第4章 计算机控制系统离散化设计
第四章 计算机控制系统的控制算法

信号通过零阶保持器后存在幅值衰减和相位滞后。 但如果采样周期T足够小,即采样频率足够高时,可以忽 略这一影响。对于小的采用周期,用幂级数展开,用T/2 的时间滞后环节来近似:
设相位裕量减少5-15度,则采样周期应选为:
2020-10-19
信息与电气工程学院
山东科技大学
12
计算机控制系统
间接设计方法得以实现的重要依据是: (1) 采样周期要满足香农采样定理; (2) 采样周期足够小,达到零阶保持器的相位
因此,计算机控制系统也可以称为数字控制系统、离 散控制系统或采样控制系统。
模拟控制系统称为连续控制系统。
2020-10-19
信息与电气工程学院
山东科技大学
5
计算机控制系统
2. 离散(数字)控制系统与连续(模拟)控制系统的本质 区别在于:模拟系统中的给定量、反馈量和被控量都是连 续型的时间函数,而在离散系统中,通过计算机处理得给 定量、反馈量和被控量是在时间上离散的数字信号。
把计算机引入连续控制系统中作为控制器使用,便 构成了计算机控制系统。
由计算机构成的控制系统,在本质上是一个离散系统。
2020-10-19
信息与电气工程学院
山东科技大学
6
计算机控制系统
传递函数的定义
1. 连续系统中传递函数的定义是:零初始条件下, 一个环节(系统)的输出量的拉氏变换与输入量的拉氏变 换之比。
第四章 计算机控制系统的 控制算法
第八讲-第十三讲
2020-10-19
信息与电系统
概述
第八讲
计算机控制系统的设计,是指在给定系统性能 指标的条件下,设计控制器的控制规律和相应的数 字控制算法。
数字控制器的设计方法按其设计特点分为三大 类:
计算机控制系统复习资料(精简版 列出重点知识点)

第一章概论,讲述计算机控制系统的发展过程;计算机控制系统在日常生活和科学研究中的意义;计算机控制系统的组成及工作原理;计算机控制的特点、优点和问题;与模拟控制系统的不同之处;计算机控制系统的设计与实现问题以及计算机控制系统的性能指标。
1.计算机控制系统与连续模拟系统类似,主要的差别是用计算机系统取代了模拟控制器。
2.计算机系统主要包括:.A/D转换器,将连续模拟信号转换为断续的数字二进制信号,送入计算机;.D/A转换器,将计算机产生的数字指令信号转换为连续模拟信号(直流电压)并送给直流电机的放大部件;.数字计算机(包括硬件及相应软件),实现信号的转换处理以及工作状态的逻辑管理,按给定的算法程序产生相应的控制指令。
3.计算机控制系统的控制过程可以归结为:.实时数据采集,即A/D变换器对反馈信号及指令信号的瞬时值进行检测和输入;.实时决策,即计算机按给定算法,依采集的信息进行控制行为的决策,生成控制指令;.实时控制,即D/A变换器根据决策结果,适时地向被控对象输出控制信号。
4.计算机控制系统就是利用计算机来实现生产过程自动控制的系统。
5.自动控制,是在没有人直接参与的情况下,通过控制器使生产过程自动地按照预定的规律运行。
6.计算机控制系统的特性系统规模有大有小系统类型多种多样系统造价有高有低计算机控制系统不断推陈出新7.按功能分类1)数据处理系统2)直接数字控制(DDC)3)监督控制(SCC)4)分散型控制5)现场总线控制系统按控制规律分类1)程序和顺序控制2)比例积分微分控制(PID)3)有限拍控制4)复杂控制5)智能控制按控制方式分类1)开环控制2)闭环控制9.计算机控制系统的结构和组成控制算法软件网络硬件11.硬件平台运算处理与存储部分:CPU,存储器(RAM,ROM,EPROM,FLASH-ROM,EEPROM以及磁盘等),时钟,中断,译码,总线驱动等。
输入输出接口部分:各种信号(模拟量,开关量,脉冲量等)的锁存、转换、滤波,调理和接线,以及串行通讯等。
计算机控制系统离散化设计(经典设计方法)

z 0.9672 G ( z ) 0.004837k ( z 1)( z 0.9048)
第三步:设计D(z)
z 0.9048 D( z ) 3.15 z 0.7
例2:
性能指标要求:
解:由性能指标得 期望的极点区域
z 0.718 G ( z ) 0.07355k ( z 1)( z 0.3678)
采用超前校正
z 0.8 D( z ) 6 z 0.05
增益提高
仿真
采用超前校正
z 0.88 D( z ) 13 z 0.5
仿真
z 0.8 D( z ) 9 z 0.8
仿真
z 0.88 D( z ) 13 z ( z 0.5)
仿真
5.2
计算机控制系统离散化设计(经 典设计方法)
从BB两端看 e(t) r(t)
c* (t ) e* (t )
D(z)
u * (t )
ZOH
G (s)
c(s)
离散化 设计
D(z)
Z平面根轨迹设计法
W’ 域频率设计法 解析法
5.1 Z平面根轨迹设计
5.1.1 Z平面根轨迹的特殊性 例:
r(t)
设计 z 0.3678 D( z ) 1.5818 z 根据Kv, 确定k
1 Kv lim( z 1) D( z )G( z ) 3 T z 1
取k=3.07 仿真
例
e* (t )
D(z)
u * (t )
极点的密集度高 T越小,极点越密集
例: S域极点: S= -10 Z域极点: T=1s z=0.00045 T=0.01s z=0.905
第4章 4.2 数字控制器的离散化设计技术

上式确定了D(z) 可实现时υ (z)应满足的条件:若G(z) 的分母比分子高N阶,则确定υ (z)时必须至少分母比分子 高N阶。
当对象有d个采样周期纯滞后 ,则其脉冲传函为:
则υ (z)中也应该有纯滞后,滞后时间大于等于d个采样周 期,否则根据:
D(z) 将出现 项,即出现 z+n正幂次项,响应超 前输入,不能实现。
(4) 根据D(z)求取控制算法的递推计算公式。 注意: υ (z)可根据所需要的输入及响应性能确定。
D(z)的一般形式:
数字控制器的输出U(z)
进行z反变换后,可得到计算机控制算法:
4.2.2 最少拍控制器的设计
补1:无穷大稳定度的采样系统
从S平面和Z平面的变换关系看:
Z eTS eT e jT
对最少拍控制系统设计的具体要求(3个字方针): (1)“准确性”要求 对典型的参考输入信号,在达到稳态后,系统在采样点
的输出值能准确跟踪输入信号,不存在静差;
(2)“快速性”要求
在各种使系统在有限拍内到达稳态的设计中,系统准确跟
踪输入信号所需的采样周期数应为最少; (3)“稳定性”要求 数字控制器D(Z)必须在物理上可实现,且闭环系统必须是 稳定的。
求离散化模型表示的连续对象。 定义广义对象(零阶保持器 与被控过程)的脉冲传递函数为:
则上图的闭环脉冲传递函数为:
于是有:
如已知Gc(s),只要根据设计要求选择好 ,就能够求 得D(z)。 由此推得数字控制器的离散化设计步骤。
数字控制器的离散化设计步骤 :
(1) 根据控制系统的性能要求以及实现的约束条件,确定所
选择系统闭环脉冲传递函数必须满足的约束条件:
1.φe (z)零点必须包括G(z)的单位圆上或圆外的极点。
chap04计算机控制系统离散化设计

也就是说,系统经过1拍,输出就可以无差地跟踪上输入 的变化,即此时系统的调节时间ts=T,T为系统采样时间。 误差及输出系列如图4.2所示。
第4章 计算机控制系统离散化设计
e(kT) 1
y(kT) 1
0
T
2T
kT
0 T 2T 3T 4T 5 T
kT
图4.2 单位阶跃输入时的误差及输出序列
第4章 计算机控制系统离散化设计
第4章 计算机控制系统离散化设计
输出和误差变化的动态过程如图4.3所示。从图中可以看 出,系统在单位等速度信号输入作用下,系统经过了两 个采样周期以后,系统在采样点上的过渡过程结束(调 整时间为2拍),且在采样点上,系统的输出完全跟踪输 入,稳态误差为零。因此,所求得数字控制 D(z) 完全满 足设计指标要求。 上例是针对等速度信号输入下设计的无稳态最少拍系统 的数字控制器 D(z),那么所设计的系统在单位阶跃或在 单位加速度输入作用时,系统的输出情形如何。
(2)单位速度输入时
Tz 1 2 3 4 Y ( z ) W ( z ) R( z ) (2 z z ) 2 Tz 3 Tz 4 Tz 1 2 (1 z ) y (0) 0, y (1) 0, y (2) 2, y(3) 3,
1 2
第4章 计算机控制系统离散化设计
e(kT)
y(kT) 4T 3T
T
2T T 0 T 2T 3T kT 0 T 2T 3T 4T kT
图4.3 单位速度输入时的误差及输出序列
第4章 计算机控制系统离散化设计
(3)单位加速度输入时 2 1 1 T (1 z ) z Y ( z ) W ( z ) R ( z ) (3 z 1 3 z 2 z 3 ) 2(1 z 1 )3
计算机仿真技术基础第4章连续系统模型的离散化处理方法

1 S2
Z 1 TZ
Z • Z 12
T Y(Z) Z 1 U(Z)
Z反变换得差分方程:
y(n 1) y(n) Tu(n)
2)选用一阶保持器
Gh ( S )
T 1 TS 1
e TS S
2
离散化传递函数 G(Z ) Gh(S )G(S )
T
1
TS
1
e TS S
2
1
S
Y CX DU
t
状态方程的解 X (t) (t)X (0) (t )Bu( )d
采用零阶保持器对状态空间表达0式进行离散化处
理
u(t )
u(k )
零阶 保持器
u~(k )
x Ax Bu
x
~x
对e A于T X连(K续T解)
eX A( t()K1)T( tX) X(0(0))
t
根据Z变换理论,S域到Z域的最基本的
映射关系是:
Z
eTs
或
s 1 ln Z T
其中T是采样周期
若直接将这个映射关系代入G(S)得到G(Z)将 会很复杂,不便于计算,实际应用中是利用Z变 换理论的基本映射关系进行简化处理,得到近似 的离散模型。
4.1.1 简单替换法
由幂级数展开式:
eTx 1 Tx (Tx)2 (Tx)n
y(n 1) y(n) T [u(n 1) u(n)] 2
4.2 离散相似法
4.2.1 离散相似法的概念
离散相似法将连续系统模型处理成与之等效 的离散模型的一种方法。设计一个离散系统模型, 使其中的信息流与给定的连续系统中的信息流相 似。或者是根据给定的连续系统数学模型,通过 具体的离散化方法,构造一个离散化模型,使之 与连续系统等效。
计算机控制技术期末复习资料 第二版 姜学军编著教材

计算机控制系统(期末复习资料)⏹ 第一章 绪论1、计算机控制系统的组成:由计算机(工业控制计算机)和工业对象(被控对象)组成。
2、计算机控制过程的3个步骤:实时数据采集;实时决策;实时控制。
3、过程输入输出通道:计算机和被控对象(或生产过程)之间设置的信息传递和转换的连接通道。
4、采样过程:在计算机控制系统中,信号是以脉冲序列或数字序列的方式传递的,把连续信号变成数字序列的过程;采样开关:实现采样的装置。
5、控制系统的稳态控制精度由A/D 、D/A 转换器的分辨率决定。
6、计算机控制系统是利用离散的信号进行控制运算。
7、香农采样定理:一个连续时间信号f(t),设其频带宽度是有限的,其最高频率为ωmax(或fmax),如果在等间隔点上对该信号f(t)进行连续采样,为了使采样后的离散信号f *(t)能包含原信号f(t)的全部信息量。
则采样角频率只有满足下面的关系:ωs ≥2ωmax8、采样保持器:将数字信号序列恢复成连续信号的装置。
9、零阶保持器所得到的信号是阶梯信号,它只能近似地恢复连续信号。
⏹ 第二章 Z 变换及Z 传递函数1、计算机控制系统属于闭环离散控制系统,它的输出量与输入量之间的关系可用差分方程来描述。
2、部分分式法3、常用信号的Z 变换单位脉冲信号: 单位阶跃信号: 单位速度信号: 指数信号:正弦信号: 4、常用Z 变换表5、连续系统是用微分方程描述的,离散系统是用差分方程描述的,差分方程是离散系统时域分析的基础,而计算机系统的本质是离散系统。
6、Z 传递函数:在零初始条件下离散系统的输出与输入序列的Z 变换之比。
)()(t t f δ=)(1)(t t f =tt f =)(at e t f -=)(t t f ωsin )(=7、Z 传递函数的物理可实现性:k 时刻的输出y(k)不依赖于k 时刻之后的输入,只取决于k 时刻及k 时刻之前的输入和k 时刻之前 的输出。
故G(z)是物理可实现的。
计算机控制系统的离散化设计

前言《计算机控制系统》系统地论述了计算机控制系统的结构、原理、设计和应用,既有理论分析也有应用实例,论述了直接数字控制系统(DDC)、集散控制系统(DCS)、现场总线控制系统(FCS)和可编程控制器系统(PLS或PLC)4类典型的计算机控制系统。
直接数字控制系统(DDC)是计算机控制的基础,本书深入论述了DDC系统的形成、发展、体系结构、控制算法、硬件、软件、设计和应用,分析了DDC系统的输入、输出、控制和运算功能,并引入了功能块及组态的概念;集散控制系统(DCS)是计算机控制的主流系统,本书概述了DCS的产生、发展、特点和优点,论述了DCS的体系结构、控制站、操作员站、工程师站和应用设计,分析了DCS的分散控制和集中管理的设计思想,以及分而自治和综合协调的设计原则。
通过本课程设计,使学生能较好的使用离散化设计方法对被控对象进行校正分析;对计算机控制系统DDC设计过程中的方案设计有初步了解,通过该设计在一定程度上使学生对计算机控制系统所学知识进行整合,使其得到一次全面、系统、独立的培养。
目录第一章计算机控制系统的离散化设计 (1)1.1有限拍设计 (1)1.1.1有限拍设计的概述 (1)1.1.2 有限拍调节器 (2)1.1.3 采样频率的选择 (2)1.2 有限拍无纹波设计 (3)1.2.1 有限拍无波纹设计概述 (3)1.2.2有限拍无纹波设计实例 (3)本章小结 (5)第二章 DDC系统的设计和应用 (6)2.1.DDC系统的设计 (6)2.1.1 DDC系统的设计原则 (6)2.1.2 DDC系统的设计过程 (6)2.2.DDC系统的应用 (6)2.2.1.DDC系统的应用设计 (6)2.2.2.DDC系统的应用实例 (6)本章小结 (13)总结 (14)参考文献 (15)第一章 计算机控制系统的离散化设计计算机控制系统的设计,是指在给定系统性能指标的条件下,设计出数字调节器,使系统达到要求的性能指标。
计算机控制系统第4章 计算机控制系统的离散化设计方法

最快响应跟踪输入且无静差; 6)将 D(z) 化为差分方程,拟定控制算法进行编程
予以实现。
2020/3/4
13
第三节 Dahlin控制算法
对于具有较大纯滞后的被控对象,往往要求系统没有超调量或超调量很
小,而允许有较长的调整时间。1968年美国IBM公司的Dahlin提出了解
E(z) e(z)R(z)
它们都可以表示为:
R(z)
A(z 1) (1 z 1 )m
2020/3/4
6
E(z) e(z)R(z)
A(z 1) R(z) (1 z 1)m
A( z 1 ) E(z) e (z) (1 z1)m
e()
lim (1
z1
出减去第1次输出所得的差值,即 RA u(0) u(1)
Gu (z) kzNGu (z)
Gu
(z)
1 1
b1z 1 a1z 1
b2 z 2 a2 z 2
U (z) Gu (z)R(z)
1 1
b1 z 1 a1 z 1
b2 z 2 a2 z 2
可见,如果选择T0≥T1 ,则RA≤0 ,无振铃现象发生;若选择T0<T1, 则有振铃现象发生。
对于带有纯滞后的二阶惯性环节的被控对象
(z) (1 eT T0 )(1 eT T1 z 1 )(1 eT T2 z 1 )
Gu (z) G(z)
KC1 (1
C2 C1
z 1 )(1 eT
由典型计算机控制系统结构图,可得Dahlin控制器D(z)为
计算机数字控制器的离散化设计方法

目录
• 引言 • 离散化设计的基本概念 • 离散化设计的实现 • 离散化设计的应用 • 离散化设计的优势与挑战
01
引言
背景介绍
计算机数字控制器是工业自动化系统中 的重要组成部分,用于控制各种物理量 ,如温度、压力、流量和位置等。
离散化设计是实现计算机数字控制器的一种 重要方法,它能够将连续的控制问题离散化 ,从而简化设计过程并提高控制精度。
连续设计
在连续设计中,控制算法是在连续时间域中设计的,通常使用微分方程或传递 函数表示。这种设计方法通常需要使用模拟计算机或模拟器进行仿真和实现。
离散化设计
离散化设计是将连续时间系统转换为离散时间系统,以便在数字计算机上实现。 离散化设计使用差分方程或离散时间系统的状态方程表示系统。这种设计方法 通常使用数字计算机进行实现和仿真。
未来研究可以进一步探讨离散化设计与连续时间系 统之间的关系,以更好地理解离散化设计的原理和 应用。
发展自适应离散化设计方 法
针对不同的应用需求和系统特性,未来研究 可以发展自适应的离散化设计方法,以实现 更好的系统性能。
THANKS
感谢观看
离散化设计的方法和步骤
采样
采样是将连续时间信号转换为离散时间信号的过程。采样 率决定了离散化系统的精度和性能。
量化
量化是将连续变量转换为离散变量的过程。量化误差是由 于将连续信号转换为离散信号而引入的误差。
差分方程建模
差分方程是描述离散时间系统的数学模型。通过建立差分 方程,可以描述离散时间系统的动态行为。
离散化设计在机器人控制中还可以实现快速响应和精确控 制,从而提高机器人的运动性能和作业效率。
在航空航天控制中的应用
计算机控制系统的连续域-离散化设计

(4) 以下述传递函数为例,证明预修双线性变换方法可以保证在指定频率处连续 环节与等效离散环节频率特性模值与相角相等.
D (s) 10 s 10
令关键频率为 1 10
D ( j1 ) 10 1 0.707 3db 2
频率特性 1 10 模值为 频率特性 1 10 相角为 预修正双线性变换为
D (s) s a
解:该环节没有有限极点,但认为有一个无限极点,因此可得
D( z ) k
( z e aT ) ( z 1)
根据低频增益相等方法确定增益:
D (1) k
k
1 e aT D(0) a 11
2a 1 e aT
因此有
D( z )
2a ( z e aT ) 1 e aT ( z 1)
s s 10 s
s ,取 T=0.02s,关键频率为 1 10 ,预修正双线性变 s 10
10 z 1 10 0.02 z 1 tg 2
0.909( z 1) .频率特性如图 4-1 所示.从图 4-1 可见, ( z 0.817)
低频特性相近,且可以保证在关键频率 1 10 处频率特性相等, 但高频特性相差 较多.
D( z )
12 102
1 D ( j ) tg 1 450 1 10 s 10 s 10 10 z 1 10 10T z 1 tg 2
10 z 1 10T z 1 tg 2
D (e j10T )
10 10 1 j10T 10 10T 10 e 1 jtg 10 1 j 10 j10T 10T 10T e 2 1 tg tg 2 2
计算机控制系统的连续域-离散化设计

--每种变换方法零点、极点的数目; --每种变换方法的应用特点. (2) 要注意,各种变换方法特性不同,各有优缺点. 但不管哪种方法, 变换后所 得等效环节与连续环节特性相比均有畸变,畸变程度与采样周期、环节本身特性 有关,很难说哪种是最好的.但 TUSTIN 变换方法与其它几种方法相比,由于其具 有较好特性,应用较多,一阶向后差分和匹配 z 变换方法也有较多应用。 (3) 各种变换公式本质上都是 z 变换的特殊简化形式,变换后特性优于 z 变 换。Matlab 软件提供了变换的算法和指令。 3)PID 离散方法 PID 控制器作为单输入/单输出系统的一种有效的控制方法已经沿用了很多 年,目前仍然被广泛应用着,由于它同时可以兼顾系统的动态、静态特性而受到 广大控制工程师的青睐。 对于计算机控制系统来说, 主要工作是将如何将连续域 的 PID 控制律离散化以及如何对其进行改进。主要应注意掌如下几方面问题: (1) 要牢记位置式及增量式两种基本 PID 离散公式以及各自的优缺点.一般说 采用增量式算法较为有效,较为简单,但需要增加计算机外的积分过程。应用中, 比例控制器(P 控制)较容易调节;一般很难直接采用微分(D)控制器,积分 (I)控制也需要调节. (2) 要注意利用计算机功能改进数字 PID 算法的几种方法,其中特别注意: --产生积分饱和的机理及抗积分饱和各种方法 , 其中要熟悉积分分离的具体 算法; --为克服 PID 算法中微分控制作用的缺点,常用的改进微分算法; --工程应用时所采用的其它措施. (3) 要注意工业中采用 PID 算法时,主要参数并不是通过理论计算所得,主要 是在对被控过程特性测试的条件下,依经验进行现场调试所得,所以应对几种常用 的 PID 参数整定方法有所了解. 2 重点与难点问题说明 (1) 由于将连续控制系统转换为计算机控制系统时在系统中需加入零阶保持 器,而零阶保持器是一相位滞后环节 , 因此会使系统特性变坏, 为此在连续域设计 时要检查加入零阶保持器后系统特性,如果影响较大则应加入适当的补偿,或者减
计算机控制技术期末复习试题附答案

第一章计算机控制系统概述1、计算机控制系统的概念是什么计算机控制系统是以计算机技术、控制理论及自动化技术相结合并应用于工业生产过程的结果,是以自动控制理论为基础,以计算机为手段的控制系统。
2、计算机系统由哪些部分组成并画出方框图。
计算机控制系统由计算机、外部设备、操作台、输入通道、输出通道、检测装置、执行机构、被控对象以及相应的软件组成。
3、计算机控制系统的主要性能指标有哪些稳定性/动态指标/稳态指标/能控性与能观性4、计算机控制系统的主要特点有哪些各项连续控制系统计算机控制系统信号形式都是模拟信号模拟信号、数字信号皆有控制规律实现由模拟电路实现由计算机通过程序实现控制形式整个过程始终连续控制整个过程始终离散控制控制器作用一个控制器控制一个回路一个控制器分时控制多个回路功能强度简单控制具有丰富的指令系统和很强的逻辑判断功能自动化程度自动化程度低便于实现控制与管理的一体化5、计算机控制系统是怎样分类的按功能和控制规律可分为几类一、按控制系统的功能及结构特点分类①操作指导控制系统②直接数字控制系统DDC③监督控制系统SCC④计算机分级控制⑤集散控制系统DCS⑥现场总线控制系统FCS二、按控制规律分类 ①程序和顺序控制 ② PID 控制 ③最少拍控制 ④复杂规律的控制 ⑤智能控制第二章 离散控制系统及Z 变换分析法1、计算机控制系统的信号形式有哪些连续模拟信号:时间与幅值上均连续,如 r(t)、y(t)、u(t) 离散模拟信号:时间是离散的,幅值上连续,如y*(t)、u*(t) 离散数字信号:时间离散的,幅值为数字量,如y(kT)、u(kT)2、香农(Shannon)采样定理是如何描述的一个连续时间信号f(t),设其频带宽度是有限的,其最高频率为ωmax(或fmax),如果在等间隔点上对该信号f(t)进行连续采样,为了使采样后的离散信号f *(t)能包含原信号f(t)的全部信息量。
则采样角频率只有满足下面的关系: ωs ≥2ωmax采样后的离散信号f *(t)才能够无失真地复现f(t)。
68700 计算机控制系统的离散化设计PPT课件

短号:611128 邮箱:
1
整体概况
+ 概况1
您的内容打在这里,或者通过复制您的文本后。
概况2
+ 您的内容打在这里,或者通过复制您的文本后。
概况3
+ 您的内容打在这里,或者通过复制您的文本后。
2
计算机控制系统的离散化设计法
• 上一章讨论的几种方法主要立足于连续系统调节器的 设计,并在计算机上模拟实现。在被控对象的特性不 太清楚的情况下,可以充分利用技术成熟的连续系统 调节规律,并把它移植到计算机上加以实现,以达到 满意的效果。
➢ 或:若对象G(z)有d拍延时,则H(z)也必须至少有d拍 延时。
13
2 由系统的稳定性确定H(z)
G(z)的零点
系统稳定性的条件:特征方程的根应在单位园内。
设
G(z) B(z) A(z)
则
D (z)G 1 (z)1 H H (z()z)B 1 (z)1 H H (z()z)B A ((z z))1 H H (z()z)
直接设计控制系统框图
5
广义对象的脉冲传递函数为 系统的闭环脉冲传递函数为
G(z)Z1seTsG0(s) H(z) D(z)G(z) 1D(z)G(z)
偏差的脉冲传递函数为
H e (z ) E R ( ( z z ) ) R (z R )( z Y )(z ) 1 H (z ) 1 D ( 1 z ) G (z )
• 由于所设计出的D(z)是依照稳定性、准确性和快速性的指标 逐步设计出来的,所以设计结果比模拟化设计方法来得精确 ,故又称为精确设计法。
• 此时采样周期T的选择主要决定于对象特性而不受分析方法
的限制,所以,比起模拟化设计方法,采样周期T可以选得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单位加速度: m=3,
T 2 (1 z 1 )z 1 A(Z )
则有
2
e
*
()
lim (1
Z 1
z
1 )We
(z)
(1
A( z ) z 1 ) m
若要求稳态误差为零的条件是We(z)应具有如下形式
We ( z) (1 z 1 ) m F ( z)
则 e *() lim(1 z1) A(z)F (z) 0 Z 1
We (z) (1 z 1 )m
希望闭环Z传递函数应为
W (z) 1 We (z) 1 (1 z 1 )m
第4章 计算机控制系统离散化设计
对于不同输入We(z)、W(z)形式如下: 单位阶跃: m 1 , We (z) 1 z1 , W (z) z1 单位速度: m 2 , We (z) (1 z1)2 , W (z) 2z1 z 2
m
3, D(z)G(z)
z1(3 3z1 (1 z1)3
(1 z1)3G(z)
第4章 计算机控制系统离散化设计
4.最少拍系统分析
(1)单位阶跃输入时
Y (z)
W (z) R(z)
z 1 1 z 1
z 1
z 2
z 3
第4章 计算机控制系统离散化设计
4.1 最少拍计算机控制系统的设计
最少拍设计,是指系统在典型输入信号(如阶跃信号, 速度信号,加速度信号等)作用下,经过最少拍(有限拍) 使系统输出的稳态误差为零。图4.1所示是最少拍控制系 统结构图。
G(z)
r(t) e(t) e*(t)
D(z)
R(z)
T E(z)
单位加速度:m 3 , We (z) (1 z1)3 , W (z) 3z1 3z2 z3
由上式可知,使误差衰减到零或输出完全跟踪输入所需
的调整时间,即为最少拍数对应于m=1,2,3分别为1拍,
2拍,3拍。
3.D(z)的确定 根据给定的G(z),可由满足性能指标要求的希望开环Z传 递函数直接求解出对应于m=1,2,3时的数字控制器D(z)。
第4章 计算机控制系统离散化设计
利用直接数字设计法设计最少拍控制系统,要考虑以下 几点。 (1)对于特定的参考输入信号,到达稳态后,系统在采样 时刻精确实现对输入的跟踪。 (2)系统以最快速度达到稳态。 (3)D(z)应是物理可实现的。 (4)闭环系统应是稳定的。 1.假设条件 为了使设计简明起见,提出如下三个假设条件。 (1)G(z)在单位圆上和圆外无极点,(1,j0)点除外; (2)G(z)在单位圆上和圆外无零点; (3)G0(s)中不含纯滞后。
闭环Z传递函数为 W (z) D(z)G(z)
1 D(z)G(z)
闭环误差Z传递函数为
We
(
z)
1
1 D( z )G ( z )
其中,G(z)是已知的,D(z)是待求的,而W(z)、We(z)是
由性能指标确定的。
第4章 计算机控制系统离散化设计
为了确定W(z)或We(z),讨论在单位阶跃、单位速度、 单位加速度三种典型输入信号作用下无稳态误差最少拍
单位加速度:
T 2 (1 z 1 )z 1 R(z)
2(1 z 1 )3
可统一表达为: R(z) A(z) (1 z 1 )m
式A(z)中为不含 (1 z 1 ) 因子的z-1的多项式。
第4章 计算机控制系统离散化设计
对于
单位阶跃: m=1, A(z) 1
单位速度: m=2, A(z) Tz 1
系统的W(z)或We(z)应具有的形式。
根据终值定理得
e * () lim (1 z 1)E(z) Z 1
lim (1
Z 1
z
1
)We
(
z
)
R(
z)
第4章 计算机控制系统离散化设计
对于以上三种典型输入信号R(z)分别为
单位阶跃:
R(z) 1 1 z 1
单位速度:
Tz 1 R(z)
(1 z 1 )2
u*(t) ZOH
T U(z)
y(t) G0(s)
Y(z)
图4.1 最少拍系统结构图
第4章 计算机控制系统离散化设计
4.1.1 最少拍系统设计的基本原则
最少拍控制系统是在最少的几个采样周期内达到在 采样时刻输入输出无误差的系统。显然,这种系统对闭 环Z传递函数W(z)的性能要求是快速性和准确性。
对系统提出性能指标要求是,在单位阶跃函数或等 速函数、等加速度函数等典型输入信号作用下,系统在 采样点上无稳态误差,并且调整时间为最少拍。
第4章 计算机控制系统离散化设计
2.希望Z传递函数
为了选择适当的数字控制器D(z),可以先将性能指
标要求表达成希望闭环Z传递函数W(z)或者闭环误差Z传
递函数We(z) 或者开环Z传递函数D(z)G(z),然后再根据
G(z)反求出D(z)。这样,求得的D(z)只要满足物理可实现
的条件,那么D(z)就是所要求的数字控制器。
第4章 计算机控制系统离散化设计
由于
D(z)G(z) 1 We (z) W (z)
则
We (z) 1 W (z)
m
1,
D( z )G ( z )
z 1 1 z1
,
D(z)
(1
z 1 z 1 )G ( z )
m
2,
D(z)G(z)
2z1(1 0.5z1) (1 z1)2
,
D(z)
2z1(1 0.5z1) (1 z1)2 G(z)
其中F(z)是待定的不含因子(1-z-1)的关于z-1的有理分式或
的有限项多项式,m是R(z)的分母(1- z-1)的阶数。
第4章 计算机控制系统离散化设计
为使稳态误差最快衰减到零,即为最少拍系统,就 应使We(z)最简单,即阶数n最小,即完全可以想象若取 F(z)=1,则We(z)最简单,则得到无稳态误差最少拍系统 的希望闭环误差Z传递函数就应为
第4章 计算机控制系统离散化设计
第4章 计算机控制系统的离散化设计
第4章 计算机控制系统离散化设计
离散化设计法则首先将系统中被控对象加上保持器 一起构成的广义对象离散化,得到相应的以Z传递函数, 差分方程或离散系统状态方程表示的离散系统模型。然 后利用离散控制系统理论,直接设计数字控制器。由于 离散化设计法直接在离散系统的范畴内进行,避免了由 模拟控制系统向数字控制器转化的过程,也绕过了采样 周期对系统动态性能产生严重影响的问题。是目前采用 较为广泛的计算机控制系统设计方法。