随钻测井介绍
随钻测井介绍-图文
![随钻测井介绍-图文](https://img.taocdn.com/s3/m/db03d04d32687e21af45b307e87101f69e31fb07.png)
随钻测井介绍-图文2022-9-1摘要:随钻测井由于是实时测量,地层暴露时间短,其测量的信息比电缆测井更接近原始条件下的地层,不但可以为钻井提供精确的地质导向功能,而且可以避免电缆测井在油气识别中受钻井液侵入影响的错误,获取正确的储层地球物理参数和准确的孔隙度、饱和度等评价参数,在油气层评价中有非常独特的作用。
通过随钻测井实例,对随钻测井与电缆测井在碎屑岩中的测井效果进行了对比评价,指出前者受钻井液侵入和井眼变化的影响小,对油气层的描述更加准确,反映出来的地质信患更加丰富。
通过对几个代表性实例的分析,对随钻测井在油气勘探中的作用提出了新认识。
主题词:随钻测井;钻井;钻井液;侵入深度;技术一、引言LWD随钻记录的中子—密度(μN-ρb)与电缆测井值存在一定的系统误差(不同厂商的仪器均存在差别)。
但LWD的ρb测井值由于少受扩径的影响,其岩性值域区间远比后者清晰(图1-b、c,图2)。
三、实例分析LWD随钻测量的电阻率是在钻头破岩后1~2h开始测量(中等硬度的碎屑岩),此时的井壁破损率和钻井液径向侵入都非常小,所以,基本是“原状”地层的测井值。
1.实例一D井是一口直井(图3),为欠平衡钻井,CWR的测量点距钻头5.1in,钻速4m/h,钻头破岩后1.25h就可以记录到地层的电阻率,图中实时记录的所有4条电阻率曲线,不同岩性参数处均为重合状,说明地层几乎未被钻井液侵入。
起钻时,又进行重复测量(破岩42h之后),除泥岩段外,所有砂质岩层都受到了增阻侵入的影响。
但R55A并未发生变化,据计算,此时侵入深度达55in。
2.实例二B井是一口定向井的导眼段(近似直井,图2),该段使用了LWD,上部的砂岩段中实时记录的电阻率基本为水层特征(负差异或重合),泥岩段4条曲线则完全重合。
但顶部某740.5~某742.0m电阻率呈正差异(R55A>R25A),R55A=1.3Ω2m,为油层特征。
该井完井后,此段地层已浸泡了24d,这时又进行了电缆测井(双感应、中子、密度、自然伽马、井径等)。
随钻电磁波电阻率测井(EWR)基础知识
![随钻电磁波电阻率测井(EWR)基础知识](https://img.taocdn.com/s3/m/da266f97f46527d3250ce0a8.png)
随钻电磁波电阻率测量技术一、引言提高服务质量,降低服务成本是工程技术服务努力追求的目标。
随钻测井相对于电缆测井具有多方面的优势:一是随钻测井资料是在泥浆滤液侵入地层之前或侵入很浅时测得的,能够更真实地反映原状地层的地质特征,提高地层评价精度;二是随钻测井在钻井的同时完成测井作业,减少了井场钻机占用时间,从钻井一测井一体化服务的整体上节省成本;三是在某些大斜度井或特殊地质环境(如膨胀粘土或高压地层)钻井时,电缆测井困难或风险大以致不能进行作业时,随钻测井是唯一可用的测井技术。
因此,随钻测井既提高了地层评价测井数据的质量,又减少了钻井时间,降低了成本。
(一)、随钻测井技术发展现代随钻测井技术大致可分为三代:90年代初以前属于第一代,提供基本的方位测量和地层评价测量,在水平井和大斜度井用作“保险”测井数据。
但其主要应用是在井眼附近进行地层和构造相关对比,以及地层评价。
随钻测井确保能采集到在确定产能和经济性、减少钻井风险时所需要的测井数据。
90年代初和中期属于第二代,方位测量、井眼成像、自动导向马达及正演模拟软件相继推出,通过地质导向精确地确定井眼轨迹。
司钻能用实时方位测量,并结合井眼成像、地层倾角和密度数据,发现目标位置。
这些进展导致了多种类型的井,尤其是大斜度井、超长井和水平井的钻井取得很高的成功率。
从90年代中期到目前属于第三代,称为钻井测井(Logging for Drilling),提供界定地质环境、钻井过程、采集实时信息时所要求的数据。
表1 随钻测井技术发展(二)、随钻测井的一般知识1、随钻测量MWD包括井眼几何形状(井眼尺寸、井斜、方位等)的测量,与钻井工程相关的工程参数(钻压、钻具扭矩、井眼压力、转速、环空压力等钻井参数)的测量,以及对自然伽马、电阻率的测量。
主要是测量工程数据,并具有单一性。
2、随钻测井LWD在随钻测量MWD的基础上,增加了识别岩性和孔隙性、判识储层的方法如中子、密度等,能对储层做出基本的评价。
随钻测井介绍 ppt课件
![随钻测井介绍 ppt课件](https://img.taocdn.com/s3/m/7360221ca45177232f60a2c5.png)
仪器系列
MWD仪器系列: 一、无线随钻测量仪 技术名称:CGMWD-1型无线随钻测量仪 仪器功能介绍:CGMWD-1型无线随钻测量仪是随钻测井 中心为CGDS-1型地质导向系统配套生产的MWD随钻测 量仪器,除进行地质导向钻井服务外,还可挂接其他测井 仪器短节,或单独用于MWD随钻测量。CGMWD-1型无 线随钻测量仪不仅测量精度高,而且硬件、软件具有拓展 性;安装使用方便、工作性能稳定、耗电低、可靠性高。 仪器组成:地面仪器 井下仪器 仪器主要特点:
3
1、开放式结构,可直接挂接伽马仪器或其它测井 仪器短节 2、电路模块化组装,维护、检修方便 3、正脉冲型泥浆脉冲信号传输,传输速率高,可选 脉宽0.2s~2s 4、泥浆脉冲发生器功耗低,电池使用寿命长,经济 性好 5、仪器串在钻铤中采用上悬挂式,可靠性高 仪器主要技术指标: 地面仪器: 贮存温度: -20℃~+60℃ 最高工作温度:60℃ 相对湿度RH:<75%
7
CGMWD-1井下系统
8
二、伽马随钻测井仪 技术名称: CGR伽马随钻测井仪 仪器功能介绍: CGR随钻伽马测井仪可对原状地层放射性
强度进行实时测量,仪器在CPU控制下进行数据采集控制 和处理,同时对采集的伽马数据进行存储,通过配接 MWD随钻仪器向地面实时传送地层参数。测井仪采用开 放式数据接口,可配接各种随钻仪器。仪器内部模块化结 构,便于维护。 仪器主要特点: 1、低功耗、稳定可靠,适合于井下长时间工作 2、采用模块化结构,安装方便、维护简单,易于其他仪 器组合
1
2006年10月, 中国石油集团测井有限公司与中国石油 集团钻井工程技术研究院结成战略联盟,成立了以随钻测 井仪中心为主的中国石油集团钻井工程技术研究院随钻仪 器制造中心。中心得到了钻井工程技术研究院的技术注入 和强有力的支持,通过强强联合,共同研制生产具有自主 知识产权的随钻仪器系统。
随钻测量
![随钻测量](https://img.taocdn.com/s3/m/63fdca10c281e53a5802ffbf.png)
这种系统有几个优点:
(1)数据传输速度快,载波信息量大;
(2)受泥浆介质和水泵特性的影响小,即使在提下钻过程中也能检测数据。
(1)电传导(硬导线系统)
(2)电磁发射;
(3)地震(声)波;
(4)钻井液压力脉冲。
直到1960年,这些遥测系统的研究主要是为了随钻测井。定向井的日益增加,特别是花费高昂的近海地区,刺激了人们去开发既能处理定向测量数据又能处理地层评价数据的随钻测量系统。由于在海上平台中利用传统测量工具费用很高,人们不久就认识到使用定向随钻测量仪器更具有商业潜力。起初的MWD系统就只提供定向数据,紧接着就有了可以附加测量钻井参数和地层数据的另外—些工具。尽管有关其它3种遥测方法的研究还在继续着,但迄今为止却只有这些依靠钻井液压力脉冲的MWD系统在技术上和经济上是成熟的。
第二节
信号发射器和地面的信号接收、处理设备一起构成了钻井液压力脉冲式MWD信号传输系统。现有的钻井液脉冲传输系统的主要区别是采用哪种处理方法来传送数据。目前使用的钻井液压力脉冲式MWD主要采用三种方式在井底将数据编码、信号传输和在地面上译码,这三种钻井液脉冲传输方式井内仪器执行元件控制。
(1)坚固可靠的传感器,可在钻进动态条件下在钻头处或钻头附近测量需要的数据;
(2)将资料传送到地面的方法简单有效;
(3)可以方便地在任何钻机上安装并操作的系统,对正常钻进作业影响不大;
(4)成本合理,并能给作业者带来效益。
为开发满足这些要求的系统,人们作过多次尝试。主要问题是井下和地面之间的遥测传输系统。从1930年到1960年,人们研究了4种不同的遥测系统:
随钻测井
![随钻测井](https://img.taocdn.com/s3/m/933a3a375901020206409c0b.png)
以下是地质导向钻井中使用的典型的井底组合和钻 柱组合:钻头 + 地质导向系统(测传马达,近钻头 电阻率,咖玛和井斜,发射至接受端节)+ 地质导 向工具接受端节(用于接受来自导向系统的据, LWD测井质量,电阻率和咖玛数据)+ MWD测斜仪 (测量的心脏,供电测斜和数据传输)+ 无磁钻铤 (是为把MWD的位误差减至最小或安装LWD的中 子空隙度仪器)+ 钻杆。
正脉冲原理
随钻测井优势
1、井况复杂情况下完成测井资料采集任务; 2、更及时、更真实的测井,降低测井资料受泥浆侵入和井 壁破坏的影响,更能反映原状地层特性,有利油气发现;
3、精确地质导向,提高油气采收率,同时提高水平井钻井
效率,降低费用; 4、多次推移测井,有利识别油气层和渗透率分析; 5、实时监测、分析井内异常,避免井控事故,降低损失; 6、安全可靠性更强,适应各种恶劣作业环境。
谢谢!
不足之处望领导批评指正!
水平井成功钻进的基础是LWD数据和MWD方向数据。 LWD工具提供能评价井眼所钻地层的信息。这些数据 决定如何改井眼的方向使之达到所希望的目标。这种 方法就是所说的“地质导向”(geosteering)。 地质导向技术包括可靠的导向系统(MWD)、改进 的新型地层物理测量、测井数据模型,近钻头传感器 和测传马达,以及具有三维地震方法处理的详细的构 造图。
一、随钻技术简介
二、MWD介绍
三、其他
一、随钻技术简介 MWD 无线随钻测斜仪是在有线随钻测斜仪的基础 上发展起来的一种新型的随钻测量仪器。它与有线 随钻测斜仪的主要区别在于井下测量数据以无线方 式传输。无线MWD按传输通道分为泥浆脉冲、电 磁波、声波和光纤四种方式。其中泥浆脉冲和电磁 波方式已经应用到生产实践中,以泥浆脉冲式使用 最为广泛。
随钻测井发展历程
![随钻测井发展历程](https://img.taocdn.com/s3/m/81ce05ff970590c69ec3d5bbfd0a79563d1ed477.png)
随钻测井发展历程
随钻测井(Logging While Drilling,简称LWD)是一种在钻
井过程中进行地质测井的技术。
随钻测井的发展历程可以追溯到20世纪70年代。
起初,随钻测井技术仅限于测量钻井液的物理性质,例如密度和粘度等。
然而,随着技术的不断发展,越来越多的参数开始被测量和记录。
这些参数包括地层电阻率、自然伽马射线、声波速度、放射性测量等。
到了1980年代,随钻测井技术的应用范围得到了进一步的扩展。
开发出了可以测量地层电阻率和自然伽马射线的测井工具。
这使得随钻测井可以提供更详细的地质信息,进一步帮助油田开发和生产。
20世纪90年代,随钻测井技术取得了重大突破。
引入了三维
成像技术和声波测量技术。
通过这些技术,可以获取到更准确的地层图像和更精确的井壁测量数据。
进入21世纪,随钻测井技术又取得了新的进展。
利用高性能
计算机和互联网技术,可以实时传输测井数据,并进行实时解释和分析。
这使得随钻测井成为了一个非常重要的勘探工具,为油气勘探和生产提供了更准确、更及时的地质信息。
此外,近年来还涌现出了一些新兴的随钻测井技术,例如电磁测量、核磁共振测量等。
这些新技术的应用进一步拓宽了随钻测井的应用领域,并提供了更全面的地质信息。
总的来说,随钻测井技术作为一种在钻井过程中进行地质测井的技术,经过了几十年的发展,从最初仅能测量钻井液的物理性质,到现在可以提供详细的地质信息。
随钻测井技术的不断创新和发展,为油气勘探和生产提供了更准确、更及时的地质数据支持。
《随钻测井》PPT课件
![《随钻测井》PPT课件](https://img.taocdn.com/s3/m/6c8ac9fdf18583d0486459ac.png)
和水 常层 规井 应测段 对井的 比孔随 隙钻 度测 响井
39
和扩 常径 规井 应测段 对井的 比孔随 隙钻 度测 响井
40
5.随钻测井尚待解决的技 术问题
41
随钻测井数据采集 目前存在如下一些尚待解决的技术问题
①传输率(目前最高为12bps,且误码率较高,约1/500)不适应越来 越高的数据采样率的要求,例如高分辨率成像测井、全波测井、高分 辨率电阻率(感应、侧向)测井等;也不适应越来越快的钻速的要求, 因为受目前传输率的限制随钻测井在高钻速情况下垂向分辨率变测井的复杂响应。 目前,海上油田的薄砂岩储层正在得到广泛开发。这些开发中大多数井都 是大斜度井和水平井,一般是采用随钻测井(LWD)进行数据采集。在大斜 度井中,当采用2MHz仪器进行测井时,这些储层显示出明显的电阻率各向异 性。对测井资料进行反演可计算出水平电阻率Rh和垂直电阻率Rv。然而,如 果侵入很深,可能观察不到各向异性的影响。此外,若要对Rv进行准确的反 演必须有相对倾角方面的资料。但是,即便有了准确的Rh和Rv估算值,仍然 存在这样一个问题:“应该使用哪个电阻率来计算油气储量?” 首先采用三维模拟建立侵入条件,在这些条件下可以可靠地使用Rh和Rv估 算值。由LWD仪器得到的密度图象为计算相对倾角提供了一种手段,该相对 倾角可用作Rh—Rv转换的输入值。 常规方法仅采用Rh确定Sw,但需要知道准确的Vsh和Swirr。方法是利用Rh、 Rv和泥岩夹层电阻率来得到纯净砂岩层的电阻率及有效厚度/总厚度的比值。 通过文中给出的Rh—Rv通用图版,可以快速直观确定薄砂层产层,并估算石 44 油储量。
34
在随
水钻
层测
的 电
井
井 和
阻常
率规
响测
随钻测井
![随钻测井](https://img.taocdn.com/s3/m/6cd0422dcc17552707220852.png)
内容摘要摘要:随钻测井是在钻开地层的同时实时测量地层信息的一种测井技术,自1989年成功投入商业应用以来得到了快速的发展,目前已具备了与电缆测井对应的所有技术,包括比较完善的电、声、核测井系列以及随钻核磁共振测井、随钻地层压力测量和随钻地震等技术,随钻测井已成为油田工程技术服务的主体技术之一。
随钻测井(LWD)技术的萌芽只比电缆测井晚10年。
由于基础工业整体水平的制约,随钻测井技术在前50多年发展缓慢。
其业务收入和工作量快速增长。
勘探开发生产的需要仍是随钻测井继续发展的强劲动力。
作为一种较新的测井方法,随钻测井技术仍有许多有待发展和完善的方面,尤其是数据传输技术、探测器性能、资料解释和评价等。
关键词:随钻测井 LWD 研究进展第一章随钻测井技术现状迄今为止,随钻测井能提供地层评价需要的所有测量,如比较完整的随钻电、声、核测井系列,随钻地层压力、随钻核磁共振测井以及随钻地震等等。
有些LWD 探头的测量质量已经达到或超过同类电缆测井仪器的水平。
1.1随钻测井数据传输技术多年来,数据传输是制约随钻测井技术发展的“瓶颈”。
泥浆脉冲遥测是当前随钻测量和随钻测井系统普遍使用的一种数据传输方式。
泥浆脉冲遥测技术数据传输速率较低,为4~10 bit/s,远低于电缆测井的传输速率,这种方法不适合欠平衡水平井钻井。
电磁波传输数据的方法也用于现场测井,但仅在较浅的井使用才有效。
哈里伯顿公司的电磁波传输使用的频率为10Hz,在无中继器的情况下传输距离约10000 ft。
此外,声波传输和光纤传输方法还处于研究和实验阶段。
1.2随钻电阻率测井与电缆测井技术一样,随钻电阻率测井技术也分为侧向类和感应类2类。
侧向类适合于在导电泥浆、高电阻率地层和高电阻率侵入的环境使用,目前的侧向类随钻电阻率测井仪器能商业化的只有斯伦贝谢公司的钻头电阻率仪RAB及新一代仪器GVR。
GVR使用56个方位数据点进行成像,图像分辨率比RAB有较大提高。
随钻测井
![随钻测井](https://img.taocdn.com/s3/m/63e91c986bec0975f465e2bc.png)
随钻测井一、随钻测井的引入在油气田勘探、开发过程中,钻井之后必须进行测井,以便了解地层的含油气情况。
一般来说,测井资料的获取总是在钻井完工之后,再用电缆将仪器放入井中进行测量. 遇到的问题:1、某些情况下,如井的斜度超过65 度的大斜度井甚至水平井,用电缆很难将仪器放下去2、井壁状况不好易发生坍塌或堵塞3、钻完之后再测井,地层的各种参数与刚钻开地层时有所差别.(由于钻井过程中要用钻井液循环,带出钻碎的岩屑,钻井液滤液总要侵入地层二、随钻测井的概念随钻测井(因为它不用电缆传输井下信息,所以也称为无电缆测井):是在钻开地层的同时, 对所钻地层的地质和岩石物理参数进行测量和评价的一种测井技术.首先,随钻测井在钻井的同时完成测井作业,减少了井场钻机占用的时间,从钻井—测井一体化服务的整体上又节省了成本。
其次,随钻测井资料是在泥浆侵入地层之前或侵入很浅时测得的,更真实地反映了原状地层的地质特征,可提高地层评价的准确性.而且,某些大斜度井或特殊地质环境(如膨胀粘土或高压地层)钻井时,电缆测井困难或风险加大以致于不能作业时,随钻测井是唯一可用的测井技术。
另外,近二十年来海洋定向钻井大量增加。
采用随钻定向测井,可以知道钻头在井底的航向,指导司钻操作;可以预测预报井底地层压力异常,防止井喷;可以提高钻井效、钻井速度和精度,降低成本,达到钻井最优化(现代随钻测井技术大致可分为三代)●20 世纪80 年代后期以前属于第一代可提供基本的方位测量和地层评价测量在水平井和大斜度井用作“保险”测井数据,但其主要应用是在井眼附近进行地层和构造相关对比以及地层评价;随钻测井确保能采集到在确定产能和经济性、减少钻井风险时所需要的测井数据。
●20 世纪90 年代初至90 年代中期属于第二代过地质导向精确地确定井眼轨迹;司钻能用实时方位测量,并结合井眼成像、地层倾角和密度数据发现目标位臵。
这些进展导致了多种类型的井尤其是大斜度井、超长井和水平井的钻井取得很高的成功率。
LWD技术简介
![LWD技术简介](https://img.taocdn.com/s3/m/11d55fdfce2f0066f53322db.png)
2.2 LWD技术简介随钻测井(LWD——Logging While Drilling)是在随钻测量(MWD——Measurement While Drilling)基础上发展起来的、用于解决水平井和多分枝井地层评价及钻井地质导向而发展起来的一项新兴的测井综合应用技术。
随钻测井和随钻测量都是在钻井过程中同步进行的测量活动,实施随钻测井和随钻测量时都必须将测量工具装在接近钻柱底部的钻铤内,。
不同的是随钻测量主要测量井斜、井斜方位、井下扭矩、钻头承重等钻井工程参数,辅以测量自然伽马、电阻率等地球物理信息,用以导向钻井;而随钻测井则以测量钻过地层的地球物理信息为主,可以在钻井的同时获得电阻率、密度、中子、声波时差、井径、自然伽马等电缆测井所能提供的测井资料。
与MWD相比,LWD能提供更多、更丰富的地层信息。
2.2.1 L WD系统组成及工作方式随钻测井系统一般由井下仪器和井场信息处理系统两大部分组成。
前导模拟软件是井场信息处理系统的核心;井下仪器提供实时测量数据。
前导模拟软件完成大斜度井和水平井钻井设计、实时解释和现场决策,指导钻井施工。
随钻测井系统有实时数据传输方式和井下数据存储方式两种工作方式。
1)实时数据传输方式:将随钻测井仪在钻进时测量得到的信息实时传至驱动器,驱动器驱动脉冲发生器将这些信息采用特定的方式编码后传至地表压力传感器,地面信息处理与解码系统再将其转化为软件界面上可供显示或打印的数字化、图形化格式,为客户提供最终产品。
2)井下数据存储方式:将随钻测井仪器起下钻或钻进时采集到的信息存储于仪器的存储器内,待仪器的数据下载接口起至转盘面上约1.5米处,通过数据下载线将其传输到地表计算机内供处理、显示,一般可以在30min内提交处理好的数据磁盘并打印成图。
2.2.2 L WD主要功能及优点主要功能:测量井斜、方位、工具面等井眼几何参数。
随钻地质测井:采用实时和记忆方式同时进行地层参数的测量-- 电阻率、伽马、岩石密度、中子孔隙度。
随钻测井技术定向井和水平井简介
![随钻测井技术定向井和水平井简介](https://img.taocdn.com/s3/m/a6bb04ad941ea76e58fa0492.png)
一 随钻测井技术介绍
定向井、水平井的基本概念
第一口救援井是1934年在东德克萨斯康罗油田钻成的。救援井 是指定向井与失控井具有一定距离,在设计上和实际钻进让救援井 和失控井井眼相交,然后自救援井内注入重泥浆压死失控井。
目前最深的定向井由BP勘探公司钻成,井深达10,654米; 水平位移最大的定向井是BP勘探公司于己于1997年在英国北海 的Rytch Farm 油田钻成的M11井,水平位移高达1,0114米。 垂深水平位移比最高的是Statoil 公司钻成的的33/9—C2达到了 1:3.14; 丛式井口数最多,海上平台:96口;人工岛:170口;
一 随钻测井技术介绍
定向井、水平井的基本概念
我国定向井钻井技术的发展可以分为三个阶段,50—60年代开始 起步,首先在玉门和四川油田钻成定向井及水平井:玉门油田的C2-— 15井和磨三井,其中磨三井总井深1685米,垂直井深350米,水平位 移444.2米,最大井斜92°,水平段长160米;70年代扩大实验,推广 定向井钻井技术;80年代通过进行集团化联合技术攻关,使得我国从 定向井软件到定向井硬件都有了一个大的发展。
一 随钻测井技术介绍
定向井、水平井的基本概念
1863年,瑞士工程师首先提出钻水平井的建议; 1870年,俄国工程师在勃良斯克市钻成井斜角达60°的井;
瑞典和美国研制出测量井眼空间位置的仪器, 1888年俄国也设计出了测斜仪器; 1929年,美国国加利福尼亚州钻成了几米长的水平分支井筒; 30年代,美国开始用挠性钻具组合在垂直井内钻曲率半径小的水平井分支井眼; 1954年苏联钻成第一口水平位移; 1964年—1965年我国钻成两口水平井,磨—3井、巴—24井; 自来80年代以来,随着先进的测量仪器、长寿命马达和新型PDC钻头等技术的 发展,水平井钻井大规模高速度的发展起来。
随钻测井技术介绍
![随钻测井技术介绍](https://img.taocdn.com/s3/m/cc0dab58da38376bae1fae07.png)
电磁波传播电阻率测井 仪器结构与测量信号
A 20lg V2 V1
1
2
Rad
R ps
单发双收三线圈系
随钻电阻率测井仪器
低端仪器 ➢ “短电位”或“环状电极” 电阻率 — 限于水基泥浆中应用 ➢ 单间距、单频传播电阻率
— 未补偿 –NL EWR, Teleco DPR — 补偿 – Schlumberger公司 CDR & 专利许可的仪器 — 从相位差和衰减测量得到最多2 种探测深度
❖ 通常意义的MWD仪器系统,主要限于对工程参数(井斜、方 位和工具面等)的测量,它只是一种测量仪器,无直接导向钻 进的功能。
经典随钻测井(LWD)概念
❖ 随钻测井(Logging While Drilling)是在随钻测量(MWD)基础 上发展起来的一种功能更齐全、结构更复杂的随钻测量系统,主要 是在常规MWD基础上增加电阻率、中子、密度和声波等测量短节, 用以获取测井信息;
电测井基本原理
[ (x)U (x)] (x)
2
E(
x)
k
2
E(
x)
i
JT
(
x)
k 2 i ( i ) :波数 : 电导率 : 介电常数 : 磁导率
地层电 性参数
电法测井测量方程
直流电测井 感应测井
Ra
K
U I
aR
VR K
aX
VX K
Geolink公司已经开发出低频(20kHz)随钻 感应测井仪器;
在测井行业,应用LWD说法似乎更多一些; 在钻井领域,应用MWD说法似乎更多一些。
“LWD”的来源
LWD 发展时间表
MWD/LWD发展简史 – 早期
• 1927: Schlumberger 兄弟在法国得到第一条电缆测井曲线 • 1929: Jokosky 申请第一个泥浆脉冲传送专利 • 1950: Arp 发明正向泥浆脉冲系统 • 1960:利用正向泥浆脉冲的机械测斜仪出现,并应用至今 • 1971: Mobil R&D 第一次成功实验泥浆警笛 • 1978: 定向MWD的商用传输系统 • 1980: Schlumberger / Anadrill 引入多探头MWD
随钻测井技术
![随钻测井技术](https://img.taocdn.com/s3/m/5f8552dd3186bceb19e8bb49.png)
有非常独特的作用。
东北石油大学
随钻测井技术
随钻测井的优点
与电缆测井相比,随钻测井具有准确性、实时性和适用性广等优势。具体表现为: a) LWD是在钻头破岩后不久、泥浆侵入较浅、井眼平滑与尚未明显垮塌的条件下测量的,测 井曲线受泥浆侵入影响比常规测井小得多,更能反映原状地层的电性、物性和孔隙流体性质。 其不同测量方式获得的时间推移测井资料,也易于识别油气层和分析储层渗透性; b) 人们可根据实时记录测量的近钻头的地质参数,判释易于造成井涌的高压层、造成井漏的裂 缝、破碎带(断层)以及地层岩性和油气水界面,结合井眼几何参数,确定钻头在地层中的空 间位置并做出迅速反应,采取适当的工程措施,引导钻头沿着设计的井眼轨迹或实际地质目 标层(油气藏中)钻进,提高钻井效率; c) 复杂条件下不能进行电缆测井时,利用LWD可采集井眼和地层物理信息。与钻杆传输测井 (PCL一WL)相比,LWD更为安全可靠,它适合在各种恶劣的井下环境中作业,在大斜度井、 水平井和小井眼中测量更是见其特长。
东北石油大学
随钻测井技术
随钻声波测井
现场服役的随钻声波测井仪器使用的声源有单极子、偶极子和四极子,如 贝克休斯INTEQ公司的APX既使用单极子也使用四极子声源,斯伦贝谢公司的 SonicVision使用单极子声源,哈里伯Sperry公司的BAT是偶极子仪器。这些仪 器可测量软/硬地层纵/横波速度和幅度,测量数据一般保存在井下存储器内, 起钻后回放使用。随钻声波测井数据可用于岩性识别、孔隙度计算、岩石力 学参数计算、井眼稳定性预测、泥浆比重优化、下套管位置选择等。
过泥浆编码脉冲实时传输到地面,传输率很低,目前最大传输率仅为巧15bps。Sperry-Sun
井下存储器可以记录8MB数据量,若为随钻全波测井,则可记录256MB,但这种数据须 等到起钻后才能获得。 c) 测井环境响应不同 LWD探测深度较饯,受井眼和侵入影响小,但由于钻杆本身重量特别大,大多是在偏心 条件下采集数据的,尤其是中子密度测井受仪器偏心影响较大。此外,在大斜度井或水平井 中,随钻电阻率测井不再象直井那样测量水平电阻率,其测量值介于水平电阻率和垂直电阻
随钻测量随钻测井技术现状及研究
![随钻测量随钻测井技术现状及研究](https://img.taocdn.com/s3/m/35ecaaf5a0c7aa00b52acfc789eb172ded63999f.png)
随钻测量随钻测井技术现状及研究随钻测量(measure while drilling,MWD)技术可以在钻进的同时监测一系列的工程参数以控制井眼轨迹,提高钻井效率。
随钻测井(logging while drilling,LWD)技术可以不中断钻进监测一系列的地质参数以指导钻井作业,提高油气层的钻遇率[1-5]。
近年来,油气田地层状况越来越复杂,钻探难度越来越大。
在大斜度井、大位移井和水平井的钻进中,MWD/LWD是监控井眼轨迹的一项关键技术[6-8],是评价油气田地层的重要手段[9],是唯一可用的测井技术[3],而常规的电缆测井无法作业[10]。
国外的MWD/LWD技术日趋完善,而国内起步较晚,技术水平相对落后,国际知识产权核心专利较少[9],与国外的相关技术有一段差距。
本文介绍国内外MWD/LWD相关产品的技术特点和市场应用等情况,分析国内技术落后的原因以及应对措施。
1 国外MWD/LWD技术现状20世纪60年代前,国外MWD的尝试都未能成功。
60年代发明了在钻井液柱中产生压力脉冲的方法来传输测量信息。
1978年Teleco公司开发出第一套商业化的定向MWD系统,1979年Gearhart Owen公司推出NPT定向/自然伽马井下仪器[10]。
80年代初商用的钻井液脉冲传输LWD 才产生,例如:1980年斯伦贝谢推出业内第一支随钻测量工具M1,但仅能提供井斜、方位和工具面的测量,应用比较受限,不能满足复杂地质条件下的钻井需求[11]。
1996年后,MWD/LWD技术得到了快速的发展。
国际公认的三大油服公司:斯伦贝谢、哈里伯顿、贝克休斯,其MWD/LWD技术实力雄厚,其仪器耐高温耐高压性能好、测量精度高、数据传输速率高,几乎能满足所有油气田的钻采,在全球油气田均有应用。
斯伦贝谢经过长期的技术及经验积累,其技术特点为高、精、尖、专,业内处于绝对的领先地位[12-15],是全球500强企业。
LWD的技术主要体现在智能性、高效性、安全性[10]。
随钻测井
![随钻测井](https://img.taocdn.com/s3/m/abf4a12c7375a417866f8fc6.png)
超深电阻率随钻测井仪(深度达6.6-32.8英尺;而常规为3.3英尺;
CDLC
随钻方位密度中子测井仪adnVISION;
CDLC
大港测
大港测井
CDLC
CDLC
大港测井
大港测井
CDLC
大港测
CDLC
大港测井
斯仑贝谢公司随钻声波测井仪器
CDLC
CDLC
大港测井
大港测井
CDLC
大港测
CDLC
大港测井
斯仑贝谢公司随钻电阻率测井仪器
大港测井
包括: 双阵列单/偶极双模式随钻声波测井仪BAT; 双阵列单/偶极双模式随钻声波测井仪BAT; BAT 随钻电阻率测井仪EWR随钻电阻率测井仪EWR-M; EWR
CDLC
Directional Sensor
CDLC
DGRTM (Dual Gamma Ray) Sensor
大港测
随钻补偿热中子CTN;方位岩性密度ALD; 随钻补偿热中子CTN;方位岩性密度ALD; CTN ALD 随钻核磁测井仪MRI-LWD; 随钻核磁测井仪MRI-LWD; MRI
大港测井
随钻地震SWD 随钻地震SWD GR 、方位、井径等等 方位、
CDLC
CDLC
斯仑贝谢公司VISION 斯仑贝谢公司VISION随钻测井装备系统 VISION随钻测井装备系统
大港测井
钻头电阻率GVR(侧向类); Nhomakorabea大港测井
随钻电磁波测井仪ARC; 随钻声波测井仪sonicVISION; 随钻核磁测井仪LWD NMR; 随钻地震SeimicVISION) 等等
CDLC
大港测
CDLC
大港测井
随钻核磁MagTrak 随钻核磁 等
随钻测井仪器介绍
![随钻测井仪器介绍](https://img.taocdn.com/s3/m/b4d2403431126edb6f1a10e5.png)
钻井过程中测量的方法、参数和基准
地理北极
磁北极
栅极北极
子午线 收敛角
磁偏角
S O
性质和特点
石油钻井过程中的测量需要借助三种媒介, ——大地的重力场、大地磁场、天体坐标系
测量仪器分类
适用范围
1. 磁罗盘单、多点照相测斜仪 这类仪器适用于普通定向井和无邻井磁干扰的丛式井中与无磁钻铤配合使用, 为井下钻具组合定向或测取 井身轨迹数据。 2. 有线随钻测斜仪 有线随钻测斜仪适用于较深的定向井、无邻井磁干扰的丛式井或大斜度井、水平井中与无磁钻铤配合使用, 为井下钻具组合定向。 3. 无线随钻测斜仪 无线随钻测斜仪适用于超深定向井、大斜度井、水平井中或海洋钻井平台上与无磁钻铤配合使用, 为井下 钻具组合定向或测取井身轨迹数据。 4. 电子多点测斜仪 电子多点测斜仪适用于精度要求较高的定向井、无邻井磁干扰的丛式井、大斜度井、水平井中或海洋钻井 平台上与无磁钻铤配合使用, 为井下钻具组合定向或测取井身轨迹数据。 5. 照相单、多点陀螺测斜仪 这类仪器适用于已下探管的井眼中测取井身轨迹数据, 或在丛式井、套管开窗井中为井下钻具组合定向。 6. 电子陀螺测斜仪 电子陀螺测斜仪适用于已下探管的井眼中测取较高精度的井身轨迹数据, 或在丛式井、套管开窗井中为井 下钻具组合定向。
元件为测角器、罗盘重锤或重力加速度计等。这类仪器的测 量基准是测点与地心的连线, 即铅垂线。
钻井过程中测量的方法、参数和基准
1、测量方法:间接测量 2、测量参数:大地的重力场、 3、基本测量单元:重力测量仪
性质和特点
石油钻井过程中的测量需要借助三种媒介, ——大地的重力场、大地磁场、天体坐标系
lwd随钻测井的工作原理
![lwd随钻测井的工作原理](https://img.taocdn.com/s3/m/eed5d8831b37f111f18583d049649b6648d709a5.png)
lwd随钻测井的工作原理
LWD(Logging While Drilling)随钻测井是一种在钻井过程中
进行地层测井的方法。
其工作原理包括以下几个步骤:
1. LWD传感器安装在钻头或钻杆上,随着钻井进程下入井内。
2. 当钻头或钻杆传感器接触到地层时,LWD系统开始测量地
层的物理参数。
3. 传感器通常包括测量电阻率、自然伽马射线、声波速度等参数的装置。
4. 传感器采集到的数据通过电缆传输到地面设备进行处理和分析。
数据可以通过实时传输技术实时显示在钻井现场工作站上。
5. 地面设备使用各种算法和方法对数据进行处理和解释,以获取有关地层的信息,例如地层的类型、含油、含气、水层等等。
6. 通过分析和解释得到的数据,钻井操作者可以及时调整钻井工艺,优化钻井方案,提高钻井效率和成功率。
总的来说,LWD随钻测井利用在钻井过程中安装的传感器获
取地层信息,并将数据实时传输至地面进行处理和解释,以指导钻井作业。
这种测井方法可以节省时间和成本,并提供实时的地层信息,提高钻井效率和成功率。
随钻测井仪器介绍
![随钻测井仪器介绍](https://img.taocdn.com/s3/m/d8b7e0ac18e8b8f67c1cfad6195f312b3169eb28.png)
contents
目录
• 随钻测井仪器概述 • 随钻测井仪器分类 • 随钻测井仪器技术参数 • 随钻测井仪器优缺点分析 • 随钻测井仪器发展趋势与展望
01
随钻测井仪器概述
定义与特点
定义
随钻测井仪器是一种在钻井过程中实时监测和测量井下地质参数的仪器。
特点
随钻测井仪器具有实时性、可靠性、高精度和多功能等特点,能够提供准确的 地质信息,帮助钻井工程师更好地了解地下情况,优化钻井方案,提高钻井效 率。
02
随钻测井仪器分类
电阻率随钻测井仪器
总结词
电阻率随钻测井仪器是用于测量地层电阻率的仪器,通过测量地层导电性能来评 估地层含油气性。
详细描述
电阻率随钻测井仪器利用地层导电性能的差异来识别地层岩性、含油气性等信息 。通过向地层发射电流,测量地层电阻率,进而判断地层含油气性。该仪器具有 实时、准确、不受钻井液影响等优点。
定。
03
随钻测井仪器技术参数
测量范围
电阻率
0-10000Ωm
自然电位
0-100mV
声波速度
0-10000m/s
钻井液电阻率
0-10000%
02
自然电位:±0.2mV
03
声波速度:±1%
04
钻井液电阻率:±2%
工作温度范围
• 40℃ to +85℃
尺寸与重量
长度
380mm
传感器集成化
将多种传感器集成于一体,提高测量精度和稳 定性,降低仪器复杂度。
人工智能与机器学习技术
应用于随钻测井数据分析,自动识别地层特征,提高解释精度。
应用领域拓展
非常规能源勘探
01
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随钻测井技术的新认识
2008-9-1
分享到: QQ空间新浪微博开心网人人网
摘要:随钻测井由于是实时测量,地层暴露时间短,其测量的信息比电缆测井更接近原始条件下的地层,不但可以为钻井提供精确的地质导向功能,而且可以避免电缆测井在油气识别中受钻井液侵入影响的错误,获取正确的储层地球物理参数和准确的孔隙度、饱和度等评价参数,在油气层评价中有非常独特的作用。
通过随钻测井实例,对随钻测井与电缆测井在碎屑岩中的测井效果进行了对比评价,指出前者受钻井液侵入和井眼变化的影响小,对油气层的描述更加准确,反映出来的地质信患更加丰富。
通过对几个代表性实例的分析,对随钻测井在油气勘探中的作用提出了新认识。
主题词:随钻测井;钻井;钻井液;侵入深度;技术
一、引言
20世纪80年代中期,专业厂商开始将电缆测井项目逐渐随钻化,形成了有真正意义的随钻测井技术,简称LWD(1099ing while drill ing)。
由于LWD包含了所有MWD(measurement while drilling)的功能及传统测井项目,所以其具备了识别岩性和地层流体性质的能力,现场可以根据实时上传的各种信息判断钻头是否钻达目的层,这就是LWD的地质导向作用[1~3]。
塔里木油田油气埋藏较深,直井开发的成本相对较高,1994年开始在油田钻水平井,已完钻水平井约占开发井的1/4,但产量超过了总产量的50%以上,经济效益非常明显。
在水平井和侧钻井的施工中,保证命中靶心和取全取准测井资料是成功完井的关键,推广MWD/LWD技术后,其施工质量大大提高。
目前,在塔里木油田MWD/LWD技术主要用在以下几方面:①在比较熟悉的地质构造中进行非直井施工时,仅采用MWD,测井采集使用钻杆传输测井技术;②在较复杂的地质构造或薄层中进行非直井施工时,采用LWD,以防止钻井设计中可能的错误,一些非常必要的测井项目可使用钻杆传输测井技术;③在一些井眼状况复杂、井下有溢流、井漏等现象的井中,无法使用电缆及钻杆传输测井时,用LWD进行划眼测井,采集最基本的测井数据;④在欠平衡条件下钻井时,采用L WD。
目前该油田已经使用过的随钻测井设备包括PathFinder、Sperr y-Sun和PowerPwlse等。
LWD的测量方式与电缆测井有较大不同,其主要差别来自于针对岩层测井时间与空间的响应。
如LWD测量点距钻头较近,因此受钻井液侵入的影响极小。
在非直井钻进时,LWD测井仪的轴向与岩层层面的夹角为低角度或平行(180°)。
由于上述原因,传统的测井解释模型很难用于LWD测井信息的评价。
通过近年来在碎屑岩储层中获得的LWD测井资料的分析与研究,认为LWD的主要作用不仅仅是地质导向,它在油气层评价中有非常独特的作用,对于某些传统的测井解释方法和传统的油藏评价经验有了新的看法[4]。
二、LWD与电缆测井对比分析
为了研究LWD的测井效果,在一些储层为碎屑岩的井里还同时安排了各种电缆测井项目,用于两种资料的对比评价。
采集了LWD钻进和起钻时所记录的测井信息,观察不同时间测井数据的变化。
2MHz补偿电磁波测井仪是目前各类LWD测井系列中最常见的电阻率仪器,以CWR为例(PathFinder),该仪器提供了具有井眼补偿功能的衰减和相位电阻率共4条,分别为55in(1in=25.4mm)和25in测井曲线(R55A、R25A、R55P、R25P)[5~7]。
CWR与电缆测井(双侧向、感应类)的测量原理有所不同,但从已获得的资料看,在碎屑岩剖面中,两者都有较好的可比性,其中,幅
度电阻率(R
55A )与深感应(R
LLD
)在泥岩段和受侵入影响较小的渗透层段
的测井值几乎一致(图1-a,图中右侧的彩色梯度尺用于表示GR值的大小)。
LWD随钻记录的中子—密度(μ
N -ρ
b
)与电缆测井值存在一定的系
统误差(不同厂商的仪器均存在差别)。
但LWD的ρ
b
测井值由于少受扩径的影响,其岩性值域区间远比后者清晰(图1-b、c,图2)。
三、实例分析
LWD随钻测量的电阻率是在钻头破岩后1~2h开始测量(中等硬
度的碎屑岩),此时的井壁破损率和钻井液径向侵入都非常小,所以,基本是“原状”地层的测井值。
1. 实例一
D井是一口直井(图3),为欠平衡钻井,CWR的测量点距钻头5. 1in,钻速4m/h,钻头破岩后1.25h就可以记录到地层的电阻率,图中实时记录的所有4条电阻率曲线,不同岩性参数处均为重合状,说明地层几乎未被钻井液侵入。
起钻时,又进行重复测量(破岩42h之
后),除泥岩段外,所有砂质岩层都受到了增阻侵入的影响。
但R
55A
并未发生变化,据计算,此时侵入深度达55in。
2. 实例二
B井是一口定向井的导眼段(近似直井,图2),该段使用了LWD,上部的砂岩段中实时记录的电阻率基本为水层特征(负差异或重合),泥岩段4条曲线则完全重合。
但顶部X740.5~X742.0m电阻率呈正差
异(R
55A >R
25A
),R
55A
=1.3Ω²m,为油层特征。
该井完井后,此段地层
已浸泡了24d,这时又进行了电缆测井(双感应、中子、密度、自然伽马、井径等)。
感应电阻率呈增阻侵入特征,很难找到含油迹象。
但完井测试证明,该小层为油水同层(油6.2m3,水6.44m3)。
从这个实例还可以看出:钻井液浸泡和机械碰撞对井壁造成了严重破坏,这种破坏随时间加剧。
当井径严重扩径后,电缆测井数据的失真现象十分严重,如感应测井即使在非渗透层也难出现曲线重合的特征,各向异性的影响十分明显。
而密度测井仪由于不能紧贴井壁测量,造成低值假象。
大井眼也使自然伽玛衰减,测量值也普遍偏低降9|。
3. 实例三
C井是一口双台阶的水平井(图4),由于目的层太薄(3号层1.6m,2号层1.2m),使用了LWD作地质导向,成功在3号层水平钻进143m,在2号层水平钻进103m,钻头在井眼中上下摆动幅度被控制在±0.4 5m之内。
该井导眼(直井)完钻后,进行了电缆测井,此时储层已浸泡了2 0h以上。
由双感应和密度孔隙度计算了3个储层的含油饱和度(S
o
),
其大小顺序为S
o3>S
o2
>S
o1
,又由于1号层的孔隙度低,电阻率也低,
被认为有水层或于层的可能。
当把LWD在斜井段和水平段实时记录的
电阻率进行垂深校正后,发现2、3号储层的原状电阻率要略高于感应测井值,而1号储层的原状电阻率值是感应测井的10倍(图5),该层完井测试结果是产原油超过10m3/d,产量与2、3号层相近。
对1号层的电性及岩性综合分析后认为:该层颗粒较细,孔隙度、渗透率较低,钻井液侵入往往很深,井眼静止后,地层压力恢复和排出钻井液滤液需要时间较长,感应测井的响应为减阻侵入特征。
而物性较好的2、3号层则基本为正差异特征。
四、结论
(1) LWD的测井资料可能是目前所有测井方法中受井眼影响最小的岩石地球物理参数。
许多油藏在完钻后未被发现,其主要原因就是电缆测井受井眼影响而无法提供出准确的解释结果所致。
认为一些测井解释软件能够校正电缆测井资料受井壁破损和钻
井液侵入的影响,这是极不实际的,测井项目中除电阻率测井方法径向探测深度可达2.0m,其余测井的探测深度均不超过0.4m,在正压钻井条件下,钻井液滤液的侵入深度往往超出所有测井仪的探测范围,任何校正方法都无济于事。
因此,有相当一部分油藏原始的地球物理数据是不准确的。
比如探井的测井资料受到了无法复原的钻井液侵入影响后,油气层的电性描述就会定义为“低阻油藏”或“低饱和度油藏”等错误结论。
(2) 对于侵入深度与时间的关系以及对测井资料的影响程度是一大难题。
但LWD可以提供一些有利的佐证,将对解决测井信息的校正,甚至是油气层污染研究起到至关重要的作用。
(3) 为在勘探初期采集到准确的数据,最好在预探井目的层段使用LWD,避免测井资料因受井眼影响而失真,此举对安全钻井也十分有益。