研究生英文文献汇报-化学化工
化工专业科技英语作文
化工专业科技英语作文Chemical Engineering and Technology。
Chemical engineering and technology is a branch of engineering that applies physical sciences (e.g., chemistry and physics) and life sciences (e.g., biology, microbiology and biochemistry) together with mathematics and economics to produce, transform, transport, and properly use chemicals, materials and energy. It essentially deals with the design, construction, and operation of machines and plants that perform chemical reactions to solve practical problems or make useful products. It is a multidisciplinary field that involves a wide range of industries, from pharmaceuticals and food to petrochemicals and energy.Chemical engineers are involved in many aspects ofplant design and operation, including safety and hazard assessments, process design and analysis, control engineering, chemical reaction engineering, construction specification, and operating instructions. They are alsoresponsible for the development of new materials and technologies, such as nanotechnology, fuel cells and biomedical engineering. In addition, they play a key rolein environmental protection and the development of sustainable processes and products.Chemical engineering and technology is a rapidly growing field with great potential for future development. As the demand for energy and materials continues to increase, the need for chemical engineers will also grow. In addition, the increasing focus on environmental sustainability and the development of new technologies will create new opportunities for chemical engineers to make a significant impact on society.One of the key challenges facing chemical engineers today is the need to develop sustainable processes and products. With the increasing awareness of environmental issues and the finite nature of natural resources, there is a growing demand for processes and products that minimize waste, reduce energy consumption, and use renewable resources. Chemical engineers are at the forefront of thiseffort, developing new technologies and processes that are more sustainable and environmentally friendly.Another challenge facing chemical engineers is the need to develop new materials and technologies to meet the demands of a rapidly changing world. As new industries and technologies emerge, there is a growing need for new materials and processes that can meet the demands of these industries. Chemical engineers are working to develop new materials and technologies that can meet the needs of these industries, such as advanced materials for electronics, new materials for energy storage, and new processes for the production of biofuels.In conclusion, chemical engineering and technology is a dynamic and rapidly growing field with great potential for future development. Chemical engineers play a key role in the development of new materials and technologies, the design and operation of chemical processes, and the development of sustainable processes and products. With the increasing demand for energy and materials, and the growingfocus on environmental sustainability, the need for chemical engineers will continue to grow in the future.。
化工英语文献
3 化工英语文献3.1化工英语文献的结构Title, (Author names, Affiliation),Abstract ,(Keywords),Introduction,Experimental,Results, Discussions (Results and discussions),Conclusions,Acknowledgements,References3.2 英语文献的检索Elsevier—science directSpringerlinkWiley interscience3.3 中英文摘要1、定义以提供文献内容梗概为目的,不加评论和补充解释,简明、准切地记叙文献重要内容的短文。
好的摘要对于增加论文的被检索和引用的机会、吸引读者、扩大影响起着不可忽视的作用。
2、摘要的类型和基本内容类型:根据内容的不同,摘要分为三大类:报道性摘要、指示性摘要和报道-指示性摘要。
1)报道性摘要(informative abstract)。
也称信息性摘要或资料性摘要。
其特点是全面、简要地概括论文的目的、方法、主要数据和结论。
通常,这种摘要可部分地取代阅读全文。
2)指示性摘要(indicative abstract)。
也称说明性摘要、描述性摘要(descriptive abstract)或论点摘要(topic abstract)。
一般只用二、三句话概括论文的主题,而不涉及论据和结论,多用于综述、会议报道等。
帮助读者决定是否需要阅读全文。
3)报道-指示性摘要(informative- indicative abstract)。
以报道性摘要的形式表述一次文献中信息总价值较高的部分,以指示性摘要的形式表述其余部分。
传统的摘要多为一般式,在内容上大致包括引言(introduction)、材料和方法(materials and methods)、结果(results)和讨论(discussion)。
即IMRAD3、EI对摘要的要求《EI》中国信息部要求信息性文摘(Information Abstract)应该用简洁、明确的语言(约300汉字,150 英文字)将论文的“目的(Purposes)”,主要的研究“过程(Procedures)”及所采用的“方法(Methods)”,由此得到的主要“结果(Results)”和得出的重要“结论(Conclusions)”表达清楚。
化学专业外文文献原稿和译文
外文文献原稿和译文原稿Facile synthesis of hierarchical core–shell Fe3O4@MgAl–LDH@Au as magnetically recyclable catalysts for catalytic oxidation of alcoholsA novel core–shell structural Fe3O4@MgAl–LDH@Au nanocatalyst was simply synthesized via supporting Au nanoparticles on the MgAl–LDH surface of Fe3O4@MgAl–LDH nanospheres. The catalyst exhibited excellent activity for the oxidation of 1-phenylethanol, and can be effectively recovered by using an external magnetic field.The selective oxidation of alcohols to the corresponding carbonyl compounds is a greatly important transformation in synthesis chemistry. Recently, it has been disclosed that hydrotalcite (layered double hydroxides: LDH)-supported Cu, Ag and Au nanoparticles as environmentally benign catalysts could catalyse the oxidation of alcohol with good efficiency. In particular, the Au nanoparticles supported on hydrotalcite exhibit high activity for the oxidation of alcohols under atmospheric O2 without additives. It has been extensively demonstrated that the activity of the nanometre-sized catalysts will benefit from decreasing the particle size. However, as the size of the support is decreased, separation using physical methods, such as filtration or centrifugation, becomes a difficult and time-consuming procedure. A possible solution could be the development of catalysts with magnetic properties, allowing easy separation of the catalyst by simply applying an external magnetic field. From the green chemistry point of view, development of highly active, selective and recyclable catalysts has become critical. Therefore, magnetically separable nanocatalysts have received increasing attention in recent years because the minimization in the consumption of auxiliary substances, energy and time used in achieving separations canresult in significant economical and environmental benefits.Magnetic composites with a core–shell structure allow the integration of multiple functionalities into a single nanoparticle system, and offer unique advantages for applications, particularly in biomedicine and catalysis. However it is somewhat of a challenge to directly immobilize hierarchical units onto the magnetic cores. In our previous work, the Fe3O4 submicro-spheres were first coated with a thin carbon layer, then coated with MgAl–LDH to obtain an anticancer agent-containing Fe3O4@DFUR–LDH as drug targeting delivery vector. Li et al. prepared Fe3O4@MgAl–LDH through a layer-by-layer assembly of delaminated LDH nanosheets as a magnetic matrix for loading W7O24as a catalyst. These core–shell structural nanocomposites possess the magnetization of magnetic materials and multiple functionalities of the LDH materials. Nevertheless, these reported synthesis routes need multi-step and sophisticated procedures. Herein, we design a facile synthesis strategy for the fabrication of a novel Fe3O4@MgAl–LDH@Au nanocatalyst, consisting of Au particles supported on oriented grown MgAl–LDH crystals over the Fe3O4 nanospheres, which combines the excellent catalytic properties of Au nanoparticles with the superparamagnetism of the magnetite nanoparticles. To the best of our knowledge, this is the first instance of direct immobilization of vertically oriented MgAl–LDH platelet-like nanocrystals onto the Fe3O4 core particles by a simple coprecipitation method and the fabrication of hierarchical magnetic metal-supported nanocatalysts via further supporting metal nanoparticles.As illustrated in Scheme 1, the synthesis strategy of Fe3O4@MgAl–LDH@Au involves two key aspects. Nearly monodispersed magnetite particles were pre-synthesized using a surfactant-free solvothermal method. First, the Fe3O4 suspension was adjusted to a pH of ca. 10, and thus the obtained fully negatively charged Fe3O4spheres were easily coated with a layer of oriented grown carbonate–MgAl–LDH via electrostatic attraction followed by interface nucleation and crystal growth under dropwise addition of salts and alkaline solutions. Second, Au nanoparticles were effectively supported on thus-formed support Fe3O4@MgAl–LDH by a deposition–precipitation method (see details in ESI).Fig. 1 depicts the SEM/TEM images of the samples at various stages of the fabrication of the Fe3O4@MgAl–LDH@Au nanocatalyst. The Fe3O4nanospheres (Fig. 1a) show asmooth surface and a mean diameter of 450 nm with a narrow size distribution (Fig. S1, ESI). After direct coating with carbonate–MgAl–LDH (Fig. 1b), a honeycomb like morphology with many voids in the size range of 100–200 nm is clearly observed, and the LDH shell is composed of interlaced platelets of ca. 20 nm thickness. Interestingly, the MgAl–LDH shell presents a marked preferred orientation with the c-axis parallel to, and the ab-face perpendicular to the surface of the magnetite cores, quite different from those of a previous report. A similar phenomenon has only been observed for the reported LDH films and the growth of layered hydroxides on cation-exchanged polymer resin beads. The TEM image of two separate nanospheres (Fig. 1d) undoubtedly confirms the core–shell structure of the Fe3O4@MgAl–LDH with the Fe3O4 cores well-coated by a layer of LDH nanocrystals. In detail, the MgAl–LDH crystal monolayers are formed as large thin nanosheet-like particles, showing a edge-curving lamella with a thickness of ca. 20 nm and a width of ca. 100 nm, growing from the magnetite core to the outer surface and perpendicular to the Fe3O4surface. The outer honeycomb like microstructure of the obtained core–shell Fe3O4@MgAl–LDH nanospheres with a surface area of 43.3 m2g_1 provides abundant accessible edge and junction sites of LDH crystals making it possible for this novel hierarchical composite to support metal nanoparticles. With such a structural morphology, interlaced perpendicularly oriented MgAl–LDH nanocrystals can facilitate the immobilization of nano-metal particles along with avoiding the possible aggregation.Scheme 1 The synthetic strategy of an Fe3O4@MgAl–LDH@Au catalyst.Fig. 1 SEM (a, b and c), TEM (d and e) and HRTEM (f) images and EDX spectrum (g) of Fe3O4 (a), Fe3O4@MgAl–LDH (b and d) and Fe3O4@MgAl–LDH@Au (c, e, f and g).Fig. 2 XRD patterns of Fe3O4 (a), Fe3O4@MgAl–LDH (b) and Fe3O4@MgAl–LDH@Au(c).The XRD results (Fig. 2) demonstrate that the Fe3O4@MgAl–LDH nanospheres are composed of an hcp MgAl–LDH (JCPDS 89-5434) and fcc Fe3O4 (JCPDS 19-0629). It canbe clearly seen from Fig. 2b that the series (00l) reflections at low 2θ angles aresignificantly reduced compared with those of single MgAl–LDH (Fig. S2, ESI), while the (110) peak at high 2θangle is clearly distinguished with relatively less decrease, as revealed by greatly reduced I(003)/I(110) = 0.8 of Fe3O4@MgAl–LDH than that of MgAl–LDH (3.9). This phenomenon is a good evidence for an extremely well-oriented assembly of MgAl–LDH platelet-like crystals consistent with the c-axis of the crystals being parallel to the surface of an Fe3O4core. The particle dimension in the c-axis is calculated as ~ 25 nm using the Scherrer equation (eqn S1, ESI) based on the (003) line width (Fig. 2b), in good agreement with the SEM/TEM results. The energy-dispersive X-ray (EDX) result (Fig. S3, ESI) of Fe3O4@MgAl–LDH reveals the existence of Mg, Al, Fe and O elements, and the Mg/Al molar ratio of 2.7 close to the expected one (3.0), indicating the complete coprecipitation of metal cations for MgAl–LDH coating on the surface of Fe3O4.The FTIR data (Fig. S4, ESI) further evidence the chemical compositions and structural characteristics of the composites. The as-prepared Fe3O4@MgAl–LDH nanosphere shows a sharp absorption at ca. 1365 cm_1 being attributed to the ν3 (asymmetric stretching) mode of CO32_ ions and a peak at 584 cm_1 to the Fe–O lattice mode of the magnetite phase, indicating the formation of a CO32–LDH shell on the surface of the Fe3O4 core. Meanwhile, a strong broad band around 3420 cm_1 can be identified as the hydroxyl stretching mode, arising from metal hydroxyl groups and hydrogen-bonded interlayer water molecules. Another absorption resulting from the hydroxyl deformation mode of water, δ(H2O), is recorded at ca. 1630 cm_1.Based on the successful synthesis of honeycomb like core–shell nanospheres, Fe3O4@MgAl–LDH, our recent work further reveals that this facile synthesis approach can be extended to prepare various core–shell structured LDH-based hierarchical magnetic nanocomposites according to the tenability of the LDH layer compositions, such as NiAl–LDH and CuNiAl–LDH (Fig. S3, ESI).Gold nanoparticles were further assembled on the honeycomb likeMgAl–LDH platelet-like nanocrystals of Fe3O4@MgAl–LDH. Though the XRD pattern (Fig. 2c) fails to show the characteristics of Au nanoparticles, it can be clearly seen by the TEM of Fe3O4@MgAl–LDH@Au (Fig. 1e) that Au nanoparticles are evenly distributed on the edgeand junction sites of the interlaced MgAl–LDH nanocrystals with a mean diameter of 7.0 nm (Fig. S5, ESI), implying their promising catalytic activity. Meanwhile, the reduced packing density (large void) and the less sharp edge of LDH platelet-like nanocrystals can be observed (Fig. 1c and e). To get more insight on structural information of Fe3O4@MgAl–LDH@Au, the HRTEM image was obtained (Fig. 1f). It can be observed that both the Au and MgAl–LDH nanophases exhibit clear crystallinity as evidenced by well-defined lattice fringes. The interplanar distances of 0.235 and 0.225 nm for two separate nanophases can be indexed to the (111) plane of cubic Au (JCPDS 89-3697) and the (015) facet of the hexagonal MgAl–LDH phase (inset in Fig. 1f and Fig. S6 (ESI)). The EDX data (Fig. 1g) indicate that the magnetic core–shell particle contains Au, Mg, Al, Fe and O elements. The Au content is determined as 0.5 wt% upon ICP-AES analysis.Table 1 Recycling results on the oxidation of 1-phenylethanol The VSM analysis (Fig. S7, ESI) shows the typical superparamagnetism of the samples. The lower saturation magnetization (Ms) of Fe3O4@MgAl–LDH (20.9 emu g_1) than the Fe3O4 (83.8 emu g_1) is mainly due to the contribution of non-magnetic MgAl–LDH coatings (68 wt%) to the total sample. Interestingly, Ms of Fe3O4@MgAl–LDH@Au is greatly enhanced to 49.2 emu g_1, in line with its reduced MgAl–LDH content (64 wt%). This phenomenon can be ascribed to the removal of weakly linked MgAl–LDH particles among the interlaced MgAl–LDH nanocrystals during the Au loading process, which results in a less densely packed MgAl–LDH shell as indicated by SEM. The strong magnetic sensitivity of Fe3O4@MgAl–LDH@Au provides an easy and effective way to separate nanocatalysts from a reaction system.The catalytic oxidation of 1-phenylethanol as a probe reaction over the present novel magnetic Fe3O4@MgAl–LDH@Au (7.0 nm Au) nanocatalyst demonstrates high catalytic activity. The yield of acetophenone is 99%, with a turnover frequency (TOF) of 66 h_1,which is similar to that of the previously reported Au/MgAl–LDH (TOF, 74 h_1) with a Au average size of 2.7 nm at 40 1C, implying that the catalytic activity of Fe3O4@MgAl–LDH@Au can be further enhanced as the size of Au nanoparticles is decreased. Meanwhile, the high activity and selectivity of the Fe3O4@MgAl–LDH@Au can be related to the honeycomb like morphology of the support Fe3O4@MgAl–LDH being favourable to the high dispersion of Au nanoparticles and possible concerted catalysis of the basic support. Five reaction cycles have been tested for the Au nanocatalysts after easy magnetic separation by using a magnet (4500 G), and no deactivation of the catalyst has been observed (Table 1). Moreover, no Au, Mg and Al leached into the supernatant as confirmed by ICP (detection limit: 0.01 ppm) and almost the same morphology remained as evidenced by SEM of the reclaimed catalyst (Fig. S8, ESI).In conclusion, a novel hierarchical core–shell magnetic gold nanocatalyst Fe3O4@MgAl–LDH@Au is first fabricated via a facile synthesis method. The direct coating of LDH plateletlike nanocrystals vertically oriented to the Fe3O4 surface leads to a honeycomb like core–shell Fe3O4@MgAl–LDH nanosphere. By a deposition–precipitation method, a gold-supported magnetic nanocatalyst Fe3O4@MgAl–LDH@Au has been obtained, which not only presents high 1-phenylethanol oxidation activity, but can be conveniently separated by an external magnetic field as well. Moreover, a series of magnetic Fe3O4@LDH nanospheres involving NiAl–LDH and CuNiAl–LDH can be fabricated based on the LDH layer composition tunability and multi-functionality of the LDH materials, making it possible to take good advantage of these hierarchical core–shell materials in many important applications in catalysis, adsorption and sensors.This work is supported by the 973 Program (2011CBA00508).译文简易合成易回收的分层核壳Fe3O4@MgAl–LDH@Au磁性纳米粒子催化剂催化氧化醇类物质一种新的核壳结构的Fe3O4@MgAl–LDH@Au纳米催化剂的制备只是通过Au离子负载在已合成的纳米粒子Fe3O4@MgAl–LDH球体的MgAl–LDH的表面上。
分析化学英文文献
I. vocabularyabsorbance吸光度acetic acid 乙酸acetone 丙酮acetonitrile 乙腈aliquot 等份(试液)aluminum foil 铝箔analytical chemistry 分析化学American Chemical Society (缩写ACS) 美国化学会autosampler 自动进样器beaker 烧杯bibliography 参考书目blender 混合器,搅拌机buffer solution 缓冲溶液burette 滴定管cartridge 柱管centrifugation 离心Chemical Abstracts (缩写CA) 化学文摘chemical analysis 化学分析chromatograph 色谱仪chromatogram色谱图cloud point extraction(缩写CPE)浊点萃取confidence level 置信水平conical flask 锥形瓶daughter ion 子离子dichloromethane 二氯甲烷Diode array detector (缩写DAD)二极管阵列检测器dilution 稀释(n.)disperser solvent 分散剂dispersive liquid–liquidmicroextraction 分散液液微萃取distilled water 蒸馏水dropping pipet 滴管electrochemical analysis电化学分析electrode 电极electrolyte 电解质electromagnetic spectrum 电磁波谱electrospray ionization (缩写ESI ) 电喷雾离子化eliminate 消除(v.)eluate 洗出液eluent 洗脱剂elute 洗脱(v.)elution 洗脱(n.)Encyclopedia of analytical chemistry分析化学百科全书The Engineering Index (缩写EI )工程索引enrichment factor 富集因子Evaporative Light Scattering Detector(缩写ELSD) 蒸发光散射检测器extract 萃取(v.)、萃取物(n.)extraction efficiency 萃取效率filter 过滤(v.)、过滤器(n.) filtrate 滤出液filtration 过滤fluorescence荧光fluorometry荧光分析法formic acid 甲酸funnel 漏斗gas chromatography–mass spectrometry (缩写GC–MS) 气相色谱-质谱gas chromatography coupled to tandem mass spectrometry (缩写GC–MS/MS)气相色谱-串联质谱gel filtration chromatography凝胶过滤色谱法gel permeation chromatography凝胶渗透色谱法graduated cylinder 量筒high performance liquid chromatography (缩写HPLC) 高效液相色谱homogenate 匀浆(n.) homogenize 使均质,将……打成匀浆hydrophobic 疏水的identification 鉴定Impact Factor影响因子incubation time 温育时间Index to Scientific Technical Proceedings (缩写ISTP)科技会议录索引indicator 指示剂instrumental analysis 仪器分析interference 干扰ion enhancement 离子加强ion exchange chromatography离子交换色谱法ion source 离子源ion suppression 离子抑制limit of detection (缩写LOD)检出限limit of quantitation (缩写LOQ)定量限linearity 线性linear range 线性范围linear regression equation 线性回归方程liquid chromatography tandem massspectrometry (缩写LC-MS/MS)液相色谱串联质谱liquid chromatography withelectrospray ionizationtandem mass spectrometry (缩写LC-ESI-MS/MS)液相色谱电喷雾串联质谱liquid-liquid partition chromatography液液分配色谱法liquid-solid adsorptionchromatography 液固吸附色谱法mass analyzer 质量分析器Mass Spectrometer 质谱仪mass spectrum 质谱图mass-to-charge ratio 质荷比matrix effect 基质效应maximum absorption 最大吸收maximum value 最大值measuring pipet 吸量管methanol 甲醇micelle 胶束microwave assisted extraction 微波辅助提取minimum value 最小值mobile phase 流动相molarity 摩尔浓度monograph专著Multiple-reaction monitoring 多反应监测(缩写MRM)normal phase liquid chromatography正相液相色谱法nominal concentration 标示浓度optimization 优化outlier 离群值parent ion 母离子pipette 移液管polycyclic aromatic hydrocarbons 多环芳烃potentiometry电位法preconcentration 预浓缩primary literature一次文献quadrupole-time- of-flight massspectrometry 四极杆-飞行时间质谱(缩写Q-TOF MS)qualitative analysis 定性分析quality assurance and quality control(缩写QA/QC)质量保证和质量控制quantification 定量quantitative analysis 定量分析reconstitute 重组、复溶(v.)recovery 回收率refractive index detector 折光指数检测器,示差折光检测器relative abundance 相对丰度relative standard deviation (缩写RSD)相对标准偏差reproducibility 重现性reversed phase liquid chromatography(缩写RPLC)反相液相色谱法Royal Society of Chemistry(缩写RSC)英国皇家化学会Science Citation Index (缩写SCI )科学引文索引Science Citation Index Expanded (缩写SCIE) 科学引文索引扩展版Scientific notation 科学计数法signal to noise ratio (缩写S/N)信噪比size exclusion chromatography尺寸排除色谱法secondary literature二次文献solid-phase extraction (缩写SPE)固相萃取solid-phase microextraction (缩写SPME)固相微萃取spike 添加(v.)standard solution标准溶液stationary phase 固定相stirring bar 搅拌棒stoichiometric point化学计量点surfactant 表面活性剂supernatant 上清液syringe 注射器tap water 自来水Teflon 聚四氟乙烯tetrahydrofuran 四氢呋喃titrant 滴定剂titration滴定Ultra performance liquidchromatography (缩写UPLC) 超高效液相色谱Ultraviolet/VisibleSpectrophotometry 紫外/可见分光光度法vacuum 真空vessel 容器volumetric flask 容量瓶volumetric analysis容量分析法voltammetry 伏安法II. Terms and their definitionsAccuracy 准确度A measure of the agreement between an experimental result and its expected value.Analysis 分析A process that provides chemical or physical information about the constituents in the sample or the sampleitselfAnalyte 被测物,被分析物The constituent of interest in sampleCalibration curve 校准曲线The result of a standardization showing gr aphically how a method’s signal changes with respectto the amount of analyte.Calibration method 校准方法The basis of quantitative analysis: magnitude of measured property is proportional toconcentration of analyteChromophore 生色团A functional group which absorbs a characteristic ultraviolet or visible wavelengthGradient elution 梯度洗脱T he process of changing the mobile phase’s solvent strength to enhance the separation of bothearly and late eluting solutes.Gravimetric analysis重量分析A type of quantitative analysis in which the amount of a species in a material is determined by converting the species into a product that can be isolated and weighed.Isocratic elution 等度洗脱the use of a mobile phase whose composition remains constant throughout theseparation.Matrix 基质All other constituents in a sample except for the analytesMethod blank方法空白A sample that contains all components of the matrix except the analyte.Outlier 离群值Data point whose value is much larger or smaller than the remaining data.Precision精密度An indication of the reproducibility of a measurement or resultQuantitative analysis 定量分析The determination of the amount of a substance or species present in a material. Quantitative transfer 定量转移The process of moving a sample from one container to another in a manner that ensures allmaterial is transferred.Selectivity选择性A measure of a method’s freedom from interferences as defined by the method’s selectivity coefficient. Significant figures有效数字The digits in a measured quantity, including all digits known exactly and one digit (the last) whosequantity is uncertain.Spectrophotometry分光光度法. An analytical method that involves how light interacts with a substanceStock solution储备液 A solution of known concentration from which other solutions are prepared.Titration curve滴定曲线A graph showing the progress of a titration as a function of the volume of titrant added.Validation(方法)确证,验证The process of verifying that a procedure yields acceptable results.Titration error滴定误差The determinate error in a titration due to the difference between the end point and the equivalencepoint.III. Common knowledges1.Some key journals in Analytical Chemistry: Analytical ChemistryTrends in Analytical ChemistryJournal of Chromatography AJournal of Chromatography BAnalystAnalytica Chimica ActaTALANTACritical Reviews in Analytical Chemistry Analytical and Bioanalytical ChemistryELECTROPHORESIS2. Types of articles published in scientific journals:Full Length Research PapersRapid CommunicationsReviewsShort CommunicationsDiscussions or Letters to the Editor(Some journals publish all types of articles, while others are devoted to only a single type.)3. The structure of a scientific paper:•Title•Authors (with affiliations and addresses) • Abstract (summary)• Key words•Introduction•Experimental•Results and discussion•Conclusion•Acknowledgement•References4. How to Read a Scientific Paper:Five Helpful Questions•1) WHY did they do this set of experiments?•2) HOW were the experiments actually done?•3) WHAT are the results?•4) WHAT can be concluded from the results?•5) Did they do everything correctly?5. Five-step analyzing process1) Identify and define the problem.2) Design the experimental procedure.3) Conduct an experiment and gather data.4) Analyze the experimental data.5) Report and suggestionIV. Translation exercises1. 用分散液- 液微萃取法对杀菌剂的水样品中的测定(杀真菌剂)开发的。
中英文文献以及翻译(化工类)
Foreign material:Chemical Industry1.Origins of the Chemical IndustryAlthough the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin’s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939).Since 1940 the chemical industry has grown at a remarkable rate, although this has slowed significantly in recent years. The lion’s share of this growth has been in the organic chemicals sector due to the development and growth of the petrochemicals area since 1950s. The explosives growth in petrochemicals in the 1960s and 1970s was largely due to the enormous increase in demand for synthetic polymers such as polyethylene, polypropylene, nylon, polyesters and epoxy resins.The chemical industry today is a very diverse sector of manufacturing industry, within which it plays a central role. It makes thousands of different chemicals whichthe general public only usually encounter as end or consumer products. These products are purchased because they have the required properties which make them suitable for some particular application, e.g. a non-stick coating for pans or a weedkiller. Thus chemicals are ultimately sold for the effects that they produce.2. Definition of the Chemical IndustryAt the turn of the century there would have been little difficulty in defining what constituted the chemical industry since only a very limited range of products was manufactured and these were clearly chemicals, e.g., alkali, sulphuric acid. At present, however, many intermediates to products produced, from raw materials like crude oil through (in some cases) many intermediates to products which may be used directly as consumer goods, or readily converted into them. The difficulty cones in deciding at which point in this sequence the particular operation ceases to be part of the chemical industry’s sphere of activities. To consider a specific example to illustrate this dilemma, emulsion paints may contain poly (vinyl chloride) / poly (vinyl acetate). Clearly, synthesis of vinyl chloride (or acetate) and its polymerization are chemical activities. However, if formulation and mixing of the paint, including the polymer, is carried out by a branch of the multinational chemical company which manufactured the ingredients, is this still part of the chemical industry of does it mow belong in the decorating industry?It is therefore apparent that, because of its diversity of operations and close links in many areas with other industries, there is no simple definition of the chemical industry. Instead each official body which collects and publishes statistics on manufacturing industry will have its definition as to which operations are classified as the chemical industry. It is important to bear this in mind when comparing statistical information which is derived from several sources.3. The Need for Chemical IndustryThe chemical industry is concerned with converting raw materials, such as crude oil, firstly into chemical intermediates and then into a tremendous variety of other chemicals. These are then used to produce consumer products, which make our livesmore comfortable or, in some cases such as pharmaceutical produces, help to maintain our well-being or even life itself. At each stage of these operations value is added to the produce and provided this added exceeds the raw material plus processing costs then a profit will be made on the operation. It is the aim of chemical industry to achieve this.It may seem strange in textbook this one to pose the question “do we need a chemical industry?” However trying to answer this question will provide(ⅰ) an indication of the range of the chemical industry’s activities, (ⅱ) its influence on our lives in everyday terms, and (ⅲ) how great is society’s need for a chemical industry. Our approach in answering the question will be to consider the industry’s co ntribution to meeting and satisfying our major needs. What are these? Clearly food (and drink) and health are paramount. Other which we shall consider in their turn are clothing and (briefly) shelter, leisure and transport.(1)Food. The chemical industry makes a major contribution to food production in at least three ways. Firstly, by making available large quantities of artificial fertilizers which are used to replace the elements (mainly nitrogen, phosphorus and potassium) which are removed as nutrients by the growing crops during modern intensive farming. Secondly, by manufacturing crop protection chemicals, i.e., pesticides, which markedly reduce the proportion of the crops consumed by pests. Thirdly, by producing veterinary products which protect livestock from disease or cure their infections.(2)Health. We are all aware of the major contribution which the pharmaceutical sector of the industry has made to help keep us all healthy, e.g. by curing bacterial infections with antibiotics, and even extending life itself, e.g. ß–blockers to lower blood pressure.(3)Clothing. The improvement in properties of modern synthetic fibers over the traditional clothing materials (e.g. cotton and wool) has been quite remarkable. Thus shirts, dresses and suits made from polyesters like Terylene and polyamides like Nylon are crease-resistant, machine-washable, and drip-dry or non-iron. They are also cheaper than natural materials.Parallel developments in the discovery of modern synthetic dyes and the technology to “bond” th em to the fiber has resulted in a tremendous increase in the variety of colors available to the fashion designer. Indeed they now span almost every color and hue of the visible spectrum. Indeed if a suitable shade is not available, structural modification of an existing dye to achieve this canreadily be carried out, provided there is a satisfactory market for the product.Other major advances in this sphere have been in color-fastness, i.e., resistance to the dye being washed out when the garment is cleaned.(4)Shelter, leisure and transport. In terms of shelter the contribution of modern synthetic polymers has been substantial. Plastics are tending to replace traditional building materials like wood because they are lighter, maintenance-free (i.e. they are resistant to weathering and do not need painting). Other polymers, e.g. urea-formaldehyde and polyurethanes, are important insulating materials f or reducing heat losses and hence reducing energy usage.Plastics and polymers have made a considerable impact on leisure activities with applications ranging from all-weather artificial surfaces for athletic tracks, football pitches and tennis courts to nylon strings for racquets and items like golf balls and footballs made entirely from synthetic materials.Like wise the chemical industry’s contribution to transport over the years has led to major improvements. Thus development of improved additives like anti-oxidants and viscosity index improves for engine oil has enabled routine servicing intervals to increase from 3000 to 6000 to 12000 miles. Research and development work has also resulted in improved lubricating oils and greases, and better brake fluids. Yet again the contribution of polymers and plastics has been very striking with the proportion of the total automobile derived from these materials—dashboard, steering wheel, seat padding and covering etc.—now exceeding 40%.So it is quite apparent even from a brief look at the chemical industry’s contribution to meeting our major needs that life in the world would be very different without the products of the industry. Indeed the level of a country’s development may be judged by the production level and sophistication of its chemical industry4. Research and Development (R&D) in Chemical IndustriesOne of the main reasons for the rapid growth of the chemical industry in the developed world has been its great commitment to, and investment in research and development (R&D). A typical figure is 5% of sales income, with this figure being almost doubled for the most research intensive sector, pharmaceuticals. It is important to emphasize that we are quoting percentages here not of profits but of sales income, i.e. the total money received, which has to pay for raw materials, overheads, staff salaries, etc. as well. In the past this tremendous investment has paid off well, leading to many useful and valuable products being introduced to the market. Examplesinclude synthetic polymers like nylons and polyesters, and drugs and pesticides. Although the number of new products introduced to the market has declined significantly in recent years, and in times of recession the research department is usually one of the first to suffer cutbacks, the commitment to R&D remains at a very high level.The chemical industry is a very high technology industry which takes full advantage of the latest advances in electronics and engineering. Computers are very widely used for all sorts of applications, from automatic control of chemical plants, to molecular modeling of structures of new compounds, to the control of analytical instruments in the laboratory.Individual manufacturing plants have capacities ranging from just a few tones per year in the fine chemicals area to the real giants in the fertilizer and petrochemical sectors which range up to 500,000 tonnes. The latter requires enormous capital investment, since a single plant of this size can now cost $520 million! This, coupled with the widespread use of automatic control equipment, helps to explain why the chemical industry is capital-rather than labor-intensive.The major chemical companies are truly multinational and operate their sales and marketing activities in most of the countries of the world, and they also have manufacturing units in a number of countries. This international outlook for operations, or globalization, is a growing trend within the chemical industry, with companies expanding their activities either by erecting manufacturing units in other countries or by taking over companies which are already operating there.化学工业1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。
化工方面引言英语范文
化工方面引言英语范文Chemical Engineering: A Gateway to Innovation and Sustainability.Chemical engineering, a multifaceted discipline at the nexus of science, technology, and industry, plays a pivotal role in shaping our world. From the production of essential materials to the development of life-saving pharmaceuticals, chemical engineers are at the forefront of innovation, driving progress and improving the quality of life for society.Materials Science: The Foundation of Modern Engineering.Chemical engineering underpins the development and production of advanced materials, forming the backbone of modern infrastructure and technological advancements. Engineers in this field harness the principles of chemistry, physics, and materials science to create and improve materials with tailored properties for specificapplications. From lightweight composites for aerospace engineering to biocompatible implants for medical devices, chemical engineers are pushing the boundaries of material science to meet the demands of the future.Energy Conversion and Storage: Addressing Global Challenges.With the growing global energy demand and the urgent need for sustainable solutions, chemical engineers are atthe forefront of developing efficient and environmentally friendly energy systems. They design and optimize processes for the conversion, transportation, and storage of energy, exploring renewable sources such as solar, wind, and biomass. By harnessing their expertise in thermodynamics, fluid mechanics, and electrochemistry, chemical engineers are contributing to the transition towards a cleaner and more sustainable energy future.Pharmaceuticals and Biotechnology: Improving Healthcare.Chemical engineers play a crucial role in thepharmaceutical and biotechnology industries, where they design and optimize processes for the production of life-saving drugs and therapies. Utilizing their knowledge of reaction kinetics, bioprocessing, and separation technologies, they develop efficient methods for manufacturing biologics, vaccines, and other essential healthcare products. Chemical engineers are also at the forefront of drug delivery research, devising innovative strategies for targeted and personalized treatments.Process Engineering: Optimizing Industrial Efficiency.Chemical engineers are responsible for designing, operating, and optimizing industrial processes, ensuring efficient and sustainable production of chemicals, fuels, and other essential products. They apply principles of mass and energy transfer, thermodynamics, and reaction engineering to develop and improve processes, minimizing waste, reducing energy consumption, and meeting environmental regulations. Process engineering is a key aspect of chemical engineering, enabling industries to operate efficiently while meeting the demands of a growingpopulation.Sustainability and Environmental Protection.Chemical engineers are acutely aware of the environmental impact of industrial activities and are committed to developing sustainable solutions. They design and implement processes that minimize pollution, reduce greenhouse gas emissions, and conserve natural resources. Chemical engineers are also involved in the development of renewable energy technologies, waste management systems, and other initiatives aimed at protecting the environment and ensuring a sustainable future.Education and Training: Preparing the Next Generation.The field of chemical engineering is constantly evolving, with the emergence of new technologies and the need to address global challenges. Chemical engineering education provides students with a strong foundation in the fundamental principles of chemistry, mathematics, physics, and engineering, equipping them with the knowledge andskills necessary to succeed in this dynamic field. Universities and institutions around the world offer undergraduate, graduate, and research programs in chemical engineering, preparing the next generation of engineers to drive innovation and shape the future of our world.Conclusion.Chemical engineering is an essential discipline that touches every aspect of modern life. Chemical engineers are innovators, problem-solvers, and guardians of the environment, harnessing their knowledge and skills to create solutions that improve the quality of life for society. As the world faces new challenges and opportunities, chemical engineers will undoubtedly continue to play a pivotal role in shaping our future.。
化学文献总结汇报范文
化学文献总结汇报范文以下是一个化学文献总结汇报的范文(仅为参考,不计入字数):化学文献总结汇报一、引言在化学研究中,了解最新的研究进展和成果非常重要。
本次汇报将对《Recent Advances in Synthetic Methods for the Preparation of Metal‐Organic Frameworks》一文进行总结。
该文详细介绍了金属有机框架材料的合成方法的最新进展。
二、总结内容1. 作者通过文献调研和实验,总结了金属有机框架材料的合成方法在不同条件下的最新研究成果。
2. 文中介绍了金属有机框架材料的几种基本合成方法,如溶剂热合成法、气相热分解法、电化学沉积法等。
同时,还介绍了一些新的合成方法,如溶剂蒸发法、微波促进法等。
3. 文中详细介绍了不同金属有机框架材料的合成条件和实验过程,以及合成产物的表征和性能测试结果。
例如,作者介绍了一种新的高效合成方法,该方法利用有机小分子作为配体,通过金属离子间的协同效应实现高度稳定的框架结构。
4. 文中还介绍了一些在合成过程中常见的问题和挑战,例如合成温度的控制、配体选择、框架稳定性等。
作者提出了一些解决方案,并给出了实验数据和分析结果。
5. 最后,作者对金属有机框架材料的合成方法进行了总结和展望,指出了需要进一步研究和改进的方向。
三、启示和意义这篇文献总结给我们提供了很多有价值的启示和意义。
首先,我们了解到金属有机框架材料的合成方法是多样的,不同的方法可以得到不同性能的材料。
因此,在设计合成方法时需要考虑材料的用途和性能需求。
其次,文中提到了一些新的合成方法,例如溶剂蒸发法和微波促进法,这些方法在提高合成效率和控制材料结构方面具有很大的潜力。
因此,我们可以借鉴这些方法,在自己的研究中进行尝试和改进。
最后,作者对合成过程中的问题和挑战进行了深入的讨论,这对我们在实验中遇到类似的问题时提供了解决方案和思路。
我们可以通过文中提到的方法和结果,来指导我们自己的研究工作。
化工专业英语写作范文
化工专业英语写作范文Title: The Evolution and Importance of Chemical Engineering: A Global Perspective.Chemical engineering, often referred to as the "mother of all engineering disciplines," has played a pivotal role in the advancement of technology and industrialization. Its impact is felt across multiple sectors, including energy, healthcare, environmental protection, and more. In this article, we delve into the evolution of chemical engineering, its current significance, and its future prospects.Evolution of Chemical Engineering.The roots of chemical engineering can be traced back to the Industrial Revolution, when the need for efficient and sustainable production methods arose. Initially, the field was primarily focused on the optimization of processes in the chemical industry, such as the production offertilizers and dyes. However, as technology advanced, the scope of chemical engineering broadened to include areas like biochemistry, environmental engineering, and nanotechnology.One of the most significant milestones in the evolution of chemical engineering was the development of the principles of reaction engineering in the early 20th century. This marked a shift from a reliance on empirical methods to a more rigorous and systematic approach, based on the principles of physics and chemistry. This development laid the foundation for the design and optimization of chemical reactors, which are crucial in the production of various chemicals.Another key development was the integration of computers into chemical engineering in the later part of the 20th century. This integration enabled engineers to model and simulate complex chemical processes, thus predicting their behavior more accurately. Computer-aided design (CAD) and computer-aided manufacturing (CAM) tools also revolutionized the design and fabrication of chemicalplants, making the process more efficient and cost-effective.Current Significance of Chemical Engineering.Today, chemical engineering is at the forefront of addressing many of the world's most pressing challenges. For instance, it plays a crucial role in the development of sustainable energy solutions. Chemical engineers are involved in the research and development of efficient solar cells, batteries, and fuel cells, as well as in the optimization of biofuel production processes.In healthcare, chemical engineering has madesignificant contributions to the development of drugs and therapies. By manipulating molecules at the nanoscale, engineers are able to create targeted drugs that are more effective and have fewer side effects. They are also involved in the design of medical devices and the optimization of bioprocessing techniques for tissue engineering and regenerative medicine.Moreover, chemical engineering is essential in addressing environmental challenges. Engineers are working to develop more efficient waste treatment and recycling methods, as well as to mitigate the impact of industrial processes on the environment. They are also involved in the research and development of sustainable materials that can replace traditional, environmentally harmful ones.Future Prospects of Chemical Engineering.The future of chemical engineering looks bright, with numerous opportunities for innovation and growth. One area that is expected to witness significant advancements is biotechnology. With the advent of synthetic biology and genome editing tools like CRISPR-Cas9, chemical engineers will be able to design and engineer cells and organisms with enhanced functionalities. This could lead to the development of novel bioproducts, such as bioplastics and biofuels, that are more sustainable and environmentally friendly.Another area of potential growth is nanotechnology.Chemical engineers are exploring the use of nanomaterialsin various applications, including drug delivery, energy storage, and environmental remediation. The uniqueproperties of nanomaterials, such as their large surface area and enhanced reactivity, make them ideal foraddressing many of the challenges faced by the chemical industry.Lastly, the integration of digital technologies, suchas artificial intelligence (AI) and the Internet of Things (IoT), is expected to transform chemical engineering. These technologies can be used to optimize processes in real-time, predict and prevent failures, and improve safety and sustainability. By leveraging the power of data analytics and predictive modeling, chemical engineers will be able to make more informed decisions and develop more efficient and cost-effective processes.In conclusion, chemical engineering has come a long way since its inception and continues to play a pivotal role in addressing the world's most pressing challenges. As we look to the future, it is exciting to imagine the innovativesolutions that chemical engineers will develop and the impact they will have on society.。
化工方面引言英语范文
化工方面引言英语范文English:Chemical engineering plays a crucial role in various industries by applying the principles of chemistry, physics, mathematics, and economics to efficiently convert raw materials into valuable products. This field encompasses a wide range of processes including chemical reactions, separations, heat transfer, and fluid dynamics, among others. The expertise of chemical engineers is essential in designing and optimizing processes to ensure the safety, reliability, and sustainability of industrial operations. Additionally, they work towards minimizing waste and environmental impact while maximizing productivity and efficiency. With an increasing focus on sustainable development and the need for innovative solutions to global challenges, the importance of chemical engineering continues to grow in shaping a more sustainable future for generations to come.中文翻译:化学工程通过应用化学、物理、数学和经济学的原理,将原材料高效地转化为有价值的产品,在各个行业中发挥着至关重要的作用。
化工专业研究生专业实践报告
化工专业研究生专业实践报告(中英文实用版)英文文档内容:This report presents the practical experience of a graduate student majoring in Chemical Engineering.The aim of this practice was to gain hands-on experience in the field and to apply theoretical knowledge to real-world scenarios.The internship provided valuable insights into the various aspects of chemical engineering, such as process design, operations, safety, and environmental considerations.During the practice, the student worked in a chemical manufacturing plant under the guidance of experienced professionals.The tasks included monitoring and controlling the production process, analyzing process data, and implementing improvements to enhance efficiency and safety.The student also participated in equipment maintenance, troubleshooting, and waste management activities.Throughout the internship, the student learned about the importance of teamwork, effective communication, and problem-solving skills in a professional environment.The practical experience helped in developing a better understanding of the principles and theories studied in the classroom.It also provided an opportunity to familiarize oneself with industry standards, regulations, and best practices.The practical experience gained during this internship willundoubtedly contribute to the student"s academic and professional growth.It has equipped them with the necessary skills and knowledge to excel in their future career in the chemical engineering field.中文文档内容:本报告展示了化工专业研究生在专业实践中的体验。
《化学化工专业英语》文献摘要讲解PPT
英语化学文献综述范文
英语化学文献综述范文The field of chemistry has a rich and diverse body of literature that spans centuries of scientific exploration and discovery. From the ancient alchemists to the modern-day researchers, the chemical sciences have been at the forefront of our understanding of the natural world. In this literature review, we will delve into the various aspects of chemistry-related literature, exploring its historical development, current trends, and future directions.The origins of chemistry can be traced back to the ancient civilizations of Mesopotamia, Egypt, and China, where early practitioners sought to understand the fundamental nature of matter and its transformations. The emergence of alchemy, a precursor to modern chemistry, was marked by a blend of scientific inquiry and mystical beliefs. The alchemists of the Middle Ages and Renaissance periods were driven by the pursuit of transmuting base metals into gold, as well as the search for the elixir of life.As the scientific revolution took hold in the 16th and 17th centuries, the study of chemistry began to evolve into a more systematic andempirical discipline. Pioneers such as Robert Boyle, Antoine Lavoisier, and John Dalton laid the foundations for the modern understanding of atomic theory, chemical reactions, and the periodic table of elements. The 19th century saw the rapid development of organic chemistry, with the synthesis of numerous compounds and the elucidation of the structure of complex molecules.The 20th century marked a period of unprecedented advancements in the field of chemistry. The rise of quantum mechanics and the development of advanced analytical techniques, such as spectroscopy and chromatography, have revolutionized our understanding of the atomic and molecular world. The discovery of new elements, the synthesis of complex organic compounds, and the application of chemistry in diverse fields, such as materials science, biotechnology, and environmental science, have all contributed to the ever-expanding body of chemical literature.One of the key aspects of the chemical literature is its interdisciplinary nature. Chemistry is inherently connected to other scientific disciplines, such as physics, biology, and engineering, and the literature reflects this interconnectedness. Researchers in these fields often collaborate and publish their findings in interdisciplinary journals, furthering our understanding of the natural world and the technological applications of chemical principles.Another important aspect of the chemical literature is the role of peer-reviewed journals. These scholarly publications serve as the primary channels for the dissemination of new research findings, as well as the critical evaluation of existing knowledge. The peer-review process ensures the quality and reliability of the published work, contributing to the overall credibility of the chemical literature.In recent years, the chemical literature has also been shaped by the increasing availability of digital resources and the rise of open-access publishing. The digitization of scientific journals and the proliferation of online databases have made it easier for researchers to access and share information, fostering greater collaboration and accelerating the pace of scientific progress. The open-access movement has also challenged the traditional publishing model, making more research freely available to the global scientific community.Looking to the future, the chemical literature is poised to continue its evolution, driven by emerging technologies, new areas of research, and the changing landscape of scientific communication. The increasing use of artificial intelligence and machine learning in data analysis and the development of advanced computational methods are expected to transform the way research is conducted and disseminated.Additionally, the growing emphasis on interdisciplinary andcollaborative research, as well as the need to address global challenges such as climate change, sustainable energy, and human health, will likely shape the future direction of the chemical literature. The ability to effectively communicate and share scientific knowledge will be of paramount importance, as researchers and policymakers work together to address the pressing issues of our time.In conclusion, the chemical literature is a vast and dynamic body of knowledge that reflects the rich history and ongoing evolution of the chemical sciences. From the early alchemists to the modern-day researchers, the literature has been shaped by the pursuit of scientific understanding, the development of new technologies, and the need to address the pressing challenges facing our world. As we move forward, the chemical literature will continue to be a vital resource for advancing our knowledge and shaping the future of the field.。
什么是化工 英文作文
什么是化工英文作文英文:Chemical engineering is a branch of engineering that deals with the design, development, and operation of chemical processes and equipment. It involves the use of chemistry, physics, mathematics, and economics to solve problems related to the production and use of chemicals, fuels, drugs, food, and other products. Chemical engineers work in a wide range of industries, including oil and gas, pharmaceuticals, food and beverage, plastics, and environmental engineering.As a chemical engineer, I have been involved in the development of new processes for producing chemicals and materials. For example, I worked on a project to develop a new method for synthesizing a polymer that is used in medical devices. This involved designing and building a new reactor system, optimizing reaction conditions, and testing the product to ensure that it met the requiredspecifications.Another aspect of chemical engineering is process optimization. This involves analyzing existing processes to identify inefficiencies and areas for improvement. For example, I worked on a project to optimize a production process for a specialty chemical. We were able to reducethe cycle time, increase yield, and improve product quality, which resulted in significant cost savings for the company.中文:化学工程是一种工程学科,涉及化学过程和设备的设计、开发和操作。
化学研究报告翻译英文
化学研究报告翻译英文Chemistry Research ReportIntroduction:This report discusses the findings of a research study conducted in the field of chemistry. The objective of this study was to investigate the properties and reactions of a newly synthesized compound known as Compound X. The research aimed to determine its chemical structure, analyze its behavior under different conditions, and explore its potential applications in various industries.Experimental Methods:To investigate the chemical structure of Compound X, various analytical techniques were employed. These included nuclear magnetic resonance spectroscopy (NMR), mass spectrometry (MS), and infrared spectroscopy (IR). Additionally, X-ray crystallography was utilized to determine its molecular structure in solid state.Results and Discussion:The results obtained from the NMR, MS, and IR analyses provided valuable insights into the chemical structure of Compound X. The NMR spectrum confirmed the presence of aromatic protons and carbon atoms, elucidating its aromatic nature. The MS analysis revealed a molecular weight consistent with the proposed chemical formula of Compound X. Furthermore, the IR spectrum indicated the presence of characteristic functional groups.X-ray crystallography confirmed the proposed structure ofCompound X in its solid state. The crystal structure revealed a planar molecular arrangement with specific bond lengths and angles. The presence of intra- and intermolecular interactions was observed, providing additional information about the compound's stability and packing properties.The reaction behavior of Compound X was investigated by subjecting it to various conditions. Acidic and basic conditions, as well as different temperatures, were applied to evaluate its reactivity. The compound exhibited stability under both acidic and basic conditions, with no significant degradation or chemical transformation observed. Furthermore, the thermal stability of Compound X was verified by subjecting it to elevated temperatures, which resulted in no decomposition. Conclusion:In conclusion, Compound X possesses a well-defined chemical structure and exhibits stability under various conditions. These findings suggest its potential application in fields such as pharmaceuticals, materials science, and synthetic chemistry. Further studies are warranted to explore its reactivity with different chemical groups and to investigate its potential interactions with other compounds.Overall, this research study provides important insights into the properties and reactions of Compound X, laying a foundation for further studies and potential industrial applications.。
关于化学的英文文献
关于化学的英文文献When it comes to chemical literature, there are numerous sources available to researchers and students. One of the most well-known and comprehensive databases for chemical literature is the Chemical Abstracts Service (CAS), which is a division of the American Chemical Society. CAS provides access to a vast collection of scientific information, including journal articles, patents,conference proceedings, and more.Another important source of chemical literature is the Royal Society of Chemistry (RSC), which publishes a wide range of high-quality journals covering various aspects of chemistry. These journals include "Chemical Communications," "Chemical Science," and "Journal of the American Chemical Society," among others.In addition to these databases and journals, there are also many books and reference materials available on the subject of chemistry. For example, "The Merck Index" is awell-known reference book that contains detailed information on chemicals, drugs, and biologicals. Another important reference work is the "CRC Handbook of Chemistry and Physics," which provides a wealth of data on chemical compounds and physical properties.Furthermore, online platforms such as PubMed, Google Scholar, and ResearchGate are valuable resources for accessing a wide range of chemical literature, including research articles, reviews, and conference papers.In conclusion, the field of chemical literature is vast and diverse, with numerous resources available to researchers and students. Whether it's through databases, journals, books, or online platforms, there is a wealth of information to explore in the world of chemistry.。
一篇关于化学的英文文献
一篇关于化学的英文文献Title: Recent Advances in Green Chemistry: Innovations and ApplicationsAbstract:Green chemistry, also known as sustainable chemistry, emphasizes the development of environmentally friendly processes and products that minimize toxicity and waste generation. This article provides an overview of recent advances in green chemistry, highlighting innovative approaches and their applications in various fields.Introduction:Traditional chemical processes often result in the release of hazardous substances, leading to pollution and ecological damage. Green chemistry aims to address these issues by utilizing renewable materials, reducing waste and energy consumption, and promoting the development of safer and sustainable alternatives.1. Sustainable Synthesis:Recent innovations in green chemistry have revolutionized the synthesis of chemicals and pharmaceuticals. One example is the use of renewable feedstocks, such as biomass and bio-based materials, as alternatives to fossil fuels. These sustainable sources can be converted into valuable products through efficient and environmentally benign processes, reducing carbon dioxide emissions and dependence on finite resources.2. Catalysis and Reaction Optimization:Catalysis plays a crucial role in green chemistry, enabling moreefficient and selective reactions with lower energy requirements. Researchers have explored the use of catalysts derived from earth-abundant metals, enzymes, and even biomimetic catalysts inspired by natural systems. Additionally, reaction optimization techniques, like flow chemistry and microwave-assisted synthesis, have been developed to improve reaction rates and minimize waste generation.3. Waste Minimization and Reutilization:Green chemistry emphasizes the reduction, reuse, and recycling of waste materials. Advances in this area include solvent replacement with greener alternatives, such as ionic liquids or supercritical fluids, which can be recovered and recycled. Furthermore, innovative approaches, such as bioremediation and enzymatic degradation, have been utilized to transform hazardous waste into harmless substances.4. Energy Efficiency and Renewable Energy Sources:Efficient energy utilization is central to green chemistry. Methods like microwave heating and ultrasonic irradiation have been employed to enhance reaction rates and reduce energy consumption. Moreover, the integration of renewable energy sources, such as solar and wind energy, into chemical processes has gained significant attention, offering sustainable solutions for the industry.5. Designing Safer Chemicals:Green chemistry promotes the development and use of less toxic and bio-degradable chemicals. Molecular design strategies, like quantitative structure-activity relationships (QSAR) and computer-aided molecular design (CAMD), enable the creation of safer and more sustainable compounds, reducing the associated risks to human health and the environment.Conclusion:Recent advancements in green chemistry have paved the way for a more sustainable and environmentally conscious chemical industry. By integrating innovative technologies and strategies, researchers are continuously developing greener synthesis routes, minimizing waste generation, and promoting the use of safer chemicals. These advancements contribute to the overall goal of achieving a more sustainable future.。
化学专业英文作文范文
化学专业英文作文范文英文:Chemistry is a fascinating subject that deals with the study of matter and its properties. As a chemistry major, I have learned about the different types of chemical reactions, the behavior of atoms and molecules, and the principles of chemical bonding. I have also gainedpractical experience in the laboratory, conducting experiments and analyzing data.One of the most interesting topics in chemistry is organic chemistry, which is the study of carbon-based compounds. It is a complex subject that requires a lot of memorization and understanding of various concepts, such as functional groups and reaction mechanisms. However, it is also a very rewarding subject because it helps us understand the chemistry of living organisms and the processes that occur in our bodies.Another aspect of chemistry that I find fascinating is the use of analytical techniques to identify and quantify substances. For example, spectroscopy is a powerful toolthat allows us to determine the structure of molecules and the presence of certain functional groups. Chromatographyis another technique that is commonly used to separate and analyze mixtures of compounds.Overall, chemistry is a challenging but rewardingsubject that has many practical applications in fields such as medicine, materials science, and environmental science.中文:化学是一门迷人的学科,涉及物质及其性质的研究。
中英文文献以及翻译(化工类)
Foreign material:Chemical Industry1.Origins of the Chemical IndustryAlthough the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin’s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939).Since 1940 the chemical industry has grown at a remarkable rate, although this has slowed significantly in recent years. The lion’s share of this growth has been in the organic chemicals sector due to the development and growth of the petrochemicals area since 1950s. The explosives growth in petrochemicals in the 1960s and 1970s was largely due to the enormous increase in demand for synthetic polymers such as polyethylene, polypropylene, nylon, polyesters and epoxy resins.The chemical industry today is a very diverse sector of manufacturing industry, within which it plays a central role. It makes thousands of different chemicals whichthe general public only usually encounter as end or consumer products. These products are purchased because they have the required properties which make them suitable for some particular application, e.g. a non-stick coating for pans or a weedkiller. Thus chemicals are ultimately sold for the effects that they produce.2. Definition of the Chemical IndustryAt the turn of the century there would have been little difficulty in defining what constituted the chemical industry since only a very limited range of products was manufactured and these were clearly chemicals, e.g., alkali, sulphuric acid. At present, however, many intermediates to products produced, from raw materials like crude oil through (in some cases) many intermediates to products which may be used directly as consumer goods, or readily converted into them. The difficulty cones in deciding at which point in this sequence the particular operation ceases to be part of the chemical industry’s sphere of activities. To consider a specific example to illustrate this dilemma, emulsion paints may contain poly (vinyl chloride) / poly (vinyl acetate). Clearly, synthesis of vinyl chloride (or acetate) and its polymerization are chemical activities. However, if formulation and mixing of the paint, including the polymer, is carried out by a branch of the multinational chemical company which manufactured the ingredients, is this still part of the chemical industry of does it mow belong in the decorating industry?It is therefore apparent that, because of its diversity of operations and close links in many areas with other industries, there is no simple definition of the chemical industry. Instead each official body which collects and publishes statistics on manufacturing industry will have its definition as to which operations are classified as the chemical industry. It is important to bear this in mind when comparing statistical information which is derived from several sources.3. The Need for Chemical IndustryThe chemical industry is concerned with converting raw materials, such as crude oil, firstly into chemical intermediates and then into a tremendous variety of other chemicals. These are then used to produce consumer products, which make our livesmore comfortable or, in some cases such as pharmaceutical produces, help to maintain our well-being or even life itself. At each stage of these operations value is added to the produce and provided this added exceeds the raw material plus processing costs then a profit will be made on the operation. It is the aim of chemical industry to achieve this.It may seem strange in textbook this one to pose the question “do we need a chemical industry?” However trying to answer this question will provide(ⅰ) an indication of the range of the chemical industry’s activities, (ⅱ) its influence on our lives in everyday terms, and (ⅲ) how great is society’s need for a chemical industry. Our approach in answering the question will be to consider the industry’s co ntribution to meeting and satisfying our major needs. What are these? Clearly food (and drink) and health are paramount. Other which we shall consider in their turn are clothing and (briefly) shelter, leisure and transport.(1)Food. The chemical industry makes a major contribution to food production in at least three ways. Firstly, by making available large quantities of artificial fertilizers which are used to replace the elements (mainly nitrogen, phosphorus and potassium) which are removed as nutrients by the growing crops during modern intensive farming. Secondly, by manufacturing crop protection chemicals, i.e., pesticides, which markedly reduce the proportion of the crops consumed by pests. Thirdly, by producing veterinary products which protect livestock from disease or cure their infections.(2)Health. We are all aware of the major contribution which the pharmaceutical sector of the industry has made to help keep us all healthy, e.g. by curing bacterial infections with antibiotics, and even extending life itself, e.g. ß–blockers to lower blood pressure.(3)Clothing. The improvement in properties of modern synthetic fibers over the traditional clothing materials (e.g. cotton and wool) has been quite remarkable. Thus shirts, dresses and suits made from polyesters like Terylene and polyamides like Nylon are crease-resistant, machine-washable, and drip-dry or non-iron. They are also cheaper than natural materials.Parallel developments in the discovery of modern synthetic dyes and the technology to “bond” th em to the fiber has resulted in a tremendous increase in the variety of colors available to the fashion designer. Indeed they now span almost every color and hue of the visible spectrum. Indeed if a suitable shade is not available, structural modification of an existing dye to achieve this canreadily be carried out, provided there is a satisfactory market for the product.Other major advances in this sphere have been in color-fastness, i.e., resistance to the dye being washed out when the garment is cleaned.(4)Shelter, leisure and transport. In terms of shelter the contribution of modern synthetic polymers has been substantial. Plastics are tending to replace traditional building materials like wood because they are lighter, maintenance-free (i.e. they are resistant to weathering and do not need painting). Other polymers, e.g. urea-formaldehyde and polyurethanes, are important insulating materials f or reducing heat losses and hence reducing energy usage.Plastics and polymers have made a considerable impact on leisure activities with applications ranging from all-weather artificial surfaces for athletic tracks, football pitches and tennis courts to nylon strings for racquets and items like golf balls and footballs made entirely from synthetic materials.Like wise the chemical industry’s contribution to transport over the years has led to major improvements. Thus development of improved additives like anti-oxidants and viscosity index improves for engine oil has enabled routine servicing intervals to increase from 3000 to 6000 to 12000 miles. Research and development work has also resulted in improved lubricating oils and greases, and better brake fluids. Yet again the contribution of polymers and plastics has been very striking with the proportion of the total automobile derived from these materials—dashboard, steering wheel, seat padding and covering etc.—now exceeding 40%.So it is quite apparent even from a brief look at the chemical industry’s contribution to meeting our major needs that life in the world would be very different without the products of the industry. Indeed the level of a country’s development may be judged by the production level and sophistication of its chemical industry4. Research and Development (R&D) in Chemical IndustriesOne of the main reasons for the rapid growth of the chemical industry in the developed world has been its great commitment to, and investment in research and development (R&D). A typical figure is 5% of sales income, with this figure being almost doubled for the most research intensive sector, pharmaceuticals. It is important to emphasize that we are quoting percentages here not of profits but of sales income, i.e. the total money received, which has to pay for raw materials, overheads, staff salaries, etc. as well. In the past this tremendous investment has paid off well, leading to many useful and valuable products being introduced to the market. Examplesinclude synthetic polymers like nylons and polyesters, and drugs and pesticides. Although the number of new products introduced to the market has declined significantly in recent years, and in times of recession the research department is usually one of the first to suffer cutbacks, the commitment to R&D remains at a very high level.The chemical industry is a very high technology industry which takes full advantage of the latest advances in electronics and engineering. Computers are very widely used for all sorts of applications, from automatic control of chemical plants, to molecular modeling of structures of new compounds, to the control of analytical instruments in the laboratory.Individual manufacturing plants have capacities ranging from just a few tones per year in the fine chemicals area to the real giants in the fertilizer and petrochemical sectors which range up to 500,000 tonnes. The latter requires enormous capital investment, since a single plant of this size can now cost $520 million! This, coupled with the widespread use of automatic control equipment, helps to explain why the chemical industry is capital-rather than labor-intensive.The major chemical companies are truly multinational and operate their sales and marketing activities in most of the countries of the world, and they also have manufacturing units in a number of countries. This international outlook for operations, or globalization, is a growing trend within the chemical industry, with companies expanding their activities either by erecting manufacturing units in other countries or by taking over companies which are already operating there.化学工业1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。
研究生英文文献汇报-化学化工
6
Introduction 1.1 Merits and applications of LIBs Rechargeable lithium-ion batteries (LIBs) are considered to be the most promising energy storage technology for next-generation portable electronic devices (e.g., laptops, cell phones, cameras) and for powering electric vehicles (EVs) or hybrid electric vehicles (HEVs) due to their long cycle life and high specific capacity.
(merits) ❖The volume change in the course of the battery operation would cause severe mechanical damage of Si electrodes and leads to rapid capacity fading during cycling.
(补充:过剩容量、单位体积容量 )
8
Introduction 1.3 Silicon as a Candidate ❖Silicon (Si) has been regarded as the most promising and competitive candidate to replace graphite anode material, because it can be alloyed/de-alloyed with lithium and offers a theoretical capacity as high as 4200 mAh g−1 with a low working potential.(0.4V Vs Li+/Li)