概率初步知识点总结备课讲稿
《概率》 讲义
《概率》讲义一、什么是概率在我们的日常生活中,经常会听到“可能”“也许”“大概”这样的词汇,而这些词所表达的不确定性,在数学中可以用“概率”来进行量化和研究。
概率,简单来说,就是用来衡量某个事件发生可能性大小的一个数值。
这个数值在 0 到 1 之间。
如果一个事件发生的概率是 0,那就意味着这个事件几乎不可能发生;如果概率是 1,那就表示这个事件肯定会发生;而如果概率在 0 和 1 之间,比如 05,那就说明这个事件有一半的可能性会发生。
举个例子,抛一枚均匀的硬币,正面朝上和反面朝上的概率都是 05。
因为硬币只有正反两面,而且在理想情况下,硬币正反面出现的机会是均等的。
再比如,从一个装有 5 个红球和 5 个白球的袋子中随机摸出一个球是红球的概率,就是 05。
二、概率的计算方法1、古典概型古典概型是一种最简单的概率模型。
在古典概型中,如果一个试验有 n 个等可能的结果,事件 A 包含其中的 m 个结果,那么事件 A 发生的概率 P(A) = m / n 。
例如,一个盒子里有 3 个红球和 2 个白球,从中随机取出一个球是红球的概率,总共有 5 个球,其中红球有 3 个,所以取出红球的概率就是 3/5 。
2、几何概型几何概型是另一种常见的概率模型。
当试验的结果是无限个,且每个结果出现的可能性相等时,我们常常使用几何概型来计算概率。
比如说,在一个时间段内等待公交车,假设公交车在这段时间内任何时刻到达的可能性相等,那么我们计算在某一特定时间段内等到公交车的概率时,就可以使用几何概型。
3、条件概率条件概率是指在某个条件下,某个事件发生的概率。
假设事件 A 和事件 B,在事件 B 已经发生的条件下,事件 A 发生的概率,记作 P(A|B) 。
例如,已知一个家庭有两个孩子,其中一个是女孩,那么另一个孩子也是女孩的概率就是一个条件概率。
三、概率在实际生活中的应用1、保险行业保险公司在制定保险政策和计算保费时,会大量使用概率知识。
教案概率初步(全章)
概率初步(第一章)教学目标:1. 了解概率的定义和基本概念。
2. 学会计算简单事件的概率。
3. 理解概率的意义和应用。
教学重点:1. 概率的定义和计算方法。
2. 概率的基本性质和规则。
教学难点:1. 概率的计算和应用。
教学准备:1. 教学PPT或黑板。
2. 教学材料和实例。
教学过程:一、导入(5分钟)1. 引入概率的概念,例如抛硬币、抽奖等。
2. 引导学生思考概率的实际应用和意义。
二、概率的定义(10分钟)1. 解释概率的定义:事件发生的可能性。
2. 强调概率的取值范围:0到1之间。
三、计算简单事件的概率(15分钟)1. 介绍计算概率的方法:实验法和理论法。
2. 举例讲解如何计算抛硬币、掷骰子等简单事件的概率。
四、概率的基本性质和规则(10分钟)1. 介绍概率的基本性质:互补性和独立性。
2. 讲解概率的基本规则:加法和乘法规则。
五、巩固练习(10分钟)1. 给出一些简单的概率问题,让学生独立解决。
2. 讨论答案,引导学生理解和掌握概率的计算方法。
教学反思:本节课通过引入实例和讲解,让学生了解了概率的定义和计算方法。
通过巩固练习,帮助学生理解和掌握概率的计算。
在教学过程中,注意引导学生思考概率的实际应用和意义,激发学生的学习兴趣。
在下一节课中,将继续深入学习概率的更深入概念和计算方法。
概率初步(第六章)教学目标:1. 学会使用概率树图来解决概率问题。
2. 理解互斥事件和独立事件的概率计算规则。
3. 能够应用概率知识解决实际问题。
教学重点:1. 概率树图的绘制和分析。
2. 互斥事件和独立事件的概率计算。
教学难点:1. 概率树图的绘制和理解。
2. 复杂情况下概率的计算。
教学准备:1. 教学PPT或黑板。
2. 教学材料和实例。
教学过程:六、概率树图(10分钟)1. 介绍概率树图的概念和作用。
2. 讲解如何绘制概率树图,包括事件的分解和概率的分配。
七、互斥事件和独立事件的概率计算(10分钟)1. 解释互斥事件和独立事件的定义。
概率初步小结精品PPT课件
当A为随机事件时, 0 < P(A)< 1 .
广东省怀集县凤岗镇初级中学
黄柳燕
主题1 事件类型的辨别 【主题训练1】(2013·攀枝花中考)下列叙述正确的是( ) A.“如果a,b是实数,那么a+b=b+a”是不确定事件 B.某种彩票的中奖概率为 ,是指买7张彩票一定有一张中奖 C.为了了解一批炮弹的杀伤力,采用普查的调查方式比较合适 D.“某班50位同学中恰有2位同学生日是同一天”是随机事件
4.在一个不透明的盒子中装有2个白球,n个
黄球,它们除颜色不同外,其余均相同.若
从中随机摸出一个球,它是白球的概率为 2
,则n=___1___.
3
二、强化训练
5.一布袋中放有红、黄、白三种颜色的球各 一个,它们除颜色外其他都一样,小亮从布 袋中摸出一球后放回去摇匀,再摸出一个球, 请你利用列举法(列表或画树状图)分析并 求出小亮两次都能摸到白球的概率.
概率与统计复习与小 结
一、基础知识
知识点一 概率
1.事件的划分
(1)有些事件必然会发生,这样的事件
称为 必然
事件.
(2)有些事件必然不会发生,这样的事件 称为 不可能 事件.
(3)在一定条件下,可能发生也可能不
发生的事件,为 随机事件
.
(4) 必然事件 与 不可能事件 统称为 确定事件.
广东省怀集县凤岗镇初级中学
广东省怀集县凤岗镇初级中学
黄柳燕
二、强化训练
1.下列事件中,概率是1的是 ( A ) A. 太平洋中的水常年不干. B. 男生比女生高. C. 计算机随机产生的两位数是偶数. D. 星期天是晴天.
二、强化训练
3.在一个袋子中装有除颜色外其他均相同的
北师大版七年级数学下册说课稿(含解析):第六章概率初步尖子生成长计划7概率中的代数问题
北师大版七年级数学下册说课稿(含解析):第六章概率初步尖子生成长计划7概率中的代数问题一. 教材分析北师大版七年级数学下册第六章“概率初步”是学生初步接触概率论的内容,对于培养学生的逻辑思维能力和概率观念具有重要意义。
本章主要介绍了概率的基本概念、等可能事件的概率、条件概率以及独立事件的概率等。
在这些内容中,代数问题占据了重要的地位,因为概率本身就是一个涉及代数运算的数学分支。
在教材中,代数问题主要出现在条件概率和独立事件的概率部分。
例如,在条件概率的计算中,我们需要利用代数方法来求解给定条件下事件A发生的概率;在独立事件的概率中,我们需要利用代数运算来判断两个事件是否独立。
这些问题对于学生来说具有一定的挑战性,需要他们能够灵活运用代数知识来解决实际问题。
二. 学情分析面对七年级的学生,他们对概率的概念和代数知识都有一定的了解,但要将这两个领域结合起来解决问题,还需要进行一定的引导和培养。
根据学生的实际情况,我将教学内容进行适当的调整,将重点放在如何引导学生利用已知的代数知识解决概率问题,以及如何培养学生灵活运用知识的能力。
三. 说教学目标1.知识与技能:理解条件概率和独立事件的概率的概念,掌握计算条件概率和判断两个事件是否独立的方法。
2.过程与方法:培养学生运用代数知识解决实际问题的能力,提高学生的逻辑思维能力。
3.情感态度与价值观:激发学生对概率论的兴趣,培养学生积极探究、勇于挑战的精神。
四. 说教学重难点1.教学重点:条件概率和独立事件的概率的计算方法。
2.教学难点:如何引导学生灵活运用代数知识解决概率问题。
五. 说教学方法与手段在教学过程中,我将采用讲授法、案例分析法、小组讨论法等多种教学方法,以激发学生的学习兴趣,提高学生的参与度。
同时,利用多媒体手段辅助教学,如PPT、网络资源等,以直观、生动的方式展示概率问题,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过一个简单的概率问题,引发学生对概率代数问题的思考,激发学生的学习兴趣。
概率初步知识点总结(一)
概率初步知识点总结(一)前言概率是一门与我们生活息息相关的数学学科,它可以帮助我们预测和解释各种事件发生的可能性。
对于初学者来说,掌握概率的基本概念和方法非常重要。
在本文中,我们将重点介绍概率的初步知识点,包括概率的定义、基本性质、常见概率分布以及计算概率的方法。
正文1. 概率的定义概率是用来描述某个事件发生的可能性的数值,通常用一个介于0到1之间的数来表示。
概率为0意味着事件不可能发生,概率为1意味着事件一定会发生。
对于任意一个事件A,其概率P(A)满足以下条件:•非负性:0 ≤ P(A) ≤ 1。
•必然性:对于一定发生的事件,概率为1,即P(全集) = 1。
•排他性:对于互斥事件(不能同时发生的事件),它们的概率之和等于它们的并集的概率,即P(A∪B) = P(A) + P(B)。
2. 概率的基本性质在概率的基本性质中,我们需要了解以下理念:•加法法则:对于两个事件A和B,概率的加法法则表示P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∩B)表示事件A和事件B同时发生的概率。
•条件概率:对于两个事件A和B,条件概率P(A|B)表示在给定事件B已经发生的条件下,事件A发生的概率。
•乘法法则:对于两个事件A和B,乘法法则表示P(A∩B) = P(B) * P(A|B)。
3. 常见概率分布很多情况下,我们需要通过概率分布来描述随机变量的概率分布情况。
以下是几种常见的概率分布:•二项分布:描述了在一系列独立重复的是/非试验中,成功的次数的离散概率分布。
•泊松分布:描述了单位时间(或单位空间)内随机事件发生的次数的概率分布。
•正态分布:也被称为高斯分布,是一种连续型概率分布,适用于许多自然现象的建模。
4. 计算概率的方法计算概率的方法主要分为两种:经典概率和统计概率。
•经典概率:基于所有可能的结果的等概率假设进行计算,适用于样本空间有限且各个事件发生的概率相等的情况。
•统计概率:基于实际观察到的数据来计算概率,适用于样本空间无限或事件发生的概率不等的情况。
数学说课稿《概率》
数学说课稿《概率》数学说课稿《概率》1一、教材分析1、教材的地位与作用模拟方法是北师大版必修3第三章概率第3节,也是必修3最后一节,本节内容是在学习了古典概型的基础上,用模拟方法估计一些用古典概型解决不了的实际问题的概率,使学生初步体会几何概型的意义;而模拟试验是培养学生动手能力、小组合作能力、和试验分析能力的好素材。
2、教学重点与难点教学重点:借助模拟方法来估计某些事件发生的概率;几何概型的概念及应用体会随机模拟中的统计思想:用样本估计总体。
教学难点:设计和操作一些模拟试验,对从试验中得出的数据进行统计、分析;应用随机数解决各种实际问题。
二、教学目标:1、知识目标:使学生了解模拟方法估计概率的实际应用,初步体会几何概型的意义;并能够运用模拟方法估计概率。
2、能力目标:培养学生实践能力、协调能力、创新意识和处理数据能力以及应用数学意识。
3、情感目标:鼓励学生动手试验,探索、发现规律并解决实际问题,激发学生学习的兴趣。
三、过程分析1、创设良好的学习情境,激发学生学习的欲望从学生的生活经验和已有知识背景出发,提出用学过知识不能解决的问题:房间的纱窗破了一个小洞,随机向纱窗投一粒小石子,估计小石子从小洞穿过的概率。
能用古典概型解决吗?为什么?从而引起认知矛盾,激发学生学习、探究的兴趣。
2、以实验和问题引导学习活动,使学生经历“数学化”、“再创造”的过程通过两个实验:(1)取一个矩形,在面积为四分之一的.部分画上阴影,随机地向矩形中撒一把豆子(我们数100粒),统计落在阴影内的豆子数与落在矩形内的总豆子数,观察它们有怎样的比例关系?(2)反过来,取一个已知长和宽的矩形,随机地向矩形中撒一把豆子,统计落在阴影内的豆子数与落在矩形内的总豆子数,你能根据豆子数得到什么结论?让学生分组合作,利用课前准备的材料进行试验、讨论、分析,使学生主动进入探究状态,充分调动学生学习积极性,使他们感受到探讨数学问题的乐趣,培养学生与他人合作交流的能力以及团队精神。
概概率初步复习辅导讲义
《概率初步》复习辅导讲义必然事件:在一定条件下,必然会发生的事件确定事件不可能事件:在一定条件下,一定不会发生的事件随机事件:在一定条件下,有可能发生,也有可能不发生的事件概率初步概率:表示随机事件发生的可能性的大小的数值叫做概率,必然事件的概率为1,不可能事件的概率为0,随机事件的概率在0和1之间用列举法求概率:用列表或画树形图把所有可能的结果一一列举出来,然后再求事件的概率的方法用频率估计概率:利用多次重复试验,通过统计试验结果去估计概率一、与概率有关的概念1.必然事件:在一定条件小必然发生的事件。
如哥哥的年纪比弟弟的大,1大于0等。
2.不了能事件:在一定条件下不了能发生的事件:如铁在常温下熔化,哥哥的年纪比弟弟小等。
3.随机事件:在一定条件可能发生,也可能不发生的事件。
如抛出的硬币人字头朝上、买彩票能中奖等。
4.概率:表示随机事件发生的可能性的大小的数值。
(1)概率的表示:概率一般用p表示,在表示多个事件的概率时,可以用p1、p2….或p A、p B…或p甲、p乙…加以区别。
(2)必然事件的概率p=1(3)不可能事件的概率p=0(4)随机事件的概率:0<p<1.(5)确定事件和随机事件的概率之间的关系:事件发生的可能性越来越小0 1 概率的值不可能发生必然发生事件发生的可能性越来越大5.概率与频率的区别与联系:(1)联系:从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率。
(2)区别:大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同。
【基础练习】1、在一个只装有红球和白球的口袋中,摸出一个球为黑球是 ( )A.随机事件 B.必然事件 C.不可能事件 D.无法确定2、下列事件中属于随机事件的是()A、抛出的篮球会落下B、从装有黑球,白球的袋里摸出红球C、367人中有2人是同月同日出生D、买1张彩票,中500万大奖3、下列成语所描述的事件是必然发生的是()A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖4、要了解一个城市的气温变化情况,下列观测方法最可靠的一种方法是( )A.一年中随机选中20天进行观测B.一年中随机选中一个月进行连续观测C.一年四季各随机选中一个月进行连续观测D.一年四季各随机选中一个星期进行连续观测5、下列事件中,必然事件是( )A .中秋节晚上能看到月亮B .今天考试小明能得满分 C .太阳东升西落 D .明天要降温三、概率的计算方法:(一)概率的计算公式: 1.大量重复试验某事件的概率:一般地,在大量重复试验中,如果事件A 发生的频率mn 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。
概率初步知识点总结
概率初步知识点总结1.概率的基本概念概率是描述随机事件发生可能性的一种方法,通常用P(A)表示事件A发生的概率。
概率的范围在0到1之间,即0≤P(A)≤1。
事件发生的概率越大,表示事件发生的可能性越高,反之亦然。
2.概率的计算方法概率的计算方法有三种:古典概率、几何概率和统计概率。
古典概率适用于实验有限且等可能的情况,计算公式为P(A)=n(A)/n(S)。
几何概率适用于连续随机变量的情况,计算公式为P(A)=S(A)/S(S)。
统计概率是通过观察历史数据得到的概率,通过大量实验的频率来估计概率。
3.事件的独立性与相关性独立事件是指事件A和事件B的发生不会相互影响,即P(A∩B)=P(A)P(B)。
相关事件是指事件A的发生会影响事件B的发生,即P(A∩B)≠P(A)P(B)。
当事件A和事件B独立时,它们的联合概率等于它们的乘积,当事件A和事件B相关时,它们的联合概率不等于它们的乘积。
4.事件的互斥与不互斥互斥事件是指事件A和事件B不能同时发生,即P(A∩B)=0。
不互斥事件是指事件A和事件B可以同时发生,即P(A∩B)≠0。
互斥事件和不互斥事件是概率计算中常见的情况,需要根据具体情况选择合适的计算方法。
5.概率分布和概率密度函数概率分布描述了随机变量的取值与其发生的概率之间的关系,常见的概率分布有均匀分布、正态分布、泊松分布等。
概率密度函数是描述连续随机变量概率分布的一种方法,它在一定区间内的积分值表示了该区间内随机变量的概率。
6.大数定律和中心极限定理大数定律是指在独立同分布的随机变量序列中,随着观测次数的增加,样本平均值趋近于总体均值。
中心极限定理是指在一定条件下,独立同分布的随机变量和足够多的样本之和近似服从正态分布。
大数定律和中心极限定理是概率论中两个重要的定理,它们给出了在大样本条件下随机变量的分布规律。
7.贝叶斯定理贝叶斯定理是一种用于更新概率估计的方法,它通过先验概率和条件概率来计算后验概率。
教案概率初步(全章)
教案概率初步(全章)教案内容:一、概率的定义与基础1.1 概率的定义:介绍概率的概念,描述随机事件的发生可能性。
1.2 样本空间与事件:解释样本空间的概念,举例说明。
介绍事件的类型,包括必然事件、不可能事件和随机事件。
1.3 概率的基本性质:讲解概率的基本性质,如概率的非负性、概率的和为1等。
1.4 条件概率与独立事件:介绍条件概率的概念,解释独立事件的含义,举例说明。
二、概率的计算方法2.1 排列组合:讲解排列组合的基本原理,包括排列和组合的计算方法。
2.2 古典概率计算:介绍古典概率的计算方法,举例说明。
2.3 几何概率计算:讲解几何概率的计算方法,举例说明。
2.4 概率的质量守恒:解释概率的质量守恒原理,即总概率为1。
三、概率分布3.1 概率质量函数:介绍概率质量函数的概念,解释概率分布的性质。
3.2 离散型随机变量:讲解离散型随机变量的概念,举例说明。
3.3 连续型随机变量:介绍连续型随机变量的概念,解释概率密度函数的含义。
3.4 随机变量的期望与方差:讲解随机变量的期望和方差的计算方四、概率论的应用4.1 抽样分布:介绍抽样分布的概念,解释中心极限定理的含义。
4.2 假设检验:讲解假设检验的基本原理,包括显著性水平和检验统计量的计算。
4.3 置信区间:解释置信区间的概念,讲解如何计算置信区间。
4.4 贝叶斯推断:介绍贝叶斯推断的基本原理,解释先验概率和后验概率的概念。
五、概率与统计软件的应用5.1 R软件简介:介绍R软件的功能和安装方法,讲解如何进行概率和统计分析。
5.2 概率分布的绘制:讲解如何使用R软件绘制概率分布图。
5.3 假设检验的实现:讲解如何使用R软件进行假设检验。
5.4 贝叶斯推断的实现:讲解如何使用R软件进行贝叶斯推断。
六、随机变量及其分布6.1 随机变量的概念:介绍随机变量的定义,区分离散随机变量和连续随机变量。
6.2 离散随机变量的概率分布:讲解离散随机变量的概率分布,包括几何分布、二项分布、泊松分布等。
概率说课稿(说课稿)范文
概率说课稿(说课稿)范文今天我说课的内容是《概率》,下面我将就这个内容从以下几个方面进行阐述。
一、说教材1、《概率》是人教版小学数学六年级下册第六单元第4课时的内容。
它是在学生已经学习了基本的数学运算和统计方面的知识基础上进行教学的,是小学数学领域中的重要知识点,而且概率在日常生活中有着广泛的应用。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:理解概率的定义和基本概念,掌握概率的计算方法。
②能力目标:培养学生运用概率进行问题求解的能力。
③情感目标:培养学生对概率的兴趣,增强学生对数学的积极态度。
3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:理解概率的定义和基本概念,掌握概率的计算方法。
难点是:运用概率进行问题求解。
二、说教法学法针对本节课的特点和教学目标,我采用了以下教法和学法:教法:情境导入法、示例引导法、练习巩固法。
学法:合作学习法、探究学习法。
三、说教学准备在教学过程中,我准备了多媒体课件和实物道具,以直观呈现教学素材,增加学生的学习兴趣,提高教学效果。
四、说教学过程新课标指出:“教学活动是师生积极参与、交往互动、共同发展的过程”本着这个教学理念,我设计了如下教学环节。
环节一、情境导入,引起学生兴趣。
我将以一个有趣的问题导入课程:“小明买彩票中奖的概率是多少?”。
通过该问题激发学生的思考和好奇心,进而引出本节课的主题——概率。
环节二、概念讲解,概率的计算。
我会通过实物道具和多媒体课件向学生展示一组由红、蓝两种颜色的小球组成的袋子,然后引导学生进行实际操作,了解概率的定义和计算方法。
我会结合具体的示例和练习,让学生逐步掌握概率的计算方法。
环节三、合作探究,问题求解。
我将让学生以小组合作的形式解决一些与概率相关的问题,通过合作讨论和思考,培养学生的问题解决能力和合作意识。
我会适时给予指导和反馈,引导学生正确思考和解决问题。
110《概率初步》知识点总结
新课标《概率》基础知识一.随机现象的概念:㈠必然现象:在一定条件下必然发生某种结果的现象。
㈡不可能现象:在试验中必然不发生的现象。
㈢确定性现象: 必然现象和不可能现象统称为“确定性现象”。
㈣随机现象:在相同条件下多次观察同一现象,每次观察到的结果不一定相同。
事先很难预料会发生哪一种结果,这种现象就叫做随机现象。
★注意:随机现象绝不是杂乱无章的现象。
其特点是:1)这种现象的结果不确定,发生之前不能预言;2)这种现象的结果带有偶然性,但这种现象的各种可能结果在数量上具有一定的稳定性和规律性。
我们把这种规律性叫做统计规律。
统计规律说明了随机现象具有必然性或规律性的一面。
㈤试验:观察和模拟随机现象的过程叫做试验。
试验的每一个可能结果叫做一个事件。
二.事件的分类:㈠必然事件:在一定条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; ㈡不可能事件:在一定条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; ㈢随机事件:在一定条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;通常用大写字母...,,C B A 来表示随机事件。
随机事件也可以简称“事件”。
★注意:1)必然事件和不可能事件反映的是一定条件下的确定性现象;2)随机事件反映的则是在一定条件下的随机现象。
㈣频数与频率:1.在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数)(A n 为事件A 出现的频数;2.把事件A 出现的比例nn A f A =)(为事件A 出现的频率。
对于给定的随机事件A,如果随着试验次数的增加,事件A 发生的频率)(A f 稳定在某个常数上,把这个常数记作)(A P ,称为事件A 的概率,1)(0≤≤A P ,这个定义叫做概率的统计学定义。
3.频率与概率的区别与联系:随机事件的频率,指此事件发生的次数)(A n 与试验总次数n 的比值n n A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
概率初步说课稿
概率初步说课稿一、说教材本文《概率初步》在现代教育体系中具有重要作用和地位。
作为数学课程的一部分,概率论是研究随机事件规律性的数学分支,它不仅在数学领域有着广泛的应用,还与日常生活、科技发展及各学科研究密切相关。
本节课主要内容包括:概率的定义、概率的求解方法、概率的基本性质以及简单随机事件的组合等。
1. 作用与地位《概率初步》作为初中数学的重要章节,起着承上启下的作用。
它既是对前面所学统计知识的深化,又为后续学习更复杂的概率问题、统计推断等内容打下基础。
此外,通过本节课的学习,学生能培养逻辑思维能力、分析问题和解决问题的能力。
2. 主要内容本文主要围绕以下几个部分展开:(1)概率的定义:通过实例引入概率的概念,让学生了解概率是反映随机事件发生可能性大小的量。
(2)概率的求解:介绍求解概率的两种方法,即枚举法和概率公式法,并举例说明。
(3)概率的基本性质:探讨概率的三个基本性质,即非负性、规范性、可加性。
(4)简单随机事件的组合:讲解如何求解两个或多个简单随机事件的组合概率。
二、说教学目标学习本课需要达到以下教学目标:1. 知识目标:理解概率的定义,掌握求解概率的方法,了解概率的基本性质,并能运用这些知识解决实际问题。
2. 能力目标:培养学生运用概率知识进行逻辑推理、分析问题和解决问题的能力。
3. 情感目标:激发学生学习数学的兴趣,增强对数学实用性的认识,培养学生的合作意识和团队精神。
三、说教学重难点1. 教学重点:概率的定义、求解方法、基本性质以及简单随机事件的组合。
2. 教学难点:如何运用概率知识解决实际问题,特别是涉及多个随机事件的组合问题。
在教学过程中,要注意引导学生理解概率的实质,掌握概率的基本性质,并能够灵活运用求解概率的方法。
同时,针对学生的实际情况,采用适当的教学策略,突破教学难点,提高教学效果。
四、说教法在教学《概率初步》这一课时,我计划采用以下几种教学方法,旨在提高学生的理解和应用能力,同时突出我的教学特色。
第3讲 概率初步--基础版
第3讲概率初步知识点1 随机事件与概率随机事件的概念在一定条件下,必然会发生的事件叫必然事件。
在一定条件下,一定不可能发生的事件叫不可能事件。
在一定条件下,可能发生也可能不发生的事件叫随机事件概率的概念及意义一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
①事件A的概率是一个大于等于0,且小于等于1的数,即,其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件) <1.②概率是事件在大量重复实验中频率逐渐稳定到的值,即可以用大量重复实验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.【典例】1.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边落山;(2)a2+b2=﹣1(其中a、b都是实数);(3)水往低处流;(4)三个人性别各不相同;(5)一元二次方程x2+2x+3=0无实数解;(6)经过有信号灯的十字路口,遇见红灯.2.在一个不透明的口袋中装有大小、外形一模一样的5个红球、3个篮球和2个白球,它们已经在口袋中被搅匀了,请判断以下是不确定、不可能事件、还是必然事件.(1)从口袋中一次任意取出一个球,是白球;(2)从口袋中一次任取5个球,全是篮球;(3)从口袋中一次任取5个球,只有篮球和白球,没有红球;(4)从口袋中一次任意取出6个球,恰好红、蓝、白三种颜色的球都齐了.3.掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为偶数;(2)点数大于2且小于5.4.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式.【方法总结】要知道事件发生的可能性大小首先要确定事件是什么类型.一般地,必然发生的事件发生的可能性最大,不可能发生的事件发生的可能性最小,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小可能不同.①事件A的概率是一个大于等于0,且小于等于1的数,即,其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件) <1.②概率是事件在大量重复实验中频率逐渐稳定到的值,即可以用大量重复实验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.【随堂练习】1.(2018春•鄄城县期末)如图,超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会,摇奖机是一个圆形转盘,被分成16等分,指针分别指向红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、40元.(1)分别计算获一、二、三等奖的概率.(2)老李一次性购物满了300元,摇奖一次,获奖的概率是多少?请你预测一下老李摇奖结果会有哪几种情况?2.(2018春•奉贤区期末)布袋中放有x只白球、y只黄球、2只红球,它们除颜色外其他都相同,如果从布袋中随机摸出一个球,恰好是红球的概率是.(1)试写出y与x的函数关系式;(2)当x=6时,求随机地取出一只黄球的概率P.3.(2018春•相城区期中)一只不透明的袋子中装有a个白球,b个黄球和10个红球,这些球除颜色外都相同,将球摇匀,从中任意摸出一个球,摸到红球的概率是40%;(1)当a=8时,求摸到白球的概率;(2)若摸到黄球的概率是摸到白球的两倍,求a,b的值.知识点2 用列举法求概率用列表法和树状图法,求事件的概率1. 列表法:当试验中存在两个元素且出现的所有可能的结果较多时,为了不重不漏地列举出所有可能的结果,我们采用列表法来求出某事件的概率.2. 树状图法:当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图法来求出某事件的概率.树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,像树的树丫形式,最末端的树丫个数就是总的可能的结果.【典例】1.一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.2.如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).3.三个小球上分别标有-2,0,1三个数,这三个球除了标的数不同外,其余均相同、将小球放入一个不透明的布袋中搅匀.(1)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,再记下小球上所标之数,求两次记下之数的和大于0的概率.(请用“画树状图”或“列表”的方法给出分析过程,并求出结果)(2)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,将小球上所标之数再记下,…,这样一共摸了13次,若记下的13个数之和等于-4,平方和等于14,求:这13次摸球中,摸到球上所标之数是0的次数. 【方法总结】求概率应掌握以下方法:2. 求概率的一般步骤:①判断使用列表法或画树状图法:列表法一般适用于两步计算;画树状图法适用于两步及两步以上求概率;②不重不漏的列举出所有事件出现的可能结果,并判断每种事件发生的可能性是否相等;③确定所有可能出现的结果数n及所求事件A出现3. 判断游戏的公平性:判断游戏的公平性是通过概率来判断的,在条件相等的前提下,如果对于参加游戏的每一个人获胜的概率相等,则游戏公平,否则不公平.4. 在重复实验计算概率的题中,第一次取出后放回,然后第二次再取出计算概率,做这类考题时要注意两次取得的结果总数是一致的,如果不放回,那么第二次取出的结果的总数比第一次少一种情况【随堂练习】1.(2018•深圳模拟)为了提高学生书水平.我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分.根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图:请结合图表完成下列各题:(1)求表中a的值,并把频数分布方图补充完整;(2)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.2.(2018•云南)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其他方面完全相同,若背面向上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.3.(2018•利辛县模拟)合肥合家福超市为了吸引顾客,设计了一种促销活动:在三等分的转盘上依次标有“合”,“家”,“福”字样,购物每满200元可以转动转盘1次,转盘停下后,指针所指区域是“福”时,便可得到30元购物券(指针落在分界线上不计次数,可重新转动一次),一个顾客刚好消费400元,并参加促销活动,转了2次转盘.(1)求出该顾客可能获得购物券的最高金额和最低金额;(2)请用画树状图法或列表法求出该顾客获购物券金额不低于30元的概率.知识点3用频率估计概率用频率估计概率实际上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个时间出现的频率,总在一个固定的数附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率【典例】1.在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共4个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)试估算口袋中白球有多少个?(3)若从中先摸出一球,放回后再摸出一球,请用列表或树状图的方法(只选其中一种),求两次摸到的球颜色相同的概率..2.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:(2)请估计,当n很大时,频率将会接近(精确到0.1)(3)假如你去转动该转盘一次,你获得铅笔的概率约是,理由是:.3.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)=;(3)试估算盒子里黑、白两种颜色的球各有多少只?【方法总结】1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P.3.利用频率估计出的概率是近似值.【随堂练习】1.(2017秋•福州期末)盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:摸到黑棋的频率(精确到0.001)(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是____;(精确到0.01)(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由2.(2018春•东台市期中)“2018东台西溪半程马拉松”的赛事共有两项:A、“半程马拉松”、B、“欢乐跑”.小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到两个项目组.(1)小明被分配到“半程马拉松”项目组的概率为____.(2)为估算本次赛事参加“半程马拉松”的人数,小明对部分参赛选手作如下调查:①请估算本次赛事参加“半程马拉松”人数的概率为____.(精确到0.1)②若本次参赛选手大约有3000人,请你估计参加“半程马拉松”的人数是多少?3.(2017•张家港市模拟)4件同型号的产品中,有l件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,不放回,再随机抽取1件进行检测.请用列表法或画树状图的方法,求两次抽到的都是合格品的概率;(解答时可用A表示l件不合格品,用B、C、D分别表示3件合格品)(2)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检侧,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?综合运用:概率初步1.有100张卡片(从1号到100号),从中任取1张,计算:(1)取到卡片号是7的倍数的情况有多少种?(2)取到卡片号是7的倍数的概率是多少?2.在不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为.(1)试求袋中篮球的个数;(2)第一次任意摸出一个球(不放回),请画出树状图或列表的方法,求两次摸到都是白球的概率.3.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之积能被2整除的概率.4.有4个完全一样的小球,上面分别标着数字,2,1,﹣3,﹣4.现随机摸出一个小球后不放回,将该小球上的数字记为m,再随机地摸出一个小球,将小球上的数字记为n.(1)请列表或画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n 的图像经过第二、三、四象限的概率.5.小明和小刚用如图所示的两个转盘各转一次做“配紫色”游戏,配成紫色(一红一蓝),小明得1分,否则小刚得1分.(1)这个游戏公平吗?为什么?(2)如果不公平,如何修改规则才能使该游戏对双方公平?6.随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.7.在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.。
第六章概率初步(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解概率的基本概念。概率是描述事件发生机会的量,它是数学中的一个重要工具,帮助我们在不确定性中做出决策。
2.案例分析:接下来,我们来看一个具体的案例。通过抛硬币的实验,观察正面和反面朝上的概率,探讨概率在实际中的应用。
3.重点难点解析:在讲授过程中,我会特别强调必然事件、不可能事件和随机事件的概念,以及概率的计算方法。对于难点部分,我会通过抛硬币和掷骰子的例子,帮助学生理解并掌握枚举法和树状图法的使用。
1.讨论主题:学生将围绕“概率在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们教学难点与重点
1.教学重点
-理解并区分必然事件、不可能事件和随机事件,并能用符号表示。
-掌握概率的定义,了解概率是描述事件发生机会的量。
-学会运用枚举法和树状图法计算简单事件的概率。
-能够运用概率知识解决实际问题,如游戏、彩票等。
举例解释:
-重点之一是让学生能够明确各种事件的类型,例如,抛硬币正面朝上是随机事件,而抛一枚不均匀的骰子出现1点是必然事件。
-在解决实际问题时,如何从问题中抽象出数学模型,确定相关事件和计算概率是学生容易感到困惑的地方,需要教师引导和示范。
四、教学流程
(一)导入新课(用时5分钟)
概率说课稿(说课稿)
概率说课稿(说课稿)概率说课稿引言概述:概率是数学中的一个重要分支,它研究的是随机现象的规律性。
概率在现实生活中有着广泛的应用,如天气预报、股票市场分析、医学诊断等。
本文将从概率的基本概念、概率的计算方法、概率的应用、概率的实际案例和概率的发展趋势等五个方面,详细阐述概率的相关内容。
一、概率的基本概念:1.1 概率的定义:概率是指某一事件发生的可能性大小,用一个介于0和1之间的数表示。
1.2 概率的基本性质:概率是非负的,且所有可能事件的概率之和为1。
1.3 概率的分类:概率可以分为经典概率、几何概率和统计概率等不同类型。
二、概率的计算方法:2.1 经典概率的计算:经典概率是指在样本空间中,所有可能事件发生的概率相等的情况下,计算某一事件发生的概率。
2.2 条件概率的计算:条件概率是指在已知某一事件发生的条件下,计算另一事件发生的概率。
2.3 事件的独立性:独立事件是指两个或多个事件之间互不影响,计算独立事件的概率可以通过乘法原理进行计算。
三、概率的应用:3.1 概率在天气预报中的应用:根据历史数据和气象模型,通过计算概率可以预测未来一段时间内的天气情况。
3.2 概率在股票市场分析中的应用:根据历史数据和技术指标,通过计算概率可以评估股票价格的涨跌概率,辅助投资决策。
3.3 概率在医学诊断中的应用:根据患者的症状和检查结果,通过计算概率可以评估患某种疾病的可能性,辅助医学诊断。
四、概率的实际案例:4.1 蒙特卡洛方法:蒙特卡洛方法是一种基于概率的数值计算方法,通过随机抽样和统计分析,模拟复杂系统的行为。
4.2 随机森林算法:随机森林是一种基于概率的机器学习算法,通过构建多个决策树并进行投票,提高模型的预测准确性。
4.3 马尔科夫链:马尔科夫链是一种基于概率的数学模型,描述状态之间的转移概率,广泛应用于自然语言处理和图像处理等领域。
五、概率的发展趋势:5.1 大数据时代的概率应用:随着大数据技术的发展,概率在数据分析和决策支持中的应用将更加广泛。
大学概率初步知识点总结
大学概率初步知识点总结本文将主要介绍概率论的基本概念和方法,包括随机事件、概率的定义、概率的性质、条件概率、全概率公式、贝叶斯定理、随机变量及其概率分布、数学期望、方差、协方差、独立性、大数定律和中心极限定理等内容。
一、随机事件与概率的定义1. 随机事件随机事件是指在一定条件下,结果不确定的现象。
例如,掷一枚硬币的结果就是一个随机事件,因为无法确定它是正面朝上还是反面朝上。
又如,抽取一个人,这个人是男性的事件就是一个随机事件。
2. 概率的定义概率是用来描述随机事件发生的可能性大小的数值。
概率通常用P(A)表示,其中P表示概率,A表示随机事件。
例如,掷一枚硬币正面朝上的概率可以表示为P(正面) = 0.5。
3. 概率的性质概率具有以下基本性质:(1)非负性:对任意事件A,有P(A) ≥ 0。
(2)规范性:必然事件的概率为1,即P(Ω) = 1。
(3)互斥事件的加法:若事件A和事件B是互斥事件,那么它们的并事件发生的概率为P(A∪B) = P(A) + P(B)。
(4)对立事件的互补性:事件A的对立事件是指A不发生的事件,它的概率为P(A') = 1 - P(A)。
二、条件概率、全概率公式与贝叶斯定理1. 条件概率在给定事件A的条件下,事件B发生的概率称为事件B在事件A发生的条件下的概率,记作P(B|A)。
条件概率的定义为P(B|A) = P(A∩B) / P(A)。
2. 全概率公式全概率公式是指如果事件B1,B2,...,Bn是一个样本空间Ω的一个分割,即B1,B2,...,Bn两两互斥且和为Ω,那么对于任意事件A都有P(A) = ΣP(A|Bi)P(Bi)。
3. 贝叶斯定理贝叶斯定理是在全概率公式的基础上得到的一个重要公式,表示在给定一定先验信息的情况下,对随机事件进行推断的方法。
贝叶斯定理的表达式为P(B|A) = P(A|B)P(B) /ΣP(A|Bi)P(Bi)。
三、随机变量及其概率分布1. 随机变量随机变量是描述随机试验结果的数值型变量。
第九章 《概率的初步认识》单元备课稿
《概率的初步认识》单元备课一、单元整体目标分析1. 教学目标〖知识与技能〗(1)理解确定性现象与随机现象的含义和随机事件、必然事件、不可能事件的概念。
(2)理解随机事件的频率定义及概率的统计定义,知道根据概率的统计定义计算概率的方法, 理解频率和概率的区别和联系;(3)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;(4)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B) (5)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.〖过程与方法〗(1)通过实例理解确定性现象与随机现象的含义和随机事件、必然事件、不可能事件的概念。
(2)根据定义判断给定事件的类型,明确事件发生的条件是判断事件的类型的关键;(3)通过事件的关系推导事件的运算,运算也体现事件关系。
〖情感、态度、价值观〗通过对概率的学习,使学生对对立统一的辨证规律有进一步的认识.2.教学重点、难点〖重点〗1、根据随机事件、必然事件、不可能事件的概念判断给定事件的类型,并能用概率来刻画实际生活中发生的随机现象, 理解频率和概率的区别和联系.2、概率的加法公式及其应用,事件的关系与运算。
〖难点〗1、理解随机事件的频率和概率定义及计算方法, 理解频率和概率的区别和联系.2、概率的加法公式及其应用,事件的关系与运算。
二.教学方式分析1.教科书首先通过具体实例给出了随机事件的定义,通过抛掷硬币的试验,观察正面朝上的次数和比例,引出了随机事件出现的频数和频率的定义,并且利用计算机模拟掷硬币试验,给出试验结果的统计表和直观的折线图,使学生观察到随着试验次数的增加,随机事件发生的频率稳定在某个常数附近,从而给出概率的统计定义。
《概率的概念》 讲义
《概率的概念》讲义一、什么是概率在我们的日常生活中,经常会听到“可能”“也许”“大概”这样的词汇,而这些表述其实都与概率这个概念有着千丝万缕的联系。
简单来说,概率就是用来衡量某个事件发生可能性大小的一个数值。
比如说,抛一枚均匀的硬币,正面朝上的概率就是 05,也就是 50%。
这意味着,如果我们进行大量的抛硬币实验,那么正面朝上的次数大约会占到总次数的一半。
概率的取值范围在 0 到 1 之间。
当概率为 0 时,表示这个事件绝对不会发生;当概率为 1 时,则表示这个事件肯定会发生;而当概率在 0 到 1 之间时,表明这个事件有一定的可能性发生,数值越大,发生的可能性就越高。
二、概率的计算方法1、古典概型古典概型是一种比较简单的概率计算模型。
在这种情况下,假设所有的结果都是等可能发生的。
比如,一个盒子里有 5 个红球和 3 个白球,从中随机取出一个球,取出红球的概率就是红球的个数除以总球数,即 5÷(5 + 3) = 5/8。
2、几何概型几何概型则与几何图形的长度、面积或体积有关。
例如,在一个长度为 10 厘米的线段上,随机选取一个点,这个点落在 3 厘米到 7 厘米之间的概率就是(7 3)÷10 = 4/10 = 2/5。
3、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
比如,已知今天下雨,明天也下雨的概率就是一个条件概率。
三、概率在生活中的应用1、天气预报天气预报中经常会提到降雨概率。
比如说明天降雨的概率是 30%,这就是运用概率来对天气情况进行预测和描述,帮助我们提前做好相应的准备。
2、保险行业保险公司在制定保险产品和确定保费时,会大量运用概率知识。
他们通过对各种风险发生的概率进行计算和评估,来确定合理的保险费用和赔偿金额。
3、彩票购买彩票时,我们都希望能够中大奖。
但实际上,中大奖的概率非常低。
通过对彩票中奖概率的了解,我们可以更加理性地对待彩票,避免过度投入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率初步知识点总结
概率初步知识点总结
25.1 概率
1.随机事件
(1)确定事件
事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.
(2)随机事件
在一定条件下,可能发生也可能不发生的事件,称为随机事件.
(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,
①必然事件发生的概率为1,即P(必然事件)=1;
②不可能事件发生的概率为0,即P(不可能事件)=0;
③如果A为不确定事件(随机事件),那么0<P(A)<1.
随机事件发生的可能性(概率)的计算方法:
2.可能性大小
(1)理论计算又分为如下两种情况:
第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.
(2)实验估算又分为如下两种情况:
第一种:利用实验的方法进行概率估算.要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率.
第二种:利用模拟实验的方法进行概率估算.如,利用计算器产生随机数来模拟实验.
3.概率的意义
(1)一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.
(2)概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.
(3)概率取值范围:0≤p≤1.
(4)必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.
(4)事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.(5)通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题.
•用列举法求概率
1.概率的公式
(1)随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.
(2)P(必然事件)=1.
(3)P(不可能事件)=0.
2. 几何概型的概率问题
是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.关于几何概型的随机事件“向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即 P=g的测度G的测度简单来说:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.
3.列举法和树状法
(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.
(2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B 的结果数目m,求出概率.
(3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.
(4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的枝丫形式,最末端的枝丫个数就是总的可能的结果n.
(5)当有两个元素时,可用树形图列举,也可以列表列举.
4.游戏公平性
(1)判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.
(2)概率=所求情况数总情况数.
25.3 利用频率估计概率
1. 利用频率估计概率
(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
(2)用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
(3)当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.
2.模拟实验
(1)在一些有关抽取实物实验中通常用摸取卡片代替了实际的物品或人抽取,这样的实验称为模拟实验.
(2)模拟实验是用卡片、小球编号等形式代替实物进行实验,或用计算机编号等进行实验,目的在于省时、省力,但能达到同样的效果.
(3)模拟实验只能用更简便方法完成,验证实验目的,但不能改变实验目的,这部分内容根据《新课标》要求,只要设计出一个模拟实验即可.。