第3篇14动态力学分析(DMA)优秀课件
动态力学分析DMA
动态力学分析DMADMA(Dynamic Mechanical Analysis)是一种用于分析材料力学性能的测试方法。
它结合了动态力学和热学测试技术,可以提供关于材料的弹性、刚性、黏弹性和损耗因子等性能参数的信息。
DMA广泛应用于材料科学、化学、工程等领域,对于了解材料的结构与性能之间的关系和材料在不同温度和频率下的行为具有重要意义。
下面将对DMA的原理、应用和测试参数等方面进行详细介绍。
DMA的原理是基于材料在施加周期性外力作用下的应变响应。
它通过施加正弦形的动态应变,测量材料的动态应力响应,进而得到材料的机械性能参数。
根据材料的形变模式,DMA可以测量材料的弹性模量、刚度、阻尼和损耗因子等参数。
同时,DMA还可以通过改变施加的应变振幅、频率和温度等条件来研究材料的线性和非线性行为。
在DMA实验中,一般需要将样品固定在一个夹具上,并施加一个相对运动的动态负载。
通过施加正弦形的变形,例如拉伸或压缩,可以测量样品的应力和应变之间的相位差,进而计算出材料的各种力学性能参数。
此外,还可以通过改变应变振幅、频率和温度等外界条件来获得材料的线性和非线性响应。
DMA的应用十分广泛。
首先,它可以用于材料的性能评估和选择。
通过DMA的测试可以获得关于材料弹性模量、刚度和黏弹性等信息,从而对材料的选择和应用进行优化。
例如,在汽车制造领域,DMA可以帮助选择材料以满足特定应变和温度条件下的要求。
其次,DMA还可以分析材料的老化和损耗行为。
通过跟踪材料的动态性能随时间的变化,可以了解材料的寿命和性能衰减机制。
最后,DMA还可以用于材料的开发和改进。
通过对材料的机械性能进行系统研究,可以提出有针对性的改善方案,增强材料的性能和可靠性。
在进行DMA实验时,一些关键的测试参数需要被考虑。
首先是应变振幅。
在DMA实验中,通常会测试一系列不同的应变振幅,以获得材料的线性和非线性响应。
较小的应变振幅可以用来研究材料的线性弹性行为,而较大的应变振幅可以用来研究材料的非线性行为。
13.DMA讲解
展开得
t 0 Sin t Cos 0 Cos t Sin
0 cos sin t 0 sin sin(t ) 2
和 t 同相位
与 t 相差900
复数模量
复数模量 E * t 0 Cos i 0 Sin E i E
复数模量与力学损耗
力学损耗
E
E
*
E tg E
E
称力学损耗角正切
力学损耗影响因素
分子结构 链段运动阻碍大 损耗大
空间位阻
(侧基体积大、数量多)
次价力作用
(氢键、极性基团存在)
链段运动阻碍小
外界条件 温度和外力作用频率 利用此可研究高聚物的分子运动
损耗小
动态粘弹性和松弛时间 当外力作用时间 t << 时: >>1/
滞后
形变落后于应 力的变化 发生滞后现象
德尔塔
弹、粘性材料动态交变应力与应变的关系
滞后原因
产生原因:链单元运动需要克服分子间的相互作用, 因此需要一定的时间。 愈大表示链单元运动愈困难 影响因素: 柔性链 大 分子结构 内因 刚性链 小 分子间作用 外因 外力作用频率、环境温度
动态粘弹性和松弛时间 1/ 当外力作用时间 t 时:
运动单元介于上述两种情况之间 运动单元产生的力学损耗将达到最大
即: tg 与外力作用时间的关系 存在一个峰值
动态粘弹性研究分子运动
测定tg ~ log 时 在恒定的温度下(通常为室温) 分子运动的松弛 时间也为一恒定值 当测量频率 变化到1/ ~ 松弛时间 时
第3章动态热机械分析技术DMA
第3章动态热机械分析技术DMA
动态热机械分析技术(Dynamic Mechanical Analysis,DMA)是一种用于测定材料的粘弹性和机械性能的实验方法。
它结合了机械测试和热分析的技术,可以通过施加精确的力或应变,在不同温度下测定材料的动态力学性能。
DMA可以用于研究材料的线性和非线性弹性行为、材料的流变性质、玻璃化和熔融转变行为等。
在DMA实验中,材料试样在垂直加载下以一定频率振动,通过测量应变或力和位移的相位差,可以计算出材料的动态模量、损耗因子、储存模量等力学参数。
DMA技术的主要优势在于它可以在宽温度范围内进行测试,从室温到高温或低温环境都可以进行。
这对于研究材料的热机械性能非常重要,因为材料在不同温度下的性能可能会发生显著变化。
在DMA实验中,可以通过改变频率、幅值和温度等参数来模拟材料在实际应用中的工况,从而评估其使用寿命和稳定性。
DMA技术主要应用于聚合物、橡胶、复合材料、涂料、粘合剂等材料的研究和开发中。
通过DMA实验可以获得材料的力学行为、热稳定性、变形特性等信息,有助于改进材料的性能和设计新的材料。
在实际应用中,DMA可以用于评估材料的强度和刚度、变形和回复能力、阻尼特性等。
例如,在汽车工业中,DMA可以用于评估橡胶密封件的性能,以确保其在不同温度和应力条件下的可靠性。
在医疗器械领域,DMA可以评估聚合物材料的生物相容性和耐久性,以确保其在人体内使用的安全性和可靠性。
总之,动态热机械分析技术是一种重要的实验方法,可以用于研究材料的粘弹性和机械性能。
它的主要优势在于可以在不同温度环境下进行测试,并能提供关于材料性能的详细信息,有助于改进材料的设计和应用。
动态力学分析DMA-介质损耗分析方法
4.2.1 储能模量 图 4 是试样在老化条件下储能模量的变化情况。由图可知,2 种老化条件下,
环氧云母绝缘材料的储能模量明显下降。由于储能模量表示的是弹性形变储存的 能量,储能模量的减小表明材料老化后界面的粘接能力明显减弱。
4.2.2 动态粘度 图 5 是试样在老化条件下动态粘度的变化情况。由图可知,随着老化时间和
3 老化分析的基本原理 3.1 动态力学分析基本原理
动态力学分析是在程序控制温度下,测量高聚物质在按正弦函数变化的应力 作用下的有关动态力学性能(如储能模量、力学损耗和动态粘度)随温度和频率 变化的一种技术[3]。动态力学性能与聚合物的结构和分子运动有密切联系,是 聚合物的一项很重要的力学性质。当聚合物在正弦变化应力的作用下,应力与应 变关系中将会出现应变滞后于应力的现象,滞后效应是动态力学分析的基础。
6 结论
(1)环氧云母绝缘材料在电热应力和热机械应力作用下会逐渐老化。老化 过程中,材料的储能模量、力学损耗和动态粘度等动态力学参数发生明显变化; 同时,材料的介质损耗参数也有一定的变化。
(2)环氧云母绝缘材料老化后,其储能模量明显下降;动态粘度峰值向高 温方向移动,另外其室温下的动态粘度值明显下降;力学损耗峰值和介质损耗峰 值向高温方向移动。
4.2.4 介质损耗 图 7 是试样在老化条件下介质损耗的变化情况。由图可知,老化后,试样的
DMA动态力学分析
频率的半高宽有时也用最大振幅的一半时的两个频率之 差表示,如图15-6。
Δfr = f4 – f3
或 Δfr = f2 – f1
E" = E' tanδ (Pa)
振簧仪可以在10~ 10000 Hz 频率范围内 测量,试样尺寸为 (2 ~4) × (10 ~15) × (100 ~200)mm,温 度范围为 – 150 ~ 250℃。
一、动态扭摆仪
扭摆仪的原理见图15-1, 试样两端夹在夹具中,一 端夹具固定,另一端夹具 与自由转动的惯性杆相连 接。若将一给定应力使惯 性杆扭转一小角度,随即 除去外力,试样则将产生 周期性扭转,振幅随时间 不断衰减,直至最后停止。
这 是 扭 摆 仪 的 详 细 结 构 图
P——周期,是试样每摆动一次所需要的时间; Ai ——振幅,是试样每次摆动的距离。 由于聚合物的内耗,使摆动的振幅逐渐衰减。
温度由程序升温 控制。
模量等随温度的 变化如图所示。
频率谱,即频率 扫描模式是在恒 温、恒应力下, 测定动态模量及 损耗随频率变化 的试验,用于研 究材料性能与速 度的依赖性。
2. 频率谱
3. 频率谱与温度的关系
从不同频率下测材 料在相同温度范围内 的温度谱(见图)可 知,当频率变化10 倍 时,随材料活化能不 同其温度谱曲线位移 7~10℃,也就是说, 如果频率变化三个数 量级时相当于温度位 移21~30℃,因此, 用频率谱扫描模式可 以更细致地观察较不 明显的次级松弛转变。
对圆柱型样品:
G 8 IL
r4P2
对矩型样品:
G
64 2IL CD3 P2
式中 L——试样有效部分长度,cm; C——试样宽度,cm; D——试样厚度,cm; I——转动体系的转动惯量,Kg。cm2
第3章-动态热机械分析技术DMA
= 0 sin(wt + ) = 0 sinwt
图36 粘弹性体系的应力-应变响应
39
3.4.3 贮能模量(E’)和损耗模量(E’’)
对于聚合物粘弹体系,应力与应变存在相位差:
0 sint (2) 0 sin(t ) (3)
将(3)式展开,得到:
0 sint (2) 0 sin(t) cos 0 cos(t)sin (4)
L
T L0
要求在测试温度范围无相转变发生。
14
3.3.2 热膨胀法
(2)体热膨胀法
V
V0 T
-体膨胀系数(1/K);
V0 –样品初始体积; V -样品体积增加量; T -测试温度差;
体热膨胀系数: 当试样温度升高1度时, 其体积膨胀(或收缩)的 相对量。
15
3.3.2 热膨胀法
E (1)
其中 为应力, 为应变,
E 为弹性模量。
32
3.4.1 聚合物的粘弹行为
(2)粘性体系 外力作用下所产生的变形完全不能恢复,外力对体 系所做的功完全转化为热能消耗掉。
图30 粘性体系变形示意图
33
3.4.1 聚合物的粘弹行为
(3)粘弹性体系 同时兼具粘性和弹性体系特点,外力作用所产生的变形 部分可恢复;外力所做的功部分以势能储存,另一部分 以热能被损耗。
20
3.3.3 静态热机械分析
基本定义: 在程序控温下,测量物质在非振动载荷下的形变与 温度关系的技术。所采用的载荷有拉伸、压缩、弯 曲、扭转和针入等方式。
拉伸
http://www.m aterial.zjut.e /class_ clcsjs/EveDj Play.asp?dj_ id=835
理论力学第十四章达朗贝尔原理(动静法)课件
动静法的物理意义
物理背景
实际应用
达朗贝尔原理反映了牛顿第二定律在 静力学中的应用,通过引入惯性力, 将动力学因素考虑到平衡问题中。
在工程实际中,达朗贝尔原理广泛应 用于分析高速旋转的机械、振动系统 以及瞬态动力学问题。
意义阐述
通过动静法,我们可以分析在某一瞬 时,运动系统由于惯性作用而产生的 力,从而更准确地描述系统的平衡条 件。
03
在应用动静法时,要确 保惯性力与主动力相平 衡,避免出现误差。
04
在求解方程时,要注意 解的物理意义和实际情 况是否相符。
04
CATALOGUE
达朗贝尔原理的应用实例
简单实例解析
总结词
通过一个简单的实例,介绍达朗 贝尔原理的基本应用。
详细描述
以一个单摆为例,运用达朗贝尔 原理分析其运动状态,通过对比 理论计算和实验结果,验证达朗 贝尔原理的正确性。
具体推导过程
在受力分析的基础上,列出系统的平 衡方程。
解出未知数,得到系统的运动状态。
将动静法应用于平衡方程,将惯性力 与主动力相平衡。具体来说,就是在 平衡方程中加入惯性力项,使得该力 与主动力相平衡。
推导过程中的注意事项
01
确定研究对象和系统时 要明确,避免出现混淆 。
02
在建立平衡方程时,要 确保所有力的方向和大 小都正确。
理论力学第十四章 达朗贝尔原理(动静 法)课件
contents
目录
• 达朗贝尔原理概述 • 达朗贝尔原理的基本概念 • 达朗贝尔原理的推导过程 • 达朗贝尔原理的应用实例 • 达朗贝尔原理的扩展与深化
01
CATALOGUE
达朗贝尔原理概述
达朗贝尔原理的定义
第3篇14动态力学分析(DMA)ppt课件
DMA :拉伸模式
;.
固定夹具 试样
运动夹具
评价薄膜、纤维及Tg以上橡胶的最佳模式 按照国际标准,拉伸式样的长度应大于宽度的6倍,可 忽略夹头对式样自由横向收 缩的限制。
21
;.
DMA :压缩模式
运动夹具
应力
样品 固定夹具
对低中模量材料的最佳评估模式(如凝胶,弹性体及软质泡沫塑料等) 压缩式样一般为厚度大于4mm的圆柱状或立方体、长方体式样,保证式样上下平面严格 平行。 必须具备相当的弹性. 另外可提供膨胀,收缩,针刺穿透等性能测试.
动态力学分析基础
材料的粘弹性 聚合物是典型的粘弹性材料,兼有粘性流体和弹性固体的某些特性。当聚合物作
为结构材料使用时,主要利用它的弹性和强度,要求它在使用温度范围内有较大 的储能模量。当聚合物作为减震和吸音材料使用时,主要利用它的粘性,要求在 一定频率范围内有较高的阻尼(将固体机械振动能转变为热能而耗散的材料 )。
dma工作原理强迫非共振法1试样分别与驱动器应变位移传感器相连接2驱动器将一定频率的正弦交变作用施加到试样上3由应变位移传感器检测出应变的正弦信号4通过应力振幅与应变振幅的位置比较得到应力与应变的相位差5经过仪器的自动处理得到储能模量e损耗模量e力学损耗tgdma工作原理强迫非共振法q800dma仪器结构图uniquepatentdesign试样加热炉夹具空气轴承轴空气轴承光学编码器驱动马达低质量高刚性夹具q800dma仪器结构图驱动轴空气轴承空气轴承轴光学编码器驱动马达实验技术?交变作用系统弯曲压缩拉伸剪切扭转平行板悬臂梁等多种方式
l
l
l
l
l
l
l
Tm
Large scale cooperativ9e6.33M°Cotion:0.25 Disruption of crystall?ine? structure
热分析DMA课堂PPT
静态外力; TMA的响应是膨胀行为和粘弹效应的加和
4
线性位移传感器 热电偶
TMA基本装置
负荷 位置信号
探头 样品
电炉
5
压缩
压入
半球压入
工
作
模
式
膨胀
弯曲
拉伸
6
样品 整块样品 分散样品
模式
10
聚苯乙烯的线膨胀曲线
11
膨胀量
测定刹车片的Tg
TMA measurement of Tg of brake linings Expansion mode
Tg=85C failed
高交联度
Tg=93C passed
25
Temperature (C)
150
12
测定环氧印刷线路板的Tg
高填充
膨胀量
Machine direction
拉伸量
Transverse direction
25
Temperature (C)
150 18
MD TD MD
TD
19
压缩模式观察PE熔点与发泡过程
Softening (Melting)
压缩量
Foaming
40
Temperature (C)
180
20
拉伸模式观察PET的冷结晶
压入模式测定导线双层涂层的Tg
压入量
Tg1 = 121C Tg2 = 176C
TMA measurement of
Tg’s of electrical coil wire
Decomposition
DMA
动态力学分析性质:利用动态力学试验求取材料在周期性外力作用下的模量和损耗,并把模量和损耗作为温度、频率或时间的函数来考察材料的黏弹性能的方法。
对试样施加随时间交变的应力或应变,求取作为温度、频率或时间函数关系的模量和损耗的关系曲线,以研究材料的黏弹行为,这就是动态力学分析的主要内容。
其中,模量和损耗与时间的关系曲线,即是动态力学分析时间分布曲线。
Dynamic thermomechanical analysis 动态热机械分析动态热机械分析(DMA)是通过对材料样品施加一个已知振幅和频率的振动,测量施加的位移和产生的力,用以精确测定材料的粘弹性,杨氏模量(E*)或剪切模量(G*)。
动态粘弹分析方法的分类和特征:DMA技术依测试方法的不同,可分为四类: (前三种常用)(1)自由振动法(如扭摆和扭辨仪) (0.1--10Hz)(2)共振法(50--5000Hz)(3)强迫非共振法(0.001--1000Hz)(4)声波传播法。
原理:(1) 自由振动法中的扭摆法其装置的结构原理如图所示。
外力使扭摆中的试样扭转变形,外力除去后,惯性体作固定周期地衰减运动,这是由于高聚物的粘性所产生的力学内耗所致。
在不考虑系统的附加阻尼情况下,振幅的衰减速率是由试样的损耗因子决定的,可以通过测量振动的周期和振幅衰减来获得动态剪切复模量及阻尼。
(a)--扭摆仪原理图, (b)--阻尼振动曲线扭辨法是由扭摆法演变出来的,扭摆和扭辫之间的主要差别在于试样,后者系用玻璃纤维或其它惰性纤维织成的辫子作为基底,把高聚物试样的溶液(5--100%)或熔体涂覆在辫子上进行实验。
由于这种方法使用的试样系复合体,听以测不出试样切模量的绝对值,仅为相对值,一般以周期P平方的倒数1/P2表示,另外扭辫的频率范围小,对固化的难熔物不宜测定,但由于它试样用量小,(100mg以下),且灵敏度高,所以乐于被采用。
13.DMA解析
滞后
形变落后于应 力的变化 发生滞后现象
德尔塔Βιβλιοθήκη 弹、粘性材料动态交变应力与应变的关系
滞后原因
产生原因:链单元运动需要克服分子间的相互作用, 因此需要一定的时间。 愈大表示链单元运动愈困难 影响因素: 柔性链 大 分子结构 内因 刚性链 小 分子间作用 外因 外力作用频率、环境温度
聚合物动态力学分析
材料与化工学院 焦明立
目录
基本原理 动态力学分析仪器 实验技术 动态力学分析技术的应用
普弹性 弹 性 Elasticity 高弹性 High elasticity 静态力学性能:在恒应力或恒应变情况下的力学行为
动态力学性能:物体在交变应力下的粘弹性行为
形变性能 Deformation 粘 性 Viscosity 线性粘弹性 Linear viscoelasticity 粘弹性 viscoelasticity 非线性粘弹性 应力松弛 静 态 Static
损耗角
力学损耗的分子运动机制 拉伸时外力对高聚物做功
提供链段运动克服内 “摩擦”所需的能量 损耗
改变分子链的构象 分子链卷曲 伸展
高聚物对外做功
改变分子链的构象 分子链伸展 卷曲 提供链段运动克服内 “摩擦”所需的能量
应力的分解
设 则 应力 t 0 Sin t 应变 t 0 Sin t
o
o time o
o time o o
o k time
= 90
time
动态力学试验方法
振动模式
自由振动 强迫共振 强迫非共振
研究试样在驱动力作用下 自由振动时的振动周期、 相邻两振幅间的对数减量 及它们与温度关系的技术 一般测定的是温度谱。 包括:扭摆仪和扭辫仪
动态粘弹性_动态力学DMA谱
动态力学性能与温度频率的关系
动态力学DMA(D ymamic M echanical A nalysis)谱
温度谱
频率谱
22
24
温度的影响:(固定频率下)
Tg 以下,形变主要由键长、键角的变化引
起,形变速率快,几乎完全跟得上应力的变化,tg δ小
Tg 附近时,链段开始运动,而体系粘度很大,
链段运动很难,内摩擦阻力大,形变显著落后于应力的变化,tg δ大(转变区)
链段运动较自由、容易,受力时形变大,tg δ
小,内摩擦阻力大于玻璃态。
向粘流态过度,分子间的相互滑移,内摩擦
大,内耗急剧增加,tg δ大
T <Tg :T ≈Tg :T ≈Tf :T >Tg :
频率的影响:(温度恒定)
(1)交变应力的频率小时:(相当于高弹态)
链段完全跟得上交变应力的变化,内耗小,E’小,E”
和tgδ都比较低.
(2)交变应力的频率大时:(相当于玻璃态)
链段完全跟不上外力的变化,不损耗能量,E’大,
E”和tgδ≈0
(3)频率在一定范围内时:
链段可运动,但又跟不上外力的变化,表现出明显的
能量损耗,因此E”和tgδ在某一频率下有一极大值
26
49
50。
DMA课件10
E = Youngs or Tensile, G = Shear Modulus
柔量 = 应变 / 应力 [1/Pa or cm /dyn]
通常用 J表示 表示 以 η 表示
粘度 = 应力 /应变速率 [Pa.s or Poise] 应变速率
Cowie, J.M.G., Polymers: Chemistry & Physics of Modern Materials, 2nd Edition, Blackie academic & Professional, and imprint of Chapman & HallBishopbriggs, Glasgow, 1991p. 275 ISBN 0 7514 0134 X
液体和理想的橡胶具有恒定的体积。 液体和理想的橡胶具有恒定的体积。
一般地讲,样品在变形时体积增加。其关系 一般地讲,样品在变形时体积增加。 为∆V/Vo = (1 - 2ν)ε 。 νε
样品在变化时从初始体积增加的量。 这里 ∆V = 样品在变化时从初始体积增加的量。
模量与泊松比的比较
Material Steel Copper Glass Granite(花岗岩) Polystyrene Polyethylene Natural Rubber E(GPa) 220 120 60 30 34 24 0.02 ν 0.28 0.35 0.23 0.30 0.33 0.38 0.49 G (GPa) 85.9 44.4 24.4 15.5 12.8 8.7 0.0067
高分子的力学强度是以下因素的结果: 高分子的力学强度是以下因素的结果:
高分子的化学组成 决定力学性能在何处发生变化 高分子的物理分子结构 决定力学性能如何发生变化
dma动态力学原理
dma动态力学原理
DMA(Dynamic(Mechanical(Analysis,动态力学分析)是一种材
料测试方法,用于测量材料在受到振动或周期性应力加载时的动态力学性能。
DMA(能够提供关于材料的弹性、刚性、黏弹性、损耗等信息,并允许工程师和研究人员了解材料在不同温度、频率和应变条件下的行为。
DMA(基于施加周期性变形 例如正弦或方波形变形)到材料上,并测量材料的响应。
其原理基于震动力学和弹性理论。
关键原理包括:
1.(应变施加:(DMA(使用精确的机械装置施加周期性变形或应变到样品上,例如正弦形变,使材料在一定范围内产生可控的应变。
2.(响应测量:(在施加应变的同时,DMA(测量材料的响应。
这通常包括测量力、位移或应变的变化。
根据施加的应变和材料的响应,可以得出材料的力学特性。
3.(温度和频率控制:(DMA(可以在不同的温度下进行测试,从室温到高温,以研究材料性能随温度变化的情况。
同时,还可以在不同的频率下进行测试,研究材料在不同应变速率下的响应。
4.(分析数据:(通过收集并分析施加应变和材料响应的数据,可以得出诸如弹性模量、刚度、损耗因子(损耗模量)等参数,以了解材料的动态力学性能。
DMA(在材料科学、工程领域以及产品研发中具有广泛的应用,特别是在聚合物、橡胶、复合材料等方面。
它能够帮助研究人员理解材料的变形行为和性能,在材料设计、工程应用和质量控制方面提供重
要的信息。
1/ 1。
动态热机械分析仪DMA原理及方法ppt课件
这是因为当弹性体受到外力作用时,它能将外力对它做的 功全部以弹性能的形式储存起来;外力一旦除去,弹性体 就通过弹性能的释放使应变立即全部回复。 对于理想粘性体来说,外力对它做的功将全部消耗于克服 分子之间的摩擦力以实现分子间的相对迁移,即外力做的 功全部以热的形式消耗掉了,因此外力除去后,应变完全 不可回复。 粘弹体,则因为它既有弹性又有粘性,所以外力对它所做 功中一部分将以弹性能的形式储存起来,另一部分又以热 的形式消耗掉。外力除去后、弹性形变部分可回复,粘性 形变部分不可回复。
19
高聚物是典型的粘弹性材料。这种粘弹性表现在一切力 学行为中。但通常把蠕变、应力松弛和动态条件下的阻尼 看成是最典型的三种表现形式。 蠕变是指物体在一定温度和恒定应力作用下应变随时间 逐渐增大的现象。它决定制品尺寸与形状的稳定性。
20
应力松弛是在一定温度下维持物体恒定应变所需的应力 随时间逐渐衰减的现象(如下图)。 对于密封用制件来说,为保证其密封寿命,希望它的应 力松弛越慢越好; 但在制品的成型过程中,为减少制品中的余内应力、 则希望在制品加工中应力松弛得越快越好。
21
滞后现象:高聚物在交变力作用下,形变落后于应力变化 的现象 解释:链段在运动时要受到内摩擦力的作用,当外力变化 时链段的运动还跟不上外力的变化,形变落后于应力,有 一个相位差,相位差越大,说明链段运动愈困难,愈是跟 不上外力的变化。 五、动态粘弹性的应用
动态粘弹性现象对“高聚物结构”比较敏感 利用动态粘弹性可研究: 高聚物的玻璃化转变 高聚物的支化、结晶和交联 高聚物的次级松弛等
22
1、应用概述 高聚物及其复合材料这类粘弹性材料,许多性能参数 都与温度、频率、时间、应力、应变和有关。 从实用观点出发,高聚物零部件在许多实际应用中常 受动态交变载荷作用,如车辆轮胎在转动中;塑料齿轮 在传动中;减振阻尼材料在吸振中。 高聚物材料作为刚性结构材料使用时,希望材料行足 够的弹性刚度,以保持其形状的稳定性,同时又希望材 料有一定的粘性,以避免脆性破坏。 而作为减振或隔声等阻尼材料使用时,除了希望它们 有足够的粘性外,减振效果还与弹性成分有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态力学分析基础
材料的粘弹性
普弹性:外力作用下立即产生形变,外力除去后,形变 立即回复,形变对外力的响应是瞬间的。固体材料都具 有上述弹性。
理想弹性体的应力-应变关系服从虎克定律,即应力与应 变成正比,比例系数为弹性模量: σ=Eε
弹性模量表示材料的刚度,即材料抵抗变形的能力。外 力对材料做的功全部以弹性能的形式储存起来。
聚合物动态力学试验方法很多,按照形变模式 分为拉伸、压缩、弯曲、扭转、剪切等。测得 的模量取决于形变模式,因而弹性模量有拉伸 模量、压缩模量、剪切模量等之分。
按照振动模式分为自由衰减振动法、强迫共振 法、强迫非共振法等。
13
14
强迫非共振法
强迫非共振法是指强迫试样以设定频率振动,测定试 样在振动时的应力、应变幅值以及应力与应变之间的 相位差。
7
动态力学分析基础静态粘弹性来自动态粘弹性材料的静态粘弹性主要表现在蠕变和应力松弛两个方 面。
蠕变(creep)是指材料在恒定应力下,形变随时间增加 而增加的现象。对于高分子材料,高聚物分子构象发 生变化,受分子相互作用的影响,分子相对移动而取 向重排,这种行为不能瞬时完成而需一定的时间,因 此在整个蠕变过程中表现出不同的蠕变阶段。包括三 种形态:即普弹形变、高弹形变和塑性形变。材料的 总形变为:
2
动态力学分析基础
材料的粘弹性
黏性:材料受到外力时,理想黏性体的应变随时间线 性增加,去除外力后,产生的形变完全不可回复。外 力做的功全部以热能的形式消耗掉了,用以克服分子 间的摩擦力从而实现分子间的相对迁移。
理想黏性流体的流变行为服从牛顿定律,即应力与应 变速率成正比,比例系数为黏度。以剪切为例,牛顿 定律表达式为: τ=ηdγ/dt =ηγ
ε=ε1+ε2+ε3
8
动态力学分析基础
静态粘弹性与动态粘弹性
应力松弛(stress relaxation)指高聚物在恒应变下应力 随时间衰减的现象。
应力松弛不仅反映聚合物的结构特征,而且可帮助了 解在实际生产中,塑料制品成型后形状不稳定(翘曲、 变形、应力开裂)的原因及寻求稳定产品质量的工艺 方法。退火过程实际上就是维持固定形状而促进应力 松弛的过程。
材料的粘弹性
聚合物是典型的粘弹性材料,兼有粘性流体和 弹性固体的某些特性。当聚合物作为结构材料 使用时,主要利用它的弹性和强度,要求它在 使用温度范围内有较大的储能模量。当聚合物 作为减震和吸音材料使用时,主要利用它的粘 性,要求在一定频率范围内有较高的阻尼(将
固体机械振动能转变为热能而耗散的材料 )。
损耗模量E″,因粘性形变而以热的形式损耗的能量;
E" = (stress/strain)sin
力学损耗tanδ,损耗模量与储能模量的比值,是材料阻 尼能力的度量。
tan = E"/E'
研究材料的动态力学性能的目的,就是要精确测量各 种因素对动态模量E ‘ 、E″及损耗因子tanδ的影响。
12
动态力学分析技术
耗模量E”、力学损耗tgδ
17
Q800 DMA仪器结构图
试样
加热炉 夹具
低质量高刚性夹具
空气轴承 光学编码器
空气轴承轴
驱动马达
UNIQUE PATENT DESIGN
所有先进的强迫非共振仪都包含有多种形变模式,如 拉伸、压缩、剪切、弯曲(包括三点弯曲、单悬臂梁与 双悬臂梁弯曲)等,有些仪器中还有杆、棒的扭转模式。
在每一种形变模式下,不仅可以在固定频率下测定宽 阔温度范围内的动态力学性能温度谱或在固定温度下 测定宽频率范围内的频率谱,而且还允许多种变量组 合在一起的复杂试验模式。
15
DMA工作原理——强迫非共振法
16
DMA工作原理——强迫非共振法
(1)试样分别与驱动器、应变位移传感器相连接 (2)驱动器将一定频率的正弦交变作用施加到试
样上 (3)由应变位移传感器检测出应变的正弦信号 (4)通过应力振幅与应变振幅的位置比较,得到
应力与应变的相位差 (5)经过仪器的自动处理,得到储能模量E’、损
动态粘弹性就是我们所说的动态力学性能,是我们讨 论的重点。
9
动态力学分析基础
= 0°
动态力学性能测量原理
当材料受到正弦交变应力 作用时,对于理想弹性体, 应变对应力的响应是瞬间 的,因而应变响应是与应 力同相位的正弦函数:ε(t) =ε0 sinωt ;对于理想粘性 体,应变响应滞后于应力 90°相位角;对于粘弹性材 Stress 料,应变将始终滞后于应 力0°-90°的相位角δ。
3
动态力学分析基础
材料的粘弹性
对于粘弹性材料,力学行为既不服从虎克定律,也不 服从牛顿定律,而是介于两者之间。当受到外力时, 粘弹性材料的应变随时间作非线性变化,去除外力, 所产生的形变随时间逐渐且部分回复,其中弹性形变 部分可以回复,黏性形变部分不能回复。外力对粘弹 体所做的功一部分以弹性能的形式储存起来,另一部 分则以热能的形式消耗掉了。同时具有粘性和弹性两 种特性。
动态力学分析(DMA)
动态力学行为是指材料在振动条件下,即在交 变应力(交变应变)作用下做出的力学响应, 即力学性能(模量、内耗)与温度、频率的关系。
测定材料在一定温度范围内动态力学性能的变 化就是动态力学热分析(Dynamic Mechanical Thermal Analysis,简称DMTA)或动态力学分 析( Dynamic Mechanical Analysis,简称 DMA)。
4
动态力学分析基础
粘弹行为-时间依赖性 在短时间(高频率)作用下为类似固体的响应 在长时间(低频率)作用下为类似液体的响应 如果时间足够长任何东西都在流动!
5
“Silly Putty”的固体和液体特性
T is short [< 1s]
T is long [24 hours]
6
动态力学分析基础
Strain
Stress Strain
= 90°
10
动态力学分析基础
动态力学性能测量原理
Phase angle 0°< < 90°
Stress Strain
11
动态力学分析基础
动态力学性能测量原理
储能模量E ' ,表征材料在形变过程中由于弹性形变而 储存的能量:
E' = (stress/strain)cos