高强度聚焦超声(HIFU)治疗监控成像及评价的研究现状

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高强度聚焦超声(HIFU)治疗监控成像及评价的

研究现状

钟徽,万明习

西安交通大学生物医学信息工程教育部重点实验室,生物医学工程系,西安(710049)

摘要:HIFU技术由于无创或微创治疗的特点,近年来成为国际超声治疗学领域一个热门课题,并在我国初步实现了临床应用。高效、准确、个性化的治疗是HIFU治疗追求的目标,于是对于HIFU治疗前引导、定位,治疗中监控及治疗后评价的研究成为HIFU研究领域不可或缺的重要组成部分。本文首先介绍了以HIFU治疗物理机制(热机制、空化机制)为基础的监控成像方法;接着探讨了监控、评价HIFU形成的损伤常采用的几种组织参数定征方法(包括声学参数、力学参数等);然后比较了主要的三种成像方式,即MRI、CT和US成像方式各自的优缺点和适用范围;最后讨论了HIFU监控成像及评价技术所存在的问题和未来的研究方向。

关键词:高强度聚焦超声,监控成像

高强度聚焦超声(HIFU)可从体外将超声波聚焦到体内,在焦区处形成局部的高能量,产生热效应、空化效应等物理现象,使靶区组织发生凝固性坏死,并同时可以最大限度的不伤及周围正常组织,目前已成为国际超声治疗学领域的一个热点,并在我国实现了临床应用。高效、精确、个性化的治疗也是包括在HIFU物理治疗发展中的一个必然趋势。为了实现对治疗靶区的精确定位、治疗过程的精确控制以及治疗效果的适当评价,HIFU治疗的监控成像及评价问题已被提上日程。本文分别从以下三个层次——以HIFU治疗物理机制为基础的监控成像方法、以组织参数定征为基础的监控成像方法以及目前较为普遍使用的三种成像方式——对HIFU治疗监控成像及评价的研究现状做了阐述。

1. 以HIFU治疗物理机制为基础的监控成像方法

HIFU治疗的物理机制主要包括机械机制、热机制、空化机制以及细胞、分子层次的物理机制,其中热机制和空化机制是与HIFU治疗监控成像相关的机制。

1.1热机制:

HIFU治疗的物理机制主要是热机制,其原理是利用组织对超声波的吸收,将声能转换为热能,在短时间内(0.5~5s)使焦区处的靶组织(如肿瘤)温度上升到65℃以上[1],产生不可逆的凝固性坏死,从而达到治疗的目的。

(1)MRI的温度成像研究

核磁共振成像(MRI)是目前医学影像学诊断中获得广泛应用的方法之一。MRI可对组织温度的改变进行成像,其原理为:MRI的T1驰豫时间对温度比较敏感,它与温度呈正比关系,其信号强度则和温度呈近似反比关系,即温度越高的区域,在MRI图像上的亮度越低。通常可采用T1加权图像对组织温度的改变进行间接成像。

MRI在引导激光热疗的方面已做了比较全面的研究,自从Jolesz 和 Jakab在1991年证明了超声换能器可在MRI扫描器内使用后,Cline和Hynynen等人[2]的研究表明,利用MRI 的温度成像引导HIFU治疗也是可行性。Hynynen提出了MRI引导HIFU治疗的具体方案,即在治疗前用HIFU进行低剂量的辐照(不形成组织损伤),使组织温度适当上升,用MRI 温度成像来进行HIFU焦区定位,以引导HIFU治疗。

Bohris和Jenne等人[3]进一步将MRI用于HIFU治疗的“实时”温度监控中。他们的研究表明,MRI温度测量可与HIFU治疗同步进行,而不会干扰治疗过程,MRI的温度分辨率优于1℃,成像时间约为3s,可近似看作“实时”。

(2)超声的温度估计研究

八十年代以来,许多学者在超声估计温度的方面开展了大量的研究工作。超声估计组织温度的主要原理是:温度的升高会使声速发生改变,并使组织产生热膨胀,从而使超声回波信号在时域或频域的特性发生改变,通过估计这些参数的变化可间接地估计组织温度的改变情况。

Maass-Moreno和Damianou等人[4][5]进行了超声回波信号估计HIFU引起的组织温度改变的研究。他们建立了组织温度与回波时移关系的解析模型。从他们的模型中可以得出,时移主要取决于回声路径上的平均声速,组织热膨胀对时移的影响较小,但限制了焦区处的温度估计精度,时移与温度近似呈线性关系。在HIFU照射离体肌肉实验中,他们采用了互相关技术估计时移。实验结果表明,在组织温度上升约10℃以下,时移与温度呈线性关系,但上升到更高温度时,即组织温度达到50℃以上时,线性关系不再存在,认为这一现象可能与高温下的组织损伤有关。

Simon,Philip等人[6]提出利用超声回波的复自相关函数相位来估计时移,得到了组织仿体的二维温度估计图像,其温度估计精度为0.5℃,空间分辨率为2mm。由于热-声透镜效应,会使温度图像产生横向波纹,研究中采用了可分离的二维有限冲激响应滤波器对数据进行滤波,以消除图像中的横向纹波,但这是以降低空间分辨率为代价的。他们的实验仅在较低的温度水平(<40℃)下有效。

Seip和Ebbini等人[7]提出了另一种组织温度的超声回波估计方法。该方法基于离散散射模型,认为大多数生物组织具有半规则的网格状散射子群,可通过估计由温度引起的散射元平均间距的改变来估计组织温度。他们发现散射元平均间距与超声背向散射信号频谱的谐

△振频率有关,从而建立了谐振频率的变化f

△的关系,理论和实验均表明f

△与温度变化T

△,他们采用了AR模型。在得到一维实验结果的基础上,△呈线性关系。为精确估计f

与T

他们也得到了二维的温度图像,并第一次将超声温度估计法用于超声热疗的实时温度控制中。他们的方法其温度估计精度为0.4℃,空间分辨率为3mm。同样,他们的所有实验也是在较低温度水平下进行的,并且该方法理论上只适用于肝等具有规则间距散射子的组织。

另外,最近关于超声温度成像有一些新的报道。Miller,ter Haar等人利用温度产生的回声应变来进行温度成像,研究中的温度上升范围为2~15℃,他们提出可以将此方法应用于超声治疗前的引导。Konofagou等人研究了超声刺激声发射(Ultrasound-Stimulated Acoustic Emission ,USAE)与温度的关系。他们的研究表明,在超声低功率辐照下,USAE的幅度与温度呈线性关系,而较高功率下,线性关系则不存在。这两种方法尚处于较为初步的研究阶段。

(3)CT的温度成像研究

利用CT进行HIFU监控成像研究的报道较少。Jenne和Bahner等人[8]利用临床CT扫描器对HIFU治疗进行了温度成像研究。用CT进行温度测量的物理机制为:组织对X射线的吸收值正比于组织的密度,温度的改变由于热膨胀而引起组织密度的改变,故可以通过测量组织密度来进行温度估计。研究发现CT number(HU)与组织温度近似为线性反比关系。HIFU 低剂量辐照时图像上产生可逆的亮度变化,高剂量时,则产生不可逆的亮度变化,认为与组织损伤有关。

相关文档
最新文档