最优化方法(拟牛顿法)
机器学习中常见的几种优化方法
机器学习中常见的几种优化方法阅读目录1. 梯度下降法(Gradient Descent)2. 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods)3. 共轭梯度法(Conjugate Gradient)4. 启发式优化方法5. 解决约束优化问题——拉格朗日乘数法我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题“在一定成本下,如何使利润最大化”等。
最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。
随着学习的深入,博主越来越发现最优化方法的重要性,学习和工作中遇到的大多问题都可以建模成一种最优化模型进行求解,比如我们现在学习的机器学习算法,大部分的机器学习算法的本质都是建立优化模型,通过最优化方法对目标函数(或损失函数)进行优化,从而训练出最好的模型。
常见的最优化方法有梯度下降法、牛顿法和拟牛顿法、共轭梯度法等等。
回到顶部1. 梯度下降法(Gradient Descent)梯度下降法是最早最简单,也是最为常用的最优化方法。
梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。
一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。
梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以也被称为是”最速下降法“。
最速下降法越接近目标值,步长越小,前进越慢。
梯度下降法的搜索迭代示意图如下图所示:牛顿法的缺点:(1)靠近极小值时收敛速度减慢,如下图所示;(2)直线搜索时可能会产生一些问题;(3)可能会“之字形”地下降。
从上图可以看出,梯度下降法在接近最优解的区域收敛速度明显变慢,利用梯度下降法求解需要很多次的迭代。
在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。
牛顿法和拟牛顿法
解:
f x1
26
x1
x2
22
3 x1
3 x2
x1 x2 3
x2
f x2
26
x1
x2
2 2 3 x1
3x2
x1 x2 3
x1
故
f x1 x 4,6T
344,
f x2
x 4,6T
56,
f
(
x1
)
344 56
.
2 f x12
2 23
x2 2 ,
2 f x22
在确定拟牛顿方程式的Hk+1时,若矩阵Hk+1对称,则需 要待定(n+n2)/2个未知数,n个方程,所以拟牛顿方程 一般有无穷个解,故由拟牛顿方程确定的一族算法,通 常称之为拟牛顿法
拟Newton算法
1、给定初始点x0,正定矩阵H0,精度ε>0,k=0 2、计算搜索方s向k Gk f(x k ) 3、令xk+1=xk+tk.sk,其中
当H 可逆时, k
若 f(x k 1)
,停止x*
xkx+k11=;否xk则-H,k-令1.hk k
k
1,转step2
Step4:
例1. 设 f x 6 x1 x2 2 + 2 3 x1 3 x2 x1 x2 2
求在点 x1 (4, 6)T 处的搜索方向.
分析: 搜索方向
故需要写出 f ( x), 2 f ( x) 的表达式.
Sk
-H
1 k
hk
k 1
其中
H k 2f(x(k )) hk f(x(k ))
1.牛顿法几何解释
几何直观解释:最密切的二次曲线逼近
牛顿法和拟牛顿法
重置 否
x (1 ) = x ( n + 1 )
例4.13:用DFP方法求解 min 2 x + x − 4 x1 + 2
2 1 2 2
初始点x
(1)
2 1 0 = , H1 = 1 0 1
λ1 =
5 18
2 1
8 9 4 9
SQP方法
• 良好的性质 • 广泛应用 • 与Lagrange-Newton 法的关系
总结
简单的“拟”可以 是革命性的进步!
1 v
( k )T
q (k )
∆H k =
p
(k )
⋅p
( k )T (k )
p
( k )TΒιβλιοθήκη q−Hkq q
(k )
⋅q
( k )T
Hk
( k )T
Hkq
(k )
计 算 步 骤:
x (1 ) , ε > 0
H1 = I n , d (1) = −∇f ( x(1) ), k = 1
∇f ( x ( k ) ) < ε
p ( k ) := x ( k +1) − x ( k ) ⇓ q ( k ) := ∇f ( x ( k +1) ) − ∇f ( x ( k ) ) q
(k )
≈ ∇ f (x
2
( k +1)
)p
(k )
p ( k ) = H k + 1q ( k )
p ( k ) ≈ ∇ 2 f ( x ( k +1) ) −1 q ( k )
FletcherDavidon(1959), Fletcher-Powell(1963) DFP 方法
数学优化中的牛顿法和拟牛顿法
数学优化中的牛顿法和拟牛顿法在数学中,优化是一个非常重要的研究领域,其目的是找到使某个函数达到最大或最小值的变量集合。
在实际应用中,很多问题都可以转化为优化问题,如机器学习、经济学、物理学等。
在优化领域中,牛顿法和拟牛顿法是两种常见的方法。
本文将介绍这两种优化方法的基本原理、优缺点以及应用场景。
一、牛顿法牛顿法(Newton's method)是由数学家牛顿发明的非线性优化方法,其思想是利用函数的泰勒级数展开进行逼近。
具体来说,牛顿法先求出目标函数的一阶和二阶导数,然后使用二阶导数来逼近目标函数本身,进而得到近似最优解。
牛顿法的数学公式如下:$$\boldsymbol{x}_{k+1}= \boldsymbol{x}_{k} -{\boldsymbol{\nabla}^2 f(\boldsymbol{x}_k)^{-1}}\boldsymbol{\nabla} f(\boldsymbol{x}_k)$$其中,$\boldsymbol{x}_k$ 表示第 $k$ 次迭代的解,$\boldsymbol{\nabla} f(\boldsymbol{x}_k)$ 和$\boldsymbol{\nabla}^2 f(\boldsymbol{x}_k)$ 分别表示目标函数在$\boldsymbol{x}_k$ 处的一阶和二阶导数。
牛顿法的优点是收敛速度非常快,通常只需要很少的迭代次数即可达到最优解。
另外,牛顿法适用于连续可微、二阶可导的函数,因此适用范围广。
然而,牛顿法也存在一些缺点,例如无法处理不可导或一阶可导但二阶不可导的函数。
此外,牛顿法需要计算目标函数的二阶导数,因此在大规模问题上计算成本很高。
二、拟牛顿法拟牛顿法(quasi-Newton method)是一类基于牛顿法的优化算法,它通过逼近目标函数的海森矩阵来求解。
拟牛顿法没有计算海森矩阵的显式表达式,而是通过估计海森矩阵的变化来逼近。
最简单和最流行的拟牛顿法是BFGS算法和L-BFGS算法。
最优化牛顿法
Step 1. 给定初始点x0 ,正定矩阵H0 ,精度 0,k : 0
Step 2. 计算搜索方向d k H kf ( x k );
step 3. 令 x k1 x k tk d k , 其中 tk : f ( x k tk d k ) min f ( x k t d k )。
(sk Hk yk
Hk )T yk
yk
)T
SR1校正:H k1
Hk
(sk
H k yk )(sk H k (sk H k yk )T yk
yk )T
SR1校正具有二次终止性, 即对于二次函数,它不 需要线搜索,
而具有n步终止性质 H n G 1 .
定理
设s0 , s1 ,
,
s
n
线性无关,那么对二次
满足上述方程的解很多 ,我们可以如下确定一 组解:
k uk ukT yk sk kvkvkT yk Hk yk
这样,我们可以取:
uk sk ,
k ukT y k 1,
vk H k y k , k vkT y k 1。
即:
uk sk , vk Hk yk ,
k
1 skT y k
x k1 x k t k H k f ( x k )
xk1 xk tk Hkf ( xk )
H k I时 梯度法 最速下降方向 d k f ( x k ) , 度量为 x xT I x
H k Gk1时 Newton法 Newton方向 d k Gk1f (xk ), 度量为 x xT Gk x
当Gk 0 时,有 f ( xk )T d k f ( xk )T Gk1gk gkT Gk1gk 0 ,
最优化方法第四章B
将上式右边极小化, 即令
q(k) (s) f (xk ) 2 f (xk )s 0
得:
xk1 xk [ 2 f (xk )]1 f (xk )
(4.2.2) (4.2.3)
这就是牛顿法迭代公式.相应的算法称为牛顿法
令 Gk 2 f (xk ), gk f (xk ) , 则(4.2.3)也可写成
事实上, 由于精确线性搜索满足gkT1dk 0则
gT k 1
g
k
dkT1dk
0
(4.1.11)
这表明最速下降法中相邻两次的搜索方向是相互直
交的, 这就产生了锯齿形状.越接近极小点, 步长越
小, 前进越慢.
最速下降法的锯齿现象
x2 x1
x*
x3
最速下降法的收敛速度
精确线性搜索的最速下降法的收敛速度是线性的
dk
o(
x xk
)
(4.1.2)
显然, 若dk 满足 gkT dk 0 , 则是下降方向, 它使得
f (xk dk ) f (xk )
当
取定后,
g
T k
d
的值越小,
k
即
g
T k
dk
的值越大,
函
数f(x)在xk处下降量越大.
由Cauchy-Schwartz(柯西-施瓦)不等式
二次型 f (x1, x2 ,, xn ) 如果对于任意一组不全为零的 实数 c1 , c2 ,, cn都有 f (c1, c2 ,, cn ) 0 就称为正定的.
A是一个实对称矩阵,如果 实二次型
xT Ax
是正定的,则A称为正定矩阵.
最优化方法-拟Newton法
0
1 4
0.25
2 X1 0.5,
f ( X1) 5.5
1 f ( X1) 2
(4)判 断 || f ( X 1 ) |,|转(5)
(5)第二次迭代采用DFP变尺度法,构造 E 0
1 0
G0 0
1
1 S0 X1 - X 0 - 0.5
min
f
(X
)
x2 1
2
x2 2
2 x1 x2
4x1
已知 X 0 [1,1]T , 0.1
解:(1)第一次迭代,实际上是沿负梯度方向进行一维搜索。
(2)
f
(
X
)
2x1 2
x1
2x2 4x2
4 ,
4
f ( X0) 2
,G0 I
➢ 5、DFP算法的收敛速度是超线性的。
Relax 做个题,轻松一下
例:用DFP变尺度算法求解无约束最优化问题
min
f
(X
)
x2 1
2
x2 2
2 x1 x2
4x1
已知 X 0 [1,1]T , 0.1
参照:拟Newton法的基本格式做题:
例:用DFP变尺度算法求解无约束最优化问题
三、对称秩1算法 2、对称秩1算法的性质
四、DFP算法(Davidon-Flether-P0well)
四、DFP算法
在DFP算法中,校正矩阵的构造公式为:
Ek
S
k
S
T k
S kTYk
数值最优化方法
数值最优化方法数值最优化是指让数学模型的解达到最理想值或最优值的算法。
它主要用于在给定某种限制条件下求出最佳解,在现代数学和工程应用中被广泛使用,从而使解决问题者能够获得理想的解。
数值最优化方法可分为三类:随机搜索方法、梯度搜索方法及类模式搜索方法。
一、随机搜索方法随机搜索方法是一类基于随机过程的搜索算法,它的基本思路是用随机的方式搜索一定数量的可能的解,从而找出满足最佳化要求的最优解。
随机搜索方法不需要借助任何假定,它们可以用来解决各种类型的最优化问题,可以在没有充分知识的情况下构造模型。
随机搜索方法主要有模拟退火算法、JS散乱算法、粒子群算法(PSO)、贝叶斯优化算法、遗传算法、定时算法等。
模拟退火算法是一类基于热力学的随机搜索方法,它的基本思想是模拟热力学中的凝固过程,模拟加热和冷却的过程,最终可以将系统放入最终的冷却态,即最优化解。
该算法的基础原理非常简单,可以应用于各种复杂的问题,但是收敛较慢,耗时较长,算法的收敛强度难以控制。
JS散乱算法是一类以满足斯坦福大学计算机科学系终身教授John H. Conway及其相近的两个博士生Richard K. Guy和Brennen McHenry于1965年提出的算法。
该算法是一类基于局部搜索策略的随机搜索算法,算法的核心思想是组合局部搜索算法和比较算法,即在最优解附近搜索一个满足最优解的解,让其达到最优解,它的优点是时间复杂度低且可以收敛到局部最小点,但是劣势是实际收敛非常缓慢,而且难以控制局部最优解。
粒子群算法是一类基于社会行为学的随机搜索算法,该算法由Kennedy和Eberhart于1995年提出,其基本思想是模拟鸟群觅食行为,即让粒子的搜索行为类似于一群鸟群搜索食物的行为,从而找到最优解。
粒子群算法的优点是可以找到最优解,计算量较少,并且可以用来解决非凸问题,但缺点是可能在某局部范围内收敛,而且难以控制全局搜索空间大小。
贝叶斯优化算法是一类基于贝叶斯学派优化研究的算法,该算法旨在利用 Bayes式通过将优化目标模型转化为条件概率分布,并采用适当的抽样策略搜索最优解。
最优化理论方法——牛顿法
牛顿法牛顿法作为求解非线性方程的一种经典的迭代方法,它的收敛速度快,有内在函数可以直接使用。
结合着matlab 可以对其进行使用,求解方程。
牛顿迭代法(Newton ’s method )又称为牛顿-拉夫逊方法(Newton-Raphson method ),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,其基本思想是利用目标函数的二次Taylor 展开,并将其极小化。
牛顿法使用函数()f x 的泰勒级数的前面几项来寻找方程()0f x =的根。
牛顿法是求方程根的重要方法之一,其最大优点是在方程()0f x =的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时非线性收敛,但是可通过一些方法变成线性收敛。
牛顿法的几何解释:方程()0f x =的根*x 可解释为曲线()y f x =与x 轴的焦点的横坐标。
如下图:设k x 是根*x 的某个近似值,过曲线()y f x =上横坐标为k x 的点k P 引切线,并将该切线与x 轴的交点 的横坐标1k x +作为*x 的新的近似值。
鉴于这种几何背景,牛顿法亦称为切线法。
2 牛顿迭代公式:(1)最速下降法:以负梯度方向作为极小化算法的下降方向,也称为梯度法。
设函数()f x 在k x 附近连续可微,且()0k k g f x =∇≠。
由泰勒展开式: ()()()()()T k k k k fx f x x x f xx x ο=+-∇+- (*)可知,若记为k k x x d α-=,则满足0T k k d g <的方向k d 是下降方向。
当α取定后,T k k d g 的值越小,即T k k d g -的值越大,函数下降的越快。
由Cauchy-Schwartz 不等式:Tk k kk d g d g ≤,故当且仅当k k d g =-时,T k k d g 最小,从而称k g -是最速下降方向。
最速下降法的迭代格式为: 1k k k k x x g α+=-。
拟牛顿法
•主页•专栏作家•量化基础理论•软件使用经验•量化软件•资源导航•资料下载•量化论坛搜索搜索用户登录用户名:*密码:*登录•创建新帐号•重设密码首页拟牛顿法及相关讨论星期三, 2009-06-17 00:24 —satchel1979使用导数的最优化算法中,拟牛顿法是目前为止最为行之有效的一种算法,具有收敛速度快、算法稳定性强、编写程序容易等优点。
在现今的大型计算程序中有着广泛的应用。
本文试图介绍拟牛顿法的基础理论和若干进展。
牛顿法(Newton Method)牛顿法的基本思想是在极小点附近通过对目标函数做二阶Taylor展开,进而找到的极小点的估计值[1]。
一维情况下,也即令函数为则其导数满足因此(1)将作为极小点的一个进一步的估计值。
重复上述过程,可以产生一系列的极小点估值集合。
一定条件下,这个极小点序列收敛于的极值点。
将上述讨论扩展到维空间,类似的,对于维函数有其中和分别是目标函数的的一阶和二阶导数,表现为维向量和矩阵,而后者又称为目标函数在处的Hesse矩阵。
设可逆,则可得与方程(1)类似的迭代公式:(2)这就是原始牛顿法的迭代公式。
原始牛顿法虽然具有二次终止性(即用于二次凸函数时,经有限次迭代必达极小点),但是要求初始点需要尽量靠近极小点,否则有可能不收敛。
因此人们又提出了阻尼牛顿法[1]。
这种方法在算法形式上等同于所有流行的优化方法,即确定搜索方向,再沿此方向进行一维搜索,找出该方向上的极小点,然后在该点处重新确定搜索方向,重复上述过程,直至函数梯度小于预设判据。
具体步骤列为算法1。
算法1:(1) 给定初始点,设定收敛判据,.(2) 计算和.(3) 若< ,则停止迭代,否则确定搜索方向.(4) 从出发,沿做一维搜索,令.(5) 设,转步骤(2).在一定程度上,阻尼牛顿法具有更强的稳定性。
拟牛顿法(Quasi-Newton Method)如同上一节指出,牛顿法虽然收敛速度快,但是计算过程中需要计算目标函数的二阶偏导数,难度较大。
AAA最优化理论与方法课件(第5章,马昌凤版)
和yk
,
可根据(*)估计在xk
处的
+1
Hesse矩阵的逆.令H k 1取代牛顿欠定法方中程的Hesse阵
H 的逆2
f
( xk
)1,则H
k
满足
1
d自k 1由度? 2 f (xkk11)1f (xk 1)
sk =Hk1 yk
(A1)
(样A1确)称定为满拟足牛这顿个条条件件(的方HHH程0kk)+,11 ?也I;H称k为割H线k方程。怎校矩正阵
0 0 3 1
5.1拟牛顿法及其性质
1
第一次迭代 在 x(0)的梯度是 g(0) 1 ,于是
1
1 d (0) H (0) g(0) 1
1
步长0
( g(0) )T d (0) (d (0) )T Gd (0)
1 ,于是
2
x(1) =x(0) +0d (0)
1, 2
1, 2
1 2
T
5.1拟牛顿法及其性质
目标函数是凸函数,因此 x(3) 是全局极小点。
5.1拟牛顿法及其性质
5.1拟牛顿法及其性质
5.1拟牛顿法及其性质
点评
• 在一定条件下,对称秩1校正算法收敛且具有二次终止性。
• 无法保证Hk和Bk的正定性。
H k 1 yk =sk
• 具体而言,有以下三种情况:
Bk1sk =yk
若yk =Bk sk,则满足拟牛顿方程的迭代矩阵Bk+1=Bk。 若(yk Bk sk )T sk 0,则满足拟牛顿方程的SR1校正 公式存在且唯一。
方法总结:
xk +1 xk k Hk (gk )
H
k
I,
最优化方法 总结
最优化方法总结
最优化方法是一种用于求解最优化问题的数学工具和技术。
最优化问题是指在给定约束条件下寻找使得目标函数取得最大或最小值的变量取值。
最优化方法主要分为两类:无约束优化和约束优化。
在无约束优化中,最优化方法包括:
1. 梯度下降法:通过不断迭代来寻找函数的最小值点,在每一步迭代中通过计算函数的梯度来确定下降的方向和步长。
2. 牛顿法:使用函数的一阶和二阶导数来近似估计最小值点,通过迭代计算来逐步逼近最小值点。
3. 拟牛顿法:使用函数的梯度信息来估计牛顿法的一阶导数信息,以减少计算二阶导数的复杂性。
4. 共轭梯度法:通过迭代来求解线性最小二乘问题,可以高效地求解大规模问题。
在约束优化中,最优化方法包括:
1. 等式约束优化:利用拉格朗日乘数法将等式约束转化为无约束优化问题,并使用无约束优化方法求解。
2. 不等式约束优化:使用罚函数、投影法或者序列二次规划等方法将不等式约束转化为无约束优化问题,并使用无约束优化方法求解。
3. 信赖域方法:通过构造信赖域来限制搜索方向和步长,以保证在搜索过程中满足约束条件。
4. 内点法:通过转化为等式约束问题,并使用迭代法来逐步逼近约束边界。
总体来说,选择适当的最优化方法取决于问题的性质和约束条件的类型。
不同的最优化方法有不同的优缺点,适用于不同的问题,因此需要在具体应用中进行选择和调整。
最优化方法
f x x
t
f x x
f x x f x
t
x f x
(4)
如果令: x
f x f x
f x x f x
t t
f x f x
而牛顿法是建立在二阶近似基础之上的, 这就导致了直接使 是函数 f 并不是一个二次函数, 用牛顿法并不能保证算法的收敛。 牛顿法虽然无法直接使用, 但受此启发人们提出了多种近
似的二阶优化技术。
IV. 拟牛顿法
在牛顿法中存在着计算函数 f x 的二阶导数矩阵 H 的困难,拟牛顿法利用函数的一阶 导数(梯度)来近似递推矩阵 H 。 类似于公式(6) ,函数在 x k 1 附近的二阶泰勒级数展开为:
t
最小。注意到(3)式只是在点 x 附近的一阶近似,当 x 过大时,近似的精度会很差,因 此不能直接寻找增量矢量, 而是应该寻找使得函数值下降最快的方向。 也就是在约束 x 1 的条件下,寻找使得 f x x 最小的增量矢量。找到最速下降的方向之后,再来确定此
t
方向上合适的增量矢量长度。 根据 Cauchy–Schwarz 不等式,两个矢量内积的绝对值小于等于两个矢量长度的乘积, 因此:
f x f x
t
f x
2
f x f x
f x
由此我们知道,当 x 为负的梯度方向时,不等式( 4 )中的等号成立,也就是说
f x x 取得最小值。因此,增量矢量的方向为负的梯度方向时,函数值下降得最快。
0
do
1 计算优化方向: d k H k gk ;
《最优化方法》课程讨论总结(原创)
I 线性规划
1.1 分支定界法与隐枚举法
分支定界法与隐枚举法对比见表 1。
表1 项目 解决问题 分支定界法 用于求解纯整数规划和混合整数规划问题 1.标准型 Min z=c0+cjxj s.t.ai,jxj≤bi 将要求解的最小整数问题为(I0),将不考 虑整数条件的线性规划问题称为该整数规划 的松弛问题, 记为(L0), I0 和 L0 的解存在以下 关系: 1.若 L0 没有可行解, 则 I0 也没有可行解; 理论依据 2.若 L0 有最优解,且满足 I0 整数条件, 则 L0 的最优解即为 I0 的最优解;若不满足 I0 整数条件,则 L0 的最优目标函数值必是 I0 最 优目标函数值 z*的下界 z1,而 I0 的任意可行 解的目标函数值将是 z*的一个上界 z2,即 z1≤z*≤z2。 1)若
表3 1.与牛顿法的区别 牛顿法优缺点: 二次收敛,程序简单,需要二阶导数,需要计算 Hesse 矩阵,而此矩阵可能非正定,可能导致搜索方 向不是下降方向。 拟牛顿法:用不包含二阶导数的矩阵 Bk 近似 Hesse 矩阵 Gk(与牛顿法的本质区别) ,其特点为:1)不 必计算 Hesse 矩阵;2)当 Hk>0 时,算法产生的方向均为下降方向,具有二次终止性;3)存储量较大。 拟牛顿法是无约束最优化方法中最有效的一类算法,简单的“拟”是革命性的进步。 2.与牛顿法迭代公式对比 牛顿法:Pk=-Gk-1gk,xk+1=xk+Pk 拟牛顿法:Pk=-Bk-1gk(Pk=-Hkgk) ,xk+1=xk+αkPk,线性搜索求解 αk,计算框图如下。 拟牛顿法特点及求解思路
jFk
分支定界法与隐枚举法对比 隐枚举法 对于 0-1 规划问题,考虑其特殊性,提出该法 (cj≥0) (i=0,1,2,……,m) (j=0,1,2,……,n)
最优化算法(牛顿、拟牛顿、梯度下降)
最优化算法(⽜顿、拟⽜顿、梯度下降)1、⽜顿法 ⽜顿法是⼀种在实数域和复数域上近似求解⽅程的⽅法。
⽅法使⽤函数f (x)的泰勒级数的前⾯⼏项来寻找⽅程f (x) = 0的根。
⽜顿法最⼤的特点就在于它的收敛速度很快。
具体步骤: ⾸先,选择⼀个接近函数f (x)零点的x0,计算相应的f (x0) 和切线斜率f ' (x0)(这⾥f ' 表⽰函数f 的导数)。
然后我们计算穿过点(x0, f (x0)) 并且斜率为f '(x0)的直线和x 轴的交点的x坐标,也就是求如下⽅程的解: 我们将新求得的点的x 坐标命名为x1,通常x1会⽐x0更接近⽅程f (x) = 0的解。
因此我们现在可以利⽤x1开始下⼀轮迭代。
迭代公式可化简为如下所⽰: 已经证明,如果f ' 是连续的,并且待求的零点x是孤⽴的,那么在零点x周围存在⼀个区域,只要初始值x0位于这个邻近区域内,那么⽜顿法必定收敛。
并且,如果f ' (x)不为0, 那么⽜顿法将具有平⽅收敛的性能. 粗略的说,这意味着每迭代⼀次,⽜顿法结果的有效数字将增加⼀倍。
下图为⼀个⽜顿法执⾏过程的例⼦。
由于⽜顿法是基于当前位置的切线来确定下⼀次的位置,所以⽜顿法⼜被很形象地称为是"切线法"。
⽜顿法的搜索路径(⼆维情况)如下图所⽰: ⽜顿法搜索动态⽰例图:2、拟⽜顿法(Quasi-Newton Methods) 拟⽜顿法是求解⾮线性优化问题最有效的⽅法之⼀,于20世纪50年代由美国Argonne国家实验室的物理学家W.C.Davidon所提出来。
Davidon设计的这种算法在当时看来是⾮线性优化领域最具创造性的发明之⼀。
不久R. Fletcher和M. J. D. Powell证实了这种新的算法远⽐其他⽅法快速和可靠,使得⾮线性优化这门学科在⼀夜之间突飞猛进。
拟⽜顿法的本质思想是改善⽜顿法每次需要求解复杂的Hessian矩阵的逆矩阵的缺陷,它使⽤正定矩阵来近似Hessian矩阵的逆,从⽽简化了运算的复杂度。
拟牛顿算法范文
拟牛顿算法范文拟牛顿算法(quasi-Newton algorithm),也被称为拟牛顿方法,是一类优化算法,用于求解无约束最优化问题。
它通过使用近似的海森矩阵(Hessian matrix)来迭代地逼近最优解,并可以在一定程度上替代传统的牛顿法。
牛顿法是一种基于二阶导数信息的优化方法,它对目标函数进行二次近似,并以此更新方向和步长。
然而,牛顿法需要计算和存储目标函数的海森矩阵,它的计算复杂度为O(n^2),其中n是目标函数的维度。
当目标函数的维度很高时,计算和存储海森矩阵将变得非常耗时和困难。
为了解决这个问题,拟牛顿算法采用了一种近似的方法来估计海森矩阵。
它基于牛顿法的思想,但使用更简单的Hessian矩阵估计技术。
拟牛顿方法可以通过迭代更新当前点的近似Hessian矩阵,从而逐渐接近最优解。
最著名的拟牛顿算法之一是Broyden-Fletcher-Goldfarb-Shanno (BFGS)算法,它是由四位数学家分别独立提出的。
BFGS算法使用拟牛顿方式更新近似的Hessian矩阵,以此来求解目标函数的最小值。
BFGS 算法在求解大型优化问题和非线性最小二乘问题时表现出色,因为它避免了显式计算和存储原始Hessian矩阵,并使用矩阵乘法来近似它。
另一个常用的拟牛顿方法是L-BFGS(Limited-memory BFGS)算法,它是BFGS算法的一种改进。
L-BFGS算法在迭代过程中,只需要存储有限数量的历史信息,从而降低了内存使用量,并且适用于大型问题。
L-BFGS 算法被广泛应用于机器学习领域的训练模型和优化问题中。
要使用拟牛顿算法求解无约束最优化问题,通常需要考虑以下几个关键步骤:1.选择初始点:需要根据具体问题选择一个合适的初始点作为起点。
2. 选择近似Hessian矩阵:需要选择一种拟牛顿方法,并确定如何估计和更新近似Hessian矩阵。
3. 计算方向和步长:使用近似Hessian矩阵来计算方向,并使用线或其他方法确定步长。
机器学习算法系列(25):最速下降法、牛顿法、拟牛顿法
作为指导。
3.2 DFP算法
DFP算法是以William C.Davidon、Roger Fletcher、Michael J.D.Powell三个人人的名字的首首字⺟母命 名的,它由Davidon于1959年年首首先提出,是最早的拟牛牛顿法。该算法的核心心是:通过迭代的方方
,求λ k,使 f(x ( k ) + λ kp k) = minλ ≥ 0 f(x ( k ) + λp k) 4. 置x ( k + 1 ) = x ( k ) + λ kp k,计算f(x ( k + 1 ) )当 | | f(x ( k + 1 ) ) − f(x ( k ) ) | | < ξ或 | | x ( k = 1 ) − x ( k ) | | < ξ,停止止迭代,令x ∗ = x ( k + 1 ) 5. 否则,置k = k + 1,转到步骤3。 当目目标函数是凸函数时,梯度下降法的解释全局最优解。一一般情况下,其解不不保证是全局最优 解。梯度下降法的收敛速度也未必是很快的。
3.1 拟牛牛顿条件
设经过k + 1次迭代后得到X k + 1,此时将目目标函数f(X)在X k + 1附近作泰勒勒展开,取二二阶近似,得到 1 f( X) ≈ f( X k + 1 ) + ∇ f( X k + 1 ) · ( X − X k + 1 ) + · ( X − X k + 1 ) T · ∇ 2 f( X k + 1 ) · ( X − X k + 1 ) 2 在两边同时作用用一一个梯度算子子 ∇ ,可得 ∇ f( X) ≈ ∇ f ( X k + 1 ) + H k + 1 · ( X − X k + 1 ) 取X = X k并整理理,可得 g k + 1 − g k ≈ H k + 1 · (X k + 1 − X k ) 若引入入记号s k = X k + 1 , y k = g k + 1 − g k则可以改写成
拟牛顿法
•主页•专栏作家•量化基础理论•软件使用经验•量化软件•资源导航•资料下载•量化论坛搜索搜索用户登录用户名:*密码:*登录•创建新帐号•重设密码首页拟牛顿法及相关讨论星期三, 2009-06-17 00:24 —satchel1979使用导数的最优化算法中,拟牛顿法是目前为止最为行之有效的一种算法,具有收敛速度快、算法稳定性强、编写程序容易等优点。
在现今的大型计算程序中有着广泛的应用。
本文试图介绍拟牛顿法的基础理论和若干进展。
牛顿法(Newton Method)牛顿法的基本思想是在极小点附近通过对目标函数做二阶Taylor展开,进而找到的极小点的估计值[1]。
一维情况下,也即令函数为则其导数满足因此(1)将作为极小点的一个进一步的估计值。
重复上述过程,可以产生一系列的极小点估值集合。
一定条件下,这个极小点序列收敛于的极值点。
将上述讨论扩展到维空间,类似的,对于维函数有其中和分别是目标函数的的一阶和二阶导数,表现为维向量和矩阵,而后者又称为目标函数在处的Hesse矩阵。
设可逆,则可得与方程(1)类似的迭代公式:(2)这就是原始牛顿法的迭代公式。
原始牛顿法虽然具有二次终止性(即用于二次凸函数时,经有限次迭代必达极小点),但是要求初始点需要尽量靠近极小点,否则有可能不收敛。
因此人们又提出了阻尼牛顿法[1]。
这种方法在算法形式上等同于所有流行的优化方法,即确定搜索方向,再沿此方向进行一维搜索,找出该方向上的极小点,然后在该点处重新确定搜索方向,重复上述过程,直至函数梯度小于预设判据。
具体步骤列为算法1。
算法1:(1) 给定初始点,设定收敛判据,.(2) 计算和.(3) 若< ,则停止迭代,否则确定搜索方向.(4) 从出发,沿做一维搜索,令.(5) 设,转步骤(2).在一定程度上,阻尼牛顿法具有更强的稳定性。
拟牛顿法(Quasi-Newton Method)如同上一节指出,牛顿法虽然收敛速度快,但是计算过程中需要计算目标函数的二阶偏导数,难度较大。