2016-2017学年北京市石景山区七年级上期末数学考试题含答案

合集下载

北京市石景山区七年级上学期数学期末试卷解析版

北京市石景山区七年级上学期数学期末试卷解析版

七年级上学期数学期末试卷一、单项选择题1.以下几何体中,是圆柱的为〔〕A. B. C. D.2.2021年11月24日,长征五号遥五运载火箭在文昌航天发射场成功发射探月工程嫦娥五号探测器,火箭飞行2200秒后,顺利将探测器送入预定轨道,开启我国首次地外天体采样返回之旅.将用科学记数法表示应为〔〕A. B. C. D.3.实数在数轴上的对应点的位置如下图,那么正确的结论是〔〕A. B. C. D.4.如下图,点P到直线l的距离是〔〕A. 线段PA的长度B. 线段PB的长度C. 线段PC的长度D. 线段PD的长度5.如果代数式与的值互为相反数,那么的值为〔〕A. B. C. D.6.如果,那么mn的值为〔〕A. -6B. 6C. 1D. 97.某商场促销,把原价元的空调以八折出售,仍可获利元,那么这款空调进价为〔〕A. 元B. 元C. 元D. 元8.对于两个不相等的有理数,,我们规定符号表示,两数中较大的数,例如.按照这个规定,那么方程的解为〔〕A. -1B.C. 1D. -1或二、填空题9.请写出一个比大的负有理数:________.〔写出一个即可〕10.如图,点在线段上,假设,,是线段的中点,那么的长为________.11.计算:________.12.假设是关于,的二元一次方程组的解,那么的值为________.13.假设,那么的值为________.14.?九章算术?是中国传统数学最重要的著作,奠定了中国传统数学的根本框架.其中第七卷?盈缺乏?记载了一道有趣的数学问题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?〞译文:“今有大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容量各是多少斛?〞〔注:斛,音hú,古量器名,亦是容量单位〕设大容器的容量为斛,小容器的容量为斛,根据题意,可列方程组为________.15.如下图是一组有规律的图案,它们是由边长相同的小正方形组成,其中局部小正方形涂有阴影,按照这样的规律,第个图案中有个涂有阴影的小正方形,第个图案中有个涂有阴影的小正方形〔用含有的代数式表示〕.三、解答题16.小石准备制作一个封闭的正方体盒子,他先用5个边长相等的正方形硬纸制作成如下图的拼接图形〔实线局部〕.请你在图中的拼接图形上再接上一个正方形,使得新拼接的图形经过折叠后能够成为一个封闭的正方体盒子〔只需添加一个符合要求的正方形,并将添加的正方形用阴影表示〕.17.写出计算结果:〔1〕;〔2〕;〔3〕;〔4〕.18.计算: . 19.计算: .20.解方程: .21.解方程:22.解方程组:23.先化简,再求值: ,其中.24.如图,点 ,,是同一平面内三个点,借助直尺、刻度尺、量角器完成〔以答题卡上印刷的图形为准〕〔1〕画图: ①连接 并延长到点 ,使得 ;②画射线 ,画直线 ;③过点 画直线的垂线交于点. 〔2〕测量:① 约为________ 〔精确到; ②点到直线的距离约为________〔精确到.25.我国元代数学家朱世杰所撰写的?算学启蒙?中有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.〞译文:良马平均每天能跑240里,驽马平均每天能跑150里.现驽马出发12天后良马从同一地点出发沿同一路线追它,问良马多少天能够追上驽马? 26.:,, 平分 .求:的度数.27.关于 的一元一次方程 ,其中是正整数....〔1〕当时,求方程的解;〔2〕假设方程有正整数解...., 求 的值.28.对于数轴上的点,线段,给出如下定义:为线段 上任意一点,如果,两点间的距离有最小值,那么称这个最小值为点,线段的“近距〞,记作d1〔点M ,线段AB 〕;如果,两点间的距离有最大值,那么称这个最大值为点 ,线段的“远距〞,记作d 2〔点M ,线段AB 〕.特别的,假设点与点重合,那么,两点间的距离为 .点表示的数为,点表示的数为 .例如图,假设点表示的数为 ,那么d 1〔点C ,线段AB 〕=2,d 2〔点C ,线段AB 〕=7.〔1〕假设点表示的数为,那么d 1〔点D,线段AB〕= ________,d2〔点M,线段AB〕= ________;〔2〕假设点表示的数为,点表示的数为.d2〔点F,线段AB〕是d1〔点E,线段AB〕的倍.求的值.答案解析局部一、单项选择题1.【解析】【解答】解:A选项为四棱柱,B选项为圆柱,C选项为圆锥,D选项为三棱锥.故答案为:B.【分析】根据圆柱的定义对每个选项一一判断求解即可。

学校16—17学年上学期七年级期末考试数学试题(扫描版)(附答案)

学校16—17学年上学期七年级期末考试数学试题(扫描版)(附答案)

2016---2017学年度第一学期期末考试七年级数学试题参考答案一、选择题(每小题3分,共30分)1、B2、D3、B4、C5、A6、C7、D8、C9、C 10、B二、填空题(每小题4分,共24分)11、-8℃ 12、m=-2 n= 2 13、-2 14、-415、两点确定一条直线 16、(6n+2)三、解答题(共66分)17、解:(1) 原式=()2483917⎛⎫+-⨯-÷- ⎪⎝⎭…………2分 =()748399⎛⎫+-⨯-⨯- ⎪⎝⎭…………3分 =4247-+ …………4分 =13- …………5分(2) 原式=()15718369⎛⎫-+⨯- ⎪⎝⎭…………2分 =()()()157181818369⨯--⨯-+⨯- …………3分 =61514-+- …………4分 =5- …………5分18、解:(1) 222(52)2(3)xy x xy y y xy +-+--=2225226xy x xy y y xy +-+-+ …………2分=22x xy + …………3分 当12,2x y =-=时,原式=()()2122222-+⨯-⨯= …………4分 (2) 22(54)(542)x x x x -+++-+=2254542x x x x -+++-+…………5分=2(21)(45)(54)x x -+++-…………6分=291x x ++…………7分当2x =-时, 原式=2(2)9(2)113-+⨯-+=-…………8分19、(1)3(5)4(1)9x x x --+=+解: 315449x x x ---=+ …………2分349154x x x --=++ …………4分228x -= …………5分14x =- …………6分(2) 5415323412y y y +---=+ 解:()()()454312453y y y +--=+- …………2分 2016332453y y y +-+=+- …………3分2035243163y y y --=--- …………4分122y = …………5分16y = …………6分 20、解:(1)()20x - 360x -甲队整治河道天数 甲队整治河道总长度 …………4分(2)解:设甲队整治河道用时x 天,则乙队整治河道用时()20x -天. ()241620360x x +-= …………6分解方程,得 5x = …………8分 24120x = ()1620240x -= 答:甲队整治河道120米,乙队整治河道240米. …………10分 或 设甲队整治河道x 米,则乙队整治河道()360x -360202416x x -+= …………6分 解方程,得 120x = …………8分 360240x -=答:甲队整治河道120米,乙队整治河道240米. …………10分21、解:因为AD=7,BD=5所以AB=12 …………2分因为 点C 为线段AB 的中点所以 AC=6 …………4分 所以 CD=AD-AC=1 …………6分22、解:(1)因为OD 是∠AOC 的平分线,所以 ∠COD =21∠AOC.因为OE 是∠BOC 的平分线,所以∠COE =21∠BOC. …………2分所以∠DOE=∠COD+∠COE=21(∠AOC +∠BOC )=21∠AOB=90°.…………4分(2) 因为∠COD =65° OD 是∠AOC 的平分线所以 ∠AOD=∠COD=65° …………6分 因为∠DOE =90°所以 ∠AOE=∠AOD+∠DOE=155° …………8分23、解:(1)40000.93600⨯=(元)40000.83003500⨯+=(元)36003500100-=(元)答:小张购买优惠卡后再购物合算,能省100元. …………4分(2)设顾客购买x元的商品时,买卡与不买卡花钱相等.=+…………6分0.90.8300x x解方程,得x=3000答:顾客购买3000元的商品时,买卡与不买卡花钱相等. …………8分(3)设这台冰箱的进价为y元.+=?…………10分y y0.2540000.8y=解方程,得2560答:这台冰箱的进价为2560元. …………12分。

北京市石景山区实验中学人教版七年级上册数学期末试卷及答案-百度文库

北京市石景山区实验中学人教版七年级上册数学期末试卷及答案-百度文库

北京市石景山区实验中学人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( )A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元2.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( )A .0.1289×1011B .1.289×1010C .1.289×109D .1289×107 3.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30B .45︒C .60︒D .75︒ 4.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .3 5.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -6.以下调查方式比较合理的是( ) A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式7.下列变形不正确的是( )A .若x =y ,则x+3=y+3B .若x =y ,则x ﹣3=y ﹣3C .若x =y ,则﹣3x =﹣3yD .若x 2=y 2,则x =y8.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠49.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x ) 10.下列方程的变形正确的有( )A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x = 11.如果单项式13a xy +与2b x y 是同类项,那么a b 、的值分别为( ) A .2,3a b == B .1,2a b == C .1,3a b == D .2,2a b ==12.如图的几何体,从上向下看,看到的是( )A .B .C .D .二、填空题13.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.14.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.15.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.16.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.17.化简:2xy xy +=__________.18.分解因式: 22xyxy +=_ ___________ 19.计算:()222a -=____;()2323x x ⋅-=_____. 20.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.21.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.22.化简:2x+1﹣(x+1)=_____.23.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.24.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.三、解答题25.解不等式组()355232x x x +≤⎧⎨+>-⎩,并在数轴上表示解集. 26.(1)化简:3x 2﹣22762x x +; (2)先化简,再求值:2(a 2﹣ab ﹣3.5)﹣(a 2﹣4ab ﹣9),其中a =﹣5,b =32. 27.如图,直线AB 、CD 、MN 相交于O ,∠DOB=60°,BO ⊥FO ,OM 平分∠DOF . (1)求∠MOF 的度数;(2)求∠AON 的度数;(3)请直接写出图中所有与∠AON 互余的角.28.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图1,当∠AOB 是直角,∠BOC=60°时,∠MON 的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON 与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON 与α、β有数量关系吗?如果有,指出结论并说明理由.29.计算题(1)()()()7410-+---(2)11312344⎛⎫⎛⎫-÷-⨯ ⎪ ⎪⎝⎭⎝⎭ (3)()()()()75901531-⨯--÷-+⨯-(4)()22112442⎛⎫-⨯---⨯ ⎪⎝⎭30.我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A 落在A '处,BC 为折痕.若54ABC ∠=︒,求'A BD ∠的度数;(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD 边与BA 重合,折痕为BE ,如图2所示,求CBE ∠的度数.四、压轴题31.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.32.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.33.(阅读理解)若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意知:花了10a元,剩下(b﹣10a)元.【详解】购买单价为a元的物品10个,付出b元(b>10a),应找回(b﹣10a)元.故选D.【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C.【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).4.C解析:C【解析】【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可.【详解】解:∵ 2.5-<1-<0<3,∴最小的数是 2.5-,故选:C .【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.5.B解析:B【解析】【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数.【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数,点A 表示的数是a ,所以B 表示的数为-a ,又因为BC AB =,所以点C 表示的数为3a -.故选B.【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.6.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A .为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意; B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意; C .为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意; D .为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意; 故选:B .【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.D解析:D【解析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:A、两边都加上3,等式仍成立,故本选项不符合题意.B、两边都减去3,等式仍成立,故本选项不符合题意.C、两边都乘以﹣3,等式仍成立,故本选项不符合题意.D、两边开方,则x=y或x=﹣y,故本选项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.8.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.9.D解析:D【解析】【分析】设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】设应从乙处调x人到甲处,依题意,得:30+x=2(24﹣x).故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.解析:A【解析】【分析】根据等式的基本性质对各项进行判断后即可解答.【详解】选项A ,由360x -=变形可得36x =,选项A 正确;选项B ,由 533x x +=-变形可得42x =-,选项B 错误;选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A.【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键. 11.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.12.A解析:A【解析】【分析】根据已知图形和空间想象能力,从上面看图形,根据看的图形选出即可.【详解】从上面看是水平方向排列的两列,上一列是二个小正方形,下一列是右侧一个正方形,故A 符合题意,故选:A .【点睛】本题考查了简单组合体的三视图的应用,主要培养学生的观察能力和空间想象能力.二、填空题13.8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.14.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.15.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b +【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 16.2【解析】解:mx2+5y2﹣2x2+3=(m ﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x 的取值无关,则m ﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx 2+5y 2﹣2x 2+3=(m ﹣2)x 2+5y 2+3,∵代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m ﹣2=0,解得m =2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x 的取值无关,即含字母x 的系数为0.17..【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=故填3xy .【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.18.【解析】【分析】原式提取公因式xy ,即可得到结果.【详解】解:原式=xy (2y +1),故答案为:xy (2y +1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本解析:xy(2y 1)+【解析】【分析】原式提取公因式xy ,即可得到结果.【详解】解:原式=xy (2y +1),故答案为:xy (2y +1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.19.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a ()2323x x ⋅-=56x -【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键20.36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等∴∴x=2,A=14∴数字总和为:9+3+6+6+解析:36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等∴()934322x x x A +=++=+- ∴x=2,A=14∴数字总和为:9+3+6+6+14-2=36,故答案为36.【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面21.11cm .【解析】【分析】根据点为线段的中点,可得,再根据线段的和差即可求得的长.【详解】解:∵,且,,∴,∵点为线段的中点,∴,∵,∴.故答案为:.【点睛】本题考查了两点解析:11cm .【解析】【分析】根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.【详解】解:∵DC DB BC =-,且8DB =,5CB =,∴853DC =-=,∵点D 为线段AC 的中点,∴3AD =,∵AB AD DB =+,∴3811()AB cm =+=.故答案为:11cm .【点睛】本题考查了两点间的距离,解决本题的关键是掌握线段的中点.22.x【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.23.8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.24.正方体.【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三、解答题25.-4<x≤2,数轴表示见解析.【解析】【分析】先分别求出每一个不等式的解集,然后确定其公共部分,最后在数轴上表示出来即可.【详解】()355232xx x+≤⎧⎪⎨+>-⎪⎩①②,由①得:x≤2,由②得:x>-4,所以不等式组的解集为:-4<x≤2,在数轴上表示如下所示:【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.26.(1)112x2;(2)a2+2ab+2,12.【解析】(1)根据合并同类项法则计算;(2)根据去括号法则、合并同类项法则把原式化简,代入计算得到答案.【详解】解:(1)原式=(3﹣72+6)x2=112x2;(2)原式=2a2﹣2ab﹣7﹣a2+4ab+9=a2+2ab+2,当a=﹣5,b=32时,原式=(﹣5)2+2×(﹣5)×32+2=12.【点睛】本题考查的是整式的化简求值,掌握整式的加减混合运算法则是解题的关键.27.(1)15°;(2)75 ;(3)∠CON、∠DOM、∠MOF.【解析】【分析】(1)根据∠DOF=∠BOF-∠DOB,首先求得∠DOF的度数,然后根据角平分线的定义求解;(2)首先求得∠BOM的度数,然后根据对顶角相等即可求解;(3)根据∠MOF=∠MOF=15°,∠AON=∠BOM=75°,据此即可写出.【详解】(1)∵∠DOB=60°,BO⊥FO,∴∠DOF=∠BOF-∠DOB=90°-60°=30°,又∵OM平分∠DOF,∴∠MOF=12∠DOF=15°;(2)∵∠BOM=∠MOF+∠DOB=15°+60°=75°,∴∠AON=∠BOM=75°;(3)与∠AON互余的角有:∠CON、∠DOM、∠MOF.【点睛】本题考查了角的平分线的定义,以及对顶角相等,正确理解角平分线的定义是关键.28.(1)45°;(2)∠MON=12α.(3)∠MON=12α【解析】【分析】(1)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(2)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(3)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可.解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=75°,∠NOC=12∠BOC=30°∴∠MON=∠MOC﹣∠NOC=45°.(2)如图2,∠MON=12α,理由是:∵∠AOB=α,∠BOC=60°,∴∠AOC=α+60°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=12α+30°,∠NOC=12∠BOC=30°∴∠MON=∠MOC﹣∠NOC=(12α+30°)﹣30°=12α.(3)如图3,∠MON=12α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠AON=∠AOC﹣∠NOC=α+β﹣12β=α+12β.∴∠MON=∠MOC﹣∠NOC=12(α+β)﹣12β=12α即∠MON=12α.考点:角的计算;角平分线的定义.29.(1)-1;(2)49;(3)38;(4)7【解析】【分析】(1)利用去括号的原则先去括号,再进行加减运算即可;(2)将带分数化为假分数,变除为乘,利用乘法运算法则进行约分即可;(3)由题意利用加减乘除运算的法则对式子进行运算;(4)先计算乘方,再计算乘法最后加减运算即可.(1) 解:原式=7410--+=1-(2) 解:原式=443394⨯⨯ =49(3) 解:原式=3563+-=38(4) 解:原式=1141642-⨯+⨯ =18-+=7【点睛】本题考查有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.30.(1)72°;(2)90°【解析】【分析】(1)由折叠的性质可得∠A ′BC =∠ABC =54°,由平角的定义可得∠A ′BD =180°-∠ABC -∠A ′BC ,可得结果;(2)由(1)的结论可得∠DBD ′=72°,由折叠的性质可得∠2=12∠DBD ′=12×72°=36°,由角平分线的性质可得∠1=54°,再相加即可求解.【详解】 解:(1)54ABC =︒∠,54A BC ABC '∴∠=∠=︒,180A BD ABC A BC ''∠=︒-∠-∠ 1805454︒=︒--︒72=︒;(2)由(1)的结论可得72DBD '∠=︒,112723622DBD '∴∠=∠==︒⨯︒,108ABD '∠=︒, 1111085422ABD '∠=∠=⨯︒=︒, 1290CBE ∠=∠+∠=︒.【点睛】本题主要考查了角平分线的定义,根据角平分线的定义得出角的关系是解答此题的关键.四、压轴题31.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.32.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE,进而求出即可;(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.【详解】(1)如图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.(2)如图2,∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),∴∠BOD=12∠AOD﹣12∠COE+12∠COE=12×108°=54°;(3)如图3,∠AOE=88°,∠BOD=30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=4∠AOB+4∠DOE=6∠BOC+6∠COD=4(∠AOE﹣∠BOD)+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE、∠BOD和∠BOD的关系是解题的关键,33.(1)2或10;(2)当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【解析】【分析】(1)设所求数为x,根据优点的定义分优点在M、N之间和优点在点N右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P为(A,B)的优点;②P为(B,A)的优点;③B为(A,P)的优点.设点P表示的数为x,根据优点的定义列出方程,进而得出t的值.【详解】解:(1)设所求数为x,当优点在M、N之间时,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;当优点在点N右边时,由题意得x﹣(﹣2)=2(x﹣4),解得:x=10;故答案为:2或10;(2)设点P表示的数为x,则PA=x+20,PB=40﹣x,AB=40﹣(﹣20)=60,分三种情况:①P为(A,B)的优点.由题意,得PA=2PB,即x﹣(﹣20)=2(40﹣x),解得x=20,∴t=(40﹣20)÷4=5(秒);②P为(B,A)的优点.由题意,得PB=2PA,即40﹣x=2(x+20),解得x=0,∴t=(40﹣0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【点睛】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.。

2016-2017七年级上期末数学试卷含答案解析

2016-2017七年级上期末数学试卷含答案解析

2016-2017学年七年级(上)期末数学试卷一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1. a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣12.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,65.如图所示立体图形从上面看到的图形是()A.B.C.D.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=17.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为.12.若x3y2k与﹣x3y8是同类项,则k= .13.32.48°=度分秒.14.若一个角的余角是这个角的4倍,则这个角的补角是度.15.如果x=1是方程ax+1=2的解,则a= .16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是.17.若3<a<5,则|5﹣a|+|3﹣a|= .18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为元.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.20.计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).21.解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.四、解答题:已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1.a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣1【考点】倒数.【分析】利用倒数的定义得出a2=1,解简单的二次方程即可得出结论.【解答】解:∵a=,∴a2=1,∴a=±1,故选D.【点评】此题是倒数,主要考查了倒数的定义,简单的一元二次方程(平方根的定义),解本题的关键掌握倒数的定义,是一道比较一道基础题目.2.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母及指数不变,故B错误;C、系数相加字母及指数不变,故C正确;D、系数相加字母及指数不变,故D错误;故选:C.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B【考点】线段的性质:两点之间线段最短.【分析】根据连接两点的所有线中,直线段最短的公理解答.【解答】解:∵从C到B的所有线中,直线段最短,所以选择路线为A⇒C⇒F⇒B.故选B.【点评】此题考查知识点是两点之间线段最短.4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,6【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣3πxy2z3的系数是:﹣3π,次数是:6.故选:D.【点评】此题主要考查了单项式的次数与系数,正确把握定义是解题关键.5.如图所示立体图形从上面看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【解答】解:从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点评】解决本题的关键是得到3列正方形具体数目.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=1【考点】等式的性质.【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A错误;B、两边除以不同的数,故B错误;C、两边都减同一个整式,故C正确;D、两边除以不同的数,故D错误;故选:C.【点评】本题考查了等式的性质,熟记等式的性质是解题关键.7.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)【考点】由实际问题抽象出一元一次方程.【分析】首先把3小时化为180分钟,根据题意可得山下到山顶的路程可表示为180x+1或150(1.5x),再根据路程不变可得方程.【解答】解:3小时=180分钟,设上山速度为x千米/分钟,则下山速度为1.5x千米/分钟,由题意得:180x+1=150(1.5x),故选:D.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm【考点】两点间的距离.【专题】计算题.【分析】由于点A、B、C都是直线l上的点,所以有两种情况:①当B在AC之间时,AC=AB+BC,代入数值即可计算出结果;②当C在AB之间时,此时AC=AB﹣BC,再代入已知数据即可求出结果.【解答】解:∵点A、B、C都是直线l上的点,∴有两种情况:①当B在AC之间时,AC=AB+BC,而AB=5cm,BC=3cm,∴AC=AB+BC=8cm;②当C在AB之间时,此时AC=AB﹣BC,而AB=5cm,BC=3cm,∴AC=AB﹣BC=2cm.点A与点C之间的距离是8或2cm.故选C.【点评】在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个【考点】数轴;正数和负数.【专题】推理填空题.【分析】根据图示,可得m<0<n,而且|m|>|n|,据此逐项判断即可.【解答】解:∵m<0<n,而且|m|>|n|,∴m+n<0,∴①的结果为负数;∵m<0<n,∴m﹣n<0,∴②的结果为负数;∵m<0<n,而且|m|>|n|,∴|m|﹣n>0,∴③的结果为正数;∵m<0<n,而且|m|>|n|,∴m2﹣n2>0,∴④的结果为正数;∵m<0<n,∴m3n3<0,∴④的结果为负数,∴式子结果为负数的个数是3个:①、②、⑤.故选:B.【点评】此题主要考查了数轴的特征和应用,以及正数、负数的特征和判断,要熟练掌握.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!【考点】有理数的混合运算.【专题】压轴题;新定义.【分析】由题目中的规定可知100!=100×99×98×…×1,98!=98×97×…×1,然后计算的值.【解答】解:∵100!=100×99×98×...×1,98!=98×97× (1)所以=100×99=9900.故选:C.【点评】本题考查的是有理数的混合运算,根据题目中的规定,先得出100!和98!的算式,再约分即可得结果.二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为 6.75×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.若x3y2k与﹣x3y8是同类项,则k= 4 .【考点】同类项.【分析】根据x3y2k与﹣x3y8是同类项,可得出2k=8,解方程即可求解.【解答】解:∵ x3y2k与﹣x3y8是同类项,∴2k=8,解得k=4.故答案为:4.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.32.48°=32 度28 分48 秒.【考点】度分秒的换算.【分析】先把0.48°化成分,再把0.8′化成秒即可.【解答】解:0.48°=28.8′,0.8′=48″,即32.48°=32°28′48″,故答案为:32,28,48.【点评】本题考查了度、分、秒之间的换算的应用,能熟记度、分、秒之间的关系是解此题的关键.14.若一个角的余角是这个角的4倍,则这个角的补角是162 度.【考点】余角和补角.【分析】首先设这个角为x°,则它的余角为(90﹣x)°,根据题意列出方程4x=90﹣x,计算出x 的值,进而可得补角.【解答】解:设这个角为x°,由题意得:4x=90﹣x,解得:x=18,则这个角的补角是180°﹣18°=162°,故答案为:162.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角,补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.如果x=1是方程ax+1=2的解,则a= 1 .【考点】一元一次方程的解.【专题】方程思想.【分析】方程的解就是能使方程的左右两边相等的未知数的值,把x=1代入即可得到一个关于a的方程,求得a的值.【解答】解:根据题意得:a+1=2解得:a=1故答案是1.【点评】本题主要考查了方程的解的定义,根据方程的解的定义可以把求未知系数的问题转化为解方程的问题.16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是11a+20 .【考点】列代数式.【分析】两位数为:10×十位数字+个位数字.【解答】解:两位数,个位数字是a,十位数字比个位数字大2可表示为(a+2).∴这个两位数是10(a+2)+a=11a+20.【点评】本题的关键是,两位数的表示方法:十位数字×10+个位数字,要求掌握该方法.用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.17.若3<a<5,则|5﹣a|+|3﹣a|= 2 .【考点】绝对值;代数式求值.【分析】解此题可根据a的取值,然后可以去掉绝对值,即可求解.【解答】解:依题意得:原式=5﹣a+a﹣3=2.【点评】此题考查的是学生对绝对值的意义的掌握,含绝对值的数等于它本身或相反数.18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为1000 元.【考点】一元一次方程的应用.【专题】压轴题.【分析】首先设这种电器的进价是x元,则标价是(1+40%)x元,根据售价=标价×打折可得方程(1+40%)x×80%=1120,解方程可得答案.【解答】解:设这种电器的进价是x元,由题意得:(1+40%)x×80%=1120,解得:x=1000,故答案为:1000.【点评】此题主要考查了一元一次方程的应用,关键是弄清题意,找出题目中的等量关系,设出未知数列出方程,此题用到的公式是:售价=标价×打折.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.(2016秋•岳池县期末)计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=20+8+4=32;(2)原式=﹣9+3+6﹣8+5=﹣3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(2016秋•岳池县期末)计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).【考点】整式的加减.【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy)=4x2y﹣3xy﹣5x2y+2xy=﹣x2y﹣xy;(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n)=6m+6n+3m﹣3n﹣2n+2m﹣m﹣n=10m.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.(2016秋•岳池县期末)解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.【考点】解一元一次方程.【分析】根据一元一次方程的解法即可求出答案.【解答】解:(1)6(4﹣1.5y)=y+424﹣9y=y+4﹣y﹣9y=4﹣24﹣10y=﹣20y=10(2)2(5x﹣7)+12=3(3x﹣1)10x﹣14+12=9x﹣310x﹣9x=﹣3﹣12+14x=﹣1【点评】本题考查一元一次方程的解法,属于基础题型.四、解答题:(2016秋•岳池县期末)已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.【考点】代数式求值.【分析】依据相反数、绝对值、倒数的性质可得到a+b=0,cd=1,m=±2,然后代入计算即可.【解答】解:∵a、b互为相反数,c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1.又∵|m|=2,∴m=2或m=﹣2.当=2时,原式=0+4×2﹣3×1=5;当m=﹣2时,原式=0+4×(﹣2)﹣3×1=﹣11.所以代数式的值为5或﹣11.【点评】本题主要考查的是求代数式的值,熟练掌握相反数、绝对值、倒数的性质是解题的关键.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.【考点】整式的加减—化简求值.【分析】先去括号,合并同类项,再代入计算即可求解.【解答】解:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y=12x2y﹣4xy2+5xy2﹣5x2y﹣2x2y=5x2y+xy2,当x=,y=﹣5时,原式=5×()2×(﹣5)+×(﹣5)2=﹣1+5=4.【点评】此题考查了整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.【考点】余角和补角.【分析】由于OB是∠AOC的平分线,可得∠1=∠2,则∠1:∠2:∠3:∠4=2:2:5:3,然后根据四个角的和是360°即可求得∠2的度数,再根据余角的定义可求∠2的余角∠α的度数.【解答】解:∵OB是∠AOC的平分线,∴∠1=∠2,又∵∠2:∠3:∠4=2:5:3,∴∠1:∠2:∠3:∠4=2:2:5:3,∴∠2=×360°=60°,∠2的余角∠α的度数=90°﹣60°=30°.【点评】本题考查了余角和补角,角度的计算,理解∠1:∠2:∠3:∠4=2:2:5:3是本题的关键.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.【考点】两点间的距离.【分析】(1)根据线段的中点的性质,可得MC、NC的长,再根据线段的和差,可得答案;(2)根据题意画出图形,同(1)即可得出结果.【解答】解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7(cm);即线段MN的长是7cm.(2)能,理由如下:如图所示,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC﹣BC)=cm.【点评】本题主要利用线段的中点定义,线段的中点把线段分成两条相等的线段.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【考点】一元一次方程的应用.【专题】经济问题;图表型.【分析】若设初一(1)班有x人,根据总价钱即可列方程;第二问利用算术方法即可解答;第三问应尽量设计的能够享受优惠.【解答】解:(1)设初一(1)班有x人,则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,解得:x=48或x=76(不合题意,舍去).即初一(1)班48人,初一(2)班56人;(2)1240﹣104×9=304,∴可省304元钱;(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561∴48人买51人的票可以更省钱.【点评】在优惠类一类问题中,注意认真理解优惠政策,审题要细心.。

2016-2017学年最新人教版七年级数学第一学期期末试卷和答案

2016-2017学年最新人教版七年级数学第一学期期末试卷和答案

2016-2017学年七年级数学第一学期期末试卷一、数与式1.的相反数是()A.3 B.C.D.﹣32.化简:﹣(﹣3)=.3.﹣5的绝对值是.4.|﹣|=.5.数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣36.龙眼的单价为a元/千克,香蕉的单价为b元/千克,买2千克龙眼和3千克香蕉共需元.7.当x=﹣1时,代数式(x﹣1)2的值为.8.已知a﹣b=1,则代数式2a﹣2b﹣3的值是.二、计算(直接写出结果)9.(1)﹣2+1=(2)﹣5﹣7=(3)16﹣(﹣4)=(4)﹣+(﹣)=(5)5.6﹣(﹣3.8)=(6)(﹣)×(﹣2)=(7)72÷(﹣8)=(8)﹣(﹣)2=(9)(﹣1)2015﹣(﹣1)2014=10.计算:(1)﹣5+(﹣0.25)+14﹣(﹣);(2)(+﹣1)×(﹣12);(3)1÷(﹣)×(﹣4);(4)2﹣60÷(﹣2)3×(﹣)﹣1.二、方程与不等式11.3与﹣4的大小关系是.12.下列四个实数中,比﹣1小的数是()A.﹣2 B.0 C.1 D.213.数a、b在数轴上对应点的位置如图所示,则①a0,②b0,③a b(填“>”、“<”或“=”)14.若代数式3x﹣2的值为7,则x等于()A.﹣2 B.﹣3 C.3 D.1九、根据等式的性质在○里填运算符号,在□里填数15.(1)x﹣18=60x﹣18+18=60○□x=□(2)x+21=54x+21﹣21=54○□x=□(3)x=105x×3=105○□x=□(4)4x=484x+4=48○□x=□16.解方程(1)15+x=50;(2)2x﹣3=11.17.下列图案中,不是轴对称图形的是()A.B.C.D.18.如图是小华画的正方形风筝图案,他要在对角线AB的右下方再画一个三角形,使得新的风筝图案成为以AB所在直线为对称轴的轴对称图形,则此对称图形为()A.B.C.D.19.如图,若四边形ABCD的顶点A可表示为A(3,8),则顶点B、C、D可以表示为B ()、C()、D().20.长方形的周长为12cm,长是宽的2倍,则长为cm.21.如图,把边长为(a+2)的正方形纸片剪出一个边长为a的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为2,则长方形的面积是()A.2(2a+2)B.2a+4 C.4a+8 D.2(a+4)统计与概率22.某公司对350名职工进行了体重调查,如图是调查结果的统计图,请根据统计图提供的信息,回答下列问题:(1)体重正常的职工占的百分比是;(2)体重正常比体重偏重的职工多占%;(3)体重偏轻的职工有人.23.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3只,白球5只,若从袋中任取一个球,则(1)摸出白球的可能性摸出红球的可能性(填“大于”、“小于”或“等于”);(2)摸出白球的可能性是%.综合与实践24.某市今年1月份某天的最高气温为5℃,最低气温为﹣1℃,则该市这天的最高气温比最低气温高℃.25.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元26.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?参考答案与试题解析一、数与式1.的相反数是()A.3 B.C.D.﹣3【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:的相反数是﹣,故选:C.2.化简:﹣(﹣3)=3.【考点】相反数.【分析】根据相反数的性质,负负为正化简求解即可.【解答】解:本题是求﹣3的相反数,根据概念(﹣3的相反数)+(﹣3)=0,则﹣3的相反数是3.故化简后为3.3.﹣5的绝对值是5.【考点】绝对值.【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得|﹣5|=5.4.|﹣|=.【考点】绝对值.【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【解答】解:|﹣|=.故答案为:.5.数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣3【考点】数轴;绝对值.【分析】与原点距离为6的点有两个,分别在原点的左边和右边,左边用减法,右边用加法计算即可.【解答】解:当点A在原点左边时,为0﹣6=﹣6;点A在原点右边时为6﹣0=6.故选A.6.龙眼的单价为a元/千克,香蕉的单价为b元/千克,买2千克龙眼和3千克香蕉共需2a+3b 元.【考点】列代数式.【分析】用买2千克龙眼的钱数加上3千克香蕉的钱数即可.【解答】解:买2千克龙眼和3千克香蕉共需(2a+3b)元;故答案为:2a+3b.7.当x=﹣1时,代数式(x﹣1)2的值为4.【考点】代数式求值.【分析】将x的代入,然后先算括号内的减法,再算乘方即可.【解答】解:当x=﹣1时,原式=(﹣1﹣1)2=(﹣2)2=4.故答案为:4.8.已知a﹣b=1,则代数式2a﹣2b﹣3的值是﹣1.【考点】代数式求值.【分析】将代数式2a﹣2b﹣3化为2(a﹣b)﹣3,然后代入(a﹣b)的值即可得出答案.【解答】解:2a﹣2b﹣3=2(a﹣b)﹣3,∵a﹣b=1,∴原式=2×1﹣3=﹣1.故答案为:﹣1.二、计算(直接写出结果)9.(1)﹣2+1=(2)﹣5﹣7=(3)16﹣(﹣4)=(4)﹣+(﹣)=(5)5.6﹣(﹣3.8)=(6)(﹣)×(﹣2)=(7)72÷(﹣8)=(8)﹣(﹣)2=(9)(﹣1)2015﹣(﹣1)2014=【考点】有理数的混合运算.【分析】(1)原式利用异号两数相加的法则计算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式利用同号两数相加的法则计算即可得到结果;(5)原式利用减法法则变形,计算即可得到结果;(6)原式利用同号两数相乘的法则计算即可得到结果;(7)原式利用异号两数相除的法则计算即可得到结果;(8)原式利用乘方的意义计算即可得到结果;(9)原式利用乘方的意义计算即可得到结果.【解答】解:(1)原式=﹣(2﹣1)=﹣1;(2)原式=(﹣5)+(﹣7)=﹣12;(3)原式=16+4=20;(4)原式=﹣(+)=﹣1;(5)原式=5.6+3.8=9.4;(6)原式=1;(7)原式=﹣9;(8)原式=﹣;(9)原式=﹣1﹣1=﹣2.10.计算:(1)﹣5+(﹣0.25)+14﹣(﹣);(2)(+﹣1)×(﹣12);(3)1÷(﹣)×(﹣4);(4)2﹣60÷(﹣2)3×(﹣)﹣1.【考点】有理数的混合运算.【分析】(1)先去括号,然后合并同类项即可解答本题;(2)根据乘法分配律可以解答本题;(3)根据有理数的乘除法法则可以解答本题;(4)根据有理数的乘除法法则和幂的乘方,负整数指数幂可以解答本题.【解答】解;(1)﹣5+(﹣0.25)+14﹣(﹣)=﹣5﹣0.25+14+0.25=9;(2)(+﹣1)×(﹣12)==﹣9﹣10+12=﹣7;(3)1÷(﹣)×(﹣4)==;(4)2﹣60÷(﹣2)3×(﹣)﹣1=2﹣60÷(﹣8)×(﹣5)=2﹣=﹣.二、方程与不等式11.3与﹣4的大小关系是>.【考点】有理数大小比较.【分析】根据正数大于负数,即可解答.【解答】解:∵正数大于负数,∴3>﹣4,故答案为:>.12.下列四个实数中,比﹣1小的数是()A.﹣2 B.0 C.1 D.2【考点】实数大小比较.【分析】根据实数比较大小的法则进行比较即可.【解答】解:∵﹣1<0,1>0,2>0,∴可排除B、C、D,∵﹣2<0,|﹣2|>|﹣1|,∴﹣2<﹣1.故选A.13.数a、b在数轴上对应点的位置如图所示,则①a<0,②b>0,③a<b(填“>”、“<”或“=”)【考点】数轴.【分析】数轴上右边表示的数总大于左边表示的数.原点左边的数为负数,原点右边的数为正数.【解答】解:根据题意得,a<0,b>0,a<b.故答案为:<,>,<.14.若代数式3x﹣2的值为7,则x等于()A.﹣2 B.﹣3 C.3 D.1【考点】解一元一次方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:3x﹣2=7,移项合并得:3x=9,解得:x=3,故选C九、根据等式的性质在○里填运算符号,在□里填数15.(1)x﹣18=60x﹣18+18=60○□x=□(2)x+21=54x+21﹣21=54○□x=□(3)x=105x×3=105○□x=□(4)4x=484x+4=48○□x=□【考点】解一元一次方程.【分析】根据解方程的方法可以求得各个方程的解,从而可以解答本题.【解答】解:(1)x﹣18=60x﹣18+18=60+18x=78;(2)x+21=54x+21﹣21=54﹣21x=33;(3)x=315;(4)4x=484x÷4=48÷4x=12;故答案为:(1)+,18,78;(2)﹣,21,33;(3)×,3,315;(4)÷,4,12.16.解方程(1)15+x=50;(2)2x﹣3=11.【考点】解一元一次方程.【分析】(1)先移项,再合并同类项即可;(2)先移项,再合并同类项,把x的系数化为1即可.【解答】解:(1)移项得,x=50﹣15,合并同类项得,x=35;(2)移项得,2x=11+3,合并同类项得,2x=14,x的系数化为1得,x=7.17.下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:B.18.如图是小华画的正方形风筝图案,他要在对角线AB的右下方再画一个三角形,使得新的风筝图案成为以AB所在直线为对称轴的轴对称图形,则此对称图形为()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不符合题意.故选:C.19.如图,若四边形ABCD的顶点A可表示为A(3,8),则顶点B、C、D可以表示为B (7,8)、C(9,3)、D(3,4).【考点】坐标与图形性质.【分析】由坐标与图形性质容易得出结果.【解答】解:根据题意得:B(7,8),C(9,3),D(3,4);故答案为:7,8;9,3;3,4.20.长方形的周长为12cm,长是宽的2倍,则长为4cm.【考点】一元一次方程的应用.【分析】设长方形的宽是xcm.根据周长,得长方形的长与宽的和是6cm,即可列方程求解.【解答】解:设长方形的宽是xcm.根据题意得:x+2x=6,解得:x=2.则2x=4.答:长方形的长是4cm.21.如图,把边长为(a+2)的正方形纸片剪出一个边长为a的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为2,则长方形的面积是()A.2(2a+2)B.2a+4 C.4a+8 D.2(a+4)【考点】完全平方公式的几何背景.【分析】根据图形可以求得拼成的长方形的另一边长,从而可以求得拼成的长方形的面积.【解答】解:由图可得,拼成的长方形一边长为2,它的另一边长为:a+2+a=2a+2,则拼成的长方形的面积是:(2a+2)×2=2(2a+2),故选A.统计与概率22.某公司对350名职工进行了体重调查,如图是调查结果的统计图,请根据统计图提供的信息,回答下列问题:(1)体重正常的职工占的百分比是54%;(2)体重正常比体重偏重的职工多占16%;(3)体重偏轻的职工有28人.【考点】扇形统计图.【分析】(1)由图直接可得;(2)将体重正常与体重偏重的百分比相减可得;(3)先根据三者百分比之和等于1求得体重偏轻的百分比,再用其百分比乘以总人数350即可.【解答】解:(1)由图可知,体重正常的职工占的百分比是54%,故答案为:54%;(2)体重正常比体重偏重的职工多占54%﹣38%=16%,故答案为:16;(3)∵体重偏轻的职工占的百分比是1﹣54%﹣38%=8%,∴体重偏轻的职工有350×8%=28(人),故答案为:28.23.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3只,白球5只,若从袋中任取一个球,则(1)摸出白球的可能性大于摸出红球的可能性(填“大于”、“小于”或“等于”);(2)摸出白球的可能性是62.5%.【考点】可能性的大小.【分析】(1)哪种球的只数多哪种球的可能性就大;(2)用白球的只数除以所有球的总只数即可;【解答】解:(1)∵红球有3只,白球有5只,∴白球的只数大于红球的只数,∴摸出白球的可能性大,故答案为:大于;(2)∵红球3只,白球5只,∴摸到白球的可能性为=62.5%,故答案为:62.5.综合与实践24.某市今年1月份某天的最高气温为5℃,最低气温为﹣1℃,则该市这天的最高气温比最低气温高6℃.【考点】有理数的减法.【分析】根据有理数的减法,即可解答.【解答】解:5﹣(﹣1)=5+1=6(℃),故答案为:6.25.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元【考点】一元一次方程的应用.【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.26.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重﹣0.5千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?【考点】正数和负数.【分析】(1)根据绝对值的意义,绝对值越小越接近标准,可得答案;(2)根据有理数的加法运算,可得答案;(3)根据单价乘以数量等于总价,可得答案.【解答】解:(1)∵|﹣3|>|﹣2.5|>|﹣2|=|2|>|1.5|>|1|>|﹣0.5|,∴﹣0.5的最接近标准.故答案为:﹣0.5千克;(2)由题意,得1.5+(﹣3)+2+(﹣0.5)+1+(﹣2)+(﹣2)+(﹣2.5)=﹣5.5(千克).答:与标准重量比较,8筐白菜总计不足5.5千克;(3)由题意,得(25×8﹣5.5)×2.6=194.5×2.6=505.7(元).答:出售这8筐白菜可卖505.7元.2016年10月24日。

人教版 2016-2017学年七年级上册初一数学期末考试卷及答案

人教版 2016-2017学年七年级上册初一数学期末考试卷及答案

人教版 2016-2017学年七年级上册初一数学期末考试卷及答案2016-2017学年度第一学期期末数学试题七年级数学一、选择题(共20分)1.零不属于()A。

正数集合 B。

有理数集合 C。

整数集合 D。

非正有理数集合2.已知下列各数-8,2.1,3,0,-2.5,10,-1中,其中非负数的个数是()A。

2个 B。

3个 C。

4个 D。

5个3.下列各组数中,互为相反数的是()A。

|3|和-3 B。

|1|和-3 C。

|3|和3 D。

|1|和14.甲、乙、丙三地的海拔高度为20米,-15米,-10米,那么最高的地方比最低的地方高()A。

10米 B。

25米 C。

35米 D。

5米5.质检员抽查某零件的质量,超过规定尺寸的记为正数,不足规定尺寸的记为负数,结果第一个.13mm,第二个-0.12mm,第三个0.15mm,第四个0.11mm,则质量最好的零件是()A。

第一个 B。

第二个 C。

第三个 D。

第四个6.绝对值相等的两数在数轴上对应两点的距离为8,则这两个数为()A。

±8 B。

0和-8 C。

0和8 D。

4和-47.下列判断正确的是()A。

比正数小的数一定是负数 B。

零是最小的有理数 C。

有最大的负整数和最小的正整数 D。

一个有理数所对应的点离开原点越远,则它越大8.一个数的平方仍然得这个数,则此数是()A。

0 B。

±1 C。

±1和0 D。

1和-19.圆柱的侧面展开图是()A。

圆形 B。

扇形 C。

三角形 D。

四边形10.下列说法正确的是()A。

两点之间的距离是两点间的线段;B。

同一平面内,过一点有且只有一条直线与已知直线平行;C。

同一平面内,过一点有且只有一条直线与已知直线垂直;D。

与同一条直线垂直的两条直线也垂直。

二、填空(共24分)1.六棱柱有 8 个顶点,12 个面。

2.如果运进72吨记作+72吨,那么运出56吨记作-56吨。

3.任意写出5个正数,5个负数,并且分别填入所属集合里,正数集合{1.2.3.4.5},负数集合{-1.-2.-3.-4.-5}。

初一数学期末考试题

初一数学期末考试题

石景山区第一学期期末考试试卷一、选择题(每小题3分,共24分.四个选项中,只有一项是符合题目要求的,把正确选项前的字母填在题后括号内) 1.-2的相反数是( )A . 2B .21- C . 21D .-22。

当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,记作( )A .海拔23米B .海拔-23米C .海拔175米D .海拔129米 3。

下列各式中,不相等的是 ( )A .(-3)2和-32B .(-3)2和32C .(-2)3和-23D .32-和32- 4.长城总长约为6700000米,用科学计数法表示为 ( )A .6.7510⨯米 B .6.7610⨯米 C .6.7710⨯米 D .6.7810⨯米 5.方程2x +a -4=0的解是 x =—2,则a 等于( )A .-8B . 0C . 2D . 8 6.下列各组整式中不是同类项的是( )A .3m 2n 与3nm 2B .31xy 2与31x 2y 2C .-5ab 与-5×103abD .35与-12 7.如图,点C 是线段AB 上的点,点D 是线段BC 的中点,AB =10,AC =6,则线段CD 的长是( )A.4B.3 C 。

2 D 。

18。

上右基本几何体中,从正面、上面、左面观察都是相同图形的是( ) 二、填空题(每小题3分,共18分.把答案填在题中横线上) 9.如图,∠α=120o,∠β=90 o. 则∠γ的度数是 °。

10.125°÷4= _ °______′。

11.数a 、b 在数轴上的位置如图所示,化简b a b -+=____________.Oab12.如果a -b =3,ab =—1,则代数式3ab -a +b -2的值是_________.13.有一个正方体,A ,B ,C 的对面分别是z y x ,,三个字母,如图所示,将这个正方体从现有位置依此翻到第1,2,3,4,5,6格, 当正方体翻到第3格时正方体 向上一面的字母是 . 14. 用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■" 个。

北京市石景山区实验中学人教版七年级上册数学期末试卷及答案-百度文库

北京市石景山区实验中学人教版七年级上册数学期末试卷及答案-百度文库

北京市石景山区实验中学人教版七年级上册数学期末试卷及答案-百度文库 一、选择题 1.如果一个角的补角是130°,那么这个角的余角的度数是( )A .30°B .40°C .50°D .90° 2.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14- B .116 C .14 D .123.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1C .2D .3 4.下列判断正确的是( )A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.5.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+=C .6352x x -+=D .6352x x --= 6.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( )A .2B .2C 2D 327.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( )A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式10.方程312x -=的解是( )A .1x =B .1x =-C .13x =- D .13x = 11.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( )A .2或2.5B .2或10C .2.5D .212.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人二、填空题13.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.14.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.15.﹣30×(1223-+45)=_____. 16.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.17.已知23,9n m n a a -==,则m a =___________.18.15030'的补角是______.19.16的算术平方根是 .20.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.21.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.22.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm .23.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)24.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.三、解答题25.解下列一元一次方程()1()23x x +=-()2()113124x x --+= 26.已知线段m 、n .(1)尺规作图:作线段AB ,满足AB =m+n (保留作图痕迹,不用写作法);(2)在(1)的条件下,点O 是AB 的中点,点C 在线段AB 上,且满足AC =m ,当m =5,n =3时,求线段OC 的长.27.计算:﹣0.52+14﹣|22﹣4| 28.先化简,再求值:2(x 2y+xy 2)﹣2(x 2y ﹣x )﹣2xy 2﹣2y ,其中x=﹣2,y=2.29.把棱长为1cm 的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)()1该几何体中有多少个小正方体?()2画出从正面看到的图形;()3写出涂上颜色部分的总面积.30.如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,c满足2b=,|2|(8)0++-=,1a c(1)a=_____________,c=_________________;(2)若将数轴折叠,使得A点与B点重合,则点C与数表示的点重合.(3)在(1)(2)的条件下,若点P为数轴上一动点,其对应的数为x,当代数式-+-+-取得最小值时,此时x=____________,最小值为x a x b x c||||||__________________.(4)在(1)(2)的条件下,若在点B处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点C处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看做一点)以原来的速度向相反的方向运动,设运动的时间为t (秒),请表示出甲、乙两小球之间的距离d(用t的代数式表示)四、压轴题31.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。

【石景山】初一(七年级)数学期末试题及答案精品

【石景山】初一(七年级)数学期末试题及答案精品

石景山区2015—2016学年度第一学期期末考试试卷初一数学参考答案及评分标准(注:解答题往往不只一种解法,学生若用其它方法,请相应给分.)一、选择题(每小题3分,共24分)1.A 2.C 3.B 4.B 5.A 6.B 7.C 8.B二、填空题(每小题3分,共18分)9.20° 10.3 11.-8 12.8 13.5 14.45三、操作题(本题4分)15.(1)如图(1分) (2)如图(1分) (3)50°(2分)四、计算题(每小题5分,共20分.酌情按步骤给分)16.17 17. 18.29 19. 五、解方程(每小题5分,共10分)20.解:去括号,得………………………………………(2分)移项,合并同类项,得………………………………………(4分)…………………………………………(5分) 所以原方程的解是 21. 解:方程两边同乘以12,去分母,得………………………………(2分)去括号,得 …………………………(4分)移项,合并同类项,得 ………………………………(5分) 所以原方程的解是.M QP B O A35-329-17153-=-x 23-=x 32-=x 32-=x )1(63)5(4-=--x x x 663420-=--x x x 2=x 2=x六、应用题(本题5分)22.解:设未参加的学生有x 人,则根据题意得: ………………………(1分)(x+6)+2(x+6)=(x+3x)-6 …………………………(2分)解得:x=24 …………………………………(3分)∴3x=72,x+3x=4x=96…………………………………(4分)答:该校七年级的人数是96人. ……………………………………(5分) 七、解答题(本大题共3个小题,每小题5分,共15分) 23.已知:关于x 的方程与的解相同,求的值及相同的解.解:…………………………………………………(2分) 解得, ……………………………………………………(3分) ∴ ……………………………………………………(5分)24.解:(1)∵直线AB 与直线CD 相交,∴∠AOD=∠BOC=, ………………………………………(1分)∵EO ⊥AB∴∠AOE=90°,…………………………………………………(2分) ∴∠DOE=∠AOD+∠AOE =135°, …………………………(3分)(2)∵直线AB 与直线CD 相交,∴∠AOD=∠BOC=,∠AOC=135°,∵EO 平分∠AOC ,∴∠AOE=∠AOC =67.5°,…………………………………(4分) ∴∠DOE=∠AOD+∠AOE =112.5°, ………………………(5分)25.解:(1)或 …………(3分)(2)当,时,=44 ……………………………………(5分)24=-k x k x 2)2(3=+k 36242-=+k k 6=k 2=x 45 45 212422x bx ax -+)2)(2(x b x a ab ---102==b a 2=x 2422x bx ax -+初一数学期末试卷参考答案 第 1 页 (共2页)八、阅读理解题(本题满分4分)26.将4个数排成2行、2列,两边各加一条竖直线记成,定义.若,求x 的值. 解:由定义: …………………………………(2分)解得 …………………………………………………………(4分)选做题(本题满分5分):解:当时,由代数式的值为8,得, ……………(1分)由代数式的值为-14,得 ……………(2分)∴ ……………………………………………………(3分)当时,………………………………(4分)………………………………(5分)a b c d ,,,a b c d a b c d ad bc =-11823x x +-= 8)1(2)1(3=--+x x 3=x 1=x 42323+-+cx bx ax 423=-+c b a 15223--+cx bx ax 12=-+c b a 6455=-+c b a 1-=x 6455645523++--=+--c b a cx bx ax 0666)455(=+-=+-+-=c b a。

北京市2016-2017学年新人教版七年级上期末调研数学试卷含答案

北京市2016-2017学年新人教版七年级上期末调研数学试卷含答案

2016-2017学年度第一学期期末调研试卷七年级数学考生须知1.本试卷共4页,共八道大题,满分120分。

考试时间120分钟。

2.请在试卷和答题卡密封线内准确填写学校、姓名、班级、考场和座位号。

3.除画图可以用铅笔外, 其他试题必须用黑色字迹签字笔作答,作答在答题卡上。

一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到1 40 000立方米.将1 40 000用科学记数法表示应为( )A .14×104B .1.4×105C .1.4×106D .0.14×1062.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是( )A .aB .bC .cD .d 3.单项式23117x y -的次数是( ) A .6 B .5 C .3 D .2 4.下列计算中,正确的是( )A .22254a b a b a b -=B .235235b b b += C.33624aa -= D.a b ab +=5.很多美味的食物,它们的包装盒也很漂亮,观察banana boat 、可爱多冰激凌、芒果原浆以及玫瑰饴的包装盒,从正面看、从上面看分别得到的平面图形是长方形、圆的是( )AB C D6.下列式子正确的是( )A .ππ-=-33B .若ax =ay ,则x =yC .a +b >a -bD .2299-=- 7.已知:∠A ='2512 ,∠B =25.12°,∠C =25.2°,下列结论正确的是( ) A .∠A =∠B B .∠B =∠C C .∠A =∠C D .三个角互不相等 8.在2016年春节到来之际,“小猪班纳”童装推出系列活动,一位妈妈看好两件衣服,她想给孩子都买下来作为新年礼物,与店员商量希望都以60元的价格卖给她。

2016年_2017年人版七年级数学(上册)期末试题和答案解析

2016年_2017年人版七年级数学(上册)期末试题和答案解析

A. B. C. D.2016—2017七年级数学期末测试题班级: 姓名: 座位号: 学籍号:一、选择题:(本大题共10小题,每小题3分,共30分.)1.如果+20%表示增加20%,那么-6%表示 ( ) A .增加14%B .增加6%C .减少6%D .减少26%2.13-的倒数是 ( ) A .3 B . 13 C .-3 D . 13-3、如右图是某一立方体的侧面展开图 ,则该立方体是 ( )4、青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示为 ( ) A.70.2510⨯ B.72.510⨯ C.62.510⨯D.52510⨯5、已知代数式3y 2-2y+6的值是8,那么32y 2-y+1的值是 ( ) A .1 B .2 C .3 D .46、2、在│-2│,-│0│,(-2)5,-│-2│,-(-2)这5个数中负数共有 ( )A .1 个B . 2个C . 3个D . 4个7.在解方程5113--=x x 时,去分母后正确的是 ( ) A .5x =15-3(x -1) B .x =1-(3 x -1)C .5x =1-3(x -1)D .5 x =3-3(x -1)8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于 ( )A .4x -1B .4x -2C .5x -1D .5x -29. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n - B .m n - C .2mD .2n图1 图2第9题 10. 如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是( )第10题A .这是一个棱锥B .这个几何体有4个面C .这个几何体有5个顶点D .这个几何体有8条棱二、填空题:(本大题共10小题,每小题3分,共30分)11.我市某天最高气温是11℃,最低气温是零下3℃,那么当天的最大温差是___℃. 12.三视图都是同一平面图形的几何体有 、 .(写两种即可)13.多项式132223-+--x xy y x x 是_______次_______项式 14.多项式223368x kxy y xy --+-不含xy 项,则k = ; 15.若x=4是关于x的方程5x-3m=2的解,则m= .16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 . (用含m ,n 的式子表示)17.已知线段AB =10cm ,点D 是线段AB 的中点,直线AB 上有一点C ,并且BC =2 cm ,则线段DC = .nn m n18.钟表在3点30分时,它的时针和分针所成的角是 .19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品20.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是 .从正面看 从左面看 从上面看三、解答题:本大题共6小题,共60分.解答时应写出文字说明、证明过程或演算步骤. 21.计算:(共6分,每小题3分)(1) 3x 2+6x+5-4x 2+7x -6, (2) 5(3a 2b-ab 2)—(ab 2+3a 2b )22.计算(共12分,每小题3分)(1)12-(-18)+(-7)-15 (2)(-8)+4÷(-2)(2)(-10)÷551⨯⎪⎭⎫⎝⎛- (4)121()24234-+-⨯-23.解方程:(共12分,每小题3分)(1)7104(0.5)x x -=-+ (2)0.5y —0.7=6.5—1.3y (3)3421x x =- (4)513x +-216x -=1.24.(5分)先化简,再求值:14×(-4x2+2x-8)-(12x-1),其中x=12.25.(5分)已知一个角的余角是这个角的补角的41,求这个角.26.(5分)跑的快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?27.(7分)如图,∠AOB =∠COD =900,OC 平分∠AOB ,∠BOD =3∠DOE 试求 ∠COE 的度数。

初中数学北京市石景山区七年级上期末数学考试卷含答案解析

初中数学北京市石景山区七年级上期末数学考试卷含答案解析

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:计算(﹣1)2016结果正确的是( )A.﹣1 B.1 C.﹣2016 D.2016试题2:经专家测算,北京的4G网络速度基本上能够保证在80 000 000bps左右,最高峰值时曾达到106 000 000bps,将106 000 000用科学记数法表示应为( )A.106×106 B.1.06×106 C.1.06×108 D.1.06×109试题3:有理数a,b,c在数轴上的对应点的位置如图所示,这三个数中,绝对值最大的是( )A.a B.b C.c D.不能确定试题4:代数式2x+3与5互为相反数,则x等于( )A.1 B.﹣1 C.4 D.﹣4试题5:下列判断正确的是( )A.<评卷人得分B.x﹣2是有理数,它的倒数是C.若|a|=|b|,则a=bD.若|a|=﹣a,则a<0试题6:经过同一平面内A、B、C三点可连结直线的条数为( )A.只能一条 B.只能三条 C.三条或一条 D.不能确定试题7:如图线段AB,延长线段AB至C,使BC=3AB,取BC中点D,则( )A.AD=CD B.AD=BC C.DC=2AB D.AB:BD=2:3试题8:若代数式﹣5x6y3与2x2n y3是同类项,则常数n的值( )A.2 B.3 C.4 D.6试题9:关于x的方程2x+5a=3的解与方程2x+2=0的解相同,则a的值是( ) A.4 B.1 C. D.﹣1试题10:如图是一个长方体纸盒,它的展开图可能是( )A. B. C. D.试题11:若是关于x的方程2x﹣m=0的解,则m的值为__________.试题12:∠α=36°,∠β=28°,则(90°﹣α)+2β=__________°.试题13:小英、小明和小华的家都在古城东街上,小英家到小明家的距离约为300米,小明家到小华家的距离约为800米,那么小英家到小华家的距离约为__________米.试题14:如图是一个三棱柱的图形,它共有五个面,其中三个面是长方形,两个面是三角形,请写出符合下列条件的棱(说明:每个空只需写出一条即可).(1)与棱BB1平行的棱:__________;(2)与棱BB1相交的棱:__________;(3)与棱BB1不在同一平面内的棱:__________.试题15:按如图所示的程序计算,若开始输入的n的值为﹣2,则最后输出的结果是__________.试题16:如图,平面内有公共端点的四条射线OA,OB,OC,OD,从射线OA开始按逆时针方向依次在射线上写出数字2,﹣4,6,﹣8,10,﹣12,….则第16个数应是__________;“﹣2016”在射线__________上.试题17:.试题18:.试题19:.试题20:﹣2x+9=3(x﹣2).试题21:.试题22:某商场计划购进甲,乙两种空气净化机共500台,这两种空气净化机的进价、售价如下表:进价(元/台)售价(元/台)甲种空气净化机3000 3500乙种空气净化机8500 10000解答下列问题:(1)按售价售出一台甲种空气净化机的利润是__________元.(2)若两种空气净化机都能按售价卖出,问如何进货能使利润恰好为450 000元?试题23:如图,在正方形网格中,每个小正方形的边长均为1,三角形ABC的三个顶点恰好落在格点上.(1)请你在图中画出点A到直线BC距离最短的线段AD,并标上字母D;(2)直接写出三角形ABC的面积=__________.试题24:当时,求代数式6x2﹣y+3的值.试题25:已知:设A=3a2+5ab+3,B=a2﹣ab,求当a、b互为倒数时,A﹣3B的值.试题26:如图,已知直线AB,线段CO⊥AB于O,∠AOD=∠BOD,求∠COD的度数.试题27:如图,数轴上的点A、B、C分别表示数﹣3、﹣1、2.(1)A、B两点的距离AB=__________,A、C两点的距离AC=__________;(2)通过观察,可以发现数轴上两点间距离与这两点表示的数的差的绝对值有一定关系,按照此关系,若点E表示的数为x,则AE=__________;(3)利用数轴直接写出|x﹣1|+|x+3|的最小值=__________.试题1答案:B【考点】有理数的乘方.【专题】计算题;实数.【分析】原式利用乘方的意义计算即可得到结果.【解答】解:原式=1.故选B.【点评】此题考查了有理数的乘方,熟练掌握运算法则是解本题的关键.试题2答案:C【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将106 000 000用科学记数法表示为1.06×108.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.试题3答案:A【考点】有理数大小比较;数轴;绝对值.【分析】根据数轴上点的坐标特征解答即可:原点左边的数为负数、右边的数为正数,原点坐标为0,不分正负.【解答】解:因为a离原点最远,所以这三个数中,绝对值最大的是a,故选A【点评】此题考查了数轴上的点的坐标特征,熟悉数轴的结构是解题的关键.试题4答案:D【考点】相反数.【分析】依据相反数的定义可知2x+3=﹣5,然后解得x的值即可.【解答】解:∵代数式2x+3与5互为相反数,∴2x+3=﹣5.解得:x=﹣4.故选:D.【点评】本题主要考查的是相反数、解一元一次方程,根据相反数的定义列出方程是解题的关键.试题5答案:A【考点】有理数大小比较;绝对值;倒数.【分析】根据有理数的大小比较和绝对值进行判断即可.【解答】解:A、,正确;B、当x﹣2=0时没有倒数,错误;C、若|a|=|b|,则a=b或a=﹣b,错误;D、若|a|=﹣a,则a≤0,错误.故选A.【点评】此题考查了学生负数大小比较的方法,只要掌握方法就很好解答.但要注意,在负数与负数比较大小时,不要认为负号后面的数越大这个数越大.试题6答案:C【考点】直线、射线、线段.【专题】分类讨论.【分析】答题时首先知道两点确定一直线,然后讨论点的位置关系.【解答】解:当3点都在一条直线上时,3点只能确定一条直线,当3点有2点在一条直线上时,可以确定3条直线,故选C.【点评】本题主要考查直线的知识点,比较简单.试题7答案:D【考点】两点间的距离.【专题】探究型.【分析】根据题目可以得到线段AB、BD、DC、BC之间的关系,从而可以解答本题.【解答】解:∵如图线段AB,延长线段AB至C,使BC=3AB,取BC中点D,∴BC=2BD=2CD,BD=CD=1.5AB,AD=2.5AB,∴AD=,AD=,DC=1.5AB,AB:BD=2:3,故选D.【点评】本题考查两点间的距离,解题的关键是找准各线段之间的关系.试题8答案:B【考点】同类项.【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:由﹣5x6y3与2x2n y3是同类项,得2n=6,解得n=3.故选:B.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.试题9答案:B【考点】同解方程.【分析】根据方程的解相同,可得关于a的方程,根据解方程,可得答案.【解答】解:由2x+5a=3,得x=;由2x+2=0,得x=﹣1.由关于x的方程2x+5a=3的解与方程2x+2=0的解相同,得=﹣1.解得a=1.故选:B.【点评】本题考查了同解方程,利用同解方程得出关于a的方程是解题关键.试题10答案:A【考点】几何体的展开图.【分析】根据长方体的对面全等,以及正方体的展开图的特点回答即可.【解答】解:A、正确;B、两个最小的面的大小不同,不能折叠成长方体,故B错误;C、对面的小大不相等,不能构成长方体,故C错误;D、两个较小的面不能在同一侧,故D错误.故选:A.【点评】本题主要考查的是几何体的展开图,根据长方体的对面特点进行判断是解题的关键.试题11答案:3.【考点】一元一次方程的解.【分析】把代入方程求出m的值即可.【解答】解:把代入方程得:3﹣m=0,解得:m=3.故答案为:3.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.试题12答案:110°.【考点】角的计算.【分析】根据∠α=36°,∠β=28°,把α,β的值代入(90°﹣α)+2β计算即可.【解答】解:∵∠α=36°,∠β=28°,∴(90°﹣α)+2β=90°﹣36°+2×28°=110°,故答案为110.【点评】本题考查了角的计算,注意角的计算是解题的关键,是基础知识,要熟练掌握.试题13答案:1100或500米.【考点】数轴.【专题】计算题;推理填空题.【分析】根据题意,分两种情况:(1)小英家和小华家在小明家的不同方向时;(2)小英家和小华家在小明家的同一方向时;求出小英家到小华家的距离约为多少米即可.【解答】解:(1)小英家和小华家在小明家的不同方向时,800+300=1100(米);(2)小英家和小华家在小明家的同一方向时,800﹣300=500(米).综上,可得小英家到小华家的距离约为1100或500米.答:小英家到小华家的距离约为1100或500米.故答案为:1100或500.【点评】此题主要考查了数轴的特征和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要分两种情况:(1)小英家和小华家在小明家的不同方向时;(2)小英家和小华家在小明家的同一方向时.试题14答案:AA1;(2) A1B1;(3) AC.【考点】认识立体图形.【分析】在长方体中,棱与棱之间有平行,相交(垂直)和异面等关系,即可得出结果.【解答】解:(1)与棱BB1平行的棱是AA1;故答案为:AA1;(2)与棱BB1相交的棱A1 B1;故答案为:A1B1;(3)与棱BB1不在同一平面内的棱AC;故答案为:AC.【点评】本题考查了立体图形的有关概念;熟记棱与棱之间有平行,相交(垂直)和异面等关系是解决问题的关键.试题15答案:73.【考点】代数式求值.【专题】图表型.【分析】把n=﹣2代入程序中计算,判断结果比10小,将结果代入程序中计算,使其结果大于10,输出即可.【解答】解:把n=﹣2代入程序中,得:2×(﹣8)+19=﹣16+19=3<10,把n=3代入程序中,得:2×27+19=54+19=73>10,则最后输出的结果为73,故答案为:73.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.试题16答案:﹣32; OD上.【考点】规律型:数字的变化类.【分析】首先观察图中数据存在的规律,OA,OB,OC,OD上的数的绝对值是2的n(序数)倍,当倍数是奇数时为正数,偶数时为负数,据此可求第16个数,进一步分析可知,所有数在OA,OB,OC,OD上循环出现,用数值的绝对值÷2可得该数的序号,再除以4求余数可得其位置.【解答】解:图中数据存在的规律,OA,OB,OC,OD上的数的绝对值是2的n(序数)倍,16×2=32,当倍数是奇数时为正数,偶数时为负数,16÷2=8,第16个数应是:﹣32;2016÷2=1008,1008÷4=252,整除,所以﹣2016在OD上..故答案为:﹣32,OD.【点评】此题主要考查数列的规律探索与运用,熟练掌握循环规律数列的表示与运用是解题的关键.试题17答案:=﹣12×=﹣;试题18答案:===5;试题19答案:=﹣16﹣8×=﹣16﹣+=﹣15.去括号,得﹣2x+9=3x﹣6,移项,合并同类项,得5x=15,解得:x=3;试题21答案:方程两边同乘以10,去分母,得2(3x+2)=5(1﹣x)﹣30,去括号,得6x+4=5﹣5x﹣30,移项,合并同类项,得11x=﹣29,解得:x=﹣.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.试题22答案:【考点】一元一次方程的应用.【分析】(1)利润=售价﹣进价;(2)设商场购进乙种空气净化机x台,则购进甲种空气净化机(500﹣x)台,根据“进货能使利润恰好为450 000元”列出方程并解答.【解答】解:(1)由表格中的数据得到:3500﹣3000=500(元);故答案是:500;(2)设商场购进乙种空气净化机x台,则购进甲种空气净化机(500﹣x)台,由题意,得(3500﹣3000)(500﹣x)+(10000﹣8500)x=450000,解得:x=200.故购进甲种空气净化机500﹣200=300.答:商场购进甲种空气净化机300台,购进乙种空气净化机200台.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.【考点】作图—基本作图.【分析】(1)利用网格,过A作BC的垂线段AD即可;(2)利用三角形的面积公式可得S△ACB=×CB×AD,再代入数计算即可.【解答】解:(1)如图所示:(2)S△ACB=×CB×AD=×3×2=3,故答案为:3.【点评】此题主要考查了作图,以及三角形的面积,关键是掌握点到直线的所用连线中,垂线段最短.试题24答案:【考点】代数式求值.【专题】计算题;实数.【分析】把x与y的值代入原式计算即可得到结果.【解答】解:当x=﹣,y=5时,原式=6×﹣5+3=﹣.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.试题25答案:【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把A与B代入A﹣3B中,去括号合并得到最简结果,由a,b互为倒数得到ab=1,代入计算即可求出值.【解答】解:∵A=3a2+5ab+3,B=a2﹣ab,∴A﹣3B=(3a2+5ab+3)﹣3(a2﹣ab)=3a2+5ab+3﹣3a2+3ab=8ab+3,由a、b互为倒数,得到ab=1,则原式=8×1+3=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.试题26答案:【考点】垂线.【分析】先根据邻补角定义以及∠AOD=∠BOD,求得∠AOD=60°,再根据垂直的定义得到∠AOC=90°,再求∠COD即可.【解答】解:∵∠AOD+∠BOD=180°,∠AOD=∠BOD,∴∠AOD+2∠AOD=180°,∴∠AOD=60°,又∵CO⊥AB,∴∠AOC=90°,∴∠COD=90°﹣60°=30°.【点评】此题考查了垂直的定义,邻补角的定义,要注意领会由垂直得直角这一要点.试题27答案:【考点】绝对值;数轴.【分析】(1)直接利用数轴可得AB,AC的长;(2)结合数轴可得出点E表示的数为x,则AE的长为:|x+3|;(3)直接利用数轴可得出|x﹣1|+|x+3|的最小值.【解答】解:(1)如图所示:AB=2,AC=5.故答案为:2,5;(2)根据题意可得:AE=|x+3|.故答案为:|x+3|;(3)利用数轴可得:|x﹣1|+|x+3|的最小值为:4.故答案为:4.【点评】此题主要考查了绝对值以及数轴的应用,正确结合数轴表示线段长度是解题关键.。

2016-2017学年北京市七年级(上)期末数学试卷

2016-2017学年北京市七年级(上)期末数学试卷

2016-2017学年北京市七年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果水位升高0.5米记为+0.5米,那么水位下降1米应记为( )A.﹣1米B.+1米C.﹣1.5米D.+1.5米2.国家提倡“低碳减排”,某公司计划在海边建风能发电站,电站年均发电量约为216000000度,将数据216000000用科学记数法表示为( )A.216×106 B.21.6×107C.2.16×108D.2.16×1093.若a>b>0,则在数轴上表示数a,b的点正确的是( )A.B.C.D.4.下列计算正确的是( )A.2a+3b=5ab B.2ab﹣2ba=0 C.2a2b﹣ab2=a2b D.2a2+3a2=5a35.若x=﹣是关于x的方程5x﹣m=0的解,则m的值为( )A.3 B.C.﹣3 D.﹣6.下列结论正确的是( )A.直线比射线长B.过两点有且只有一条直线C.过三点一定能作三条直线D.一条直线就是一个平角7.如图是一个正方体的表面展开图,则原正方体中与“中”字所在的面相对的面上标的字是( )A.我B.的C.梦D.国8.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是( )A. B.C.D.9.下列各题正确的是( )A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7去括号、移项、合并同类项得x=510.若a、b互为相反数,c、d互为倒数,m的绝对值是2,n是有理数且既不是正数也不是负数,则2015a+b+1+m2﹣(cd)2015+n(a+b+c+d)的值为( ) A.2015 B.2016 C.2017 D.2018二、填空题(本题共30分,每小题3分)11.的倒数是__________.12.比较大小:﹣5__________﹣3(填“<”、“>”、“=”)13.数轴上A、B两点所表示的有理数的和是__________.14.在有理数﹣4.2,6,0,﹣11,中,分数有__________.15.由四舍五入得到的近似数23.71精确到__________位.16.代数式可以把实际问题的数量关系用式子的形式表示出来,同时,代数式也可以代表很多实际意义,例如“酸奶每瓶3.5元,3.5a的实际意义可以是买a瓶酸奶的价钱”,请你给4x+y赋予一个实际意义__________.17.若代数式8x﹣7的值与代数式6﹣2x的值互为相反数,那么满足条件的x 是__________.18.如果x﹣2y=3,那么代数式1+2x﹣4y的值是__________.19.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.《九章算术》采用问题集的形式,全书共收集了246个问题,分为九章,其中的第八章叫“方程”章,方程一词就源于这里.《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译文:“几个人一起去购买物品,如果每人出8钱,那么剩余3钱;如果每人出7钱,那么差4钱.问有多少人,物品的价格是多少”?设有x人,可列方程为__________.20.如图,点A,O,B在同一条直线上,∠COB=20°,若从点O引出一条射线OD,使OD⊥OC,则∠AOD的度数为__________.三、计算题(本题共16分,每小题16分)21.(16分)①7﹣(+5)+(﹣4).②.③.④.22.先化简,再求值3(a2+2a)﹣2(3a﹣a2+5),其中|a|=2.五、解下列方程(本题共12分,每小题12分)23.解方程①3x﹣7(x﹣1)=3﹣2(x+3)②.六、画图(本题7分)24.已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)量出∠AED和∠BEO的度数,并写出它们的数量关系;(4)请画出从点A到射线CB的最短路线,并写出画图的依据.七、应用题(本题共12分,第1小题4分,第2小题8分)25.当k为何值时,关于x的方程(k﹣5)x﹣7=x﹣1的解是﹣2?26.(8分)某陶瓷商,为了促销决定卖一只茶壶,赠一只茶杯。

北京市2016-2017学年新人教版七年级上期末考试数学试卷含答案

北京市2016-2017学年新人教版七年级上期末考试数学试卷含答案

2016-2017学年第一学期期末测试卷初 一 数 学考生须知 1.本试卷共4页,共六道大题,26道小题,满分120分,考试时间120分钟. 2.在试卷和答题卡上认真填写学校名称、姓名和学号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色签字笔作答. 一、选择题:(共10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题目要求的............,请在答题纸上将所选项涂黑........... 1.12-的相反数是 A .12 B .12- C .2 D . 2-2.第30届延庆冰雪欢乐节于2015年12月20日开幕.本届冰雪欢乐节以“冰雪延庆, 激情冬奥”为主题,将持续至2016年2月底.在70余天的时间里,延庆将举办冰雪 赛事、冰雪培训、冰雪旅游、文化宣传4大类20项活动,据不完全统计,截止2016 年1月4日,冰雪节期间,延庆乡村旅游收入超过2350000元.将2350000用科学记 数法表示应为A .72.3510⨯B .62.3510⨯C .623.510⨯D .523.510⨯ 3.下面的说法正确的是A .a -表示负数B .2-是单项式C .35ab 的系数是3D .11x x++是多项式 4.下列计算正确的是A .277a a a += B .532y y -=C .22232x y x y x y -=D .325a b ab +=5.在下列生活、生产现象中,可以用基本事实“两点之间,线段最短”来解释的是 ①用两颗钉子就可以把木条固定在墙上; ②植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上;③在 A 、B 两地之间架设电线时,总是尽可能沿线段AB 架设;④把弯曲的公路改直,就能缩短路程.A .①②B .①③C .②④D .③④ 6.若代数式742x ab +- 与代数式 423y a b 是同类项,则y x 的值是A .9B .9-C .4D .4-7.某商人在一次买卖中均以120元卖出两件商品,其中一件赚了20%,一件赔了20%, 在这次交易中,该商人A .不赔不赚B .赚了10元C .赔了10元D .赔了30元 8.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是是否>500输出结果计算5x+1输入x A .0a b +> B .0a b -> C .0a b ⋅> D .0a b ⋅<9.将一副直角三角尺按如图所示的不同方式摆放,则图中锐角..α∠与β∠相等的是10.按下面的程序计算,当输入100x =时,输出结果为501;当输入20x =时,输出结果为506;如果开始输入的值x 为正数..,最后输出的结果为656,那么满足条件的x 的值最多有 A .5个 B .4个 C .3个 D .2个 二、填空题 (共6个小题,每题3分,共18分)11.如果3415A '∠=︒,那么∠A 的余角等于 . 12.如图是某几何体的展开图,那么这个几何体是__________. 13.写出一个只含有字母x ,y 的二次三项式 .14.小明在解一元一次方程329x x -=++时,不小心把墨汁滴在作业本上,其中未知数x 前的系数看不清了,他便问邻桌,但是邻桌只告诉他,方程的解是2x=-(邻桌的答案是正确的),小明由此知道了被墨水遮住的x 的系数,请你帮小明算一算,被墨水遮住的系数是 .15.刘谦的魔术表演风靡全世界,很多同学非常感兴趣,也学起了魔术.小华把任意有理数对(x ,y )放进装有计算装置的魔术盒,会得到一个新的有理数21x y ++.例如:把(-1,2)放入其中,就会得到21214-++=.现将有理数对(3,-2)放 入其中,得到的有理数是 .若将正整数...对放入其中,得到的值是6,则满足 条件的所有的正整数对(x ,y )为 .16.毕达哥拉斯学派对“数”与“形”的巧妙结合作了如下研究:名称图形 几何 点数三角形正方形五边形六边形0baA B CDβααβαβαβ12题图第1层 1 1 1 1 第2层 2 3 4 5 第3层 3 5 7 9 … … … … … 第n 层(1)六边形第5层的几何点数是 ;第n 层的几何点数是 . (2)在第 层时,六边形的几何点数是三角形的几何点数的3.5倍.三、解答题 (共4个小题,共41分,17题16分,19题15分,18题、20题各5分) 17.计算:(1)8(2)(3)(1)---++- (2)()()()()12423-÷+--⨯- (3)231()(24)3412-+⨯- (4)3323(9)(3)()(2)3⎡⎤-÷--⨯-+-⎢⎥⎣⎦-18.先化简,再求值:233(2)x y x y ---,其中 2x =-,1y =. 19.解方程:(1)3723x x +=-(2)()32(21)x x x -=-- (3)12123x x-=+20.解不等式组: 43421x xx x ->⎧⎨+<+⎩.四、解答题(本题5分)21.自2010年延庆区举办骑游大会以来,到延庆骑游的人越来越多,延庆区人民政府决定投放公租自行车供市民使用.到2015年底,投放在东湖、西湖自行车租赁点的公租自行车共有550辆,西湖自行车租赁点的公租自行车数量是东湖自行车租赁点的公租自行车数量的2倍少20辆.这两个公租自行车租赁点各有多少辆自行车? 五、画图题(本题4分)22.如图:A ,B ,C ,D 是平面上四个点,按下列要求画出图形. (1)连接BD ;(2)作射线CB ,与DA 的延长线交于点E ; (3)过C 作BD 的垂线,垂足为F . 六、解答题 (共4个小题,共22分)23.(5分)如图,已知点C 是线段AB 的中点,AB =9,若E 是直线AB 上一点,且BE =2, (1)请依题意补全图形;(2)求CE 的长.22题图DCBAABC23题图24.(6分)延庆区某中学七年级(1)(2)两个班共104人,要去延庆地质博物馆进行社会大课堂活动,老师指派小明到网上查阅票价信息,小明查得票价如下:其中(1)班不足 50人,经估算,如果两个班都以班为单位购票,一共应付1240元. (1) 两个班各有多少学生?(2) 如果两个班联合起来,作为一个团体购票,可以省多少钱?(3) 如果七年级(1)班单独组织去博物馆参观,你认为如何购票最省钱?25.(5分)已知60AOB ∠=︒,从点O 引射线OC ,使40AOC ∠=︒,作AOC ∠的角平分线OD ,(1)依题意画出图形; (2)求BOD ∠的度数.26.(6分)已知数轴上三点M ,O ,N 对应的数分别为-2,0,4,点P 为数轴上任意一 点,其对应的数为x .(1)如果点P 到点M 、点N 的距离相等,那么x 的值是______________;(2)数轴上是否存在点P ,使点P 到点M 、点N 的距离之和是7;如果存在,求出x 的值;如果不存在,请说明理由;(3)如果点P 以每秒钟6个单位长度的速度从点O 向右运动时,点M 和点N 分别以每秒钟1个单位长度和每秒钟3个单位长度的速度也向右运动,且三点同时出发,那么经过几秒钟,点P 到点M 、点N 的距离相等.购票张数1~50张 每张票的价格为13元购票张数51~100张 每张票的价格为11元购票张数100张以上 每张票的价格为9元2016-2017学年第一学期期末试卷 初一数学参考答案及评分标准一、选择题(本题共27分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案ABBCDACDCB二、填空题(本题共27分,每小题3分) 1112 1314 1516答案5545'︒圆柱答案不确定,符合条件即可-48,(1,2)(4,1) 17,4n-3,6三、解答题17.(1)解:原式=8+2-3-1 ……………………3分 =6 ……………………4分 (2)解:原式=-3-6 ……………………3分=-9 ……………………4分(3)解:原式=(-891()(24)121212-+⨯- ……………………3分=0 ……………………4分(4)解:原式=-27÷(-9)-[2+(-8) ] ……………………3分 =3-(-6)=9 ……………………4分18..解:原式=2x-3y-(3x-6y)……………………1分= 2x-3y-3x+6y ……………………2分 =-x+3y ……………………3分 当x=-2,y=1时-x+3y =-(-2) +3×1 ……………………4分=2+3=5 ……………………5分19.(1)解:3723x x +=-3237x x +=- ……………………3分416x = ……………………4分 4x = ……………………5分FEE C BA(2)解:()32(21)x x x -=--3621x x x -=-+ ……………………2分361x x +=+ ……………………3分 47x =……………………4分74x =……………………5分 (3) 解:3(1)46x x -=+ ……………………2分3346x x -=+ ……………………3分 3643x x --=- ……………………4分9x =- ……………………5分 20.解:由①得4x-x >3…………………1分 x >1 …………………2分由②得3<x …………………4分 ∴x >1 …………………5分21. 解:设东湖自行车租赁点的公租自行车数量为x 辆,则西湖自行车租赁点的公租自行车数量为(2x-20)辆.……………………1分 依题意得:2x-20+x=550…………………3分解得:x=190 ……………………4分 那么2x-20=360答:东湖自行车租赁点的公租自行车数量为190辆,则西湖自行车租赁点的公租自行车数量为360辆.…………5分 22. 画对一个給一分23.解:(1)当E 是线段AB 上……………………1分∵C 是AB 的中点 ∴BC=21AB ∵AC=9A B C EDBCAO OBACD∴BC=21×9=4.5……………………2分 ∴BE=BC –BE=4.5-2=2.5……………………3分 (2)当E 是线段AB 的延长线上……………………4分 由(1)可知BC=21×9=4.5 ∴BE=BC +BE=4.5+2=6.5……………………3分24. (1)设(1)班x 人,(2)班(104-x )人……………………1分由题意可得:13x+11(104-x)=1240……………………2分2x=96 x=48 ∴104-x=56答:(1)班48人,(2)班56人 …………………3分 (2)1240-104*9=304(元) …………………4分 (3)只要(1)班多买3张票最省钱,因为此时票价为51*11=561,而原票价48*13=624…………5分25.分两种情况讨论(1)如图1…………………1分∵射线OD 平分AOC ∠ ∴AOD ∠=21AOC ∠=20° …………………2分 ∴BOD ∠=AOB AOD ∠+∠=80°…………………3分 (2)如图2…………………4分∵射线OD 平分AOC ∠ ∴COD ∠=21AOC ∠=20°…………………5分 ∴BOD ∠=AOB AOC COD ∠-∠+∠=40°…………………6分26.(1)x=1 …………………1分 (2)P 1:x=-2.5,P 2:x=4.5 …………………3分 (3)设经过t 秒点P 到点M 、点N 的距离相等∴P 点表示的数是6t ,M 点表示的数是-2+t ,N 点表示的数是4+3t ,……4分 ∴由题意,得 PM=PN∴6t -(-2+t )=4+3t -6t …………………5分 ∴14t = …………………6分 答:经过14秒钟,点P 到点M 、点N 的距离相等.。

2016~2017学年北京石景山区初一上学期期末数学试卷(解析)

2016~2017学年北京石景山区初一上学期期末数学试卷(解析)

∴ , 1
3
BC = AB = BD = 3
2
2
∴ . C D = BC + BD = 5
D. 7
2018/12/12 9. 下列生活、生产现象中,可以用基本事实“两点之间,线段最短”来解释的是( ). A. 用两个钉子就可以把木条固定在墙上 B. 如果把A,B两地间弯曲的河道改直,那么就能缩短原来河道的长度 C. 植树时只要确定两个坑的位置,就能确定同一行的树坑所在的直线 D. 测量运动员的跳远成绩时,皮尺与起跳线保持垂直 答案 B
B. 2n + 6
答案 D
解 析 由图可知, 1张餐桌坐6人, 2张餐桌坐8人, 3张餐桌坐10人, …… n张餐桌可坐2n + 4 人.
C. 2n
填空题(本大题共6个小题,每小题3分,共18分)
11. 请结合实例解释3a的意义,你的举例:

答 案 若一支签字笔a元,则3a表示三只签字笔的总价钱 解 析 若一支签字笔a元,则3a表示三只签字笔的总价钱.
答 案 99
解析
筐白菜的总质量为 . 4
25 × 4 + 0.25 + (−1) + 0.5 + (−0.75) = 99
16.
规定:用{m}表示大于m的最小整数,例如{
5 }
=
, 2 {4}
=
, 5 {−1.5}
=
−1等;用[m]表示不大于m的最大整数,例如
3
, , , 7
[ ]=3
[2] = 2

则 , 3 {x} + 2 [x] = 3(x + 1) + 2x = 5x + 3 = 18
解得x = 3.

2016-2017学年度七年级(上)期末数学试卷含答案解析

2016-2017学年度七年级(上)期末数学试卷含答案解析

2016-2017学年度七年级(上)期末数学试卷一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109 3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣25.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.6.已知x=3是关于x的方程5(x﹣1)﹣3a=﹣2的解,则a的值是()A.﹣4 B.4 C.6 D.﹣67.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.99.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=°.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=.三、解答题(共78分)15.(5分)计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)16.(5分)解方程:=1+.17.(5分)如图,已知线段a、b,求作线段AB,使AB=2a+b.18.(5分)先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.19.(7分)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.20.(7分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.21.(7分)如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.22.(7分)某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?23.(8分)某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.24.(10分)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?25.(12分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?2016-2017学年度七年级(上)期末数学试卷参考答案与试题解析一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m【考点】正数和负数.【分析】水位升高7m记作﹢7m,升高和下降是互为相反意义的量,所以水位下降几m就记作负几m.【解答】解:上升和下降是互为相反意义的量,若上升记作正,那么下降就记作负.水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作﹣4m.故选C.【点评】本题考查了正负数在生活中的应用.理解互为相反意义的量是关键.2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将130 944 000 000用科学记数法表示为:1.30944×1011.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、对一批节能灯使用寿命的调查,调查具有破坏性,适合抽样调查,故A错误;B、对我国初中学生视力状况的调查,调查范围广适合抽样调查,故B错误;C、对最强大脑节目收视率的调查,调查范围广适合抽样调查,故C错误;D、对量子科卫星上某种零部件的调查,要求精确度高的调查,适合普查,故D 正确;故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣2【考点】同类项.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣4x m+2y4与2x3y n﹣1是同类项,∴m+2=3,n﹣1=4,解得:m=1,n=5,∴m ﹣n=﹣4.故选A .【点评】此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项:所含字母相同,并且相同字母的指数也相同,难度一般.5.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A .B .C .D .【考点】点、线、面、体.【分析】如图本题是一个平面图形围绕一条边为中心对称轴旋转一周根据面动成体的原理即可解.【解答】解:由长方形绕着它的一边所在直线旋转一周可得到圆柱体,如图立体图形是两个圆柱的组合体,则需要两个一边对齐的长方形,绕对齐边所在直线旋转一周即可得到, 故选:A .【点评】本题考查面动成体,需注意可把较复杂的体分解来进行分析.6.已知x=3是关于x 的方程5(x ﹣1)﹣3a=﹣2的解,则a 的值是( ) A .﹣4 B .4 C .6 D .﹣6【考点】一元一次方程的解.【分析】把x=3代入方程得出关于a 的方程,求出方程的解即可.【解答】解:把x=3代入方程5(x ﹣1)﹣3a=﹣2得:10﹣3a=﹣2,解得:a=4,故选B .【点评】本题考查了一元一次方程的解,解一元一次方程等知识点,能得出关于a的一元一次方程是解此题的关键.7.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm【考点】两点间的距离.【分析】根据线段中点的性质,可得DA与CD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得答案.【解答】解:由CB=CD,得CD=BC.由D是AC的中点,得AD=CD=BC.由线段的和差,得AD+CD+BC=AB,即BC+BC+BC=10.5.解得BC=4.5cm,故选:C.【点评】本题考查了两点间的距离,利用线段的和差得出关于BC的方程是解题关键.8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.9【考点】专题:正方体相对两个面上的文字;相反数.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x、y、z的值,然后代入代数式计算即可得解.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“﹣8”是相对面,“y”与“﹣2”是相对面,“z”与“3”是相对面,∵相对面上所标的两个数互为相反数,∴x=8,y=2,z=﹣3,∴x﹣2y+z=8﹣2×2﹣3=1.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元【考点】一元一次方程的应用.【分析】如果设这种商品的原价是x元,本题中唯一不变的是商品的成本,根据利润=售价﹣成本,即可列出方程求解.【解答】解:设这种商品的原价是x元,根据题意得:75%x+10=90%x﹣38,解得x=320.故选C.【点评】本题考查了一元一次方程的应用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005【考点】规律型:图形的变化类.【分析】将原图形中基本图形划分为中间部分和两边部分,中间基本图形个数等于序数,两边基本图形的个数和等于序数加1的两倍,据此规律可得答案.【解答】解:∵第①个图形中基本图形的个数5=1+2×2,第②个图形中基本图形的个数8=2+2×3,第③个图形中基本图形的个数11=3+2×4,第④个图形中基本图形的个数14=4+2×5,…∴第n个图形中基本图形的个数为n+2(n+1)=3n+2当n=1001时,3n+2=3×1001+2=3005,故选:D.【点评】本题考查了图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,解决本题的关键在于将原图形划分得出基本图形的数字规律.二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=18.6°.【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:18°36′=18°+(36÷60)°=18.6°,故答案为:18.6.【点评】本题考查了度分秒的换算,利用小单位华大单位除以进率是解题关键.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是92%.【考点】频数(率)分布直方图.【分析】利用合格的人数即50﹣4=46人,除以总人数即可求得.【解答】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=92%.故答案是:92%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=﹣7.【考点】有理数的混合运算.【分析】根据※的含义,以及有理数的混合运算的运算方法,求出3※(﹣5)的值是多少即可.【解答】解:3※(﹣5)=3×(﹣5)+3﹣(﹣5)=﹣15+3+5=﹣7故答案为:﹣7.【点评】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=16.【考点】代数式求值.【分析】先求出m、n的值,再代入求出即可.【解答】解:∵x=8是偶数,∴代入﹣x+6得:m=﹣x+6=﹣×8+6=2,∵x=3是奇数,∴代入﹣4x+5得:n=﹣4x+5=﹣7,∴m﹣2n=2﹣2×(﹣7)=16,故答案为:16.【点评】本题考查了求代数式的值,能根据程序求出m、n的值是解此题的关键.三、解答题(共78分)15.计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)=3﹣24÷(﹣8)+4×(﹣2)=3+3﹣8=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.16.解方程:=1+.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:3x+6=12+8x+4,移项合并得:﹣5x=10,解得:x=﹣2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.17.如图,已知线段a、b,求作线段AB,使AB=2a+b.【考点】作图—复杂作图.【分析】在射线AM上延长截取AC=CD=a,DB=b,则线段AB满足条件.【解答】解:如图,线段AB为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18.先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=6xy2﹣4x2y﹣6xy2+3x2y+4xy2﹣8x2y=4xy2﹣9x2y,当x=﹣2,y=﹣1时,原式=﹣8+36=28.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.【考点】作图-三视图;由三视图判断几何体.【分析】主视图有3列,每列小正方形数目分别为3,4,2,左视图有2列,每列小正方数形数目分别为4,2,据此可画出图形.【解答】解:如图所示:.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.20.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.【考点】角平分线的定义.【分析】先根据角平分线,求得∠BOE的度数,再根据角的和差关系,求得∠BOF 的度数,最后根据角平分线,求得∠BOC、∠AOC的度数.【解答】解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°【点评】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据∠AOC的度数是∠EOF度数的2倍进行求解.21.如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.【考点】数轴;绝对值;倒数.【分析】(1)根据倒数的定义和绝对值的性质可得点A对应的数的倒数和绝对值;(2)根据中点坐标公式可得点P在数轴上对应的数;(3)根据将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,可以得到点C表示的数,从而可以在数轴上表示出点C,并得到点C表示的数.【解答】解:(1)点A对应的数的倒数是﹣,点A对应的数的绝对值是2;(2)(﹣2+4)÷2=2÷2=1.故点P在数轴上对应的数是1;(3)如图所示:点C表示的数是﹣1.【点评】本题考查数轴、倒数、绝对值,解题的关键是明确数轴的含义,利用数形结合的思想解答问题.22.某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?【考点】一元一次方程的应用.【分析】(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据总质量=粗加工质量+精加工质量即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=粗加工的利润+精加工的利润代入数据即可得出结论.【解答】解:(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据题意得:8x+0.5(30﹣x)=90,解得:x=10,30﹣x=20.答:粗加工的天数为10天,精加工的天数为20天.(2)10×8×60+20×0.5×1200=16800(元).答:该企业总共获得的利润是16800元.【点评】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程(或列式计算)是解题的关键.23.某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.【考点】条形统计图;扇形统计图.【分析】(1)根据A组有20人,所占的百分比是10%,据此即可求得总人数;(2)用(1)中求得的总人数减去其它三种的人数可得认同拆除燃煤小锅炉的人数,再补充统计图1即可;(3)用D项目对应的人数除以总人数,再乘以360度即可得对应的扇形的圆心角.【解答】解:(1)20÷10%=200(人).答:这次被调查的市民总人数是200人;(2)C组的人数是:200﹣20﹣80﹣40=60(人),统计图1补充如下:;(3)×360°=72°.答:图2中D项目对应的扇形的圆心角的度数是72°.【点评】本题主要考查了条形统计图的应用和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(10分)(2016秋•榆林期末)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?【考点】正数和负数.【分析】(1)将各数相加,得数若为负,则A在岗亭南方,若为正,则A在岗亭北方;(2)将各数的绝对值相加,求得摩托车共行驶的路程,即可解答.【解答】解:(1)+10﹣9+7﹣15+6﹣14+4﹣2=10+7+6+4﹣9﹣15﹣14﹣2=﹣13(千米),答:A在岗亭南方,距离岗亭13千米处.(2))|+10|+|﹣9|+|+7|+|﹣15|+|+6|+|﹣14|+|+4|+|﹣2|=10+9+7+15+6+14+4+2+13=80(千米),0.12×80=9.6(升),答:摩托车共耗油9.6升.【点评】本题主要考查正数和负数的应用,解决此类问题时,要特别注意第(2)小题,无论向南行驶还是向北行驶,都是要耗油的.25.(12分)(2016秋•榆林期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【考点】一元一次方程的应用;列代数式.【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。

5.2016-2017第2学期初1数学期末考试题答案 石景山

5.2016-2017第2学期初1数学期末考试题答案 石景山

石景山区2016-2017学年第二学期初一期末数学试卷答案及评分参考阅卷须知:为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可。

若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数。

一、选择题(本题共30分,每小题3分)11.21x y =⎧⎨=⎩等(答案不唯一);12.<,>,<;13.100131003x y x y +=⎧⎪⎨+=⎪⎩; 14.画一条直线截线段AB 与CD ,测量一对同位角,如果相等,则AB ∥ CD ,反之,则不平行(答案不唯一,只要思路对,即可得分);15.(1)()22244x x x +=++或()()22244x x x =+-+等; (2)()22216x x +-= 或4416x +=等;3;(说明:每空1分)16.(1)21(1分);(2)12n -(2分).三、分解因式(本大题共3个小题,共9分)17.解:原式=()()64x x -+ ............................................................................... 3分18.解:原式=()21025x x x -+. ....................................................................... 1分=()25x x - . .............................................................................. 3分19.解:原式=()()22am n b m n ---.…………………………………………1分=()()22m n a b --…………… …………………………2分=()()()m n a b a b -+-………………………………………3分四、解答题(本大题共9道小题,20-21每题3分,22-26每题5分,27、28题各6分) 20.解:小方的解题过程不正确. ……………………1分正确的解答:原式22244+=--m n m m … …………………2分2+=-n m … ………………………………………3分21.解:原式=()xy x y xy +-……… ……………………………………2分24xy ,x y =+=∴ 原式=()2424⨯-=…………………………………………3分22.解:原式()224129310a a a a =-+--- ………………………………2分224129310a a a a =-+-++ … ………………………………3分()2239193319a a a a =-+=-+…… ……………………………4分∵ 23=1-a a∴ 原式311922=⨯+= ……………………………………5分 23.解:①×3得: 3915x y +=- ③ ……………………………………1分 ③-②,得1313y =- …………………………………………2分∴ 1y =- …………………………………………3分把1y =-代入①,得2x =- ………………………………………4分∴ 2 1x y =-⎧⎨=-⎩是原方程组的解. … ……………………………………5分24.解:解不等式()5113x x --<得3x < ………… ………………………2分解不等式1213xx +≥-得4x ≤ ………………………………3分 ∴ 不等式组的解集为3x < ……………………………………4分∴ 不等式组的非负整数解为0,1,2. …… ……………………5分25.证明:方法1 ∵ AD 是一条直线, ∴∠1+∠5=180° (平角的定义)或(邻补角的定义)…… …………1分 ∵ ∠1+∠BCD =180°(已知)∴ ∠5=∠BCD (同角的补角相等)……………………………………2分 ∴ AD ∥BC (同位角相等,两直线平行) ……………………………3分∴ ∠4=∠3(两直线平行,内错角相等) ……………………………4分 ∵ AC 为∠BAD 的角平分线(已知)∴ ∠2=∠4(角平分线的定义)∴ ∠2=∠3(等量代换)……………………5分即:∠BCA =∠BAC .方法2 ∵ AD 与CD 交于点D ,∴ ∠1=∠ADC (对顶角相等) ………………………1分 ∵ ∠1+∠BCD =180°(已知) ∴ ∠ADC +∠BCD =180°(等量代换) ………………………………2分 ∴ AD ∥BC (同旁内角互补,两直线平行) …………………………3分∴ ∠4=∠3(两直线平行,内错角相等) ……………………………4分 ∵AC 为∠BAD 的角平分线(已知)∴ ∠2=∠4(角平分线的定义)∴ ∠2=∠3(等量代换) … …………………5分26.解:(1)50 ………………………1分(2)如图所示:……………………………4分说明:扇形统计图画对2分,条形统计图画对得1分.(3)240. ………………………………… 5分5A BCD1324文学类艺体类 科普类 其他 类别27.解:(1)设A 品牌粽子的单价为x 元,B 品牌粽子的单价为y 元.根据题意得:261003004500y x x y =-⎧⎨+=⎩ …… ………………………2分解得:912x y =⎧⎨=⎩ …… ………………………3分答 :A 品牌粽子的单价为9元,B 品牌粽子的单价为12元. 说明:如果列一元一次方程,则对应给分.(2)设买A 品牌粽子a 个,则买B 品牌粽子(400-a )个. 根据题意得:()9124004000a a +-≤.………………………4分 解得:22663a ≥,满足题意的最小整数解为267. … ………5分 答:至少买A 品牌粽子267个. …………………………6分 28.解:(1)①补全图形如右图 ……………………2分 ②判断:∠CGD -∠B =90°.证明 :过点C 作CH ∥AB , …………3分∴ ∠1=∠B (两直线平行,内错角相等).∵ AB ∥DF (已知),∴ CH ∥DF (平行于同一直线的两直线平行).∴ ∠2+∠HCG =180° ∵ CE ⊥BC (已知),∴ ∠1+∠HCG =90°(垂直的定义).∴ ∠CGD -∠B =90°. (2) ∠CGD +∠B =90°.………………………………6分附加题参考:1.若点C 在线段AD 的延长线上,∠B 与∠CGD 的数量关系是否会发生变化? 2.若点C 在线段AD 上,且∠BCA 为锐角时,(1)中的结论还成立吗?说明:教师根据学生提的问题酌情给分;此附加问题2分,不含在100分以内,可以计入总分,但总分不超过100.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所示.请补全图形,并求∠ BOD 的度数. D
C
O
A
27.观察下列两个等式: 2 1 2 1 1 , 5 2 5 2 1,给出定义如下:我们称
3
3
3
3
使等式 a b ab 1成立的一对有理数 a , b 为“共生有理数对” ,记为( a , b ),
如:数对( 2 , 1 ),( 5 , 2 ),都是“共生有理数对” .
A. m 1
B. n 3
C. m n
D. m n
4.若 x 3是关于 x 的方程 2x a 1 的解,则 a 的值为
A. 5
B. 4
C. 5
D. 4
5.下列判断正确的是
A .近似数 0.35 与 0.350 的精确度相同 B. a 的相反数为 a
1 C. m 的倒数为
m
D. m m
6.点 C 在射线 AB 上,若 AB= 3,BC=2 ,则 AC 为
0.25 , 1 , 0.5 , 0.75 .小红快速
准确地算出了 4 筐白菜的总质量为
千克.
5 16.规定:用 m 表示大于 m 的最小整数,例如
3
2 , 4 5, 1.5
1 等;
用 [m] 表示不大于 m 的最大整数,例如 7 3, 2 2 , 3.2 4 , 2
( 1) 2.4 =
; 8=

( 2)如果整.数. x 满足关系式: 3 x 2 x 18 ,则 x __________ .
3
3
( 1)数对( 2 , 1),( 3 , 1 )中是“共生有理数对”的是 2
( 2)若( a , 3 )是“共生有理数对” ,求 a 的值; ( 3)若( m , n )是“共生有理数对” ,则( n , m )

13.如图, OC 为 AOB 内部的一条射线, A
若 AOB 100 , 1 26 48 ,
则 2=

C
2
1
O
B
14.解方程 3m 5 2m 时,移项将其变形为 3m 2m 5 的依据是

15.小红的妈妈买了 4 筐白菜,以每筐 25 千克为标准,超过的千克数记为正数,不足的
千克数记为负数,称重后的记录分别为
24.若单项式 2x1 2m y 与 5x 4m y 是同类项,求 3m2 m m 2 2 m 1 的值 . 1
25.先化简再求值: 2 ab a b 3b ab ,其中 2a b 5 . 2
26.已知:∠ AOC= 146 , OD 为∠ AOC 的平分线,射线 OB⊥ OA 于 O,部分图形如图
三、计算题(本大题共 3 个小题, 17、 18 题各 4 分, 19 题 5 分,共 13 分)
7551
17.

3434
18. 1 10 8
2 4 5.
3
19.
32
2
3
2
2.
3
四、解方程(本大题共 2 个小题, 20 题 4 分, 21 题 5 分,共 9 分)
20. 3 4x 5 2 x3
2x 5 3x 1
21 .
1.
6
2
五、解答题(本大题共 6 个小题,每小题 5 分,共 30 分)
22.2017 年京津冀旅游年卡包含了京津冀众多名胜文化、 自然景区等, 与 2016 年卡相比 新增了 29 家景区,年卡分为四类,其中三类年卡及相应费用如下表所示:
年卡类别
畅游版
优惠版
乐享版
年卡费用(元)
130
100
最快的计算机” ,它共有 40960 块处理器.其中 40960 用科学记数法表示应为
A . 0.4096 105 B. 4.096 10 4 C. 4.0960 10 3 D . 40.96 103
3. 有 理数 m , n在数轴上的对应点的位置如图所示,则正确的结论是
m
n
–3 –2 –1 0 1 2 3
石景山区 2016— 2017 学年第一学期初一期末试卷
数学
1.本试卷共 4 页,共五道大题, 27 道小题.满分 100 分,考试时间 100 分钟.
考 2.在试卷和答题卡上准确填写学校名称、班级、姓名、准考证号.
生 须 3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,

选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答.
60
北京某公园年卡代售点在某日上午卖出上述三种年卡共 5 张, 30 张年卡费用总计 2750 元.
30 张,其中畅游版年卡
( 1)该日上午共卖出优惠版和乐享版的年卡
张;
( 2)卖出的 30 张年卡中,乐享版年卡有多少张?
23.如图,平面上有三个点 A , O , B . A
( 1)根据下列语句顺次画图 .
①画射线 OA , OB ; O
②画 AOB 的角平分线 OC , 并在 OC 上任取一点 P (点 P 不与点 O 重合);
③过点 P 画 PM OA ,垂足为 M ; ④画出点 P 到射线 OB 距离最短的线段 PN ;
( 2)请回答: 通过测量图中的线段, 猜想相等的线段有
B
(写出一对即可) .
A.5
B.1
C. 1 或 5
D .不能确定
7.同一平面内,两条直线的位置关系可能是
A .相交或平行
B.相交或垂直
C .平行或垂直
D .平行、相交或垂直
8.如图,点 C 为线段 AB 的中点,延长线段 AB 到 D ,
使得 BD 1 AB .若 AD 8 ,则 CD 的长为
A
3
A. 2
B. 3
C. 5
4.ห้องสมุดไป่ตู้试结束,将本试卷和答题卡一并交回.
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,
只有一项是符合题目要求的)
1.绝对值是 2 的数是
A. 2
B. 2
C. 2 或 2
1
D.
2
2.据中新网报道, “神威·太湖之光”获吉尼斯世界纪录认证,成为世界上“运算速度
C
BD
D. 7
9.下列生活、生产现象中,可以用基本事实“两点之间,线段最短”来解释的是 A .用两个钉子就可以把木条固定在墙上 B .如果把 A, B 两地间弯曲的河道改直,那么就能缩短原来河道的长度
C .植树时只要确定两个坑的位置,就能确定同一行的树坑所在的直线 D .测量运动员的跳远成绩时,皮尺与起跳线保持垂直
10.按下图方式摆放餐桌和椅子:
,
1 张餐桌坐 6 人, 2 张餐桌坐 8 人, , , n 张餐桌可坐的人数为
A. n 5
B. 2n 6
C. 2n
D.2n 4
二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)
11.请结合实例解释 3a 的意义,你的举例:

12.如图是某几何体的表面展开图,则这个几何体是
相关文档
最新文档