两独立样本和配对样本T检验

合集下载

两个独立总体样本均值的t检验

两个独立总体样本均值的t检验

1、单击Analyze Compare Means Independent-sample T Test,打开 Independent-sample T Test 主对话框如图。 2、选择要检验的变量“综合得分”进入检验框中, 选择分组变量“性别”进入分组框中 。
3、然后单击Define Group按纽,打开分组对话 框如图所示,确定分组值后返回主对话框,如果 没有分组,可以选择Cut point单选项,并在激 活的框内输入一个值作为分组界限值。
人中抽取30人,将他们培训前后的数据每加工
500个零件的不合格品数进行对比,得到数据表, 见表3。试根据表中数据检验培训前后工人的平 均操作技术水平是否有显著提高,也就是检验培 训效果是否显著。
工人培训前后不合格品数据表3
序号 培训前 培训后 序号 培训前 培训后
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Test Value = 10000 95% Confidence Interval of the Difference Mean Difference 置信区间 Lower Upper 均值差 3559.90323 1795.5916 5324.2148
t值 国有单位 4.121
Sig. df (2-tailed) 自由度 P值 30 .000
单个总体均值的 t 检验(One-Sample T Test); 两个独立总体样本均值的 t 检验 (Independent-Sample T Test);
两个有联系总体均值均值的 t 检验(PairedSample T Test);
单因素方差分析(One-Way ANOVA);
双因素方差分析(General Linear ModelUnivariate)。

两独立样本t检验与两配对样本t检验的异同

两独立样本t检验与两配对样本t检验的异同


n与m不太大
这是 xy
x
~
~ N 1,n12
N 1
,,12
2n
y
~ N
2 2
m
2,m22 ,且两者独立,从而
,故在 1 2 时
xy ~ N
2 1
2 2
(0,1)
nm

2 1

2 2
分别用其无偏估计
s
2 X
,
sY2
代替后,记
t

l
(
s
2 X
n
sY2 )2 m
/(
n2
s
4 X
(n
1)
m2
sY4 (m
还不能认为该道工序对提高参数值有用
三、两种t检验的对比
• 独立样本的t检验过程用于检验两个独立样本是否来自 具有相同均值的总体,相当于两个正态分布总体的均 值是否相等,即检验假设 H0 : 1 2 是否成立,此检 验以t分布为理论基础。
• 配对样本检验用于检验两个相关的样本是否来自具有 相同均值的正态总体。即检验假设 H0 : d 0 ,实质就 是检验差值的均值和零均值之间的显著性。
为两台机床加工的轴的平均直径一致。
二、两配对样本t检验
• 1、什么是两配对样本t检验? ——根据样本数据对样本来自两配对总体的均值 是否有显著性差异进行判断。具体分为两种:
①用于同一研究对象分别给予两种不同处理结果; ②对同一研究对象处理结果前后进行比较。 • 2、前提: ①两个样本应是配对的; ②样本来自的两个总体应服从正态分布。
解:数据之差为:-3.1 -9.8 -6.1 1.4 5.2 -7.8 -4.9
均值与标准差分别为 检验统计量

t检验应用条件

t检验应用条件

t检验应用条件t检验是统计学中常用的一种假设检验方法,用于比较两个样本的均值是否存在显著差异。

它应用广泛,可以分为独立样本t检验和配对样本t检验两种情况。

我们来看独立样本t检验的应用条件。

独立样本t检验适用于两组相互独立的样本,每个样本的观测值是独立的,并且满足正态分布假设。

此外,两个样本的方差应该相等,即满足方差齐性的假设。

配对样本t检验适用于两组相关的样本,例如同一个实验对象在不同时间点或不同条件下的观测值。

在配对样本t检验中,每个观测值的差异被用来进行假设检验,并且差异应满足正态分布假设。

接下来,我们将分别介绍独立样本t检验和配对样本t检验的应用条件和步骤。

独立样本t检验的步骤如下:1. 提出假设:根据研究问题确定原假设和备择假设。

原假设通常假设两个样本的均值相等,备择假设则假设两个样本的均值不相等。

2. 收集数据:分别从两个独立的样本中收集观测值。

3. 检验前提条件:检查两个样本是否满足正态分布假设,可以使用正态性检验方法,如Shapiro-Wilk检验。

同时,还需检查两个样本的方差是否相等,可以使用方差齐性检验方法,如Levene检验。

4. 计算t值:根据独立样本t检验的公式,计算得到t值。

5. 参考t分布表:根据自由度和显著水平查找相应的临界值。

6. 做出决策:比较计算得到的t值与临界值,如果t值大于临界值,则拒绝原假设,认为两个样本的均值存在显著差异;如果t值小于临界值,则接受原假设,认为两个样本的均值没有显著差异。

7. 得出结论:根据决策结果,结合原假设和备择假设,得出对两个样本均值差异的统计推断。

配对样本t检验的步骤如下:1. 提出假设:根据研究问题确定原假设和备择假设。

原假设通常假设两个样本的均值差异为0,备择假设则假设两个样本的均值差异不为0。

2. 收集数据:从同一个实验对象或相关样本中收集两组观测值。

3. 计算差异值:计算两组观测值的差异,得到差异值。

4. 检验前提条件:检查差异值是否满足正态分布假设,可以使用正态性检验方法。

分析化学中t检验的名词解释

分析化学中t检验的名词解释

分析化学中t检验的名词解释在分析化学中,t检验(t-test)是一种常用的统计方法,用于比较两组数据之间的差异性是否显著。

它是由英国统计学家William Sealy Gosset(更为人所熟知的是他的笔名Student)于1908年提出的。

1. t检验的基本原理t检验基于t分布,是统计学中一类常见的概率分布。

当数据符合特定条件(包括总体近似正态分布、总体方差未知等)时,t检验可以使用t分布进行推断。

t分布相对于正态分布拥有更宽的尾部,这意味着它可以更好地处理样本量较小的情况。

2. t检验的类型根据研究设计和实验目的的不同,t检验可以分为两种类型:独立样本t检验和配对样本t检验。

2.1 独立样本t检验独立样本t检验用于比较两组独立的样本之间的差异。

例如,我们可以通过独立样本t检验来确定两种不同施肥方式对作物生长的影响是否显著。

2.2 配对样本t检验配对样本t检验适用于对同一组样本进行两次测量,比较两次测量结果之间的差异是否显著。

例如,我们可以通过配对样本t检验来验证某种新药物在治疗前后的疗效是否有统计学上的显著差异。

3. t检验的计算步骤进行t检验时,我们需要按照以下步骤进行计算:3.1 收集数据首先,我们需要收集所需的数据样本。

对于独立样本t检验,我们需要分别获得两个独立群体的数据;对于配对样本t检验,我们需要获取同一群体的两个相关变量的数据。

3.2 计算均值和标准差接下来,我们计算每个样本的均值和标准差。

均值表示数据的中心趋势,标准差表示数据的离散程度。

3.3 计算t值根据独立样本t检验和配对样本t检验的具体公式,我们可以计算得出t值。

t 值表示样本之间的差异程度,t值越大说明差异越显著。

3.4 判断差异的显著性最后,我们使用t分布表来查找对应t值的显著性。

通常,在设定的显著性水平(如α=0.05)下,查找t分布表中的临界值。

如果计算得到的t值大于临界值,则可认为差异是显著的。

4. t检验的应用场景t检验在分析化学中广泛应用于各种实验设计和数据分析中。

t检验(t test)

t检验(t test)
采用完全随机设计的方法将19只体重出生日期等相仿的小白鼠随机分为两组其中一组喂养高蛋白饲料另一组喂养低蛋白饲料然后观察喂养8周后各小白鼠的体重增加情况
t检验(t test)
首都医科大学 公共卫生与家庭医学学院
李霞
目的
1.掌握t检验的功能、应用前提 2.掌握t检验的SPSS操作方法
单样本t检验 配对样本t检验 独立样本t检验
②正态性检验:方法同前,将变量”weight”选入 Test Variable List的变量列表中—>选中 “Nor; Split File 进入数据分割模块选择“Analyze all cases, do not create
groups” —> OK
都符合正态分布。
(2)t检验结果:因为方差齐性检验结果F=0.089, P=0.770>0.05, 两组资料方差齐,故采用方差齐的t 检验结果。t=1.973, υ =17,双侧检验P=0.065 >0.05,因此接受H0,认为二组资料差异没有统计学 意义,即不能认为两组膳食对小白鼠体重增加有不 同。
泊松分布
指数分布
均匀分布
Exact Tests Asymptotic only:渐进方法,默认。
要求数据量足够大 Monte Carlo:蒙特卡洛估计方法 Exact:精确计算显著性水平的方法
Options:
•Statistics(统计量选项):
Descriptive:描述性统计量,显示均数、标准差、 最大值、最小值和非缺失个案数
Quartiles:四分位数 •Missing Values(缺失值):
Exclude cases test-by-test:默认。剔除正在分析 的变量中含有缺失值的观察单位

两独立样本和配对样本T检验

两独立样本和配对样本T检验

2 2 n1 − 1 s1 + n2 − 1 s2 n1 + n2 − 2
2 σ12 = s2
1 1 + n1 n2
构建的两独立样本 T 检验的统计量为: 1 1 s2 n + n 1 2 此时,T 统计量服从自由度为n1 + n2 − 2个自由度的 t 分布。 第二种情况:当两总体方差未知且不相等时,两样本均值差的估计方差为:
两独立样本 T 检验 目的:利用来自两个总体的独立样本,推断两个总体的均值是否存在显著差异。 检验前提: 1、样本来自的总体应服从或近似服从正态分布; 2、两样本相互独立,样本数可以不等。 两独立样本 T 检验的基本步骤: 一、提出假设 原假设������0 :������1 − ������2 = 0 备择假设������1 :������1 − ������2 ≠ 0 二、建立检验统计量
F 体重 Equal variances assumed Equal variances not assumed 14.722
Sig. .001
t 6.701 6.881
df 25 17.875
Sig. (2-taileห้องสมุดไป่ตู้) .000 .000
Mean Difference 10.956 10.956
Std. Error Difference 40.839 42.157
扩展案例:
独立样本T检验只能比较两个总体的均值是否相等,这要求自量恰好分成两组,但更多时 候,自变量的分类超过两类,或是自变量是连续时,这时我们要对自变量进行处理后,才能进 行T检验。 如, 要分析不同身高儿童的体重是否有显著差异, 此时做为分组变量的身高就是连续变量。 SPSS中使用cut point功能重新处理自变量。 例:现有一组儿童身高、体重的调查资料,数据见data08-01.sav,试分析身高高于1.55m的儿童 与身高不足155cm的儿童体重是否有显著差异。 SPSS实现过程:在cut point单选框中,输入1.55即可。

SAS学习笔记25t检验(单个样本t检验、配对样本t检验、两个独立样本t检验及方差不齐时的t检验)

SAS学习笔记25t检验(单个样本t检验、配对样本t检验、两个独立样本t检验及方差不齐时的t检验)

SAS学习笔记25t检验(单个样本t检验、配对样本t检验、两个独⽴样本t检验及⽅差不齐时的t检验)根据研究设计和资料的性质有单个样本t检验、配对样本t检验、两个独⽴样本t检验以及在⽅差不齐时的t'检验单样本t检验单样本t检验(one-sample t-test)⼜称单样本均数t检验,适⽤于样本均数$\overline{X}$与已知总体均数$\mu_{0}$的⽐较,其⽐较⽬的是检验样本均数所代表的总体均数µ是否与已知总体均数$\mu_{0}$有差别已知总体均数$\mu_{0}$, ⼀般为标准值、理论值或经⼤量观察得到的较稳定的指标值单样本t检验⽤于总体标准差σ未知的资料,其统计值t其中S为样本标准差,n为样本含量配对样本t检验配对样本均数t检验简称配对t检验(paired t test), ⼜称⾮独⽴两样本均数t检验,适⽤于配对设计计量资料均数的⽐较,其⽐较⽬的是检验两相关样本均数所代表的未知总体均数是否有差别。

配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对⼦,每对中的两个个体随机地给予两种处理。

进⾏配对t检验时,⾸选应计算各对数据间的差值d, 将d作为变量计算均数。

其检验统计量为式中d为每对数据的差值,$\overline{d}$为差值样本的均数,$S_{d}$为差值样本的标准差,$S_\overline{d}$为差值样本均数的标准差,即差值样本的标准误,n为配对样本的对⼦数,⾃由度=n-1两独⽴样本t检验两独⽴样本t检验(two-sample t-test), ⼜称成组t检验,它适⽤于完全随机设计的两样本均数的⽐较,其⽬的是检验两样本所来⾃总体的均数是否相等。

两独⽴样本t检验要求两样本所代表的总体服从正态分布,且两总体⽅差相等,即⽅差齐性(homogeneity of variance)。

若两者总体⽅差不齐,可采⽤t'检验、变量变换或⽤秩和检验⽅法处理。

三种常用的T检验

三种常用的T检验

独立样本的T检验(independent-samples T Test)对于相互独立的两个来自正态总体的样本,利用独立样本的T 检验来检验这两个样本的均值和方差是否来源于同一总体。

在SPSS 中,独立样本的T检验由“Independent-Sample T Test”过程来完成。

例:双语教师的英语水平有高低之分,他们(她们)所教的学生对双语教学的态度是否有显著差异?例题分析:——研究目的:寻找差异——自变量:双语教师的英语水平(ordinal data等级变量),有两个水平:;level1低水平,level2高水平——因变量:学生的双语教学态度(interval data等距变量)SPSS操作步骤·Analyze→Compare Means→Independent Samples T Test·Click the双语教学态度to the column of“Test V ariable(s)”andthe教师英语水平分组to the column of“Grouping variable”·Click the button of“Define Groups…”and put the group numbers“1”and“3”into Group1and Group2,and“Continue”back,then“OK”.结果在论文中的呈现方式独立样本T检验结果显示,双语教师的英语水平不同,其所教学生对双语教学的态度有显著差异(t=-3,249,df=72,p<0.05)。

双语教师英语水平较低所教的学生,他们对双语教学态度的得分也显著低于英语水平较高的双语教师所教的学生(MD=-0.65)。

这可能是因为……练习:文科生和理科生对双语教学的态度是否有显著差异?配对样本T检验(Paired-samples T Test)配对样本T检验,用于检验两个相关的样本(配对资料)是否来自具有相同均值的总体。

t检验例题解析

t检验例题解析

t检验例题解析摘要:1.引言2.t检验的原理和方法3.例题解析4.结论与启示正文:**引言**在统计分析中,t检验是一种常用的方法,用于检验两组数据之间是否存在显著差异。

t检验的原理和步骤相对简单,但其在实际应用中的正确性和实用性却非常重要。

本文将通过例题解析的方式,帮助你更好地理解和掌握t检验的方法和技巧。

**t检验的原理和方法**t检验主要包括两种类型:独立样本t检验(比较两组独立样本)和配对样本t检验(比较同一组样本的两个时间点)。

其基本步骤如下:1.建立原假设:H0表示两组样本的均值相等,H1表示存在显著差异。

2.收集数据并计算统计量:如平均值、标准差等。

3.计算t值:t = (样本均值差- 总体均值差)/ 标准误差。

4.计算p值:根据t值和自由度(df)查找t分布表,得到p值。

5.判断结论:如果p值小于显著性水平(通常为0.05),则拒绝原假设,认为存在显著差异。

**例题解析**例题1:比较两组独立样本的均值差异。

数据如下:样本1:均值= 50,标准差= 10样本2:均值= 55,标准差= 10假设检验:H0:μ1 = μ2,H1:μ1 ≠ μ2计算过程:1.计算t值:t = (50 - 55) / sqrt((10^2 + 10^2) / 2) = -2.52.计算p值:p = 2 * (1 - (1 - 0.025) / 2) = 0.0253.结论:p值小于0.05,拒绝原假设,认为两组样本存在显著差异。

例题2:比较同一组样本的两个时间点的均值差异。

数据如下:时间1:均值= 50,标准差= 10时间2:均值= 55,标准差= 10假设检验:H0:μ1 = μ2,H1:μ1 ≠ μ2计算过程:1.计算t值:t = (50 - 55) / sqrt((10^2 + 10^2) / 2) = -2.52.计算p值:p = 2 * (1 - (1 - 0.025) / 2) = 0.0253.结论:p值小于0.05,拒绝原假设,认为同一组样本的两个时间点存在显著差异。

配对和两样本t检验

配对和两样本t检验

作业:1、课本page1源自5,第1题 2、课本page106,第4题,再补充一个问题: 试问B组放疗前后的血清sil-2R水平(U/ml) 有无差异?
作业要求:
1.计算均数、标准差、标准误; 2.写出完整的假设检验过程,其中结论要 包括统计学和专业上的结论; 3.写出程序; 4.写出程序的结果,并对结果作结论。
放疗+平消
ttest过程的格式
PROC TTEST 选项串 CLASS 变量表 VAR 变量表 BY 变量表
语句说明
(一)PROC TTEST用于启动TTEST过程,是必 须语句,先择串可以是: 1、DATA=输入文件名 指明对哪个文件进行t检验。若省略,则SAS会 自动找出此程序之前最后形成的SAS数据文件, 即当前文件,对它进行t检验。 2、ALPHA=p :确定检验水准α,如 ALPHA=0.05,即检验水准为0.05。 3、H0=m:缺省情况下,H0=0;在单均数t检验 时,H0等于总体均数。
结果分析
本例资料服从正态分布(W=0.876128, P=0.1178),故选t检验。本例t=1.41,双 侧检验p=0.1917,按a=0.05水准,不拒绝 H0 ,差别无统计学意义,尚不认为该厂生 产质量不达标。
二、配对资料t检验
资料类型: 两个同质对象接受不同处理; 同一受试对象分别接受不同的处理,同一受 试对象处理前后。 条件:差值d服从正态分布
1.11 1.42 1.72 2.04
方法1
proc means t prt; var d; run; proc univariate normal; var d; run; proc ttest; paired x1*x2; run;
方法2
方法3

生物统计学实验报告T检验

生物统计学实验报告T检验

生物统计学实验报告T检验T检验是一种用于比较两个样本均值是否有显著差异的统计方法。

在生物统计学中,T检验经常被用于比较实验组和对照组在某个特定变量上的差异,以确定是否存在显著差异。

T检验的基本原理是通过计算两个样本的均值和方差,然后应用统计学中的t分布来判断两个样本均值是否有显著差异。

在进行T检验之前,需要明确以下几个方面的内容:假设检验的零假设和备择假设、显著性水平、检验的类型(单尾检验或双尾检验)以及样本数据的收集和处理。

在进行T检验时,首先要设定零假设与备择假设。

零假设表示两个样本均值无显著差异,备择假设则表示两个样本均值存在显著差异。

接下来要设定显著性水平,通常使用的显著性水平为0.05,即p值小于0.05时,认为存在显著差异。

然后要确定T检验的类型,通常分为单尾检验和双尾检验。

单尾检验适用于预测两个样本均值的相对大小,而双尾检验适用于预测两个样本均值是否存在显著差异。

在进行T检验之前,还需要选择合适的T检验方法,主要有独立样本T检验和配对样本T检验,根据实验设计的不同选择相应的方法。

当以上设定完成后,需要收集实验数据,并计算两个样本的均值和方差。

接下来根据公式计算出T值,并据此计算出p值。

最后,根据p值与设定的显著性水平进行比较,判断两个样本均值是否存在显著差异。

如果p值小于显著性水平,则拒绝零假设,认为两个样本均值存在显著差异;如果p值大于显著性水平,则接受零假设,认为两个样本均值无显著差异。

总之,T检验是一种常用的比较两个样本均值是否有显著差异的统计方法。

在生物统计学中,T检验可以帮助我们分析实验组和对照组在某个特定变量上是否存在显著差异,从而验证实验的有效性。

然而,在进行T检验之前,需要明确假设检验的设定、显著性水平和检验类型,并正确收集和处理实验数据,以获得准确的结果。

两个处理组之间的差异

两个处理组之间的差异

两个处理组之间的差异在统计学中,比较两个处理组之间的差异通常是为了确定不同干预措施(如药物治疗、教育方案或政策实施等)对研究对象的影响是否存在显著性差异。

以下是一些用于分析两组之间差异的常见统计方法:1.独立样本t检验(Independent Samples t-test):当你有两个独立的处理组,且数据符合正态分布,并且方差齐性时,可以使用独立样本t检验来判断两组在某个连续变量上的平均值是否存在显著差异。

2.配对样本t检验(Paired Samples t-test):当同一组被试接受两种不同的处理,并且数据是成对收集时,可以用配对样本t检验来检测处理前后的变化或者两种处理效果间的差异。

3.Mann-Whitney U 检验(非参数检验):如果数据不符合正态分布,或方差不齐,则可以选择非参数检验,例如Mann-Whitney U检验(也称为威尔科克森符号秩检验),用来比较两组独立样本的分布位置是否存在差异。

4.Wilcoxon Signed-Rank Test:当数据不成对但不符合正态分布时,对于配对设计可以采用Wilcoxon Signed-Rank Test来比较处理前后或两种处理方式的效果差异。

5.卡方检验(Chi-squared test):对于分类变量的比较,可使用卡方检验或Fisher's精确检验来分析两组在某种属性出现频率上的差异。

6.方差分析(ANOVA):虽然问题提及的是两组,但如果存在多个分组变量并且想同时考虑多个因素或有重复测量的情况,可能需要使用单因素方差分析(One-way ANOVA)来比较两个以上的组间均值差异。

在实际操作中,选择正确的统计方法前,应确保满足该方法的前提条件,并结合研究设计和数据特性进行合理的选择。

在SPSS等统计软件中,可以直接选择相应的菜单选项来进行这样的分析。

独立样本T检验和两配对样本T检验李燕

独立样本T检验和两配对样本T检验李燕
5.4
两配对独立样本t检验
5.4.1 两配对样本t检验的目的
检验目的:利用来自两个总体的配对样本,推断两个总体的均值是否存在显著性差异。两配对样本指同样的个案在“前”、“后”两种状态,或者不同的侧面所表现的两种不同的特征。前提条件:两配对样本的样本容量相同,两组样本观察值的先后顺序一一对应,不能随意改变;样本来自的总体服从或近似服从正态分布。
一、提出原假设H0为:两总体均值无显著差异,即 μ1 -μ2=0二、选择检验统计量1. 12、 22 已知检验统计量为
5.3.2 两独立样本t检验的基本步骤
2、当12、 22 未知且相等时,采用合并方差作为两个总体方差的估计 检验统计量为
5.3.2 两独立样本t检验的基本步骤
3、当12、 22 未知且不相等时,分别采用各自的方差,但需要修正t分布的自由度。 检验统计量为:
5.3、两独立样本t检验
5.4、两配对样本t检验
5.3
两独立样本t检验
5.3.1 两独立样本t检验的目的
利用来自两个总体的独立样本,推断两个总体的均值是否存在显著性差异
前提条件:两个样本总体应服从或近似服从正态分布两个样本相互独立,两独立样本的样本容量可以相等,也可以不相等;
5.3.2 两独立样本t检验的基本步骤
5.4.2 两配对样本t检验的基本步骤
一、提出原假设 H0:两总体均值无显著差异,即 μ1 -μ2=0二、选择检验统计量 因两配对的总体样本来源于同样的个案,所以两配对样本的t检验最终转化成差值序列总体均值是否为0的单样本t检验。 先求出每对观测值之差值,对差值变量求平均。 检验差值变量的均值与0之间差异的显著性。
Hale Waihona Puke 作业2生猪与饲料利用spss两独立样本t检验,研究猪饲料是否有效果。

T检验独立样本与配对样本

T检验独立样本与配对样本

T检验独立样本与配对样本T检验是一种常用的统计方法,用于比较两个样本之间的差异是否显著。

在实际应用中,常常需要进行独立样本的T检验和配对样本的T 检验。

本文将分别介绍独立样本T检验和配对样本T检验的原理、应用场景和计算方法。

一、独立样本T检验独立样本T检验用于比较两个独立样本的均值是否存在显著差异。

例如,我们想要比较男性和女性的平均身高是否有显著差异,就可以使用独立样本T检验。

1. 原理独立样本T检验的原理是基于两个独立样本的均值差异和样本方差的比较。

假设我们有两个样本,分别记为样本1和样本2,样本1的均值为μ1,样本2的均值为μ2,样本1的方差为σ1^2,样本2的方差为σ2^2。

独立样本T检验的原假设为“两个样本的均值相等”,备择假设为“两个样本的均值不相等”。

2. 应用场景独立样本T检验适用于以下场景:- 比较两个独立样本的均值是否存在显著差异;- 样本数据满足正态分布假设;- 两个样本的方差相等或近似相等。

3. 计算方法进行独立样本T检验的计算方法如下:- 计算两个样本的均值和方差;- 计算T值,T值的计算公式为:T = (x1 - x2) / sqrt(s1^2/n1 + s2^2/n2),其中x1和x2分别为样本1和样本2的均值,s1和s2分别为样本1和样本2的标准差,n1和n2分别为样本1和样本2的样本容量;- 根据自由度和显著性水平查找T分布表,确定临界值;- 比较计算得到的T值和临界值,判断是否拒绝原假设。

二、配对样本T检验配对样本T检验用于比较同一组样本在不同条件下的均值差异是否显著。

例如,我们想要比较同一组学生在考试前和考试后的平均成绩是否有显著差异,就可以使用配对样本T检验。

1. 原理配对样本T检验的原理是基于同一组样本在不同条件下的均值差异和样本方差的比较。

假设我们有一组样本,记为样本1和样本2,样本1和样本2是同一组样本在不同条件下的观测值。

配对样本T检验的原假设为“两个样本的均值相等”,备择假设为“两个样本的均值不相等”。

t检验及公式

t检验及公式

T 检验分为三种方法T 检验分为三种方法:1. 单一样本t 检验(One-sample t test ),是用来比较一组数据的平均值和一个数值有无差异。

例如,你选取了5个人,测定了他们的身高,要看这五个人的身高平均值是否高于、低于还是等于1.70m ,就需要用这个检验方法。

2. 配对样本t 检验(paired-samples t test ),是用来看一组样本在处理前后的平均值有无差异。

比如,你选取了5个人,分别在饭前和饭后测量了他们的体重,想检测吃饭对他们的体重有无影响,就需要用这个t 检验。

注意,配对样本t 检验要求严格配对,也就是说,每一个人的饭前体重和饭后体重构成一对。

3. 独立样本t 检验(independent t test ),是用来看两组数据的平均值有无差异。

比如,你选取了5男5女,想看男女之间身高有无差异,这样,男的一组,女的一组,这两个组之间的身高平均值的大小比较可用这种方法。

总之,选取哪种t 检验方法是由你的数据特点和你的结果要求来决定的。

t 检验会计算出一个统计量来,这个统计量就是t 值,spss 根据这个t 值来计算sig 值。

因此,你可以认为t 值是一个中间过程产生的数据,不必理他,你只需要看sig 值就可以了。

sig 值是一个最终值,也是t 检验的最重要的值。

上海神州培训中心 SPSS 培训sig 值的意思就是显著性(significance ),它的意思是说,平均值是在百分之几的几率上相等的。

一般将这个sig 值与0.05相比较,如果它大于0.05,说明平均值在大于5%的几率上是相等的,而在小于95%的几率上不相等。

我们认为平均值相等的几率还是比较大的,说明差异是不显著的,从而认为两组数据之间平均值是相等的。

如果它小于0.05,说明平均值在小于5%的几率上是相等的,而在大于95%的几率上不相等。

我们认为平均值相等的几率还是比较小的,说明差异是显著的,从而认为两组数据之间平均值是不相等的。

t检验

t检验

▲计算公式:
t 统计量: 自由度:n - 1
X 0 t s n
▲ 适用条件:
(1) 已知一个总体均数;
(2) 可得到一个样本均数及该样本 标准误; (3) 样本来自正态或近似正态总体。
例1
• 通过以往大量资料得知某地20岁男子 平均身高为168cm,今随机测量当地16 名20岁男子,得其平均身高172cm,标 准差14cm。问当地现在20岁男子平均 身高是否高于以往?
(3) 确定P值,作出统计推断 查附表3,t界值表,得0.20>P>0.10,按=0.05 水准不拒绝H0 ,尚不能认为两种方法检查的结果不同。
三、两独立样本t检验
▲目的:由两个样本均数的差别推断两样本所代表 的总体均数间有无差别。
▲计算公式及意义:
X1 X 2 t sX 1 X 2
自由度:n1 + n2 –2
这两个平均数很有可能不同。
但能不能据此直接推断两地同性别、同
年龄小学生的平均体重不等?或者说这两个
样本所来自的总体不相同?
此类问题涉及两样本均数的比较。
▲ 适用条件: (1)已知/可计算两个样本均数及它们的标准差 ; (2)样本来自正态或近似正态总体;
2 (3)方差齐 12 2 。
例7-4 为了解内毒素对肌酐的影响,将20只雌性中 年大鼠随机分为甲、乙两组,给不同的处理,结果 如下,问内毒素对肌酐有影响?
按 0.05水准,不拒绝H0,不能认 为两法测定尿铅结果有差别
输入数据
Excel进行t检验步骤(一)
Excel进行t检验步骤(二)
“工具” 验” “数据分析”
“t检
这里假设无效假 设Ho成立,即两 品种无差异,二者 来自同一总体,则 为“双样本等方差 假设”。

T检验分为三种方法

T检验分为三种方法

T检验分为三种方法
T检验是一种常见的统计推断方法,它用于比较两个样本之间的差异。

T检验分为三种方法:独立样本T检验、配对样本T检验和单样本T检验。

下面将对这三种方法进行介绍。

1.独立样本T检验:
独立样本T检验用于比较两个不相关的样本之间的均值差异。

要进行
独立样本T检验,首先需要收集两个独立的样本数据,然后根据这些数据
计算出两个样本的均值和方差。

T检验的原假设是这两个样本的均值相等,备择假设是这两个样本的均值不相等。

根据计算的T值和自由度,可以计
算出P值,从而判断原假设是否成立。

2.配对样本T检验:
配对样本T检验用于比较同一个样本在不同条件下的均值差异。

配对
样本T检验适用于两种情况:一是两个样本是相关的,例如同一个受试者
在不同时间点的数据;二是两个样本是配对的,例如同一组受试者在不同
条件下的数据。

在配对样本T检验中,计算的T值和自由度与独立样本T
检验类似,根据P值判断原假设是否成立。

3.单样本T检验:
单样本T检验用于判断一个样本的均值是否与一个已知的总体均值相等。

在单样本T检验中,收集一个样本的数据,计算样本的均值和标准差。

T检验的原假设是样本的均值等于总体的均值,备择假设是样本的均值不
等于总体的均值。

根据计算的T值和自由度,计算P值,从而判断原假设
是否成立。

总的来说,T检验是一种常用的统计方法,可以用于比较两个样本均值是否有差异,并判断这种差异是否显著。

根据实际问题的需求,可以选择独立样本T检验、配对样本T检验或单样本T检验来进行分析。

两独立样本t检验与两配对样本t检验的异同

两独立样本t检验与两配对样本t检验的异同

两独立样本t检验与两配对样本t检验的异同在统计学中,t检验是一种用于比较两个样本均值是否有显著差异的常用方法。

在实际应用中,我们通常会遇到两种常见的t检验方法,即两独立样本t检验和两配对样本t检验。

本文将详细介绍这两种方法的异同点。

一、两独立样本t检验两独立样本t检验用于比较两个独立样本的均值是否有差异。

通常情况下,我们希望了解两个样本是否来自于同一总体分布。

1. 假设检验:- 零假设(H0):两个样本的均值相等。

- 备择假设(H1):两个样本的均值不相等。

2. 检验统计量:两独立样本t检验的检验统计量为:t = (x1 - x2) / sqrt(S1^2 / n1 + S2^2 / n2)其中,x1和x2分别为两个样本的均值,S1和S2分别为两个样本的标准差,n1和n2分别为两个样本的观测值个数。

3. 确定拒绝域:根据显著性水平(α)和自由度(df)来确定拒绝域。

在两独立样本t检验中,自由度为 df = n1 + n2 - 2。

根据给定的显著性水平和自由度,我们可以在t分布表中找到对应的临界值。

4. 检验决策:如果计算得到的检验统计量t的绝对值大于临界值,我们就可以拒绝零假设。

否则,我们接受零假设,认为两个样本的均值相等。

二、两配对样本t检验两配对样本t检验用于比较相对于同一组观测对象(配对样本)的两个相关变量之间的均值差异。

它适用于进行前后观测、对照实验等研究。

1. 假设检验:- 零假设(H0):配对样本的均值差等于0。

- 备择假设(H1):配对样本的均值差不等于0。

2. 检验统计量:两配对样本t检验的检验统计量为:t = (x d - μd) / (sd / sqrt(n))其中,x d为配对样本均值差的平均值,μd为期望的均值差(通常为0),sd为样本均值差的标准差,n为样本容量。

3. 确定拒绝域:与两独立样本t检验相似,根据显著性水平和自由度来确定拒绝域。

在两配对样本t检验中,自由度为 df = n - 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两独立样本T检验
目的:利用来自两个总体的独立样本,推断两个总体的均值是否存在显著差异。

检验前提:
样本来自的总体应服从或近似服从正态分布;
两样本相互独立,样本数可以不等。

两独立样本T检验的基本步骤:
提出假设
原假设H_0:μ_1-μ_2=0
备择假设H_1:μ_1-μ_2≠0
建立检验统计量
如果两样本来自的总体分别服从N(μ_1,σ_1^2 )和N(μ_2,σ_2^2 ),则两样本均值差(x_1 ) ?-x ?_2应服从均值为μ_1-μ_2、方差为σ_12^2的正态分布。

第一种情况:当两总体方差未知且相等时,采用合并的方差作为两个总体方差的估计,为:s^2=((n_1-1) s_1^2+(n_2-1) s_2^2)/(n_1+n_2-2)
则两样本均值差的估计方差为:
σ_12^2=s^2 (1/n_1 +1/n_2 )
构建的两独立样本T检验的统计量为:
t= ((x_1 ) ?-x ?_2)/√(s^2 (1/n_1 +1/n_2 ) )
此时,T统计量服从自由度为n_1+n_2-2个自由度的t分布。

第二种情况:当两总体方差未知且不相等时,两样本均值差的估计方差为:
σ_12^2=(s_1^2)/n_1 +(s_2^2)/n_2
构建的两独立样本T检验的统计量为:
t= ((x_1 ) ?-x ?_2)/√((s_1^2)/n_1 +(s_2^2)/n_2 )
此时,T统计量服从修正自由度的t分布,自由度为:
f= ((s_1^2)/n_1 +(s_2^2)/n_2 )^2/(((s_1^2)/n_1 )^2/n_1 +((s_2^2)/n_2 )^2/n_2 ) 可见,两总体方差是否相等是决定t统计量的关键。

所以在进行T检验之前,要先检验两总体方差是否相等。

SPSS中使用方差齐性检验(Levene F检验)判断两样本方差是否相等近而间接推断两总体方差是否有显著差异。

三、计算检验统计量的观测值和p值
将样本数据代入,计算出t统计量的观测值和对应的概率p值。

四、在给定显著性水平上,做出决策
首先,利用F统计量判断两总体方差是否相等,Levene F检验的原假设为两独立总体方差相等。

概率p<0.05时,有充分理由拒绝原假设,说明方差不齐;否则,两样本方差无显著性差异。

其次,将设定的显著性水平α与检验统计量的p值比较,如果t统计量的p值小于α,落入拒绝域内,则我们有充分理由拒绝原假设,认为两总体均值有显著差异。

SPSS实现过程:
菜单:Analyze -> Compare Means-> Independent Samples T test
Test Variable(s):待检验的变量(一般是定距或定序变量)
Grouping Variable :分组变量(只能比较两个样本)
结果中比较有用的值:方差齐次性检验F统计量对应的P值和方差相等或不相等T统计量对应的P值。

例:利用pkustedu.sav数据,检验不同性别学生的平均月生活费是否存在差异。

扩展案例:
独立样本T检验只能比较两个总体的均值是否相等,这要求自量恰好分成两组,但更多时候,自变量的分类超过两类,或是自变量是连续时,这时我们要对自变量进行处理后,才能进行T检验。

如,要分析不同身高儿童的体重是否有显著差异,此时做为分组变量的身高就是连续变量。

SPSS中使用cut point功能重新处理自变量。

例:现有一组儿童身高、体重的调查资料,数据见data08-01.sav,试分析身高高于1.55m的儿童与身高不足155cm的儿童体重是否有显著差异。

SPSS实现过程:在cut point单选框中,输入1.55即可。

配对样本T检验
配对样本与独立样本的区别,
独立样本中两个样本来自两个独立的总体,而配对样本实际上来自一个总体,是对同一个体前后不同观测的分析,如同一组喝某品牌减肥茶的人群,比较他们喝茶前与喝茶后的体重是否有显著差异。

SPSS实现过程:
菜单:Analyze -> Compare Means-> Paired Samples T test
例:利用st2004.sav,检验1995年人均国民生产总值与2004年人均国民生产总值是否存在显著差异?
练习:
通过st2004.sav数据,检验东部地区和西部地区人均国民生产总值是否存在差异。

通过jobsat1.sav数据,分析收入(income1)低于3000元和收入高于3000元的职工的工作快乐感是否有显著差异。

问卷调查分析:
影响学习成绩的因素分析:
学习成绩的综合评价:高考成绩、四六级成绩、是否有其他考试证书;
影响因素分析:
个人因素:学习时间安排、学习效率、学习动力
外部因素:
家庭因素:父母文化程度,家庭和睦,学生生活来源,
学校因素:社团活动、辅导班。

相关文档
最新文档