0,6)三点,且一次函数y=kx+6的图象经过点B.(1)求抛物线和一次函数的解析式.(2)点E,F为平面内两点,若以E、F、B、C为顶点的四边形是正方形,且点E在点F的左侧.这样的E,F两点是否存在?如果存在,请直接写出所有满足条件的点E的坐标:如果不存在,请说明理由.(3)将抛物线y1=ax2+bx+c的图象向右平移8个单位长度得到抛物线y2,此抛物线的图象与x轴交于M,N两点(M点在N点左侧).点P是抛物线y2上的一个动点且在直线NC下方.已知点P的横坐标为PD有最大值,最大值是多少?m.过点P作PD⊥NC于点D.求m为何值时,CD+1250(2023·四川南充·统考中考真题)如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A-1,0,B3,0两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P在抛物线上,点Q在x轴上,以B,C,P,Q为顶点的四边形为平行四边形,求点P的坐标;(3)如图2,抛物线顶点为D,对称轴与x轴交于点E,过点K1,3的直线(直线KD除外)与抛物线交于G,H两点,直线DG,DH分别交x轴于点M,N.试探究EM⋅EN是否为定值,若是,求出该定值;若不是,说明理由.51(2023·四川宜宾·统考中考真题)如图,抛物线y=ax2+bx+c与x轴交于点A-4,0,且经、B2,0过点C-2,6.(1)求抛物线的表达式;(2)在x轴上方的抛物线上任取一点N,射线AN、BN分别与抛物线的对称轴交于点P、Q,点Q关于x轴的对称点为Q ,求△APQ 的面积;(3)点M是y轴上一动点,当∠AMC最大时,求M的坐标.52(2023·四川广安·统考中考真题)如图,二次函数y=x2+bx+c的图象交x轴于点A,B,交y轴于点C,点B的坐标为1,0,对称轴是直线x=-1,点P是x轴上一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的解析式.(2)若点P在线段AO上运动(点P与点A、点O不重合),求四边形ABCN面积的最大值,并求出此时点P 的坐标.(3)若点P在x轴上运动,则在y轴上是否存在点Q,使以M、N、C、Q为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.。

(完整)中考复习专题—二次函数压轴题

(完整)中考复习专题—二次函数压轴题

(完整)中考复习专题—二次函数压轴题中考复习专题(七)--二次函数压轴题专训题型一:面积问题【例1】(2009湖南益阳)如图2,抛物线顶点坐标为点C (1,4),交x轴于点4(3, 0),交y轴于点8.(1)求抛物线和直线AB的解析式;(2)求ACAB的铅垂高CD及S;△鼐,若存在,求出P点△CAB△CAB【变式练习】1。

(2009广东省深圳市)如图,在直角坐标系中,点A的坐标为(一2, 0),连结OA,将线段OA绕原点。

顺时针旋转120°,得到线段OB.(1)求点8的坐标;(2)求经过A、0、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使^BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么4PAB是否有最大面积?若有,求出此时P点的坐标及4PAB 的最大面积;若没有,请说明理由.2。

(2010绵阳)如图,抛物线y = ax2 + bx + 4与x轴的两个交点分别为A(—4, 0), B (2,0),与y 轴交(完整)中考复习专题一二次函数压轴题于点C,顶点为D. E (1, 2)为线段BC的中点,BC的垂直平分线与X轴、y轴分别交于F、G.3. (2012铜仁)如图,已知:直线y =-x + 3交x轴于点A,交y轴于点8,抛物线y=ax2+bx+c经过A、B、到1,0)三点.(1)求抛物线的解析式;(2)若点D的坐标为(-1,0),在直线y = -x + 3上有一点「,使AABO与AADP相似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点£,使AADE的面积等于四边形APCE的面积?如果存在,请求出点£的坐标;如果不存在,请说明理由.题型二:构造直角三角形【例2】(2010山东聊城)如图,已知抛物线y=ax2+bx+c (a/0)的对称轴为x = 1,且抛物线经过A (―1, 0)、C (0, -3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x = 1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求此时点M的坐标;(3)设点P为抛物线的对称轴x=1上的一动点,求使NPCB=90 的点P的坐标.第.3题图【变式练习】1.(2012广州)如图,抛物线y二-卫丁-金丁十力与x轴交于A、B两点(点A在点B的左侧),与y轴交于点8 4C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当4ACD的面积等于4ACB的面积时,求点D的坐标;(3)若直线I过点E(4, 0),M为直线I上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时, 求直线I的解析式.2.(2009成都)在平面直角坐标系xOy中,已知抛物线y=〃(x + l)2+c(” > 0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为y = kx-3,与x轴的交点为N,且COSNBCO3<1010(1)求此抛物线的函数表达式;(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点「的坐标:若不存在,请说明理由;⑶过点人作x轴的垂线,交直线MC于点。

2022年中考数学二次函数压轴题专题15 矩形存在性问题(学生版+解析版)

2022年中考数学二次函数压轴题专题15 矩形存在性问题(学生版+解析版)

中考数学压轴题--二次函数--存在性问题第15节 矩形的存在性方法点拨矩形ABCD ,O 为对角线AC 与BD 的交点,则O 的坐标为(2,2CA C A y y x x ++)或者(2,2DB D B y y x x ++)解题方法:(在平行四边形的基础上增加对角线相等)(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论; (2)利用中点坐标公式列方程:D B C A x x x x +=+;D B C A y y +=+y y (3)对角线相等:()2222)()()(D B D B C A C A y y x x y y x x -+-=-+-例题演练1.如图,在平面,在平面直角坐标系中,地物线y=x2+bx+c与x轴交于点A(﹣1,0),B(3,0)与y轴交于点C.(1)求该抛物线的函数表达式;(2)点P是直线BC下方抛物线上的任意一点,连接PB,PC,以PB,PC为邻边作平行四边形CPBD,求四边形CPBD面积的最大值;(3)将该抛物线沿射线CB方向平移个单位,平移后的抛物线与y轴交于点E,点M为直线BC上的一点,在平面直角坐标系中是否存在点N,使以点C,E,M,N为顶点的四边形为矩形,若存在,请直接写出点N的坐标;若不存在,请说明理由.2.如图1,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴交于点A(﹣2,0)、B(4,0),与y轴交于点C.(1)求抛物线的函数解析式;(2)点D是抛物线上一点,D点横坐标为3,连接AD,点P为AD上方抛物线上一点,连接P A,PD,请求出△P AD面积的最大值及此时点P的坐标;(3)如图2,将原抛物线y=ax2+bx+4沿x轴负半轴方向平移2个单位长度,得到新抛物线y1=a1x2+b1x+c1(a1≠0),新抛物线与原抛物线交于点M.点N是原抛物线对称轴上一点,在平面直角坐标系内是否存在点Q,使得以点A、M、N、Q为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由3.如图,已知抛物线y=ax2+bx+2的图象与x轴交于A,B两点,与y轴交于点C.﹣1,3是关于x的一元二次方程ax2+bx+2=0的两个根.(1)求该抛物线的解析式;(2)过点A作AD∥BC交抛物线于点D,AD与y轴交于点E,P为直线BC上方抛物线上的一个动点,连接P A交BC于点F,求S△PEF的最大值及此时点P的坐标;(3)在(2)的条件下,点M为抛物线上一动点,在平面内找一点N,是否存在以点A,M,N,P为顶点的四边形是以P A为边的矩形?若存在,请直接写出点N的坐标,若不存在,请说明理由.4.如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A,B的坐标分别为(0,1),(﹣9,10),AC∥x轴.(1)求抛物线的解析式;(2)点P是直线AC下方抛物线上的动点,过点P且与y轴平行的直线l与直线AB交于点E,当四边形AECP的面积最大时,求点P的坐标;(3)点A关于x轴的对称点为A′,将该抛物线平移至其顶点与A′重合,得到一条新抛物线,平移后的抛物线与原抛物线相交于点M,点N为原抛物线对称轴上一点,在平面直角坐标系中是否存在一点D,但以点C,D,M,N为顶点的四边形为矩形,若存在,请直接写出点D的坐标,若不存在,请说明理由.5.在平面直角坐标系xOy中,抛物线y=x2﹣2x﹣6与x轴交于点A、B(点A在点B左侧),与y轴交于点C,顶点为点D.(1)求点B、D的坐标;(2)如图1,点P在直线BD下方抛物线上运动(不含端点B、D),记△PCB的面积为S1,记△PDB的面积为S2,求2S1﹣S2的最大值及此时点P的坐标;(3)如图2,将该抛物线沿直线DB平移,设平移后的新抛物线的顶点为D'(D'与D不重合),新抛物线与直线DB的另一个交点为点E,在平面直角坐标系中是否存在点F,使以点C、D'、E、F为顶点的四边形为矩形?若存在,直接写出点F的坐标;若不存在,请说明理由.6.如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c(a≠0)经过点A、E,点E的坐标是(5,3),抛物线交x轴于另一点C(6,0).(1)求抛物线的解析式.(2)设抛物线的顶点为D,连接BD,AD,CD,动点P在BD上以每秒2个单位长度的速度由点B向点D运动,同时动点Q在线段CA上以每秒3个单位长度的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒,PQ交线段AD于点H.①当∠DPH=∠CAD时,求t的值;②过点H作HM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N.在点P、Q的运动过程中,是否存在以点P,N,H,M为顶点的四边形是矩形?若存在,求出t的值;若不存在,请说明理由.7.已知,二次函数y=﹣x2+x+2图象与x轴交于A、B两点,与y轴交于点C,连接AC、BC.(1)如图1,请判断△ABC的形状,并说明理由;(2)如图2,D为线段AB上一动点,作DP∥AC交抛物线于点P,过P作PE⊥x轴,垂足为E,交BC于点F,过F作FG⊥PE,交DP于G,连接CG,OG,求阴影部分面积S的最大值和D点坐标;(3)如图3,将抛物线沿射线AC方向移动个单位得到新的抛物线y'=ax2+bx+c(a ≠0),是否在新抛物线对称轴上存在点M,在坐标平面内存在点N,使得以C、B、M、N为顶点的四边形是以CB为边的矩形?若存在,请直接写出N点坐标;若不存在,请说明理由.8.如图,抛物线y=ax2+bx+c的图象交x轴于A(﹣3,0)、B两点,顶点为点C(﹣1,﹣2),连接BC.(1)求抛物线的解析式;(2)如图1,作∠ABC的角平分线BE,交对称轴于交点D,交抛物线于点E,求DE的长;(3)如图2,在(2)的条件下,点F是线段BC上的一动点(点F不与点和点B重合,连接DF,将△BDF沿DF折叠,点B的对应点为点B1,△DFB1与△BDC的重叠部分为△DFG,请探究,在坐标平面内是否存在一点H,使以点D、F、G、H为顶点的四边形是矩形?若存在,请求出点H的坐标,若不存在,请说明理由.9.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)交x轴于A(﹣1,0),B(4,0),交y轴于点C.(1)求该抛物线解析式;(2)点P为第四象限内抛物线上一点,连接PB,过C作CQ∥BP交x轴于点Q,连接PQ,求△PBQ面积的最大值及此时点P的坐标;(3)在(2)的条件下,将抛物线y=ax2+bx﹣2(a≠0)向右平移经过点Q,得到新抛物线y=a1x2+b1x+c1(a1≠0),点E在新抛物线的对称轴上,是否存在平面内一点F,使得A,P,E,F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.10.如图,在平面直角坐标系中,抛物线交x轴于点A和点B(点A在原点的左侧,点B在原点的右侧),点A的坐标为(﹣3,0),点B的坐标为(1,0),交y轴于点C.(1)求该抛物线的解析式;(2)已知点P为抛物线上一点,直线PC与x轴交于点Q.使得PQ=CQ.求点P坐标;(3)若点M是抛物线对称轴上一点,点N是平面内一点,是否存在以A,C,M,N为顶点的矩形?若存在,请直接写出N点的坐标;若不存在,请说明理由.11.如图,已知抛物线y=ax2+bx+c与x轴交于A(1,0)、B(﹣5,0)两点,与y轴交于点C(0,),点D为抛物线的顶点.(1)求抛物线的解析式;(2)如图1,过点D作DH⊥x轴于点H,若点P为抛物线上位于第二象限内且在对称轴左侧的一点,连接PD、PB,求四边形DHBP面积的最大值及此时点P的坐标;(3)如图2,点E在y轴负半轴上,点F是抛物线上一点,在抛物线对称轴上是否存在一点G,使得以点B、E、F、G为顶点的四边形为矩形,若存在,请直接写出点G的坐标;若不存在,请说明理由.12.如图,抛物线y=﹣x2+bx+c与直线AB相交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C,点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线的函数表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)在y轴上存在一点H,连接EH,HF,是否存在点E,以A,E,F,H为顶点的四边形是矩形?若存在,求出点E的坐标,若不存在,请说明理由.中考数学压轴题--二次函数--存在性问题第15节 矩形的存在性方法点拨矩形ABCD ,O 为对角线AC 与BD 的交点,则O 的坐标为(2,2C A C A y y x x ++)或者(2,2D B D B y y x x ++)解题方法:(在平行四边形的基础上增加对角线相等)(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论;(2)利用中点坐标公式列方程:D B C A x x x x +=+;D B C A y y +=+y y(3)对角线相等:()2222)()()(D B D B C A C A y y x x y y x x -+-=-+-例题演练1.如图,在平面,在平面直角坐标系中,地物线y=x2+bx+c与x轴交于点A(﹣1,0),B(3,0)与y轴交于点C.(1)求该抛物线的函数表达式;(2)点P是直线BC下方抛物线上的任意一点,连接PB,PC,以PB,PC为邻边作平行四边形CPBD,求四边形CPBD面积的最大值;(3)将该抛物线沿射线CB方向平移个单位,平移后的抛物线与y轴交于点E,点M为直线BC上的一点,在平面直角坐标系中是否存在点N,使以点C,E,M,N为顶点的四边形为矩形,若存在,请直接写出点N的坐标;若不存在,请说明理由.【解答】解:(1)把A(﹣1,0),B(3,0)代入y=x2+bx+c,得,解得,∴该抛物线的函数表达式为y=x2﹣x﹣2.(2)如图1,过点P作PH⊥x轴于点H,交BC于点G.∵抛物线y=x2﹣x﹣2与y轴交于点C,∴C(0,﹣2).设直线BC的函数表达式为y=kx﹣2,则3k﹣2=0,解得k=,∴y=x﹣2.设P(x,x2﹣x﹣2)(0<x<3),则G(x,x﹣2),∴PG=x﹣2﹣(x2﹣x﹣2)=﹣x2+2x,∵S△PBC=PG•OH+PG•BH=PG•OB=PG,∴S平行四边形CPBD=2S△PBC=3PG,∴S平行四边形CPBD=3(﹣x2+2x)=﹣2x2+6x=﹣2(x﹣)2+,∴当x=时,四边形CPBD的面积的值最大,最大值为.(3)存在.如图2,设抛物线y=x2﹣x﹣2的顶点为Q,其对称轴交x轴于点J,交直线BC于点K,设抛物线y=x2﹣x﹣2平移后的顶点为R,过点R作RI⊥JQ于点I.∵QR∥BC,∴∠RQI=∠BKJ=∠BCO,∵∠RIQ=∠BOC=90°,∴△RIQ∽△BOC.∵OB=3,OC=2,∴BC==,∴OC:OB:BC=2:3:,∴IQ:IR:QR=2:3:,∵QR=,∴IQ=QR=×=1,IR=QR=×=.由y=x2﹣x﹣2=y=(x﹣1)2﹣,得Q(1,﹣),∴1+=,+1=,R(,),∴平移后抛物线的函数表达式为y=(x﹣)2﹣,当x=0时,y=×()2=,∴E(0,).若以C、E、M、N为顶点的四边形是以CE为一边的矩形,则EN∥CM,EN=CM.当y=时,由x﹣2=,得x=,∴M(,),N(,﹣2);若以C、E、M、N为顶点的四边形是以CE为对角线的矩形,则EN∥CM,EN=CM.如图3,作NT⊥y轴于点T.∵EN∥BC,∴∠NET=∠ECM=∠BCO,∵∠NTE=∠EMC=∠BOC=90°,∴△NTE∽△EMC∽△BOC,∴EN=CM=CE=×(+2)=,∴TN=EN=×=,TE=EN=×=,∴OT==,∴N(,).综上所述,点N的坐标为(,﹣2)或(﹣,).2.如图1,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴交于点A(﹣2,0)、B(4,0),与y轴交于点C.(1)求抛物线的函数解析式;(2)点D是抛物线上一点,D点横坐标为3,连接AD,点P为AD上方抛物线上一点,连接P A,PD,请求出△P AD面积的最大值及此时点P的坐标;(3)如图2,将原抛物线y=ax2+bx+4沿x轴负半轴方向平移2个单位长度,得到新抛物线y1=a1x2+b1x+c1(a1≠0),新抛物线与原抛物线交于点M.点N是原抛物线对称轴上一点,在平面直角坐标系内是否存在点Q,使得以点A、M、N、Q为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由e【解答】解:(1)将A、B点的坐标代入抛物线y=ax2+bx+4中,得,解得,∴抛物线的解析式为y=﹣x2+x+4;(2)分别过点D、P作x轴的垂线,交x轴于E、F,如图1,∵点P为AD上方抛物线上一点,∴x的取值范围是﹣2<x<3,∵D、P都是抛物线上的点,设P(x,﹣x2+x+4),D点的横坐标为3,∴DE=﹣×32+3+4=,PF=﹣x2+x+4,∵S△P AD=S梯形PFED+S△APF﹣S△AED,即S△P AD=×[(PF+DE)×EF]+×AE×DE,∴S△P AD=×[(﹣x2+x+4+)×(3﹣x)]+×[x﹣(﹣2)]×(﹣x2+x+4)﹣×[3﹣(﹣2)]×,化简得S△P AD=﹣x2+x+,∵﹣<0,∴S△P AD有最大值,当x==时,S△P AD有最大值为,此时P(,);(3)存在,∵抛物线解析式y=﹣x2+x+4=﹣(x﹣1)2+,∴移动后的解析式为y=﹣(x﹣1+2)2+=﹣x2﹣x+4,∵二次函数前后图象交于M,∴﹣x2+x+4=﹣x2﹣x+4,解得x=0,∴M(0,4),∵抛物线移动前对称轴为x==1,点N是原对称轴上的一点,∴N点的横坐标为1;①若以点A、M、N、Q为顶点的四边形是矩形,当MN和AM为邻边时,则MN⊥AM,过点N作平行于x轴的直线交y轴于点T,如图2,在△AMO和△MNT中,,∴△AMO∽△MNT,∴=,∵AO=2,MO=4,NT=1,∴=,即=,∴MT=,∴点T的纵坐标为4﹣=,∴点N的坐标为(1,),根据矩形性质和平移法则,线段AM向右平移1,向下平移,得到对应线段QN,四边形AQNM构成矩形,∴点A向右平移1,向下平移,得到点Q,此时点Q的坐标为(﹣1,﹣),②若以点A、M、N、Q为顶点的四边形是矩形,当AN和AM为邻边时,则AN⊥AM,设原抛物线对称轴交x轴于G,如图3,在△AOM和△NGA中,,∴△AOM∽△NGA,∴=,∵AO=2,MO=4,AG=1﹣(﹣2)=3,∴=,即=,∴NG=3,同理点M向右平移3,向下平移,得到Q,∴此时点Q的坐标为(3,),综上,以点A、M、N、Q为顶点的四边形是矩形时点Q的坐标为(﹣1,﹣)或(3,).3.如图,已知抛物线y=ax2+bx+2的图象与x轴交于A,B两点,与y轴交于点C.﹣1,3是关于x的一元二次方程ax2+bx+2=0的两个根.(1)求该抛物线的解析式;(2)过点A作AD∥BC交抛物线于点D,AD与y轴交于点E,P为直线BC上方抛物线上的一个动点,连接P A交BC于点F,求S△PEF的最大值及此时点P的坐标;(3)在(2)的条件下,点M为抛物线上一动点,在平面内找一点N,是否存在以点A,M,N,P为顶点的四边形是以P A为边的矩形?若存在,请直接写出点N的坐标,若不存在,请说明理由.【解答】解:(1)∵﹣1,3是关于x的一元二次方程ax2+bx+2=0的两个根,∴,解得,∴该抛物线的解析式为y=x2+x+2.(2)如图1,作PH⊥x轴,交AD于点H,作PG⊥AD于点G,作BK⊥AD于点K.当y=0时,x1=﹣1,x2=3,则A(﹣1,0)、B(3,0);当x=0时,y=2,则C(0,2).设直线BC的解析式为y=kx+2,则3k+2=0,解得k=,∴y=x+2;设直线AD的解析式为y=x+c,则+c=0,解得c=,∴y=x,E(0,),∵OA=1,OE=,∠AOE=90°,∴AE==,∴OE:OA:AE=2:3:.∴BK=AB•sin∠OAE=(3+1)×=,∴S△AEF=××=,设P(x,x2+x+2),则H(x,x),∴PH=x2+x+2+x+=x2+2x+,∵PH∥y轴,∴∠PHG=∠AEO,∴PG=PH•sin∠AEO=(x2+2x+),∴S△PEF=××(x2+2x+)=x2+x=(x)2+,∴当x=时,S△PEF的面积最大,最大值为,此时P(,).(3)存在.如图2,设直线AP交y轴于点R,直线AM交y轴于点Q,直线AP的解析式为y=px+q,由(1)得P(,),则,解得,∴y=x+1,R(0,1),OA=OR=1.当矩形AMNP以AP、AM为邻边时,则∠RAQ=90°,PN∥AM,MN∥AP.∵∠OAR=∠ORA=45°,∠AOR=∠AOQ=90°,∴∠OAQ=∠OQA=45°,∴OQ=OA=1,Q(0,﹣1);设直线AM的解析式为y=mx﹣1,则﹣m﹣1=0,解得m=﹣1,∴y=﹣x﹣1;设直线PN的解析式为y=﹣x+n,则+n=,解得n=4,∴y=﹣x+4.由,得,,∴M(,);设直线MN的解析式为y=x+r,则+r=,解得r=﹣10,∴y=x﹣10,由,得,∴N(7,﹣3);设PN交抛物线于另一点M′,作M′N′∥AP交AM于点N′.由,得,,∴M′(2,2),设直线M′N′的解析式为y=x+d,则2+d=2,解得d=0,∴y=x,由,得,当矩形AN′M′P以AP、PM′为邻边,则N′(,).综上所述,点N的坐标为(7,﹣3)或(,).4.如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A,B的坐标分别为(0,1),(﹣9,10),AC∥x轴.(1)求抛物线的解析式;(2)点P是直线AC下方抛物线上的动点,过点P且与y轴平行的直线l与直线AB交于点E,当四边形AECP的面积最大时,求点P的坐标;(3)点A关于x轴的对称点为A′,将该抛物线平移至其顶点与A′重合,得到一条新抛物线,平移后的抛物线与原抛物线相交于点M,点N为原抛物线对称轴上一点,在平面直角坐标系中是否存在一点D,但以点C,D,M,N为顶点的四边形为矩形,若存在,请直接写出点D的坐标,若不存在,请说明理由.【解答】解:(1)∵y=x2+bx+c经过A(0,1),B(﹣9,10),则,解得,故抛物线的解析式是y=x2+2x+1①;(2)设直线AB的解析式为y=mx+n,将A(0,1),B(﹣9,10)代入得:,解得,∴AB解析式为y=﹣x+1,由x2+2x+1=1解得x1=0,x2=﹣6,∴C(﹣6,1),AC=6,∵P在AC下方抛物线上,设P(t,t2+2t+1),∴﹣6<t<0∵过点P且与y轴平行的直线l与直线AB交于点E,∴E(t,﹣t+1),∴EP=(﹣t+1)﹣(t2+2t+1)=﹣t2﹣3t,而四边形AECP的面积S四边形AECP=S△EAC+S△P AC=AC•EF+AC•PF=AC•EP,∴S四边形AECP=×6×(﹣t2﹣3t)=﹣t2﹣9t=﹣(t+)2+,∵﹣6<﹣<0,∴t=﹣时,S四边形AECP最大值为:,此时t2+2t+1=×(﹣)2+2×(﹣)+1=﹣,∴P(﹣,﹣);(3)存在,理由:点A的坐标为(0,1),则点A′为(0,﹣1),则平移后的抛物线表达式为y=x2﹣1②,联立①②并解得,故点M的坐标为(﹣1,﹣),设点N的坐标为(﹣3,m),点D的坐标为(s,t),而点C的坐标为(﹣6,1),①当CM是矩形的边时,点C向右平移5个单位向下平移个单位得到点M,同样点N(D)向右平移5个单位向下平移个单位得到点D(N),且CD=MN(CN =DM),则或,解得或;故点D的坐标为(2,)或(﹣8,﹣5);②当CM是矩形对角线时,则CM的中点即为DN的中点,且CM=DN,∴,解得或,故点D的坐标为(﹣4,)或(﹣4,).综上,点D坐标为(2,)或(﹣8,﹣5)或(﹣4,)或(﹣4,).5.在平面直角坐标系xOy中,抛物线y=x2﹣2x﹣6与x轴交于点A、B(点A在点B左侧),与y轴交于点C,顶点为点D.(1)求点B、D的坐标;(2)如图1,点P在直线BD下方抛物线上运动(不含端点B、D),记△PCB的面积为S1,记△PDB的面积为S2,求2S1﹣S2的最大值及此时点P的坐标;(3)如图2,将该抛物线沿直线DB平移,设平移后的新抛物线的顶点为D'(D'与D不重合),新抛物线与直线DB的另一个交点为点E,在平面直角坐标系中是否存在点F,使以点C、D'、E、F为顶点的四边形为矩形?若存在,直接写出点F的坐标;若不存在,请说明理由.【解答】解:(1)令x=0,则y=﹣6,∴C(0,﹣6),令y=0,则,解得x=﹣2或6,∴A(﹣2,0),B(6,0),∵,∴D(2,﹣8),即B(6,0),D(2,﹣8);(2)设直线BC为y=k1x﹣6,代入B点坐标得:0=6k1﹣6,解得k1=1,∴直线BC解析式为y=x﹣6,同理,直线BD解析式为y=2x﹣12,设P,过P作PM∥y轴交BC于M,交BD于N,如下图,则M(x,x﹣6),N(x,2x﹣12),∴PM=x﹣6﹣=,∴=,∴PN=2x﹣12﹣(x2−2x−6)=﹣x2+4x﹣6,同理S2=PN•(6−2)=2PN=2(﹣x2+4x﹣6)=﹣x2+8x+12,∴2S1﹣S2=﹣2x2+10x﹣12=,∵2<x<6,∴时,2S1﹣S2最大值为,此时P();(3)将抛物线沿BD方向平移,设D′(n,2n﹣12),∴平移后的抛物线为:,∵平移后的抛物线与直线BD交于点D′和点E,∴联立,化简得,x2﹣(2n+4)x+n2+4n=0,∴x D′+x E=2n+4,又x D′=n,∴x E=n+4,∴y E=2(n+4)﹣12=2n﹣4,∴E(n+4,2n﹣4),以C、D′、E、F为顶点构矩形,分以下三类:①当CD′为矩形CED′F的对角线时,,解得,∴F(﹣4,﹣14),∵CD′=EF,∴n2+(2n﹣6)2=(n+8)2+(2n+10)2,∴,符合题意,此时F(﹣4,﹣14),②当D′E为矩形CD′FE的对角线时,,解得,∴F(2n+4,4n﹣10),∵CF=D′E,∴(2n+4)2+(4n﹣4)2=42+82,∴或2,符合题意,此时F()或(8,﹣2),③当CE为矩形CD′EF的对角线时,设点F的坐标为(a,b),而点E、C、D′的坐标分别为(n+4,2n﹣4)、(0,﹣6)、(n,2n﹣12),由中点公式得,解得,故点F的坐标为(4,2);综上,点F的坐标为F(﹣4,﹣14)或()或(8,﹣2)或(4,2).6.如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c(a≠0)经过点A、E,点E的坐标是(5,3),抛物线交x轴于另一点C(6,0).(1)求抛物线的解析式.(2)设抛物线的顶点为D,连接BD,AD,CD,动点P在BD上以每秒2个单位长度的速度由点B向点D运动,同时动点Q在线段CA上以每秒3个单位长度的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒,PQ交线段AD于点H.①当∠DPH=∠CAD时,求t的值;②过点H作HM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N.在点P、Q的运动过程中,是否存在以点P,N,H,M为顶点的四边形是矩形?若存在,求出t的值;若不存在,请说明理由.【解答】解:(1)在直线y=﹣2x+4中,令x=0时,y=4,∴点B坐标(0,4),令y=0时,得:﹣2x+4=0,解得:x=2,∴点A(2,0),∵抛物线经过点A(2,0),C(6,0),E(5,3),∴可设抛物线解析式为y=a(x﹣2)(x﹣6),将E(5,3)代入,得:3=a(5﹣2)(5﹣6),解得:a=﹣1,∴抛物线解析式为:y=﹣(x﹣2)(x﹣6)=﹣x2+8x﹣12;(2)①∵抛物线解析式为:y=﹣x2+8x﹣12=﹣(x﹣4)2+4,∴顶点D(4,4),∵点B坐标(0,4),∴BD∥OC,BD=4,∵y=﹣x2+8x﹣12与x轴交于点A,点C,∴点C(6,0),点A(2,0),∴AC=4,∵点D(4,4),点C(6,0),点A(2,0),∴AD=CD=2,∴∠DAC=∠DCA,∵BD∥AC,∴∠DPH=∠PQA,且∠DPH=∠DAC,∴∠PQA=∠DAC,∴PQ∥DC,且BD∥AC,∴四边形PDCQ是平行四边形,∴PD=QC,∴4﹣2t=3t,∴t=;②存在以点P,N,H,M为顶点的四边形是矩形,此时t=1﹣.如图,若点N在AB上时,即0≤t≤1,∵BD∥OC,∴∠DBA=∠OAB,∵点B坐标(0,4),A(2,0),点D(4,4),∴AB=AD=2,OA=2,OB=4,∴∠ABD=∠ADB,∴tan∠OAB===tan∠DBA=,∴PN=2BP=4t,∴MH=PN=4t,∵tan∠ADB=tan∠ABD==2,∴MD=2t,∴DH==2t,∴AH=AD﹣DH=2﹣2t,∵BD∥OC,∴=,∴=,∴5t2﹣10t+4=0,∴t1=1+(舍去),t2=1﹣;若点N在AD上,即1<t≤,∵PN=MH,∴点E、N重合,此时以点P,N,H,M为顶点的矩形不存在,综上所述:当以点P,N,H,M为顶点的四边形是矩形时,t的值为1﹣.7.已知,二次函数y=﹣x2+x+2图象与x轴交于A、B两点,与y轴交于点C,连接AC、BC.(1)如图1,请判断△ABC的形状,并说明理由;(2)如图2,D为线段AB上一动点,作DP∥AC交抛物线于点P,过P作PE⊥x轴,垂足为E,交BC于点F,过F作FG⊥PE,交DP于G,连接CG,OG,求阴影部分面积S的最大值和D点坐标;(3)如图3,将抛物线沿射线AC方向移动个单位得到新的抛物线y'=ax2+bx+c(a ≠0),是否在新抛物线对称轴上存在点M,在坐标平面内存在点N,使得以C、B、M、N为顶点的四边形是以CB为边的矩形?若存在,请直接写出N点坐标;若不存在,请说明理由.【解答】解:(1)令x=0,则y=,∴,令y=0,则,解得:,∴,∴,在Rt△AOB中,AC2=OA2+OC2=15,同理,BC2=60,又AB=,∴AC2+BC2=AB2,∴∠ACB=90°,即△ABC为直角三角形;(2)设直线AC为,代入点A(,0)得,k1=2,∴直线AC为,同理,直线BC为,(2)∵PE⊥x轴,∴PE∥y轴,设P(m,),F(m,),∴,∵GF⊥PE,PE⊥x轴,∴GF∥x轴,∠GFP=90°,∵AC∥PD,∴∠CAO=∠PDE=∠PGF,又∠AOC=∠GFP=90°,∴△AOC∽△GFP,∴,∴GF=,∵,∴,∴当PF最大时,S阴取得最大值,∵=,又,∴当m=时,PF最大值为,S阴最大值为3,∴P(),∵PD∥AC,∴可设直线PD为y=2x+b,代入点P,得b=,∴直线PD为:,令y=0,解得x=,∴,此时S阴最大值为3;(3)存在这样的点M,使以C、B、M、N为顶点的四边形为矩形,∵,∴当抛物线沿射线AC方向平移个单位,可以分解为水平向右平移个单位,竖直向上平移3个单位,∵y=,∴平移后得抛物线为:,∴对称轴为直线,①当∠MCB=90°,MB为对角线,构成矩形MCBN时,如图1,过M作MQ⊥y轴于Q点,∴∠MCQ+∠OCB=90°,又∠OBC+∠OCB=90°,∴∠MCQ=∠OBC,∴tan∠MCQ=tan∠OBC=,∴,又MQ=,∴,∴,由坐标与平移关系可得,N(),②当∠CBM=90°,CM为对角线,构成矩形BCNM时,如图2,∵∠CBO+∠OBM=90°,∠BMQ+∠OBM=90°,∴∠BMQ=∠CBO,∴tan∠BMQ=tan∠CBO,∴,∵,∴,∴,由坐标与平移关系可得,N(),综上所述,N为()或().8.如图,抛物线y=ax2+bx+c的图象交x轴于A(﹣3,0)、B两点,顶点为点C(﹣1,﹣2),连接BC.(1)求抛物线的解析式;(2)如图1,作∠ABC的角平分线BE,交对称轴于交点D,交抛物线于点E,求DE的长;(3)如图2,在(2)的条件下,点F是线段BC上的一动点(点F不与点和点B重合,连接DF,将△BDF沿DF折叠,点B的对应点为点B1,△DFB1与△BDC的重叠部分为△DFG,请探究,在坐标平面内是否存在一点H,使以点D、F、G、H为顶点的四边形是矩形?若存在,请求出点H的坐标,若不存在,请说明理由.【解答】解:(1)∵抛物线的顶点C(﹣1,﹣2),∴可以假设抛物线的解析式为y=a(x+1)2﹣2,把A(﹣3,0)代入可得a=,∴抛物线的解析式为y=(x+1)2﹣2=x2+x﹣.(2)如图1中,设抛物线的对称轴交x轴于F(﹣1,0).由题意,BF=2,CF=2,∴tan∠CBF==,∴∠CBF=60°,∵BE平分∠ABC,∴∠ABE=∠ABC=30°,∴DF=BF•tan30°=,∴D(﹣1,﹣),∴直线BD的解析式为y=x﹣,由,解得,或,∴E(﹣,﹣),∴DE==.(3)如图2﹣1中,当∠DGF=90°时,点H在第三象限,此时CG=GB,G(0,﹣),F(,﹣),利用平移的性质可得H(﹣,﹣).如图2﹣2中,当∠DFC=90°时,点H在第三象限,此时CF=FB,点C,G,B′共点,F(0,﹣),利用平移的性质可得H(﹣2,﹣).如图2﹣3中,当∠DGF=90°,点H在第三象限,此时G(﹣1,),F(﹣,﹣),利用平移的性质可得H(﹣,﹣),综上所述,满足条件的点H的坐标为(﹣,﹣)或(﹣2,﹣)或(﹣,﹣).9.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)交x轴于A(﹣1,0),B(4,0),交y轴于点C.(1)求该抛物线解析式;(2)点P为第四象限内抛物线上一点,连接PB,过C作CQ∥BP交x轴于点Q,连接PQ,求△PBQ面积的最大值及此时点P的坐标;(3)在(2)的条件下,将抛物线y=ax2+bx﹣2(a≠0)向右平移经过点Q,得到新抛物线y=a1x2+b1x+c1(a1≠0),点E在新抛物线的对称轴上,是否存在平面内一点F,使得A,P,E,F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx﹣2(a≠0)交x轴于A(﹣1,0),B(4,0),∴,解得,∴抛物线的解析式为y=x2﹣x﹣2.(2)如图,连接BC,OP,设P(m,m2﹣m﹣2).∵CQ∥PB,∴S△PBQ=S△PBC=S△POC+S△POB﹣S△OBC=×2×m+×4×(﹣m2+m+2)﹣×2×4=﹣m2+4m=﹣(m﹣2)2+4,∵﹣1<0,∴m=2时,△PBQ的面积的最大值为4,∴P(2,﹣3).(3)存在.理由:如图2中,过点P作PH⊥AB于H,过点P作新抛物线的对称轴l的垂线垂足为J,设直线l与x轴的交点为T,过点A作AE⊥AP交新抛物线的对称轴于E′,可得矩形AE′F′P.∵P(2,﹣3),B(4,0),∴直线PB的解析式为y=x﹣6,∵CQ∥PB,∴CQ的解析式为y=x﹣2,∴Q(,0),∴AQ=1+=,∴平移后的抛物线的对称轴x=,∴AT=,∵PH⊥AH,AH=PH=3,∴∠HAP=∠APH=45°,∴AT=TE′=,∴E′(,),∵P A=E′F′,P A∥E′F′,∴点E′向右平移3个单位,向下平移3个单位得到F′,∴F′(,),过点P作PE⊥P A,交直线l于E,可得矩形APEF,过点P作PJ⊥直线l于J,同法可得,PJ=EJ=,∴E(,﹣),∵P A=EF,P A∥EF,∴点E向左平移3个单位,向上平移3个单位得到F,∴F(,).综上所述,满足条件的点F的坐标为(,)或(,).10.如图,在平面直角坐标系中,抛物线交x轴于点A和点B(点A在原点的左侧,点B在原点的右侧),点A的坐标为(﹣3,0),点B的坐标为(1,0),交y轴于点C.(1)求该抛物线的解析式;(2)已知点P为抛物线上一点,直线PC与x轴交于点Q.使得PQ=CQ.求点P坐标;(3)若点M是抛物线对称轴上一点,点N是平面内一点,是否存在以A,C,M,N为顶点的矩形?若存在,请直接写出N点的坐标;若不存在,请说明理由.【解答】解:(1)抛物线交x轴于A(﹣3,0),B(1,0),∴,解得,∴抛物线解析式为;(2)∵点P为抛物线上一点,∴设P(m,﹣m2﹣m+4),如图1,作PH⊥x轴于H,∴PH∥OC,∴△QCO∽△QPH,∴,∴(﹣m2﹣m+4)=±,解得:m=﹣或﹣或,∴P点坐标(﹣,5)或(﹣,5)或(,﹣5)或(,﹣5);(3)∵抛物线y=﹣x2﹣x+4的对称轴为x=﹣1,设点M的坐标为(﹣1,m),∵点A的坐标为(﹣3,0),点C的坐标为(0,4),∴AM==,同理可得:AC=5,CM=,分AC为边或AC为对角线两种情况考虑:①当AC为边时,有AC2+AM2=CM2或AC2+CM2=AM2,即25+m2+4=m2﹣8m+17或25+m2﹣8m+17=m2+4,解得:m=﹣或,∴点M的坐标为(﹣1,﹣)或(﹣1,);如图2,过M作y轴的垂线交于点H,过点N作x轴的垂线交于点G,由题意得:四边形NACM为矩形,则AN=CM,∵∠MCH=∠BAM′=∠ANG,∠NGA=∠CHM=90°,∴△AGN≌△MHC(AAS),∴NG=HC=﹣4=,AG=MH=1,∴点N的坐标为(﹣4,),同理可得,点N′的坐标为(2,),由全等三角形的性质得,N点的坐标为(﹣4,)或(2,);②当AC为对角线时,有AM2+CM2=AC2,即m2+4+m2﹣8m+17=25,解得:m=2+或2﹣,∴点M的坐标为(﹣1,2+)或(﹣1,2﹣).如图3,分别过M或N作y轴或x轴的垂线,由全等三角形的性质,同理可得:N点的坐标为(﹣2,2﹣)或(﹣2,2+),综上所述:存在以A、C、M、N为顶点的矩形,点N的坐标为:(2,)或(﹣4,)或(﹣2,2﹣)或(﹣2,2+).11.如图,已知抛物线y=ax2+bx+c与x轴交于A(1,0)、B(﹣5,0)两点,与y轴交于点C(0,),点D为抛物线的顶点.(1)求抛物线的解析式;(2)如图1,过点D作DH⊥x轴于点H,若点P为抛物线上位于第二象限内且在对称轴左侧的一点,连接PD、PB,求四边形DHBP面积的最大值及此时点P的坐标;(3)如图2,点E在y轴负半轴上,点F是抛物线上一点,在抛物线对称轴上是否存在一点G,使得以点B、E、F、G为顶点的四边形为矩形,若存在,请直接写出点G的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+c与x轴交于A(1,0)、B(﹣5,0)两点,与y轴交于点C(0,),∴,∴,∴抛物线解析式为:y=﹣+,∴顶点坐标D为(﹣2,),(2)连接BD,过P作y轴平行线交BD于Q,∴S△HBP=S△BDH+S△BDP,△BDH的面积为定值,∴当△BDP面积最大时,四边形DHBP面积最大,∵DH⊥x轴,∴DH=y D=,BH=,∵B为(﹣5,0),D为(﹣2,),设直线BD为:y=kx+b,∴,∴,设P为(t,﹣),则Q为(t,),∴PQ=y P﹣y Q=﹣t2﹣t﹣,∵S△BDP=S△BPQ+S△DPQ===﹣,∴当t=﹣时,△BDP的面积最大,最大为,‘∴四边形DHBP面积最大为=,此时,点P为(﹣,),(3)∵抛物线对称轴为:x=﹣2,∴设点G(﹣2,m),又∵E在y轴负半轴上,F在抛物线上,∴设E(n,﹣n2﹣n+),∵B(﹣5,0),∴①当矩形以BG为对角线时,BE⊥EG,∴,∴,∴,∴此时G(﹣2,﹣),②当矩形以BE为对角线时,BG⊥EC,∴,∴,∴此时G(﹣2.﹣3),③当矩形以BF为对角线时BE⊥BG,∴,∴,∴或,∵e<0,∴e,∴,∴综上所述:G的坐标为(﹣2,)或(﹣2,﹣)或(﹣2,﹣3).12.如图,抛物线y=﹣x2+bx+c与直线AB相交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C,点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线的函数表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)在y轴上存在一点H,连接EH,HF,是否存在点E,以A,E,F,H为顶点的四边形是矩形?若存在,求出点E的坐标,若不存在,请说明理由.【解答】解:(1)根据题意,得,解得,∴y=﹣x2﹣2x+4;(2)设直线AB的函数表达式为y=mx+n,则,解得,∴y=2x+4,。

(完整word版)中考数学二次函数压轴题题型归纳(可编辑修改word版)

(完整word版)中考数学二次函数压轴题题型归纳(可编辑修改word版)

中考二次函数综合压轴题型归类一、常考点汇总1、两点间的距离公式: AB =2、中点坐标:线段 AB 的中点C 的坐标为:⎛ x A + x By A + y B ⎫, ⎪⎝22 ⎭直线 y = k 1 x + b 1 ( k 1 ≠ 0 )与 y = k 2 x + b 2 ( k 2 ≠ 0 )的位置关系:(1)两直线平行⇔ k 1 = k 2 且b 1 ≠ b 2(2)两直线相交⇔ k 1 ≠ k 2(3)两直线重合⇔ k 1 = k 2 且b 1 = b 23、一元二次方程有整数根问题,解题步骤如下:① 用∆ 和参数的其他要求确定参数的取值范围;(4) 两直线垂直⇔ k 1k 2 = -1② 解方程,求出方程的根;(两种形式:分式、二次根式)③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。

例:关于 x 的一元二次方程 x 2-2(m + 1)x + m 2=0 有两个整数根, m <5 且 m 为整数,求 m 的值。

4、二次函数与 x 轴的交点为整数点问题。

(方法同上)例:若抛物线 y = mx 2 + (3m +1)x + 3 与 x 轴交于两个不同的整数点,且 m 为正整数,试确定此抛物线的解析式。

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。

举例如下:已知关于 x 的方程 mx 2 - 3(m -1)x + 2m - 3 = 0 ( m 为实数),求证:无论 m 为何值,方程总有一个固定的根。

解:当 m = 0 时, x = 1;当 m ≠ 0 时, ∆ = (m - 3)2≥ 0 , x =2m综上所述:无论 m 为何值,方程总有一个固定的根是 1。

, x 1= 2 - 3 、 x m 2= 1 ;6、函数过固定点问题,举例如下:已知抛物线 y = x 2 - mx + m - 2 ( m 是常数),求证:不论 m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。

初中二次函数压轴题题型归纳及方法

初中二次函数压轴题题型归纳及方法

初中二次函数压轴题题型归纳及方法一、题型归纳初中二次函数压轴题主要包括以下几种类型:1. 求解二次方程,确定函数的零点2. 求解顶点坐标、对称轴及最值3. 判断函数的单调性和定义域、值域4. 与其他函数进行比较,确定大小关系5. 给定函数图像或部分信息,确定函数的表达式二、方法详解1. 求解二次方程,确定函数的零点求解二次方程可以使用因式分解法、配方法和公式法。

其中,因式分解法适用于形如x^2+bx+c=0的方程;配方法适用于形如ax^2+bx+c=0且a≠0的方程;公式法适用于所有形如ax^2+bx+c=0的方程。

求得二次方程的根后,即可得到函数的零点。

若根为实数,则该实数即为零点;若根为复数,则该函数无实零点。

2. 求解顶点坐标、对称轴及最值对于一般形如y=ax^2+bx+c(a≠0)的二次函数,其顶点坐标为(-b/2a,f(-b/2a)),其中f(x)=ax^2+bx+c。

对称轴为x=-b/2a,最值为f(-b/2a)。

若函数为y=a(x-h)^2+k的形式,则顶点坐标为(h,k),对称轴为x=h,最值为k。

3. 判断函数的单调性和定义域、值域对于一般形如y=ax^2+bx+c(a≠0)的二次函数,当a>0时,函数在顶点左侧单调递减,在顶点右侧单调递增;当a<0时,函数在顶点左侧单调递增,在顶点右侧单调递减。

定义域为实数集R,值域取决于a的符号。

4. 与其他函数进行比较,确定大小关系与线性函数比较:当x趋近正无穷时,二次函数增长速度大于线性函数;当x趋近负无穷时,二次函数增长速度小于线性函数。

因此,在x 轴正半轴上,二次函数与线性函数相交一次,并在该点处取得最小值(或最大值);在x轴负半轴上,则无交点。

与指数函数比较:当x趋近正无穷时,指数函数增长速度大于二次函数;当x趋近负无穷时,指数函数增长速度小于二次函数。

因此,在x 轴正半轴上,指数函数与二次函数相交一次,并在该点处取得最小值(或最大值);在x轴负半轴上,则无交点。

二次函数压轴题题型总结有答案

二次函数压轴题题型总结有答案

二次函数压轴题解题思路一、基本知识1会求解析式以及一些关键点的坐标如函数图像与坐标轴的交点、两函数图像的交点等;2.会利用函数性质和图像3.相关知识:如一次函数、反比例函数、点的坐标、方程;图形中的三角形、四边形、圆及平行线、垂直;一些方法:如相似、三角函数、解方程;一些转换:如轴对称、平移、旋转;二、典型例题:一、求解析式可参考一下部分试题的第一问;二、二次函数的相关应用第一类:面积问题例题. 2012莱芜如图,顶点坐标为2,﹣1的抛物线y=ax2+bx+ca≠0与y轴交于点C0,3,与x轴交于A、B两点.1求抛物线的表达式;抛物线的解析式:y=x﹣22﹣1=x2﹣4x+3.2设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;练习:1. 2014兰州如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A﹣1,0,C0,2. 1求抛物线的表达式;2在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形如果存在,直接写出P点的坐标;如果不存在,请说明理由;3点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大求出四边形CDBF的最大面积及此时E点的坐标.第二类:.构造问题1构造线段2014枣庄如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x 轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点不与点D重合.1求∠OBC的度数;2连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE =S四边形OCDB,求此时P点的坐标;3过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.2构造相似三角形2013莱芜如图,抛物线y=ax2+bx+ca≠0经过点A﹣3,0、B1,0、C﹣2,1,交y轴于点M.1求抛物线的表达式;2D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;3抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似若存在,求点P的坐标;若不存在,请说明理由.3构造平行四边形2014莱芜如图,过A1,0、B3,0作x轴的垂线,分别交直线y=4﹣x 于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点. 1求抛物线的表达式;2点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形若存在,求此时点M的横坐标;若不存在,请说明理由;3若△AOC沿CD方向平移点C在线段CD上,且不与点D重合,在平移的过程中△AOC 与△OBD重叠部分的面积记为S,试求S的最大值.x2+bx+c与y轴交于点C0,-4,与x轴4构造等腰三角形2013泰安如图,抛物线y=12交于点A,B,且B点的坐标为2,0 1求该抛物线的解析式.2若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.3若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.5构造直角三角形2014四川内江如图,抛物线y=ax2+bx+c经过A﹣、C0,4,点B在抛物线上,CB∥x轴,且AB平分∠CAO.1求抛物线的解析式;2线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;3抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形如果存在,求出点M的坐标;如果不存在,说明理由.6构造角相等2014娄底如图,抛物线y=x2+mx+m﹣1与x轴交于点Ax1,0,Bx2,0,x1<x2,与y轴交于点C0,c,且满足x12+x22+x1x2=7.1求抛物线的解析式;2在抛物线上能不能找到一点P,使∠POC=∠PCO若能,请求出点P 的坐标;若不能,请说明理由.7构造菱形2013枣庄如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为3,0,与y轴交于C0,-3点,点P是直线BC下方的抛物线上一动点.1求这个二次函数的表达式.2连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形若存在,请求出此时点P的坐标;若不存在,请说明理由.3当点P运动到什么位置时,四边形ABPC的面积最大求出此时P点的坐标和四边形ABPC的最大面积.8构造对称点11莱芜如图,在平面直角坐标系中,已知点A-2,-4,OB=2,抛物线y =ax2+bx+c经过点A、O、B三点.1求抛物线的函数表达式;2若点M是抛物线对称轴上一点,试求AM+OM的最小值;3在此抛物线上,是否存在点P ,使得以点P 与点O 、A 、B 为顶点的四边形是梯形.若存在,求点P 的坐标;若不存在,请说明理由.9构造平行线:2014山东烟台如图,在平面直角坐标系中,Rt △ABC 的顶点A ,C 分别在y 轴,x 轴上,∠ACB =90°,OA =,抛物线y =ax 2﹣ax ﹣a 经过点B 2,,与y 轴交于点D .1求抛物线的表达式;2点B 关于直线AC 的对称点是否在抛物线上请说明理由; 3延长BA 交抛物线于点E ,连接ED ,试说明ED ∥AC 的理由.10构造垂直:2014宜宾市如图,已知抛物线y = x 2+bx +c 的顶点坐标为M 0,–1,与x 轴交于A 、B 两点. 1求抛物线的解析式; 2判断△MAB 的形状,并说明理由; 3过原点的任意直线不与y 轴重合交抛物线于C 、D 两点,连结MC 、MD ,试判断MC 、MD 是否垂直,并说明理由.11构造圆2014年淄博如图,点A 与点B 的坐标分别是1,0,5,0,点P 是该直角坐标系内的一个动点.1使∠APB=30°的点P 有 个;2若点P 在y 轴上,且∠APB=30°,求满足条件的点P 的坐标;yxO MDCBA3当点P在y轴上移动时,∠APB是否有最大值若有,求点P的坐标,并说明此时∠APB 最大的理由;若没有,也请说明理由.参考答案:一、求解析式二、二次函数的相关应用第一类:面积问题2012莱芜解:1y=x﹣22﹣1=x2﹣4x+3.2S△ACD=ADCD=××2=2.32+,1﹣、2﹣,1+、1,2或4,﹣1.2014兰州解1y=﹣x2+x+2;2y=﹣x﹣2+,P 1,4,P2,,P3,﹣;3S四边形CDBF =S△BCD+S△CEF+S△BEF=﹣a﹣22+∴a=2时,S四边形CDBF的面积最大=,∴E2,19.第二类:.构造问题1构造线段2014枣庄1△OBC 为等腰直角三角形∠OBC=45°. 2P2,﹣3.3线段PF 长度=﹣x P 2+3x P =﹣x P ﹣2+,1<x P ≤3,当x P =时,线段PF 长度最大为.2构造相似三角形2013莱芜 1y=.2DF 的最大值为.此时D 的坐标为.3存在点P,使得以点P 、A 、N 为顶点的三角形与△MAO 相似.设Pm,.在Rt△MAO 中,AO=3MO,要使两个三角形相似,由题意可知,点P 不可能在第一象限.①设点P 在第二象限时,∵点P 不可能在直线MN 上,∴只能PN=3NM,故此时满足条件的点不存在.②当点P 在第三象限时,∵点P 不可能在直线MN 上,∴只能PN=3NM, P 的坐标为﹣8,﹣15. ③当点P 在第四象限时,若AN=3PN 时,此时点P 的坐标为2,﹣.若PN=3NA,此时点P 的坐标为10,﹣39.综上所述,满足条件的点P 的坐标为﹣8,﹣15、2,﹣、10,﹣39.3构造平行四边形 2014莱芜解:1y=﹣x 2+x .2存在. 或或.3∴S=S △OFQ ﹣S △OEP =OFFQ ﹣OEPG=1+t +t ﹣t t=﹣t ﹣12+当t=1时,S 有最大值为.∴S的最大值为.4构造等腰三角形PBE ABCSS=PBE S 12=x×4-1323x+835构造直角三角形2014四川内江 1y=﹣x 2+x+4.2当t=1时,PQ 取到最大值,最大值为. 3①当∠BAM=90°时,MH=11.M ,﹣11. ②当∠ABM=90°时,M ,9.综上所述:符合要求的点M 的坐标为,9和,﹣11.6构造角相等2014娄底解1依题意:x 1+x 2=﹣m,x 1x 2=m ﹣1,∵x 1+x 2+x 1x 2=7,∴x 1+x 22﹣x 1x 2=7,∴﹣m 2﹣m ﹣1=7,即m 2﹣m ﹣6=0,解得m 1=﹣2,m 2=3,∵c=m ﹣1<0,∴m=3不合题意∴m=﹣2抛物线的解析式是y=x 2﹣2x ﹣3;2能如图,设p 是抛物线上的一点,连接PO,PC,过点P 作y 轴的垂线,垂足为D .若∠POC=∠PCO 则PD 应是线段OC 的垂直平分线∵C 的坐标为0,﹣3∴D 的坐标为0,﹣∴P 的纵坐标应是﹣令x 2﹣2x ﹣3=,解得,x 1=,x 2=因此所求点P 的坐标是,﹣,,﹣7构造菱形2013枣庄 解:1.2此时P 点的坐标为,. 3 S 四边形ABPC =++==. 易知,当x=时,四边形ABPC 的面积最大.此时P 点坐标为,,四边形ABPC 的最大面积为. 8构造对称点11莱芜1212y x x =-+;2MO+MA 的最小值为42;3①若OB ∥AP P4,-4,则得梯形OAPB;②若OA ∥BP,点P 412--,,则得梯形OAPB;③若AB ∥OP,此时点P 不存在;综上所述,存在两点P4,-4或P 412--,使得以点P 与点O 、A 、B 为顶点的四边形是梯形;2=23y x x --2232-AOC S ∆POB S ∆POC S ∆239622x x -++23375()228x --+3232154-7589构造平行线:2014山东烟台解: y=x2﹣x﹣.2连接CD,过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°∵∠ACB=90°,∴∠ACO+∠BCF=90°,∴∠ACO=∠CBF,∵∠AOC=∠CFB=90°,∴△AOC∽△CFB,∴=,设OC=m,则CF=2﹣m,则有=,解得m=m=1,∴OC=OF=1,当x=0时y=﹣,∴OD=,∴BF=OD,∵∠DOC=∠BFC=90°,∴△OCD∽△FCB,∴DC=CB,∠OCD=∠FCB,∴点B、C、D在同一直线上,∴点B与点D关于直线AC对称,∴点B关于直线AC的对称点在抛物线上.3过点E作EG⊥y轴于点G,设直线AB的表达式为y=kx+b,则,解得k=﹣,∴y=﹣x+,代入抛物线的表达式﹣x+=x2﹣x﹣.解得x=2或x=﹣2,当x=﹣2时y=﹣x+=﹣×﹣2+=,∴点E的坐标为﹣2,,∵tan∠EDG===,∴∠EDG=30°∵tan∠OAC===,∴∠OAC=30°,∴∠OAC=∠EDG,∴ED∥AC.10构造垂直:2014宜宾市解:1y=x 2﹣1.2OA=OB=OC=1,∴AM=BM,∴△MAB 是等腰直角三角形.3=,即=解得m=﹣,∵==﹣n,==,∴=,∵∠CGM=∠MHD=90°,∴△CGM∽△MHD,∴∠CMG=∠MDH,∵∠MDH+∠DMH=90°∴∠CMG+∠DMH=90°,∴∠CMD=90°,即MC⊥MF. 11构造圆2014年淄博解:1∵抛物线y=﹣x 2+mx+n 经过A ﹣1,0,C0,2.解得:,∴抛物线的解析式为:y=﹣x 2+x+2;2∵y=﹣x 2+x+2,∴y=﹣x ﹣2+,∴抛物线的对称轴是x=.∴OD=.∵C0,2,∴OC=2.在Rt △OCD 中,由勾股定理,得CD=.∵△CDP 是以CD 为腰的等腰三角形, ∴CP 1=CP 2=CP 3=CD .作CH ⊥x 轴于H,∴HP 1=HD=2,∴DP 1=4.∴P 1,4,P 2,,P 3,﹣;3当y=0时,0=﹣x 2+x+2∴x 1=﹣1,x 2=4,∴B4,0.设直线BC 的解析式为y=kx+b,由图象,得,解得:,∴直线BC 的解析式为:y=﹣x+2.如图2,过点C 作CM ⊥EF 于M,设Ea,﹣a+2,Fa,﹣a 2+a+2,∴EF=﹣a 2+a+2﹣﹣a+2=﹣a 2+2a0≤x≤4.∵S 四边形CDBF =S △BCD +S △CEF +S △BEF =BDOC+EFCM+EFBN,=+a ﹣a 2+2a+4﹣a ﹣a 2+2a,=﹣a 2+4a+0≤x≤4.=﹣a ﹣22+∴a=2时,S 四边形CDBF 的面积最大=,∴E2,1.。

(word完整版)二次函数中考压轴题题型汇总讲义

(word完整版)二次函数中考压轴题题型汇总讲义

二次函数压轴题命题规律总结:二次函数压轴题是近10年必考题型,考查题位均在第23题,分值均为11分:其中7次是二次函数与一次函数、几何图形的综合题,3次是二次函数单独与几何图形的综合题,且涉及的图形多为三角形和特殊四边形,未涉及到圆;考查类型有:线段问题、面积问题,等腰三角形问题,直角三角形问题,平行四边形问题,三角形相似问题和角度问题,除2017、2012、2011和2009年是两问,且第二问里有两小问,其他年份均为3问;第一小问多以待定系数法求二次函数解析式;线段问题包括线段的数量关系,线段长的关系式及最值和周长的关系式及最值;面积问题包括三角形面积的关系式及最值;此类题题目多涉及数形结合和分类讨论思想。

类型一 线 段 问 题●典例精析◇例题1◇.如图,抛物线y=21x 2-bx +c 与直线l :y=43x -1交与A (4, 2)、B (0,-1)。

(1)求抛物线的解析式;(2)点D 为直线l 下方的抛物线上的动点,过点D 作DE ∥y 轴交l于点E,作DF⊥l于点F,设点D的横坐标为t。

①用含t的代数式表示DE的长②求DE的最大值,DF的最大值③设RT△DEF的周长为p,求p与t的函数关系式,并求出p的最大值及此时点D的坐标。

总结:1.用点坐标表示线段长度:先在图中找到对应线段,分清已知点和未知点,再联系二次函数和一次函数,设出未知点坐标,使其只含有一个未知数;继而表示出线段长度,如果该线段与坐标轴平行则利用横纵坐标相加减确定,如果与坐标轴不平行的话,先转化到有边与坐标轴平行的三角形中,再利用勾股定理、锐角三角函数或者三角形相似确定。

2.一条线段的最值问题,根据前面所得的点坐标表示线段长度,通过运用配方法或运用二次函数的性质求最值,从而得到线段的最值。

3.线段数量关系问题:根据前面所得的用点坐标表示线段长度,结合题干列出满足线段数量关系的方程,解方程即可。

4.两条线段和的最小值问题:解决这类问题最基本的定理就是“两点之间线段最短”,最常见的图形就是“将军饮马模型”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档