一次函数的图像 优质课教案

合集下载

《一次函数的图像》教案

《一次函数的图像》教案

《一次函数的图像》教案
〖教学目标〗
◆1、使学生掌握一次函数的性质.
◆2、通过画一次函数,探究一次函数的性质,体验学习的乐趣.
◆3、培养学生的观察、比较、归纳能力.
〖教学重点与难点〗
◆教学重点:一次函数的性质.
◆教学难点:例2的问题情境及函数的图象和性质等多方面知识的应用.
〖设计理念〗
◆从画一次函数图象着手,理解一次函数的性质:函数y=Kx+b(k≠0),当k>0时,函数值随自变量的增加而增大;当k<0时,函数值随自变量的增加而减小.并运用这一性质判别函数的增减变化.
〖教学过程〗。

一次函数的图像教案

一次函数的图像教案

一次函数的图像教案教案:一次函数的图像一、教学目标:1. 学生理解一次函数的定义和特征;2. 学生能够根据一次函数的函数式和关键点画出函数的图像;3. 学生能够根据图像找出一次函数的函数式和关键点。

二、教学准备:1. 教师准备一些一次函数的函数式和关键点,以及对应的图像;2. 教师准备白板/黑板、彩色粉笔/白板笔。

三、教学内容及过程:Step 1:引入话题(5分钟)教师通过回顾线性函数的概念,引出一次函数的概念,并解释一次函数的定义和特征:一次函数的函数式为y = kx + b,其中k、b为常数,k是斜率,表征函数图像的倾斜程度;b是截距,表征函数图像与y轴的交点。

Step 2:展示图像(10分钟)教师依次展示几个一次函数的函数式和对应的图像,要求学生观察图像的特点,并简单描述图像的特征。

例如:y = 2x + 1,y = -3x + 2等。

Step 3:通过函数式画图(15分钟)教师选取一个一次函数的函数式,例如y = 2x + 1,提醒学生注意斜率和截距的含义,然后引导学生根据函数式画出对应的图像。

教师提醒学生考虑以下步骤:1. 确定截距:将x = 0代入函数式,求得y的值,找到图像与y轴的交点;2. 确定斜率:由于斜率表示了图像的倾斜程度,可以通过求取两个点的纵坐标之差与横坐标之差的比值来得到。

教师通过示范的方式,将函数式y = 2x + 1画出来,并与学生一起讨论改变函数式对图像的影响。

Step 4:通过关键点画图(15分钟)教师将一次函数的关键点的概念引入,解释关键点是指图像上的重要点,包括图像与坐标轴的交点,以及图像上的极值点等。

教师提醒学生考虑以下步骤:1. 确定截距:将x = 0代入函数式,求得y的值,找到图像与y轴的交点;2. 确定斜率:由于斜率表示了图像的倾斜程度,可以通过求取两个关键点的纵坐标之差与横坐标之差的比值来得到。

3. 找到其他关键点:通过确定更多的关键点,来描绘出更完整的图像。

【2024版】《一次函数的图象第2课时》示范公开课教学设计【北师大版八年级数学上册】

【2024版】《一次函数的图象第2课时》示范公开课教学设计【北师大版八年级数学上册】

可编辑修改精选全文完整版第四章 一次函数4. 3 一次函数的图像第 2 课时 教学设计 函数是初中数学中非常重要的内容,是刻画和研究现实世界变化规律的重要模型.本节课是在学生明确一次函数图象是一条直线的基础上进行的,主要是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.与其它版本教材相比,北师大版更注重借助感性材料,让学生在具体操作中获得有关一次函数图象的变化规律,从而使学生对一次函数有了从“数”到“形” 、从“形”到“数”两方面的理解,从而展开了一个“数形结合”的新天地.作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用.并为今后继续学习一次函数图象的应用以一次函数与二元一次方程的关系打下基础. 起着承上启下的作用.1.在认识一次函数图象的基础上,掌握一次函数图象及其简单性质. 2. 经历对一次函数图象变化规律的探究过程,在知识的探究过程中,增强学生数形结合的意识,渗透分类讨论的思想;培养学生的观察能力、识图能力以及语言表达能力.3. 在一次函数图象及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;在合作与交流活动中发展学生的合作意识和团队精神,获得成功的体验.【教学重点】 一次函数与正比例函数的概念以及图像的理解.【教学难点】k 、b 的取值与一次函数图象位置的关系.◆教材分析◆教学目标 ◆教学重难点 ◆学生每人准备好草稿纸、铅笔、直尺;教师准备课件,图片.一、复习回顾内容:在前面,我们已经学会了绘制正比例函数图象,明确了正比例函数图像的有关性质,那么一次函数图象中又蕴含着什么规律,这节课我们就来研究一次函数图象的性质.首先,我们来复习一下上节课所学习的知识.复习提问:1. 什么叫一次函数?从解析式上看,一次函数与正比例函数有什么关系?2. 正比例函数的图象是什么?是怎样得到的?3. 正比例函数有哪些性质?是怎样得到这些性质的?目的:学生回顾上节课学习的内容,为进一步研究一次函数的图象和性质做好铺垫.在上节课的探究中我们得到正比例函数图象是过原点的一条直线.本节课主要内容是对一次函数y kx b =+中常数k 、b 对图象的影响进行探究.说明:学生通过知识回顾,再次明确正比例函数图象的一些特征,为学习本节课在知识上作好准备.二、合作交流,探究新知(一)一次函数的图像的画法在上一课的学习中,我们学会了正比例函数图象的画法,分为三个步骤.◆课前准备◆◆教学过程①列表②描点③连线那么你能用同样的方法画出一次函数的图象吗?例1:画出一次函数y=-2x+1的图象总结归纳一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个点,再过,0).这两点画直线就可以了一般过(0,b)和(1,k+b)或(-bk一次函数y=kx+b的图象也称为直线y=kx+b.做一做用你认为最简单的方法画出下列函数的图象:(1)y=-2x-1;(2)y=0.5x+1活动:请大家用描点法在同一坐标系内画出一次函数y = x + 2,y = x - 2的图象.思考:观察它们的图象有什么特点?把一次函数y=x+2,y=x-2的图象与y=x比较,发现:1. 这三个函数的图象形状都是,并且倾斜程度______.2. 函数y=x的图象经过原点,函数y=x+2的图象与y 轴交于点,3. 即它可以看作由直线y = x 向平移个单位长度而得到函数y=x-2的图象与y 轴交于点,即它可以看作由直线y= x 向____平移____个单位长度而得到.比较三个函数的解析式,相同,它们的图象的位置关系是.要点归纳一次函数y = kx + b(k ≠ 0)的图象经过点(0,b),可以由正比例函数y = kx 的图象平移个单位长度得到. 当b>0时,向平移;当b<0时,向平移).(二)正比例函数图像的性质画一画1 在同一坐标系中作出下列函数的图象.x(1)y=13x-1(2)y=13x+1(3)y=13思考:k,b的值跟图象有什么关系?画一画2 在同一坐标系中作出下列函数的图象.x(1)y=-13x+1(2)y=-13x-1(3)y=-13思考:k,b的值跟图象有什么关系?一次函数性质:在一次函数y = kx + b 中,当k > 0 时,y 的值随着x 值的增大而增大;当k < 0 时,y 的值随着x 值的增大而减小.思考根据一次函数的图象判断k,b 的正负,并说出直线经过的象限:议一议:(1)观察图象,它们分别分布在哪些象限.(2)观察每组三个函数的图象,随着x值的变化,y的值在怎样变化?(3)从以上观察中,你发现了什么规律?归纳出一次函数图象的特点:=+中在一次函数y kx bk>时,y随x的增大而增大,当b>0时,直线必过一、二、三象限;当0当b<0时,直线必过一、三、四象限;k<时,y随x的增大而减小,当b>0时,直线必过一、二、四象限;当0当b<0时,直线必过二、三、四象限.目的:归纳出一次函数图象中系数k,b对函数图象的影响.说明:本节课主要是结合一次函数的图象,探究一次函数的简单性质,教学内容较多,为更好地突出教学重点,提高课堂教学效率,建议在上一节课的家庭作业中,要求学生绘制上述两组函数图象在作业本上.本节课首先请学生展示作出的函数图象,师生、生生互评,再让学生结合自己绘制的函数图象来探究一次函数的性质.通过问题串的精心设计,引导学生对k,b两个常数进行分类讨论,探索出k、b值的变化对图象的影响和变化规律.在此过程中渗透分类讨论的思想方法,培养学生数形结合的意识.学生拿出课前已经做好的函数图象.通过师生互动、生生互动进行批改,互评.让学生再次巩固了已学知识,调动了学生学习的自主意识.在此基础上学生进行观察并分小组对一次函=+中k,b的几何意义作了初步的探索.本环节通过独立思考和小组讨论,培养学数y kx b生的识图能力、探究能力和合作能力.初步感受到了一次函数的图象及函数的性质由常数k、b决定.三、运用新知例2 P1(x1,y1),P2(x2,y2)是一次函数y = -0.5x + 3图象上的两点,下列判断中,正确的是( )A. y1>y2C. 当x1<x2时,y1<y2B. y1<y2D. 当x1<x2时,y1>y2例3 已知一次函数y=(1-2m)x+m-1 , 求满足下列条件的m的值:(1)函数值y随x 的增大而增大;(2)函数图象与y 轴的负半轴相交;(3)函数的图象过第二、三、四象限;四、巩固新知1. 一次函数y = x - 2 的大致图象为()2. 下列函数中,y 的值随 x 值的增大而增大的函数是( )A . y =-2xB . y =-2x +1C . y =x -2D . y =-x -23. 直线 y = 3x -2可由直线 y = 3x 向 平移 单位得到.4. 直线y = x + 2 可由直线 y = x - 1向 平移 单位得到.5. 点A (-1,y 1),B (3,y 2)是直线 y = kx +b (k < 0) 上的两点,则 y 1 - y 2 0(填“>”或“<”)6. 已知一次函数y =(3m -8)x +1-m 图象与 y 轴交点在 x 轴下方,且 y 随 x 的增大而减小,其中 m 为整数,求 m 的值 .五、归纳小结内容:本节课我们结合一次函数的图象对一次函数的一些简单性质进行了探讨,通过这节课,我们学习了以下内容:1.一次函数y kx b =+中,当0k >时,y 的值随x 的增大而增大,图象经过一、三象限;当0k <时,y 的值随x 的增大而减小,图象经过二、四象限.2.同一平面内,不重合的两条直线1l :111y k x b =+与2l :222y k x b =+当12k k =时,12l l ;当12k k ≠时,1l 与2l 相交.用到了以下的数学思想和基本方法:1.本节课中用到的数学思想:数形结合、分类讨论.2.本节课中用到的基本方法:通过观察、操作、猜想、推理、类比、归纳等过程获取数学知识.目的:引导学生自己小结本节课的知识要点及数学思想、方法,教师再补充完善,使知识系统化.说明:学生畅所欲言,相互进行补充,能用自己的话进行归纳总结.略.◆教学反思。

一次函数的图象教案(优秀4篇)

一次函数的图象教案(优秀4篇)

一次函数的图象教案(优秀4篇)一次函数篇一〖教学目标〗◆1、理解正比例函数、一次函数的概念。

◆2、会根据数量关系,求正比例函数、一次函数的解析式。

◆3、会求一次函数的值。

〖教学重点与难点〗◆教学重点:一次函数、正比例函数的概念和解析式。

◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。

〖教学过程〗比较下列各函数,它们有哪些共同特征?提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。

定义:一般地,函数叫做一次函数。

当时,一次函数就成为叫做正比例函数,常数叫做比例系数。

强调:(1)作为一次函数的解析式,其中中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中符合什么条件?(2)在什么条件下,为正比例函数?(3)对于一般的一次函数,它的自变量的取值范围是什么?做一做:下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?例1:求出下列各题中与之间的关系,并判断是否为的一次函数,是否为正比例函数:(1)某农场种植玉米,每平方米种玉米6株,玉米株数与种植面积之间的关系。

(2)正方形周长与面积之间的关系。

(3)假定某种储蓄的月利率是0.16%,存入1000元本金后。

本钱与所存月数之间的关系。

此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。

解:(1)因为每平方米种玉米6株,所以平方米能种玉米株。

得,是的一次函数,也是正比例函数。

(2)由正方形面积公式,得,不是的一次函数,也不是正比例函数。

(3)因为该种储蓄的月利率是0.16%,存月所得的利息为,所以本息和,是的一次函数,但不是的正比例函数。

练习:1.已知若是的正比例函数,求的值。

2.已知是的一次函数,当时,;当时,(1)求关于的一次函数关系式。

(2)求当时,的值。

例2:按国家1999年8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至XX元部分的税率为10% (1)设全月应纳税所得额为元,且。

一次函数的图像教学设计

一次函数的图像教学设计

⼀次函数的图像教学设计 在教学⼯作者开展教学活动前,很有必要精⼼设计⼀份教学设计,教学设计是教育技术的组成部分,它的功能在于运⽤系统⽅法设计教学过程,使之成为⼀种具有操作性的程序。

写教学设计需要注意哪些格式呢?以下是店铺帮⼤家整理的⼀次函数的图像教学设计,欢迎⼤家分享。

⼀次函数的图像教学设计1 ⼀、教材的地位和作⽤ 本节课主要是在学⽣学习了函数图象的基础上,通过动⼿操作接受⼀次函数图象是直线这⼀事实,在实践中体会“两点法”的简便,向学⽣渗透数形结合的数学思想,以使学⽣借助直观的图形,⽣动形象的变化来发现两个⼀次函数图象在直⾓坐标系中的位置关系。

培养学⽣主动学习、主动探索、合作学习的能⼒。

本节课为探索⼀次函数性质作准备。

(⼀)教学⽬标的确定 教学⽬标是教学的出发点和归宿。

因此,我根据新课标的知识、能⼒和德育⽬标的要求,以学⽣的认知点,⼼理特点和本课的特点来制定教学⽬标。

1、知识⽬标 (1)能⽤“两点法”画出⼀次函数的图象。

(2)结合图象,理解直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响。

2、能⼒⽬标 (1)通过操作、观察,培养学⽣动⼿和归纳的能⼒。

(2)结合具体情境向学⽣渗透数形结合的数学思想。

3、情感⽬标 (1)通过动⼿操作,观察探索⼀次函数的特征,体验数学研究和发现的过程,逐步培养学⽣在教学活动中的主动探索的意识和合作交流的习惯。

(2)让学⽣通过直观感知、动⼿操作去经历、体会规律形成的过程。

(⼆)教学重点、难点 ⽤“两点法”画出⼀次函数的图象是研究⼀次函数的性质的基础,是本节课的重点。

直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响,是本节课的难点。

关键是通过学⽣的直观感知、动⼿操作、合作交流归纳其规律。

⼆、学情分析 1、由⽤描点法画函数的图象的认识,学⽣能接受⼀次函数的图象是直线,结合“两点确定⼀条直线”,学⽣能画出⼀次函数图象。

全国初中数学优质课一等奖《一次函数的图像》说课课件

全国初中数学优质课一等奖《一次函数的图像》说课课件

03
确定对应图象
02
确定自变量取值范围
01
熟练两点法
5
回顾与思考
知识的梳理和小结
课堂实录
回顾思考——知识的梳理和小结
一次函数的图 象是什么图形? 一
问题 清单
观察所画一 次函数的图 象,你发现 六 了什么.
怎样画一次 二
函数的图象.

一次函数的解析式与 它的图象有何关系.
五 你在学习过程中

有哪些新的体验.
你在学习过程中感受
到了哪些数学方法?
回顾课堂——知识的梳理和小结
回眸课堂
自主 探究
合作 学习
课堂 展示
集体 议学
THANKS 请专家和老师同仁们多多指导
3
深入探究
优化一次函数图象的画法





பைடு நூலகம்


课堂实录

从描点法到两点法,自然的生成加深学生的印象.
深入探究——优化一次函数图象的画法
描点法 二点法
特殊的一次函数 与坐标轴的交点
4
巩固提高
实际问题中一次函数的图象
课堂实录
层层深入,进一步体会数形结合的思想.
巩固提高——实际问题中一次函数的图象








课堂实录



从初步感知到达成共识,体现数学问题思考的价值.
小组活动——探索一次函数的图象及其画法
1自主探究 2小组合作 3课堂展示 4同学提问
小组活动——探索一次函数的图象及其画法
代表性、依次排 列表 列、省略号.

一次函数的图像教案

一次函数的图像教案

一次函数的图像教案第一章:一次函数的定义与表达式1.1 一次函数的定义引导学生回顾初中数学中的一次函数的定义。

解释一次函数是形如y=kx+b的函数,其中k和b是常数,x的次数为1。

1.2 一次函数的表达式介绍一次函数的一般形式y=kx+b,其中k是斜率,b是截距。

解释斜率和截距的概念,并给出具体的例子进行说明。

第二章:一次函数的图像2.1 直线图像的性质解释直线图像的几个重要性质,如直线是无限延伸的,直线上的点满足一次函数关系等。

通过具体的例子,让学生观察和理解直线的斜率和截距对图像的影响。

2.2 斜率和截距的计算教授斜率和截距的计算方法,并给出具体的例子进行示范。

让学生进行一些练习题,巩固他们对斜率和截距的理解和计算能力。

第三章:一次函数图像的性质3.1 斜率的含义解释斜率是直线上任意两点的纵坐标之差与横坐标之差的比值。

解释斜率的正负性和直线的倾斜程度之间的关系。

3.2 截距的含义解释截距是直线与y轴的交点的纵坐标。

解释截距的意义,并给出具体的例子进行说明。

第四章:一次函数图像的绘制4.1 利用斜率和截距绘制直线教授如何根据斜率和截距的值绘制直线的方法。

给出一些具体的例子,让学生练习绘制直线。

4.2 利用两点绘制直线解释如何根据已知的两点来绘制直线。

给出一些具体的例子,让学生练习绘制直线。

第五章:一次函数图像的应用5.1 实际问题中的一次函数图像通过一些实际问题,让学生理解一次函数图像在实际中的应用。

让学生尝试解决一些实际问题,如计算物品的成本、距离和速度等问题。

5.2 一次函数图像的解析教授如何通过一次函数图像来解析一些问题,如求解方程、求解最值等。

给出一些具体的例子,让学生练习解析一次函数图像。

第六章:一次函数图像的交点6.1 交点的定义解释一次函数图像的交点是指两条直线相交的点。

给出两个一次函数图像的例子,让学生观察和理解交点的含义。

6.2 求解交点的方法教授如何求解两条一次函数图像的交点的方法。

6.3一次函数的图像-苏科版八年级数学上册教案

6.3一次函数的图像-苏科版八年级数学上册教案

6.3 一次函数的图像-苏科版八年级数学上册教案一、教学目标1.了解一次函数的定义和特点,能够用地面图、函数表、解析式表示一次函数。

2.掌握一次函数的图像特征,能够将一次函数的图像在平面直角坐标系中准确地画出来。

3.熟练掌握讨论一次函数图像的方法,根据函数的解析式完成函数图像的绘制。

4.能够掌握修改函数关系式的方法,进一步完善对一次函数图像的理解和掌握。

二、教学重点和难点1. 教学重点1.了解一次函数图像的特征,掌握分析一次函数图像的方法。

2.能够正确用地面图画出一次函数的图像。

3.能够准确地用函数表和解析式表示一次函数,并画出函数图像。

2. 教学难点1.学生初步接触抽象的函数图像,需要较大的思维转换。

2.学生需要掌握一次函数图像的特征和绘制技巧,对数学直观有较高的要求。

3.部分学生缺乏对一次函数解析式的理解,需要在教学中引导其学习和掌握。

三、教学内容1. 一次函数的定义和特点1.一次函数的定义:若函数f(x)可表示为f(x)=kx+b,其中k和b是常数,则称f(x)为一次函数。

2.特点:一次函数的解析式为f(x)=kx+b,其中k表示斜率,b表示截距。

一次函数图像为直线,斜率为k>0时,直线向右上方倾斜,k<0时,直线向右下方倾斜。

3.用地面图表示一次函数的例子。

2. 一次函数的图像1.一次函数的图像特征:一次函数的图像为一条直线,斜率为k,截距为b。

2.一次函数的图像的绘制:求出一次函数的两个点,连接这两个点即可画出一次函数图像。

3.根据一次函数f(x)=kx+b,可以得出该函数图像经过的两个点为(0,b)和(1,k+b)。

3. 一次函数图像的讨论1.斜率的正负和绝对值大小可以确定直线的倾斜方向和倾斜程度。

2.截距可以确定直线在纵轴上的截距位置。

3.一次函数的图像和非一次函数的图像有何不同。

4. 修改函数关系式的方法1.修改函数解析式中的常数k,斜率的变化将引起直线倾斜程度的变化。

《一次函数的图象和性质》教学设计优秀5篇

《一次函数的图象和性质》教学设计优秀5篇

《一次函数的图象和性质》教学设计优秀5篇一次函数的图象教案篇一一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系。

二、教学任务分析《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节。

本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。

第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质。

本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识。

为此本节课的教学目标是:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象。

2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线。

3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力。

4.理解一次函数的代数表达式与图象之间的一一对应关系。

教学重点是:初步了解作函数图象的一般步骤:列表、描点、连线。

教学难点是:理解一次函数的代数表达式与图象之间的一一对应关系。

三、教学过程设计本节课设计了七个教学环节:第一环节:创设情境引入课题;第二环节:画一次函数的图象;第三环节:动手操作,深化探索;第四环节:巩固练习,深化理解;第五环节:课时小结;第六环节:拓展探究;第七环节:作业布置。

第一环节:创设情境引入课题内容:一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。

一次函数的图象教案及反思

一次函数的图象教案及反思

一、教学目标:1. 让学生理解一次函数的概念,掌握一次函数的图象特征。

2. 培养学生利用图象解决实际问题的能力。

3. 引导学生通过观察、分析、归纳等方法,探索一次函数图象的性质。

二、教学内容:1. 一次函数的定义及表示方法。

2. 一次函数图象的性质及特点。

3. 利用一次函数图象解决实际问题。

三、教学重点与难点:1. 重点:一次函数的图象特征,一次函数图象与实际问题的结合。

2. 难点:一次函数图象在实际问题中的应用。

四、教学方法:1. 采用问题驱动法,引导学生探究一次函数图象的性质。

2. 利用数形结合法,让学生直观地感受一次函数图象的特点。

3. 结合实际例子,培养学生解决实际问题的能力。

五、教学过程:1. 导入:通过生活中的实例,引导学生认识一次函数,并激发学生学习兴趣。

2. 新课:讲解一次函数的定义、表示方法,并通过示例让学生理解一次函数图象的概念。

3. 探究:让学生分小组探究一次函数图象的性质,如:斜率、截距等,并归纳总结。

4. 应用:结合实际问题,让学生运用一次函数图象解决问题,如:线性规划等。

5. 巩固:出示一些练习题,让学生巩固所学知识,提高解题能力。

6. 总结:对本节课内容进行总结,强调一次函数图象在实际问题中的应用。

7. 作业:布置一些有关一次函数图象的练习题,让学生课后巩固。

教案反思:在授课过程中,要注意让学生通过观察、分析、归纳等方法,自主地探索一次函数图象的性质,培养他们的动手操作能力和独立思考能力。

结合实际例子,让学生感受一次函数图象在解决实际问题中的重要性,提高他们的学习兴趣。

在教学过程中,要关注学生的学习情况,及时解答他们的疑问,确保他们能够掌握一次函数图象的知识。

六、教学评价:1. 通过课堂提问、练习题和小组讨论,评估学生对一次函数概念和图象性质的理解程度。

2. 观察学生在解决实际问题时的表现,评估他们应用一次函数图象解决实际问题的能力。

3. 收集学生作业和课后练习,评估他们的巩固程度和独立解题能力。

北师大版八年级上册教案:4.3一次函数的图象

北师大版八年级上册教案:4.3一次函数的图象
五、教学反思
在今天的教学中,我发现学生们对一次函数图象的概念和画法掌握得还不错,但在将实际问题转化为数学模型时,部分学生表现得有些吃力。我意识到,这可能是因为他们在联系实际情境和数学知识方面还存在一定的障碍。
在导入新课环节,我尝试通过提问方式激发学生的兴趣,引导他们回顾日常生活中的一次函数实例。从学生的回答来看,这个方法起到了一定的效果,但仍有一些学生对这个话题显得不够热情。我考虑在以后的课堂中,可以尝试使用更贴近他们生活的问题,进一步提高学生的参与度。
3.重点难点解析:在讲授过程中,我会特别强调一次函数图象的斜率k和截距b这两个重点。对于难点部分,如k、b与图象的关系,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数图象相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何根据实际数据画出一次函数图象。
北师大版八年级上册教案:4.3一次函数的图象
一、教学内容
北师大版八年级上册教案:4.3一次函数的图象
本节课我们将学习以下内容:
1.一次函数的定义及其图象的特点;
2.一次函数y=kx+b(k≠0)的图象与系数k、b的关系;
3.画出一次函数的图象;
4.利用一次函数图象解决实际问题。
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,通过一次函数图象的学习,使学生能够将现实问题转化为数学模型,提高数学应用素养;
2.培养学生的直观想象能力,通过观察和分析一次函数图象,让学生理解图象与系数之间的关系,提升几何直观素养;
3.培养学生的逻辑推理能力,使学生能够根据一次函数的定义和性质,推导出图象的特点,增强数学逻辑思维素养;

一次函数的图像教案市公开课一等奖省优质课获奖课件

一次函数的图像教案市公开课一等奖省优质课获奖课件
第6页
一次函数图象画法
在直角坐标系中画一
次函数y=2x+1图象.
⑴列表
y
x y=2x+1
… -1 … -1
⑵描点. ⑶连线.
-0.5 0
0 0.5 1 … 3
12 3 …

2•
1•
-3 -2 -1 •0 1 2 3 x • -1
-2
y=2x+1
-3
第7页
画一次函数图象普通步骤:
⑴列表; ⑵描点; ⑶连线.
画一次函数y=-x+2图象有没有简捷方法 呢?
画一次函数y=kx+b(k≠0)图象时,只要确 定2个点位置,过这两个点画直线就能够了
第10页
画画看:Biblioteka 画一次函数y=-x+2图象;
x0 2
y
y2 0
2•
1
0
1
• 2
x
y=-x+2
第11页
小结:
画一次函数y=kx+b(k≠0)图 象时,只要确定2个点位置,即点 (0, ),b点( ,-0b)
k
第12页
想一想,说一说 :
1、一次函数y=x-1图象是( C)
y 1
-1 0 x
y
-1 0
x
-1
A y
0 1x -1
B y
1
01
x
C
D
第13页
2.以下各点中,哪些点在函数y=4x+1图象上?哪 些点不在函数y=4x+1图象上?为何?
(2,9) (5,1) (-1,-3) (-0.5,-1)
3.若函数y=2x-3 图象经过点(1,a) ,(b, 2)两

一次函数的图像1公开课一等奖优质课大赛微课获奖课件

一次函数的图像1公开课一等奖优质课大赛微课获奖课件

-2 y=2x-3
-3
-4
-5
11
第11页:k<0时,y随x
3
增大而减小.
2 1
-5 -4 -3 -2 -1 0 -1
y=-2x+3 -2
-3
-4
-5
1 234 5 x
y=-2x-3
12
第12页
13
第13页
依据图象拟定k,b取值
K> 0 b= 0
K <0 b= 0
K< 0 b> 0
图象通过哪些象
5
限?b<0呢?
4 y=-2x+3
3
2 1
-5 -4 -3 -2 -1 0 1 2 3 4 5 x -1
-2
-3
y=-2x-3 -4
-5
y=-2x 10 第10页
从图中能够看
5
出:k>0时,y随x 4
增大而增大.
3
2 1
-5 -4 -3 -2 -1 0 1 2 3 4 5 x -1
y=2x+3
4 直线 y=kx-k图象大体位置是
( )C
A
B
C
D
15
第15页
已知一次函数y=kx+b图象通过点(-1, 5),且与正 百分比函数y=- x/2图象相交于点(2,a),求: (1)a值 (2)k,b值 (3)这两个函数图象与x轴所围成三角形面积.
解: (1)∵正百分比函数y=- x/2图象通过点(2,a),
∴a=- 2/2=-1 (2)∵一次函数y=kx+b图象通过点(-1,5)、(2, -1)

k b 5 2k b 1

k 2
b

一次函数的图象数学教案

一次函数的图象数学教案

一次函数的图象数学教案
标题:一次函数的图象数学教案
一、教学目标
(这部分需要描述您希望学生通过这节课学习达到的目标)
二、教学重难点
(在这里列出本节课程的重点和难点)
三、教学过程
1. 导入新课
(在这里介绍如何引导学生进入新课程的学习)
2. 讲授新知
2.1 一次函数的定义
(在这里详细介绍一次函数的定义)
2.2 一次函数的图像
(这里详细解释一次函数图像的特点,并可能包括实例分析)
3. 实践操作
(设计一些练习或者实验让学生自己动手画出一次函数的图像,加深理解)
4. 总结与反馈
(总结本节课的内容,收集学生的反馈信息)
四、作业布置
(在这里为学生布置课后的作业,以巩固他们在课堂上学到的知识)
五、教学反思
(在这一部分,您可以对本次的教学效果进行反思,看看哪些地方做得好,哪些地方还需要改进)。

《一次函数图象的应用》优质课比赛教案

《一次函数图象的应用》优质课比赛教案

《一次函数图象的应用》优质课比赛教案《一次函数图象的应用》优质课比赛教案一、一次函数的有关知识1、一次函数的概念若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)特别地,当b=0时,称y是x的正比例函数。

2、一次函数的图象①一次函数y=kx+b的图象是一条经过(0,b)(- b k,0)的直线,正比例函数y=kx的图象是经过原点(0,0)的一条直线。

②k>0,y随x的增大而增大。

k<0时,y随x的增大而减小。

二、利用图象信息,解决实际问题例1:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少,干旱持续时间t(天)与蓄水量V(万米3)的关系如图所示。

回答下列问题:(1)干旱持续10天,蓄水量是多少?连续干旱23天呢?(2)蓄水量小于400万米3时,将发出严重干旱警报,干旱多少天后将发出严重干旱警报?(3)按照这个规律,预计持续干旱多少天水库将干涸?V/万米3例2:某航空公司规定旅客可随身携带一定质量的行李,超过了规定的质量,则要缴托运行李费,行李费y(元)与行李质量x(千克)之间的关系如图。

①请你写出三个可免费托运的质量。

②当行李重多少千克时,交费600元?③若某旅客已交托运行李费300元,则他托运的行李质量是多少千克?三、一次函数图象的应用例3:某种型号的摩托车的油箱最多可以储油10升,加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)之间的关系如图所示。

根据图象回答下列问题:(1)一箱汽油可供摩托车行驶多少千米?(2)摩托车每行驶100千米消耗多少升汽油?(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?例4:汽车由天津驶往相距120千米的北京,s(千米)表示汽车离开天津的距离,t(小时)表汽车行驶的时间,如图所示。

(1)汽车用几小时可以从天津到北京?汽车的速度是多少?(2)当汽车行驶1小时时,离开天津的距离是多少?(3)当汽车距北京20千米时,汽车已出发了多长时间?四、从图象中获取信息可以从两个方面去分析图象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数的图像
【教学目标】
1.知道一次函数的图像是一条直线,会选取两个适当的点画一次函数的图像。

2.经历作图过程,初步了解画函数图像的一般步骤及一次函数的表达式与图像之间的对应关系。

3.培养学生用“数形结合”的思想和解决数学问题的能力。

【教学重难点】
1.一次函数的图像的画法。

2.对一次函数的表达式与图像之间的对应关系的理解。

【教学过程】
一、自学质疑
1.自学课本,思考如何画一次函数的图像?
2.一次函数y=kx+3的图像经过点(-1,5),则k=-2,其图像经过点(0,3)、(3
2
,0)。

3.一次函数y=5x+2的图像与x轴的交点坐标为(2
5
,0),与y轴的交点坐标为(0,2)。

二、交流探究
1.一次函数的图像的画法:
(1)什么是函数图像?
(2)函数图像上的点的横坐标如何确定?纵坐标如何确定?
(3)如何“列表”?
(4)表中x的值如何选取?表中的y值如何确定?
(5)怎样“描点”?描多少个点?点的坐标如何确定?
(6)为什么要“连线”?怎样连线?
2.试画出一次函数y=2x+1的图像:
解:
(2)描点:描点,对于表中的每一组对应值,以x 值作为点的横坐标,以对应的y 值作为点的纵坐标,便可画出一个点。

也就是由表中给出的有序实数对,在直角坐标系中描出相应的点。

(3)连线:按照横坐标由小到大的顺序把相邻两点用平滑的线连结起来,得到的图形就是函数式y=2x+1的图像,它是一条直线。

小结:作一次函数图像有哪些步骤:(1)列表;(2)描点;(3)连线。

三、互动探究
1.画一次函数y=-x+2的图像; 2.一次函数(0)y kx
b k
的图像是一条 。

一次函数y=kx+b(k ≠0)的图像也称
为 。

四、精讲点拨
1.有简单的画法吗?试画出一次函数y=-x+2的图像。

小结:一次函数的图像是一条直线,由直线的公理可知:作一次函数的图像时,只要确定
两个点(0,b )、(b
k
,0),再过这两个点作直线就可以了。

2.做一做:
(1)作出一次函数y=-2x+5的图像;
(2)在所作的图像上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5.
②描点:以表中各组对应的值作为点的坐标,在直角坐标第内描出相应的点。

③连线:把这些点依次连接起来,得到y=-2x+5的图像,它是一条直线。

小结:一次函数的图像是一条直线,由直线的公理可知:两点确定一条直线,所以作一次函数的图像时,只要确定两个点,再过这两个点作直线就可以了,一次函数y=kx+b 的图像也称为直线y-kx+B . 五、纠正反馈
练习题第一题注意:点是否在图像上的判断方法;第二题注意总结画出的图像的关系。

六、随堂练习
1.一次函数1+2=x y 图像是(C )
A B C D 2.下列点中,不是一次函数21y
x 的图像上的点是(C )。

A .(1,-1 )
B .(0,1)
C .(2,0)
D .(-1,3)。

相关文档
最新文档