(完整版)中职数学第三章函数测试题
中职数学基础模块上册第三四章《函数、指数函数与对数函数》测试题及参考答案
中职数学基础模块测试题《函数、指数函数、对数函数》(满分100分,时间:90分钟)一、选择题(本大题共10小题,每小题4分,共40分)题号12345678910答案1.下列各组函数中,表示同一函数的是()x2A.y=与y=xB.y=x与y=x2x C.y=x与y=log2x D.y=x0与y=1 22.下列函数,在其定义域内,既是奇函数又是增函数的是()1A.y=x23.若a>b,则有()B.y=2x C.y=x3 D.y=log x2A.a2>b2B.lg a>lg bC.2a>2bD.a>b4.log81=()A、2B、4C、-2D、-435.计算log1.25+log0.2=()A.-2 B.-1 C.2 D.1226.y=x-a与y=log x在同一坐标系下的图象可能是()ay y y y1O1x1O1x1O1x1O1x-1 A -1B-1C-1D7.设函数f(x)=log x(a>0且a≠1),f(4)=2,则f(8)=()aA.2B.12 C.3 D.13158.2⋅38⋅464=()A、4B、287C、22D、89.下列函数在区间(0,+∞)上是减函数的是()A、y=x12B、y=x13C、y=x-2D、y=x2(1) 64 3 + ( 2 + 3)0 = __________;(2)化简: (lg 2 - 1) 2 =__________(5)方程 3 x 2-8 = ( ) -2 x 的解集为________________3 - x- (- ) -2+ 810.75 + (1 - 5) 010.若函数 y = log (ax 2 + 3x + a ) 的定义域为 R ,则 a 的取值范围是()21 3 13A. (-∞, - )B. ( , +∞)C. (- , +∞)D. (-∞, )2 2 22二、填空题(共 5 小题,每题 4 分,共 20 分)2 (- )(3)如果 log x < log ( x - 1) ,那么 a 的取值范围是__________aa(4)用不等号连接: log 5log 0.20.26 ; 若 3m > 3n ,则 m n13三、解答题(本大题共 6 小题,共计 40 分)11.(6 分)求函数 y = log (2 x - 1) + 的定义域。
中职数学第三章测试题及答案.docx
第三章函数测试卷一、填空题:(每空 2 分)1、函数 f ( x)1 的定义域是 。
x 12、函数 f ( x)3x2 的定义域是。
3、已知函数 f (x) 3x 2,则 f (0) , f (2) 。
4、已知函数 f (x)x 21,则 f (0), f ( 2)。
5、函数的表示方法有三种,即:。
6、点 P 1,3 关于 x 轴的对称点坐标是 ;点 M (2,-3 )关于 y 轴的对称点坐标是;点 N (3, 3) 关于原点对称点坐标是。
7、函数 f (x)2x 2 1 是函数;函数 f ( x) x 3x 是函数;8、每瓶饮料的单价为元,用解析法表示应付款和购买饮料瓶数之间的函数关系 式可以表示为 。
9、常用对数表中,表示对数与对数值之间的关系采用的是 的方法。
二、选择题(每题 3 分)1、下列各点中,在函数 y 3x 1的图像上的点是( )。
A .(1,2) B. (3,4 ) C.(0,1)D.(5,6) 2、函数 y 1的定义域为()。
2x 3A .,B.,33 , C. 3 , D.3 ,2 2223、下列函数中是奇函数的是( )。
A . y x 3B.y x 21 C. y x 3D. y x 3 14、函数 y 4x 3 的单调递增区间是 ()。
A .,B.0,C.,0D.0.5、点 P (-2 ,1)关于 x 轴的对称点坐标是( )。
A .(-2 , 1) B. ( 2, 1) C.(2 ,-1) D.(-2 ,-1) 6、点 P (-2 ,1)关于原点 O 的对称点坐标是( )。
A .(-2 , 1) B. ( 2, 1) C.(2 ,-1)D.(-2 ,-1) 7、函数 y2 3x 的定义域是()。
A.222D.2 ,B.,C.,, 33338、已知函数 f (x)x27 ,则 f (3) =()。
A.-16 C. 2三、解答题:(每题 5 分)1、求函数y3x 6 的定义域。
中职数学第3章《函数》单元检测试题及答案【基础模块上册】
⎨12020 届中职数学第三章《函数》单元检测(满分 100 分,时间:90 分钟)一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)题号 1 2 3 4 5 6 7 8 9 10答案1.下列函数与 y=x 表示同一个函数的是()A. y =x2xB.s=tC. y =| x |D. y = ( x ) 22.若函数 f ( x ) = ⎧ 2,x ≤ 0 ,则 f (-2) + f (3) = ()⎩ 3 + x 2, x > 0A.7B.14C. 12D.23.下列函数中既是奇函数又是增函数的是( )A. y = e xB. y =1xC. y = x + 1D. y = x 34. f ( x )=x 2 + bx - 1是偶函数,则常数 b 的值为( )A.-1B.0C. 1D. 2 5.函数 y = 1 的单调减区间是()xA. RB. (-∞,0)∪(0,+∞)C. N *D. (-∞,0)、(0,+∞)6. y = x - a 与 y = log x 在同一坐标系下的图象可能是() ay1O 1x-1y1O 1 x-1y1O x-1y1O 1 x-1A B C D7.若函数 f ( x )=3x 2 + 2(a - 1)x 在则 (-∞,1] 上为减函数,则( )A. a=-2B. a=2C. a ≥ -2D. a ≤ -2 8.函数的 y = - x 2 - 4 x - 7 的顶点坐标是( )A.(-2,-3)B.(-2,3)C.(2,-3) D .(2,3)9.一次函数 y=(3-k)x-k 的图像过第二、三、四象限,则 k 的取值范围是( )A. k > 3B. 0 < k ≤ 3C. 0 ≤ k < 3D. 0 < k < 310.设二次函数图像满足顶点坐标为(2,-1),且图像过点(0,3),则函数的解析式为 ( )A. y = x 2 - 4 x + 3 . y = x 2 + 4 x + 3 C. y = 2 x 2 + 8 x + 3 D. y = 2 x 2 - 8x + 33x -5 二、填空题(共 8 小题,每题 4 分,共 32 分)11.若函数 f ( x ) = ax - 2 ,且 f (2) = 4 ,则 a= 12.当 x= 时,函数 y = x 2 + 4 x + 3 有最小值13.函数 f ( x ) = x 2 - 2 x - 3 的递减区间是,递增区间是1 14.用区间表示函数 y = 的定义域为______________15.已知函数 f(x)=2x-1,则 f[f(2)]=16.若函数 f(x)=3x+m-1 是奇函数,则常数 m=17.已知二次函数 y = ( m - 3) x 2 + ( m - 2) x + 6 为偶函数,则函数的单调增区间为 18.函数 f(x)=(3k-6)x+2 在 R 上是减函数,则 k 的取值范围为三、解答题(6 小题,共 38 分)19.(8 分)求下列函数的定义域:(1) f ( x ) = 1 - x + 3 1 + x (2) f ( x ) =2 x - 1 x - 320.(6 分)f(x)是定义在(0,+∞)上的单调递减函数,且 f(x)<f(x-2),求 x 的取值范围.21.若函数 f(x)=3x-1,g(x)=x 2,求 g[f(x)]的值.22.(6 分)证明:函数 y=2x-3 在(-∞,+∞)上是增函数。
职高数学第三章函数习题集及答案
3.1函数的概念及其表示法习题练习3.1.11、求y=3x-1的定义域:2、指出下列各函数中,哪个与函数y x=是同一个函数:(1)2xyx=;(2)y;(3)s t=.3、已知f(x)=3x+6,求f(0)、f(2)、f(-2)。
参考答案:1、R2、(3)3、6、12、0练习3.1.21、利用“描点法”作出函数xy=的图像,并判断点(16,4)是否为图像上的点2、市场上苹果的价格是8元/kg ,应付款额y是购买苹果数量x的函数.请写出其解析法。
3、市场上中性笔的价格是2元/只,应付款额y是购买中性笔数量x的函数.请写出其解析法。
参考答案:1、作图略,在。
2、y=8x,(x为正整数)3、y=2x(x为正整数)3.2函数的性质习题练习3.2.11、判断函数y=-2x+3的单调性.23、判断函数y=8X+3的单调性.参考答案: 1、减2、左增、右减3、增练习3.2.21、判断y=8X+3的奇偶性:2、判断y=4X 的奇偶性3、判断y=X 2的奇偶性 参考答案:1、非奇非偶函数2、奇函数3、偶函数3.3函数的实际应用举例习题练习3.31、.求()221,20,1,0 3.x x y f x x x +-<⎧⎪==⎨-<<⎪⎩的定义域;2、求函数()221,0,,0.x xy f x x x -⎧⎪==⎨>⎪⎩的定义域;3、求函数() 1.6,010,2.812,10.x x y f x x x <⎧==⎨->⎩的定义域;4、作出函数()1,0,1,0x x y f x x x -<⎧==⎨+⎩的图像 5、设函数()221,20,1,0 3.x xf x x x +-<⎧⎪=⎨-<<⎪⎩作出函数的图像.6、设函数7,03,4,310,1.51,10.x y x x x x <⎧⎪=+<⎨⎪->⎩作出函数的图像 参考答案: 1、-2<=x<=3 2、R3、x>=04、略5、略6、略解斜三角形单元测试题班级: 姓名 学号: 成绩: 一选择题:(每题4分)1、在ABC ∆中,等于则c b a C B A :: ::sin :sin :sin 432=( ) A .4:3:2 B 、2:3:4 C 、1:2:3 D 、1:2:32、在ABC ∆中,060,3==A a 则 ABC ∆的外接圆半径为 ( )A .1B 、 2C 、 4D 、 33、在ABC ∆中,已知060,2,6===A b a 则B 为( )A .450B 、600C 、1350D 450 或1350 4、已知C S b a ABC ∠===则且 ,31268∆的度数是( ) A 、300 B 、600或1200 C 、600 D 、12005、在ABC ∆中,B a A b cos cos =则这个三角形为 ( ) A 、直角三角形 B 、锐角三角形 C 等腰三角形 D 等边三角形、6、在ABC ∆中,若222c b a +>则ABC ∆一定为 ( ) A .直角三角形 B 、锐角三角形 C 、钝角三角形 D 、无法确定 7、在ABC ∆中,已知则 7c , 3,2===b a ABC ∆的面积为 ( )A 、3B 、 1.5C 、323D 、72 8、在等腰ABC ∆中,AB=AC ,底边BC 的长为2,且52=B A sin sin , 则ABC ∆的周长为( )A 、8B 、10C 、12D 、14 9、在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别为300、600、则塔高为 ( ) A 、m 3400B 、m 33400 C 、m 3200 D 、 m 200 10、ABC ∆的周长为12+,且C B A sin sin sin 2=+,则边AB 的长为 ( )A 、1B 、2C 、3D 、 2 11、已知圆的半径为1,则圆的内接正六边形的面积为( )A 、3B 、23 C 、 2 D 、 233 12、在ABC ∆中,已知A caB 则 , ,2450==的度数为( ) A 、900 B 、600 C 、450 D 300二、填空题:(每题4分)13、在ABC ∆中,若,ab c b a =-+222则角C 的度数为14、海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成600视角,从B 岛望C 岛和A 岛成750视角,那么B 岛和C 岛间的距离是15、在,则三角形的最大角为中,已知537===c b a ABC , ,∆ 度 16、已知锐角三角形的边长分别为1、3、a 则a 的取值范围是 17、在△ABC 中,内角2B=A+C ,且AB=8,BC=5, 则△ABC 的内切圆的面积为 三、解答题:(每题8分、共32分)18、在ABC ∆中,,6,2,450===c a A 解这个斜三角形。
中职数学第三章测试题及答案资料讲解
第三章函数测试卷一、填空题:(每空2分)1、函数11)(+=x x f 的定义域是 。
2、函数23)(-=x x f 的定义域是 。
3、已知函数23)(-=x x f ,则=)0(f ,=)2(f 。
4、已知函数1)(2-=x x f ,则=)0(f ,=-)2(f 。
5、函数的表示方法有三种,即: 。
6、点()3,1-P 关于x 轴的对称点坐标是 ;点M (2,-3)关于y 轴的对称点坐标是 ;点)3,3(-N 关于原点对称点坐标是 。
7、函数12)(2+=x x f 是 函数;函数x x x f -=3)(是 函数;8、每瓶饮料的单价为2.5元,用解析法表示应付款和购买饮料瓶数之间的函数关系式可以表示为 。
9、常用对数表中,表示对数与对数值之间的关系采用的是 的方法。
二、选择题(每题3分)1、下列各点中,在函数13-=x y 的图像上的点是( )。
A .(1,2) B.(3,4) C.(0,1) D.(5,6)2、函数321-=x y 的定义域为( )。
A .()+∞∞-, B.⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛∞-,2323,Y C.⎪⎭⎫⎢⎣⎡+∞,23 D. ⎪⎭⎫ ⎝⎛+∞,23 3、下列函数中是奇函数的是( )。
A .3+=x y B.12+=x y C.3x y = D.13+=x y4、函数34+=x y 的单调递增区间是( )。
A .()+∞∞-, B. ()+∞,0 C. ()0,∞- D.[)∞+.05、点P (-2,1)关于x 轴的对称点坐标是( )。
A .(-2,1) B.(2,1) C.(2,-1) D.(-2,-1)6、点P (-2,1)关于原点O 的对称点坐标是( )。
A .(-2,1) B.(2,1) C.(2,-1) D.(-2,-1)7、函数x y 32-=的定义域是( )。
A .⎪⎭⎫ ⎝⎛∞-32, B.⎥⎦⎤ ⎝⎛∞-32, C. ⎪⎭⎫ ⎝⎛+∞,32 D.⎪⎭⎫⎢⎣⎡+∞,32 8、已知函数7)(2-=x x f ,则)3(-f =( )。
中职数学基础模块(上册)基础练习-第三章函数
第三章 函数第三章 第一课时 函数的概念【基础知识·一定要看】1.函数的概念设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有__________的数 f x 和它对应,那么就称:f A B 为从集合A 到集合B 的一个函数.记作: y f x ,x A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合 {|}f x x A 叫做函数的值域. 2.求函数定义域的常用方法: (1)分母不为零;(2)偶次根式,则被开方数大于或等于零; (3)0的0次没有意义;(4)对数的真数大于零;(还没学)3.相同函数:个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.4.分段函数:如果函数y =f (x ),x ∈A ,根据自变量x 在A 中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数. 一、选择题1.在下面四个图中,可表示函数 y f x 的图象的可能是( )A. B. C. D.2.函数1()f x x的定义域是( ) A.[2,0)(0,)B.[2,) C.RD.(,0)(0,)3.下列每组中的两个函数是同一函数的是( )A.1y 与0y x ; B.y y x ;C.y x 与2y;D.y x 与y4. 23,12,1x x f x x x ,则(2)f 等于( )A.-2 B.0C.1D.65.函数 2112f x x x, 0,4x 的值域( )A. 0,4 B. 1,5 C. 1,4D.1,526.已知 2146f x x ,则 5f 的值为( ) A.26B.20C.18D.167.已知函数 2,32,3x x f x x x .则 3f f ( )A.1 B.4 C.9 D.16二、填空题8.函数()1f x 的定义域为 . 9.若 234f x x Bx ,且 112f ,则B = . 10.已知函数()y f x 的表达式4()1f x x,若()2f a ,则实数 a . 11.二次函数 22f x x x , 1,1x ,则函数 f x 在此区间上的值域为 . 三、解答题12.已知函数 1f x ax x过点(1,5),求a 的值.第三章 第二课时 函数的表示方法【基础知识·一定要看】1.函数的三种表示方法:①待定系数法:若已知f (x )的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可.②换元法:设t =g (x ),解出x ,代入f (g (x )),求f (t )的解析式即可. 3.常见的几种基本初等函数①正比例函数(0)y kx k ②一次函数(0)y kx b k ③反比例函数(0)ky k x④二次函数2(0)y ax bx c a 一、选择题1.已知(21)44f x x ,则(1)f 的值为( ) A.2B.4C.6D.82.函数 y f x 的图象如图所示,则 9f ( ) A.5 B.4C.3D.23.已知 212f x x x ,则 f x ( ) A.2xB.21xC.21xD.22x4.已知 f x 是反比例函数,且(3)1f ,则 f x 的解析式为( ) A. 3f x xB. 3f x xC. 3f x xD. 3f x x5.若函数 f x 和 g x 分别由下表给出: 则 1g f ( ) A.4 B.3C.2D.16.已知 32f x x ,则 21f x 等于( ) A.32xB.61x C.21xD.65x7.已知()f x 是一次函数,且(1)35f x x ,则()f x 的解析式为( ) A.()32f x xB.()32f x xC.()23f x xD.()23f x x二、填空题8.已知 22143f x x ,则 f x .9.已知函数 f x 对于任意的x 都有 212f x x f x ,则 f x . 10.已知等腰三角形的周长为18,底边长为x ,腰长为y ,则y 关于x 的函数关系式为 . 三、解答题11.已知函数 224f x x x . (1)求 0f ; (2)求 f x 的解析式.第三章 第三课时 函数的性质【基础知识·一定要看】1.函数的单调性 ①单调函数的定义 自左向右看图象是上升的自左向右看图象是下降的②证明函数单调性的步骤第一步:取值.设12x x ,是()f x 定义域内一个区间上的任意两个自变量,且12x x ; 第二步:变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形; 第三步:定号.判断差的正负或商与1的大小关系; 第四步:得出结论. 2.函数的奇偶性 ①函数奇偶性的概念偶函数:若对于定义域内的任意一个x ,都有 f x f x ,那么 f x 称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有 f x f x ,那么 f x 称为奇函数. ②奇偶函数的图象与性质偶函数:函数()f x 是偶函数 函数()f x 的图象关于y 轴对称; 奇函数:函数()f x 是奇函数 函数()f x 的图象关于原点中心对称;若奇函数()y f x 在0x 处有意义,则有(0)0f .③用定义判断函数奇偶性的步骤第一步:求函数()f x 的定义域,判断函数的定义域是否_______________,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步;第二步:求()f x ,若 f x f x ,则()f x 是奇函数;若()f x =()f x ,则()f x 是偶函数;若()()f x f x ,则()f x 既不是奇函数,也不是偶函数;若()()f x f x 且 f x f x ,则()f x 既是奇函数,又是偶函数.1.若函数 1y a x b ,x R 在其定义域上是增函数,则( ) A.1aB.1aC.0bD.0b2.函数 f x 在R 上是减函数,则有( ) A. 25f fB. 25f fC. 25f fD. 25f f3.下列函数中,既是偶函数又在 0, 上单调递增的函数是( ) A.y xB.1y xC.21y xD.1y x4.若偶函数 f x 在 ,1 上是减函数,则( ) A. 2.513f f f B. 1 2.53f f f C. 3 2.51f f fD. 31 2.5f f f5.函数 f x 是定义在 0, 上的增函数,则满足 1213f x f的x 的取值范围是( ) A.12,33B.12,33C.12,23D.12,236.函数22y x x 单调减区间是( ) A.1,2B. 1,C.1,2D. ,【填空】7.已知 f x 是偶函数, 12f ,则 11f f .8.函数()y f x 是定义在R 上的增函数,且 29f m f m ,则实数m 的取值范围是 .9.函数()y f x 是定义在R 上的奇函数,当0x 时,3()f x x x ,则(2)f .10.已知 y f x 在定义域 0,1上是减函数,且 121f a f a ,则实数a 的取值范围 .11.已知函数2()()2f x x m .(1)若函数()f x 的图象过点(2,2),求函数y ()f x 的单调递增区间; (2)若函数()f x 是偶函数,求m 值.12.已知函数 1f x x x(1)判断 f x 的奇偶性并说明理由; (2)判断 f x 在 0,1上的单调性并加以证明.第三章 第四课时 函数的应用一、选择题1.据调查,某存车处(只存放自行车和电动车)在某天的存车量为400辆次,其中电动车存车费是每辆一次2元,自行车存车费是每辆一次1元.若该天自行车存车量为x 辆次,存车总收入为y 元,则y 关于x 的函数关系式是( ) A. 4000400y x x B. 8000400y x x C. 4000400y x xD. 8000400y x x2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (千帕)是气球体积V (立方米)的反比例函数,其图像如图所示,则这个函数的解析式为( )A.69P VB.96P VC.69P VD.96P V3.某物体一天中的温度T 是时间t 的函数:3()360T t t t ,时间的单位是小时,温度的单位是C ,0 t 表示中午12时,其后取值为正,其前取值为负,则上午8时的温度为( ) A.18CB.8CC.0CD.4C二、填空题4.若某一品种的练习册每本2.5元,则购买x 本的费用y 与x 的函数关系是 . 5.某社区超市的某种商品的日利润y (单位:元)与该商品的当日售价x (单位:元)之间的关系为21221025x y x ,那么该商品的日利润最大时,当日售价为 元.三、解答题6.某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下:(1)经过对上表中数据的探究,发现这种读物的投入成本 (元)是印数 (册)的一次函数,求这个一次函数的解析式(不要求写出的取值范围); (2)如果出版社投入成本48000元,那么能印该读物多少册?x x7.制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y (℃),从加热开始计算的时间为 min x .据了解,设该材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5min 后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?。
中职数学函数的概念-最新,经典试题,通用
- 1 -第三章 函数 3.1.1 函数的概念一、选择题1、如图,下列对应关系,不是数集A 到数集B 上的函数是( )2、下列四个图像中,哪个图像是函数的图像A 、、3、设f(x)=x+1,则f(2)的值为( ) A 、4 B 、3 C 、2 D 、14、已知f(x)=若f(x)=9,则x 的值是( )A 、3或﹣3B 、3C 、﹣3D 、﹣3或7 5、已知函数f(x)=2x+a ,f(5)= 6,则a=( ) A 、﹣4 B 、4 C 、5 D 、6 三、填空题1、若函数f(x)=2x ﹣2x ,则f(8)= f(x+1)=2、g(x)=3+4x ,f[g(x)]=221xx +,则f(7)=3、已知f(x)= ,则f[f(0)]=4、已知函数f(x)=33++bx ax ,若f(2)=4, 则f(﹣2)=5、已知函数y=3x ,x ∈[﹣1,2],则其值域是BABCD2x (x ﹤0) x+2(x ﹥0)0 x ﹥03 x=032x ﹣4 x ﹥0- 2 - 26、函数y=11-x 的定义域是 7、f(x)=ax -1的定义域为{x|x ≠5},则a= 三、解答题1、求下列函数的定义域 ⑴y=6+x ⑵y=51-x (3)x xy --=332、求函数y=xx 54--的定义域。
3、若函数f(x)=11-x ,g(x)=12-x ,求f(g(3))的值。
4、已知函数=)(x f(1)求)3(),0(),1(f f f -(2)作出函数的图象[)+∞∈,0,1x ()0,,1∞-∈-x- 3 -3.1.2 函数的表示方法(一)一、选择题1、函数x x y 53+=的表示方法为 ( ) A 、图象法 B 、列表法 C 、解析法 D 、以上都不对2、若点(1,y)在函数x x f 2)(=的图象上,则y= ( ) A 、2 B 、21C 、2xD 、以上都不对 3、(-1,3)是以下哪个函数图像上的点 ( ) A 、y=2x B 、y=1-2x C 、2x y = D 、x y =4、若点(x,4)在函数2x y =的图象上,则x= ( ) A 、-2 B 、2 C 、2或-2 D 、以上都不对5、一天,亮亮发烧了,早晨他烧得很厉害,叫过药后感觉好多了,中午时亮亮的体温基本正常,但是下午他的体温又开始上升,直到半夜,亮亮才感觉身上不那么发烫了,下图中能基本反映亮亮这一天(0~24时)体温变化情况的是A 、B 、C 、二、填空题1、函数的表示方法通常有 , ,2、点P(-1,2),Q(2,0),Q(3,2),T(4,-4)中,在函数y=-2x+4上的点有 个 3、一次函数f(x)=kx 的图象过点(2,4),则f(x)的解析式是________4、一种产品的单价为a 元,写出收款总额y 随售出件数x 变化的解析式为________ 5、、若点(-1,y)在常值函数f(x)=6的图象上,则y=________ 三、解答题1、已知函数f(x)在[-1,1]上的图象如图所示,求f(x)的解析式24 时24 时24 时18 24 时2、汽车在行驶过程中,速度往往是变化的,下图表示的是一辆汽车的速度随时间变化而变化的情况。
中职数学第三章函数单元测验试卷
中职数学第三章函数单元测验试卷班级姓名学号得分一、选择题:(每题3分,共36分) 1、点(-2,3)关于x轴对称点坐标是 ( ) A: (2,3) B: (-2,-3) C: (2,-3) D: (-2,3) 2.下列各组的两个函数,表示同一个函数的是() A.与 B.与 C.与D.与 3.若函数,则() A.7 B.14 C. 12 D.2 4.下列函数中既是奇函数又是增函数的是() A. B. C. D. 5.一次函数y = 2x + 1的图像不经过的象限是:() A. 第一 B. 第二 C. 第三 D. 第四 6.函数的单调减区间是() A. R B. (-∞,0)∪(0,+∞) C. N* D. Q 7.已知函数在区间上是减函数则() A.>> B.>> C.>> D.>> 8.已知函数,则=() A. 2x+1 B. 2x+5 C. x+2 D. x 9. 下列各点中,在函数y=x-2图象上的是() A.(0,2) B. (-1,-2) C.(2,0) D.(-1,2) 10.已知一次函数的图像关于原点对称,则二次函数的图像关于()对称。
A.x轴B.y轴C.原点 D.直线y=x 11.不等式对于一切实数均成立,则的取值范围是() A. B. C.D. 12.设二次函数满足顶点坐标为(2,-1),其图像过点(0,3),则函数的解析式为() A. B. C. D. 二、填空题(4×2分) 1.若函数,则的解集为: _________ , 2 .设函数,则= , 3. 已知一次函数的图像过点(-1,2)、(2,-1),则其解析式为__________ 4. 若函数是偶函数,则的值为,三、解答题(共56分) 1、判断函数y = x3 在R上的单调性。
(8分) 2、判断函数的奇偶性。
(8分) 3、求函数的定义域。
(8分) 4、已知二次函数为偶函数,求函数的单调增区间。
(完整版)中职数学习题及答案
第三章:函数一、填空题: (每空 2 分)1、函数 f(x) =的定义域是。
2、函数 f(x) = 3x - 2 的定义域是 。
3、已知函数 f(x) = 3x - 2,则 f(0) =, f(2) =。
4、已知函数 f(x) = x 2 - 1,则 f(0) = , f(-2) = 。
5、函数的表示方法有三种 ,即: 。
6、点 P (-1,3) 关于 x 轴的对称点坐标是 ;点 M (2,— 3)关于 y 轴的对称点坐标 是;点 N(3,-3) 关于原点对称点坐标是。
7、函数 f(x) = 2x 2 + 1是 函数;函数 f(x) = x 3 - x 是函数;8、每瓶饮料的单价为 2.5 元,用解析法表示应付款和购买饮料瓶数之间的函数关系式可以表示。
9、常用对数表中,表示对数与对数值之间的关系采用的是 的方法.二、选择题(每题 3 分)1、下列各点中,在函数 y = 3x - 1的图像上的点是( )。
A .(1,2) B. (3,4) C. (0,1) D. (5,6)2、函数 y =12x-3的定义域为( )。
A . (- w,+w ) B.(|(- w, 23))| U (|( 23,+w ))| C 。
23,+w ))| D 。
(|( 23,+w ))|3、下列函数中是奇函数的是( )。
A . y = x + 3 B. y = x 2 + 1 C 。
y = x 3 D 。
y = x 3 + 1 4、函数 y = 4x +3的单调递增区间是( ).A . (- w,+w ) B. (0,+w) C 。
(- w,0) D 。
[0.+ w) 5、点 P (-2,1)关于x 轴的对称点坐标是( )。
A .( —2,1) B. (2,1) C. (2,-1) D 。
(—2,-1)为6、点 P ( —2,1)关于原点 O 的对称点坐标是( )。
A .(-2,1) B 。
(2,1) C 。
职高数学第三章函数习题集 及答案
3.1函数的概念及其表示法习题
练习3.1.1
1、求y=3x-1的定义域:
2、指出下列各函数中,哪个与函数是同一个函数:
(1);(2);(3).
3、已知f(x)=3x+6,求f(0)、f(2)、f(-2)。
参考答案:
1、R
2、(3)
3、6、12、0
练习3.1.2
1、 利用“描点法”作出函数的图像,并判断点(16,4)是否为图像上的点
2、市场上苹果的价格是8元/kg ,应付款额y是购买苹果数量x的函数.请写出其解析法。
3、市场上中性笔的价格是2元/只,应付款额y是购买中性笔数量x的函数.请写出其解析法。
参考答案:
1、作图略,在。
2、y=8x,(x为正整数)
3、y=2x(x为正整数)
3.2函数的性质习题
练习3.2.1
1、判断函数y=-2x+3的单调性.
2、判断右图两个函数的单调性
x
y
x
y
3、判断函数y=8X+3的单调性.
参考答案:
1、减
2、左增、右减
3、增
练习3.2.2
1、判断y=8X+3的奇偶性:
2、判断y=4X的奇偶性
3、判断y=X2的奇偶性
参考答案:
1、非奇非偶函数
2、奇函数
3、偶函数
3.3函数的实际应用举例习题练习3.3
1、.求的定义域;
2、求函数的定义域;
3、求函数的定义域;
4、作出函数的图像
5、设函数作出函数的图像.
6、设函数作出函数的图像
参考答案:
1、-2<=x<=3
2、R
3、x>=0
4、略
5、略
6、略。
最新中职第三章函数单元测试题
第三章 函数单元测试题(时间90分钟,分数120分)一、选择题(共10题,每题4分,共40分)1.下列函数中,与函数x y =表示同一函数的是( ) A.2xy x =B.2y x =C.33x y = D.2)(x y =2. 下列四个图像中(如下图),属于函数图象的是(1) (2) (3) (4) A.(1)(2) B.(1)(3)(4) C.(2)(3)(4) D.(1)(2)(3)(4) 3.下列函数中,在区间()0,+∞上为减函数的是( ) A. y=x 2B.C. 23+=x yD.1y x =4.右图是函数f(x)= 的图像,下列说法不正确的是( )A.该函数属于奇函数.B.该函数属于反比例函数.C.该函数在区间(-∞,0)上位增函数.D.该函数在区间(0,+∞)上位减函数. 5. 函数x x x f -++=211)(的定义域是( )A.{|x 21≠-≥x x 且}B.{|x 21≠-≥x x 或}C.}21|{<≤-x xD.{|x 1->x }6.二次函数y =x 2-2x +5的值域是( )A.[4,+∞)B.(4,+∞)C.(-∞,4)D.(-∞,4] 7.下列函数是奇函数的是( )A.f(x)=x+x 3+x 5B.f(x)=x 2+1C.f(x)=x +1D.f(x)=x 2,x ∈[-1,3] 9.如果偶函数在具有最大值,那么该函数在有( )A .最大值B .最小值C .没有最大值D . 没有最小值 10.函数在和都是增函数,若,且那么( ) A . B .C .D .无法确定二、判断下列函数的奇偶性(共4题,每题5分,共20分)11、 12、13、14、y =(x +1)(x -1)三、解答题(共4题,共60分)15(12分)已知函数()132f x x x =+++ 求:(1)f(x)的定义域。
(2)求()3f -,23f ⎛⎫⎪⎝⎭的值;16(9分)判断函数f (x )=-3(x -2)2+5在(2,+∞)的单调性。
职高数学第三章函数习题集及答案汇编
3.1函数的概念及其表示法习题练习3.1.11、求y=3x-1的定义域:2、指出下列各函数中,哪个与函数y x=是同一个函数:(1)2xyx=;(2)y;(3)s t=.3、已知f(x)=3x+6,求f(0)、f(2)、f(-2)。
参考答案:1、R2、(3)3、6、12、0练习3.1.21、利用“描点法”作出函数xy=的图像,并判断点(16,4)是否为图像上的点2、市场上苹果的价格是8元/kg ,应付款额y是购买苹果数量x的函数.请写出其解析法。
3、市场上中性笔的价格是2元/只,应付款额y是购买中性笔数量x的函数.请写出其解析法。
参考答案:1、作图略,在。
2、y=8x,(x为正整数)3、y=2x(x为正整数)3.2函数的性质习题练习3.2.11、判断函数y=-2x+3的单调性.23、判断函数y=8X+3的单调性.参考答案:1、减2、左增、右减3、增练习3.2.21、判断y=8X+3的奇偶性:2、判断y=4X 的奇偶性3、判断y=X 2的奇偶性参考答案:1、非奇非偶函数2、奇函数3、偶函数3.3函数的实际应用举例习题练习3.31、.求()221,20,1,0 3.x x y f x x x +-<⎧⎪==⎨-<<⎪⎩…的定义域;2、求函数()221,0,,0.x x y f x x x -⎧⎪==⎨>⎪⎩…的定义域;3、求函数() 1.6,010,2.812,10.x x y f x x x <⎧==⎨->⎩…的定义域;4、作出函数()1,0,1,0x x y f x x x -<⎧==⎨+⎩…的图像5、设函数()221,20,1,0 3.x x f x x x +-<⎧⎪=⎨-<<⎪⎩…作出函数的图像.6、设函数7,03,4,310,1.51,10.x y x x x x <⎧⎪=+<⎨⎪->⎩……作出函数的图像参考答案:1、-2<=x<=32、R3、x>=04、略5、略6、略。
中职数学基础模块上册函数测试题(可编辑修改word版)
第三章函数单元测试题 姓名___________学号_____一、选择题1.下列函数中为奇函数的是 A . B. C. D.22y x =+y =1y x x=-22y x x =-2.设函数若则 (),f x kx b =+()()12,10f f =--=A. B.1,1k b ==-1,1k b =-=-C. D.1,1k b =-=1,1k b ==1.函数的定义域是4)(2-=x x f A.(-2,2) B.[-2,2] C. D.()()+∞-∞-,22, ()),2[2,+∞-∞- 2.已知函数,则 1()1x f x x +==-=-)2(f A . B. C.1 D.331-313.函数2()43f x x x =-+A.在内是减函数 B.在内是减函数(),2-∞(),o -∞C.在内是减函数 D.在内是减函数(),4-∞(),-∞+∞4.下列函数即是奇函数又是增函数的是A. B. C. D.3y x =1y x =22y x =13y x =-5.设点(3,4)为奇函数图像上的点,则下列各点在函数图像上的是 ()()y f x x R =∈A.(-3,4) B.(3,-4)C.(-3,-4) D.(-4,-3)4.函数的定义域为 1y x=A. B. C. D.[]1,+∞()1,-+∞[1,)-+∞[1,0)(0,)-+∞ 5.下列各函数中,既是偶函数,又是区间内的增函数的是 ),0(+∞A. B. C. D.y x =3y x =22y x x =+2y x=-二、填空题1.设则f(2)= ,f(x+1)= ()254,f x x =-2.设则= ()31,f x x =-()1f t +3.点关于坐标原点的对称点的坐标为 ()2,3p -4.函数的定义域为 15y x =-5.函数的增区间为22y x =-6.已知函数,则= ()22f x x x =+1(2)()2f f ⋅7.已知 ,则f(-2)= ⎩⎨⎧--=33)(2x x x f 00x x ≤>三、简答题1.判断下列函数中那些是奇函数?哪些是偶函数? (1) (2) ()3f x x =()221f x x=-+2.求下列函数的定义域(1) (2)()2f =()2f =3. 写出函数y= f (x )的增区间______________,y= g (x )的减区间______________y=g (x )。
完整版)中职数学第三章函数测试题
完整版)中职数学第三章函数测试题第三章单元测试试卷姓名。
班别:一、选择题1.下列函数中,定义域是[0,+∞)的函数是().A.y=2x B.y=log2x C.y= D.y=x22.下列函数中,在(-∞,0)内为减函数的是().A.y=-x2+2 B.y=7x+2 C.y= D.y=2x2-13.下列函数中的偶函数是().A.y=x+1 B.y=-3x² C.y=∣x-1∣ D.y=4.4.下列函数中的奇函数是().A.y=3x-2 B.y= C.y=2x2 D.y=x2-x5.下列函数中,在(0,+∞)内为增函数的是().A.y= -x2/x B.y=3x C.y=2x2 D.y=1/2x6.下列图象表示的函数中,奇函数是().AyyyOxOxOxOxDCBA二、填空题7.已知函数f(x)的图象(如图),则函数f(x)在区间(-1,0)内是函数(减),在区间(0,1)内是函数(增).8.根据实验数据得知,在不同大气压下,水的沸点T(单位:℃)与大气压P((单位:10Pa)之间的函数关系如下表所示:P 0.5 1.0 2.0 5.0 10T 81 100 121 152 1791)在此函数关系中,自变量是P,因变量是T;2)当自变量的值为2.0时,对应的函数值为121;3)此函数的定义域是[0,+∞)。
9.已知g(x) = (2x+1)/(x+5),则g(2)=5/9,g(0)=1/5,g(-1)=-3/5.10.函数y=1/(x-1)的定义域是x≠1.11.设函数f(x)在区间(-∞,+∞)内为增函数(如上第11图),则f(4)>f(2)。
12.设函数f(x)在区间(-3,3)内为减函数(如上第12图),则f(2)<f(-2)。
三、解答题13.求下列函数的定义域:1)f(x)=log2(5x-2),5x-2>0,即x>2/5;2)f(x)=√(x+3),x+3≥0,即x≥-3;3)f(x)=1+2x/(1-x),1-x≠0,即x≠1;4)f(x)=x2-1,定义域为(-∞,+∞)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章单元测试试卷
姓名: 班别:
一、选择题
1. 下列函数中,定义域是[0,+∞)的函数是( ).
A .y =2x
B .y=log 2x
C . y=x
1
D .y=x 2. 下列函数中,在(-∞,0)内为减函数的是( ).
A .y= -x 2+2
B .y =7x +2
C .x
y 1-= D . y=2x 2-1 3. 下列函数中的偶函数是( ).
A . y =x +1
B .y =-3x ²
C .y =∣x-1∣
D . y =x
32
4. 下列函数中的奇函数是( ).
A .y =3x -2
B .y=x
3 C .y=2x 2 D . y=x 2-x 5. 下列函数中,在(0,+∞)内为增函数的是( ). A .y= -x
2
B .y=
x
1
C .y=2x
2
D .y =x
⎪
⎭
⎫
⎝⎛21
6. 下列图象表示的函数中,奇函数是( ).
二、填空题
7. 已知函数f (x
)
的图象(如图),则函数f (x )在区间(-1,0)内是 函数(填“增”或
“减”),在区间(0,1)内是 函数(填“增”或 “减”).
A B 第7题图
第11题第12题图
8. 根据实验数据得知,在不同大气压下,水的沸点T (单位:︒C)与大气压P ((单5
)在此函数关系中,自变量是 ,因变量是 ;(2)当自变量的值为2.0时,对应的函数值为 ; (3)此函数的定义域是 .
9. 已知g (x ) =
125
+-x x ,则g (2)= ,g (0)= ,g (-1)= . 10. 函数1
5
-+=x x y 的定义域是 .
11. 设函数f (x )在区间(-∞,+∞)内为增函数(如上第11图),则f (4) f (2)(填“>”或“<”).
12. 设函数f (x )在区间(-3,3)内为减函数(如上第12图),则f (2) f (-2)(填“>”或“<”). 三、解答题
13. 求下列函数的定义域:
(1)f (x )=log 10(5x-2) (2) f (x
(3)f (x )= x x -++121. (4) ()12-=x x f
14. 利用定义判断下列函数的奇偶性:
(1
(3)f (x )= x 2-1 (4)f (x )=2x 3-x .
15. 255ml的雪碧每瓶2.6元,假设购买的数量x瓶,花了y元,
(1)请根据题目条件,用解析式将y表示成x的函数;
(2)如果小林要买5瓶雪碧,共要花多少钱?
(3)如果小林有50元,最多可购买了多少瓶雪碧?
米,深为6米的长方体蓄水池,池壁每平方米的造
16. 修建一个容积为80003
价为a元,池底每平方米的造价为2a元,请将总造价y表示为底的一边长x米的函数;
17、某地出租车按如下方法收费:起步价10元,可行3km(不含3km);3km到7km(不含7km)按1.6元/km计价(不足1km,按1km计算);7km以后按2.4元/km(不足1km,按1km计算),试写出以行车里程为自变量,车费为函数值的函数解析式。
18、已知函数y= f(x),y= g(x)的图像如下图所示,根据图象说出函数的单调区间以及在各单调区间内函数的单调性.
y=g(x)。