第五版物理化学第二章习题答案
天津大学第五版-物理化学课后习题答案(全)
第一章 气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V ⎪⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p 摩尔数为133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H C n/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
物理化学(天大第五版全册)课后习题答案
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载物理化学(天大第五版全册)课后习题答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容气体pVT性质1-1物质的体膨胀系数与等温压缩系数的定义如下:试导出理想气体的、与压力、温度的关系?解:对于理想气体,pV=nRT1-5 两个体积均为V的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。
解:方法一:在题目所给出的条件下,气体的量不变。
并且设玻璃泡的体积不随温度而变化,则始态为终态(f)时1-8 如图所示一带隔板的容器中,两侧分别有同温同压的氢气与氮气,二者均克视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽去前后,H2及N2的摩尔体积是否相同?(3)隔板抽去后,混合气体中H2及N2的分压力之比以及它们的分体积各为若干?解:(1)抽隔板前两侧压力均为p,温度均为T。
(1)得:而抽去隔板后,体积为4dm3,温度为,所以压力为(2)比较式(1)、(2),可见抽去隔板后两种气体混合后的压力仍为p。
(2)抽隔板前,H2的摩尔体积为,N2的摩尔体积抽去隔板后所以有,可见,隔板抽去前后,H2及N2的摩尔体积相同。
(3)所以有*1-17 试由波义尔温度TB的定义式,试证范德华气体的TB可表示为TB=a/(bR)式中a、b为范德华常数。
解:先将范德华方程整理成将上式两边同乘以V得求导数当p→0时,于是有当p→0时V→∞,(V-nb)2≈V2,所以有 TB= a/(bR)第二章热力学第一定律2-1 1mol理想气体于恒定压力下升温1℃,试求过程中气体与环境交换的功W。
物理化学(天大第五版全册)课后习题答案
物理化学(天⼤第五版全册)课后习题答案第⼀章⽓体pVT 性质1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V-=??? =κα试导出理想⽓体的V α、T κ与压⼒、温度的关系解:对于理想⽓体,pV=nRT111 )/(11-=?=?==??? =T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=?=?=???? ????-=???? ????-=p p V V pnRT V p p nRT V p V V T T T κ 1-5 两个体积均为V 的玻璃球泡之间⽤细管连接,泡内密封着标准状况条件下的空⽓。
若将其中⼀个球加热到100℃,另⼀个球则维持0℃,忽略连接管中⽓体体积,试求该容器内空⽓的压⼒。
解:⽅法⼀:在题⽬所给出的条件下,⽓体的量不变。
并且设玻璃泡的体积不随温度⽽变化,则始态为 )/(2,2,1i i i i RT V p n n n =+=终态(f )时+=?+=+=ff ff f ff f f fT T T T R Vp T V T V R p n n n ,2,1,1,2,2,1,2,1 kPaT T T T T p T T T T VR n p f f f f i i ff f f f 00.117)15.27315.373(15.27315.27315.373325.1012 2,2,1,2,1,2,1,2,1=+=???+=? ??+=(1)保持容器内温度恒定时抽去隔板,且隔板本⾝的体积可忽略不计,试求两种⽓体混合后的压⼒。
(2)隔板抽去前后,H 2及N 2的摩尔体积是否相同(3)隔板抽去后,混合⽓体中H 2及N 2的分压⼒之⽐以及它们的分体积各为若⼲解:(1)抽隔板前两侧压⼒均为p ,温度均为T 。
p dmRT n p dmRT n p N N H H ====33132222 (1)得:223N Hn n =⽽抽去隔板后,体积为4dm 3,温度为,所以压⼒为3331444)3(2222dm RT n dm RT n dm RT n n V nRT p N N N N ==+== (2)⽐较式(1)、(2),可见抽去隔板后两种⽓体混合后的压⼒仍为p 。
第五版物理化学第二章习题答案
第二章热力学第一定律1mol理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol对于理想气体恒压过程,应用式(2.2.3)W =-p ambΔV =-p(V2-V1) =-(nRT2-nRT1) =-1mol水蒸气(H2O,g)在100℃,下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol恒温恒压相变过程,水蒸气可看作理想气体, 应用式(2.2.3)W =-p ambΔV =-p(V l-V g ) ≈ pVg = nRT =在25℃及恒定压力下,电解1mol水(H2O,l),求过程的体积功。
H2O(l) = H2(g) + 1/2O2(g)解: n = 1mol恒温恒压化学变化过程, 应用式(2.2.3)W=-p ambΔV =-(p2V2-p1V1)≈-p2V2 =-n2RT=-系统由相同的始态经过不同途径达到相同的末态。
若途径a的Q a=,Wa=-;而途径b的Q b=-。
求W b.解: 热力学能变只与始末态有关,与具体途径无关,故ΔU a= ΔU b 由热力学第一定律可得Qa + Wa = Q b + W b∴ W b = Q a + W a-Q b = -始态为25℃,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。
途经a先经绝热膨胀到 -28.47℃,100 kPa,步骤的功;再恒容加热到压力200 kPa的末态,步骤的热。
途径b为恒压加热过程。
求途径b的及。
解:先确定系统的始、末态3111061902000001529831485m ...P nRT V =××==32101601000005824431485m ...P nRT V V =××=== kJ .kJ )..(Q W U Δa a 85194225575=+=+=-对于途径b ,其功为kJ .J ..V Δp W b 932706190101602000001-)-(--===根据热力学第一定律4mol 某理想气体,温度升高20℃, 求ΔH-ΔU 的值。
第五版物理化学第二章习题答案
第二章热力学第一定律2.1 1mol理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol对于理想气体恒压过程,应用式(2.2.3)W =-p ambΔV =-p(V2-V1) =-(nRT2-nRT1) =-8.314J2.2 1mol水蒸气(H2O,g)在100℃,101.325kPa下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol恒温恒压相变过程,水蒸气可看作理想气体, 应用式(2.2.3)W =-pamb ΔV =-p(Vl-Vg) ≈ pVg = nRT = 3.102kJ2.3 在25℃及恒定压力下,电解1mol水(H2O,l),求过程的体积功。
H2O(l) =H2(g) + 1/2O2(g)解: n = 1mol恒温恒压化学变化过程, 应用式(2.2.3)W=-pamb ΔV =-(p2V2-p1V1)≈-p2V2=-n2RT=-3.718kJ2.4 系统由相同的始态经过不同途径达到相同的末态。
若途径a的Q a=2.078kJ,Wa=-4.157kJ;而途径b的Q b=-0.692kJ。
求W b.解: 热力学能变只与始末态有关,与具体途径无关,故ΔU a= ΔU b由热力学第一定律可得 Qa + Wa = Q b + W b∴ W b = Q a + W a-Q b = -1.387kJ2.5 始态为25℃,200 kPa 的5 mol 某理想气体,经途径a ,b 两不同途径到达相同的末态。
途经a 先经绝热膨胀到 -28.47℃,100 kPa ,步骤的功;再恒容加热到压力200 kPa 的末态,步骤的热。
途径b 为恒压加热过程。
求途径b 的及。
解:先确定系统的始、末态3111061902000001529831485m ...P nRT V =××==32101601000005824431485m ...P nRT V V =××=== kJ .kJ )..(Q W U Δa a 85194225575=+=+=-对于途径b ,其功为kJ .J ..V Δp W b 932706190101602000001-)-(--===根据热力学第一定律2.6 4mol 某理想气体,温度升高20℃, 求ΔH -ΔU 的值。
[物理化学(上册)完整习题答案解析]第五版高等教育出版社
第一章 气体pVT 性质1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:11TT p V pV V T V V⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T T VV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p VV pnRT V p p nRT V pV V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
物理化学(天津大学第五版)课后答案
第一章气体的pVT关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下: 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm Vl O H ==-=ρ n=m/M=pV/RT1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。
解:方法一:在题目所给出的条件下,气体的量不变。
并且设玻璃泡的体积不随温度而变化,则始态为)/(2,2,1i i i i RT V p n n n =+=终态(f )时 ⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=+=ff ff f ff f ff T T T T R Vp T V T V R p n n n,2,1,1,2,2,1,2,1 1-6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
最新物理化学第1-2章课后答案(傅献彩_第五版)(南京大学化学化工学院)
第二章热力学第一定律建筑词典大全附中文详细解释I第一节一般术语1. 工程结构building and civil engineering structures房屋建筑和土木工程的建筑物、构筑物及其相关组成部分的总称。
2. 工程结构设计design of building and civil engineering structures在工程结构的可靠与经济、适用与美观之间,选择一种最佳的合理的平衡,使所建造的结构能满足各种预定功能要求。
3. 房屋建筑工程building engineering一般称建筑工程,为新建、改建或扩建房屋建筑物和附属构筑物所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。
4. 土木工程civil engineering除房屋建筑外,为新建、改建或扩建各类工程的建筑物、构筑物和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。
5. 公路工程highway engineering为新建或改建各级公路和相关配套设施等而进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。
6. 铁路工程railway engineering为新建或改建铁路和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。
7. 港口与航道工程port ( harbour ) and waterway engineering为新建或改建港口与航道和相关配套设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。
8. 水利工程hydraulic engineering为修建治理水患、开发利用水资源的各项建筑物、构筑物和相关配设施等所进行的勘察、规划、设计、施工、安装和维护等各项技术工作和完成的工程实体。
9. 水利发电工程(水电工程)hydraulic and hydroelectric engineering以利用水能发电为主要任务的水利工程。
第五版物理化学第二章习题答案
热力学第一定律第二章℃,求过程中系统与环境交换的功。
1mol理想气体在恒定压力下温度升高12.1n = 1mol解:理想气体),应用式(2.2.3对于理想气体恒压过程) =-8.314J(nRT-p(V-V) =--nRTW =-pΔV =11amb22下全部凝结成液态水。
求过程的功。
假设:100℃,101.325kPa2.2 1mol水蒸气(HO,g)在2相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol水蒸气可看作理想气体, 应用式(2.2.3)恒温恒压相变过程, p(V-V) ≈ pVg =nRT = 3.102kJW =-pΔV =-g ambl水(H,求过程的体积功。
O,l)2.3 在25℃及恒定压力下,电解1mol21/2O(g) HO(l) =H(g) + 222解: n = 1mol恒温恒压化学变化过程, 应用式(2.2.3)W=-pΔV =-(pV-pV)≈-pV=-nRT=-3.718kJ 2222amb2 112.4 系统由相同的始态经过不同途径达到相同的末态。
若途径a的Q=2.078kJ,Wa=-a4.157kJ;而途径b的Q=-0.692kJ。
求W.bb解: 热力学能变只与始末态有关,与具体途径无关,故ΔU = ΔU ba由热力学第一定律可得 Qa + Wa = Q + W bb∴ W = Q + W -Q= -1.387kJ b baa两不同途径到达相同的末℃,200 kPaba,的5 mol某理想气体,经途径 2.5 始态为25;再恒容加热到压力100 kPa,步骤的功a先经绝热膨胀到 -28.47℃,态。
途经的。
途径b为恒压加热过程。
求途径200 kPa的末态,步骤的热b及。
解:先确定系统的始、末态nRT15.8.314×298×513m==0.V0619=1200000P1nRT5×8.314×244.583m1016==0=VV=.2P100000ΔU=W+Q=(-5.57+25.42)kJ=19.85kJ aa 对于途径b,其功为W=-pΔV=-200000(0.1016-0.0619)J=-7.932kJ1b根据热力学第一定律的值。
第五版物理化学第二章习题集规范标准答案
第二章热力学第一定律2.1 1mol理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol对于理想气体恒压过程,应用式(2.2.3)W =-p ambΔV =-p(V2-V1) =-(nRT2-nRT1) =-8.314J2.2 1mol水蒸气(H2O,g)在100℃,101.325kPa下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol恒温恒压相变过程,水蒸气可看作理想气体, 应用式(2.2.3)W =-pambΔV =-p(Vl-Vg) ≈ pVg = nRT = 3.102kJ2.3 在25℃及恒定压力下,电解1mol水(H2O,l),求过程的体积功。
H2O(l) =H2(g) + 1/2O2(g)解: n = 1mol恒温恒压化学变化过程, 应用式(2.2.3)W=-pambΔV =-(p2V2-p1V1)≈-p2V2=-n2RT=-3.718kJ2.4 系统由相同的始态经过不同途径达到相同的末态。
若途径a的Q a=2.078kJ,Wa=-4.157kJ;而途径b的Q b=-0.692kJ。
求W b.解: 热力学能变只与始末态有关,与具体途径无关,故ΔU a= ΔU b由热力学第一定律可得 Qa + Wa = Q b + W b∴ W b = Q a + W a-Q b = -1.387kJ2.5 始态为25℃,200 kPa 的5 mol 某理想气体,经途径a ,b 两不同途径到达相同的末态。
途经a 先经绝热膨胀到 -28.47℃,100 kPa ,步骤的功;再恒容加热到压力200 kPa 的末态,步骤的热。
途径b 为恒压加热过程。
求途径b 的及。
解:先确定系统的始、末态3111061902000001529831485m ...P nRT V =××==32101601000005824431485m ...P nRT V V =××=== kJ .kJ )..(Q W U Δa a 85194225575=+=+=-对于途径b ,其功为kJ .J ..V Δp W b 932706190101602000001-)-(--===根据热力学第一定律2.6 4mol 某理想气体,温度升高20℃, 求ΔH -ΔU 的值。
天津大学第五版-物理化学课后习题答案(全)
第一章 气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V ⎪⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p 摩尔数为133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H C n/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
物理化学第五版课后习题答案
大学物理化学课后答案详解第一章气体的pVT性质1.1物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.5两个容积均为V的玻璃球泡之间用细管连结,泡密封着标准状态下的空气。
若将其中的一个球加热到100 C,另一个球则维持0 C,忽略连接细管中气体体积,试求该容器空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.9 如图所示,一带隔板的容器,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.11 室温下一高压釜有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜通氮气直到4倍于空气的压力,尔后将釜混合气体排出直至恢复常压。
重复三次。
求釜最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。
1.13 今有0 C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals方程计算其摩尔体积。
实验值为。
解:用理想气体状态方程计算用van der Waals计算,查表得知,对于N2气(附录七),用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.16 25 C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 C,使部分水蒸气凝结为水。
物理化学(天大第五版全册)课后习题答案
第一章气体pVT 性质1-1物质的体膨胀系数V与等温压缩系数T的定义如下:11TTpVpV VTV V 试导出理想气体的V、T与压力、温度的关系?解:对于理想气体,pV=nRT111)/(11TT V VpnR VT p nRT V T V V ppV1211)/(11ppV VpnRT Vpp nRT VpV VT T T1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。
解:方法一:在题目所给出的条件下,气体的量不变。
并且设玻璃泡的体积不随温度而变化,则始态为)/(2,2,1i i iiRT V p n n n终态(f )时ff ff f ff f ff T T T T RV p T V T V R p n n n,2,1,1,2,2,1,2,1kPaT T T T T p T T T T VR np ff ff ii ff f f f00.117)15.27315.373(15.27315.27315.373325.10122,2,1,2,1,2,1,2,11-8 如图所示一带隔板的容器中,两侧分别有同温同压的氢气与氮气,二者均克视为理想气体。
H 2 3dm 3p TN 2 1dm 3p T(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽去前后,H 2及N 2的摩尔体积是否相同?(3)隔板抽去后,混合气体中H 2及N 2的分压力之比以及它们的分体积各为若干?解:(1)抽隔板前两侧压力均为p ,温度均为T 。
pdmRTn p dmRTn p N NH H33132222(1)得:223NHn n 而抽去隔板后,体积为4dm 3,温度为,所以压力为3331444)3(2222dmRTn dmRTn dmRT n n VnRT pN N N N(2)比较式(1)、(2),可见抽去隔板后两种气体混合后的压力仍为p 。
物理化学 第五版 答案02 热力学第一定律习题解答
湖北民院化环院——天大教材——热力学第一定律课外练习解答
ο 查表得 Δ f H m (H 2 O,g) -241.818kJ mol 1 ο ο H1 =Δ r H m Δf H m (H 2 O,g) 1mol -241.818kJ
子气体
Cv,m 2.5R , Cv, p 3.5R , C p ,m / Cv,m 1.4 ,
1
碳 ( CO2,
g ) 的 标 准 摩 尔 生 成 焓
o f Hm
分 别 为
1molH2 O
(2)
424.72kJ mol1、 285.83kJ mol1、 309.509kJ mol1 。应用这些数据求 25℃时下列
0.25 molO 2 2.8214 molN 2 25 ο C,100kPa
根据热力学第一定律
氮气: n ( N 2 ) 0.79 3.5714mol 2.8214mol 剩余氧气: n (O 2 ) (0.21 3.5714 0.5)mol 0.25mol
1molH 2 0.75molO 2 2.8214 molN 2 25 C,100kPa (1)
W , Q , H , U 。
3
HCOOH(l )+2O2 (g)=2H 2O(l )+2CO 2 (g)
o o o o c Hm (HCOOCH3 , l ) 2 f H m (CO 2 , g ) 2 f H m (H 2 O, l ) f H m (HCOOCH 3 , l )
T2
T3
由于 p1V1 p2V2 ,则 T3 T1 ,对有理想气体ΔH 和ΔU 只是温度的函数 ΔH=ΔU=0 该途径只涉及恒容和恒压过程,因此计算功是方便的
物理化学(天大第五版全册)课后习题答案
第一章 气体pVT 性质1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:11TT p V p V VT V V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。
解:方法一:在题目所给出的条件下,气体的量不变。
并且设玻璃泡的体积不随温度而变化,则始态为 )/(2,2,1i i i i RT V p n n n =+=终态(f )时 ⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=+=f f ff f f f f f f T T T T R Vp T V T V R p n n n ,2,1,1,2,2,1,2,1 kPaT T T T T p T T T T VR n p f f f f i i ff ff f 00.117)15.27315.373(15.27315.27315.373325.1012 2,2,1,2,1,2,1,2,1=+⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=1-8 如图所示一带隔板的容器中,两侧分别有同温同压的氢气与氮气,二者均克视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽去前后,H 2及N 2的摩尔体积是否相同?(3)隔板抽去后,混合气体中H 2及N 2的分压力之比以及它们的分体积各为若干? 解:(1)抽隔板前两侧压力均为p ,温度均为T 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章热力学第一定律2、1 1mol理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol对于理想气体恒压过程,应用式(2、2、3)W =-p ambΔV =-p(V2-V1) =-(nRT2-nRT1) =-8、314J2、2 1mol水蒸气(H2O,g)在100℃,101、325kPa下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol恒温恒压相变过程,水蒸气可瞧作理想气体, 应用式(2、2、3)W =-pambΔV =-p(Vl-Vg) ≈ pVg = nRT = 3、102kJ 2、3 在25℃及恒定压力下,电解1mol水(H2O,l),求过程的体积功。
H2O(l) =H2(g) + 1/2O2(g)解: n = 1mol恒温恒压化学变化过程, 应用式(2、2、3)W=-pambΔV =-(p2V2-p1V1)≈-p2V2=-n2RT=-3、718kJ2、4 系统由相同的始态经过不同途径达到相同的末态。
若途径a的Q a=2、078kJ,Wa=-4、157kJ;而途径b的Q b=-0、692kJ。
求W b、解: 热力学能变只与始末态有关,与具体途径无关,故ΔU a= ΔU b由热力学第一定律可得 Qa + Wa = Q b + W b∴ W b = Q a + W a-Q b = -1、387kJ2、5 始态为25℃,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。
途经a先经绝热膨胀到 -28、47℃,100 kPa,步骤的功;再恒容加热到压力200 kPa 的末态,步骤的热。
途径b为恒压加热过程。
求途径b的及。
解:先确定系统的始、末态3111061902000001529831485m ...P nRT V =××==32101601000005824431485m ...P nRT V V =××===kJ .kJ )..(Q W U Δa a 85194225575=+=+=-对于途径b,其功为kJ .J ..V Δp W b 932706190101602000001-)-(--===根据热力学第一定律2、6 4mol 某理想气体,温度升高20℃, 求ΔH -ΔU 的值。
解:根据焓的定义2、7 已知水在25℃的密度ρ=997、04kg·m -3。
求1mol 水(H 2O,l)在25℃下:(1)压力从100kPa 增加至200kPa 时的ΔH;(2)压力从100kPa 增加至1Mpa 时的ΔH 。
假设水的密度不随压力改变,在此压力范围内水的摩尔热力学能近似认为与压力无关。
解: 已知 ρ= 997、04kg·m -3 M H2O = 18、015 × 10-3 kg·mol -1凝聚相物质恒温变压过程, 水的密度不随压力改变,1molH2O(l)的体积在此压力范围可认为不变, 则 V H2O= m /ρ= M/ρΔH -ΔU = Δ(pV) = V(p2 -p1 )摩尔热力学能变与压力无关, ΔU = 0∴ΔH = Δ(pV) = V(p2p1 )-1) ΔH -ΔU = Δ(pV) = V(p2 -p1 ) = 1、8J2) ΔH -ΔU = Δ(pV) = V(p2 -p1 ) = 16、2J2、8 某理想气体C v,m=3/2R。
今有该气体5mol在恒容下温度升高50℃。
求过程的W,Q,ΔH 与ΔU。
解: 理想气体恒容升温过程n = 5mol C V,m = 3/2RQ V=ΔU = n C V,mΔT = 5×1、5R×50 = 3、118kJW = 0ΔH = ΔU + nRΔT = n C p,mΔT= n (C V,m+ R)ΔT = 5×2、5R×50 = 5、196kJ2、9 某理想气体C v,m=5/2R。
今有该气体5mol在恒压下温度降低50℃。
求过程的W,Q,ΔU 与ΔH。
解: 理想气体恒压降温过程n = 5molC V,m = 5/2R C p,m = 7/2RQ p=ΔH = n C p,mΔT = 5×3、5R×(-50) = -7、275kJW =-p ambΔV =-p(V2-V1) =-(nRT2-nRT1) = 2、078kJΔU =ΔH-nRΔT = nC V,mΔT = 5×2、5R×(-50) = -5、196kJ2、10 2mol某理想气体,C p,m=7/2R。
由始态100kPa,50dm3,先恒容加热使压力升高至200kPa,再恒压冷却使体积缩小至25dm3。
求整个过程的W,Q,ΔH与ΔU。
解:过程图示如下由于,则,对有理想气体与只就是温度的函数该途径只涉及恒容与恒压过程,因此计算功就是方便的根据热力学第一定律2、15 容积为0、1m3的恒容密闭容器中有一绝热隔板,其两侧分别为0℃,4mol的Ar(g)及150℃,2mol的Cu(s)。
现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的ΔH 。
已知:Ar(g)与Cu(s)的摩尔定压热容C p,m分别为20、786J·mol-1·K-1及24、435 J·mol-1·K-1,且假设均不随温度而变。
解: 恒容绝热混合过程Q = 0 W = 0∴由热力学第一定律得过程ΔU=ΔU(Ar,g)+ΔU(Cu,s)= 0ΔU(Ar,g) = n(Ar,g) C V,m (Ar,g)×(t2-0)ΔU(Cu,S) ≈ΔH (Cu,s) = n(C u,s)C p,m(Cu,s)×(t2-150)解得末态温度t2 = 74、23℃又得过程ΔH =ΔH(Ar,g) + ΔH(Cu,s)=n(Ar,g)C p,m(Ar,g)×(t2-0) + n(Cu,s)C p,m(Cu,s)×(t2-150)= 2、47kJ或ΔH =ΔU+Δ(pV) =n(Ar,g)RΔT=4×8314×(74、23-0)= 2、47kJ2、21 求1molN2(g)在300K恒温下从2dm3可逆膨胀到40dm3时的体积功W r。
(1) 假设N2(g)为理想气体;(2) 假设N2(g)为范德华气体,其范德华常数见附录。
解: 题给过程为n = 1mol应用式(2、6、1)(1) N2(g)为理想气体p = nRT/V∴(2) N2(g)为范德华气体已知n=1mol a =140、8×10-3Pa·m6·mol-2b= 39、13×10-6m3·mol-1所以2、22 某双原子理想气体1mol从始态350K,200kPa经过如下四个不同过程达到各自的平衡态,求各过程的功W。
(1) 恒温下可逆膨胀到50kPa;(2) 恒温反抗50kPa恒外压不可逆膨胀;(3) 绝热可逆膨胀到50kPa;(4) 绝热反抗50kPa恒外压不可逆膨胀。
解: 双原子理想气体n = 5mol; C V,m =( 5/2)R ; C p,m = (7/2)R2、23 5mol双原子理想气体从始态300K,200kPa,先恒温可逆膨胀到压力为50kPa,再绝热可逆压缩到末态压力200kPa。
求末态温度T及整个过程的W,Q,ΔUΔH与ΔH。
解: 理想气体连续pVT变化过程、题给过程为由绝热可逆过程方程式得1) ΔH 与ΔU 只取决于始末态,与中间过程无关ΔH = n C p,mΔT = n C p,m(T3-T1) = 21、21kJΔU = n C V,mΔT = n C V,m(T3-T1) = 15、15kJW2=ΔU = n C V,mΔT = n C V,m(T3-T2) = 15、15kJ∴ W = W1 + W2 = -2、14kJ3) 由热力学第一定律得Q =ΔU-W = 17、29kJ2、27 已知水(H2O,l)在100℃的饱与蒸气压p s=101、325kPa,在此温度、压力下水的摩尔蒸发焓。
求在100℃,101、325kPa下使1kg水蒸气全部凝结成液体水时的W,Q,ΔUΔH与ΔH。
设水蒸气适用理想气体状态方程式。
解: 题给过程的始末态与过程特性如下:n = m/M = 1kg/18、015g·mol-1 = 55、509mol题给相变焓数据的温度与上述相变过程温度一致,直接应用公式计算W=-p ambΔV =-p(V l-V g )≈pVg = n g RT=172、2kJΔU = Q p + W =-2084、79kJ2、28 已知100kPa下冰的熔点为0℃,此时冰的比熔化焓。
水的平均比定压热容求在绝热容器内向1kg50℃的水中投入0、1kg0℃的冰后,系统末态的温度。
计算时不考虑容器的热容。
解:假设冰全部熔化,末态温度为t:整个过程绝热ΔH= ΔH1+ΔH2+ΔH3其中整理可得末态温度 t = 38、21℃2、30 蒸气锅炉中连续不断地注入20℃的水,将其加热并蒸发成180℃,饱与蒸气压为1、003Mpa的水蒸气。
求每生产1kg水蒸气所需要的热量。
已知:水(H2O,l)在100℃的摩尔蒸发焓,水的平均摩尔定压热容,水蒸气(H2O,g)的摩尔定压热容与温度的函数关系见附录。
解:2、31 100kPa下冰(H2O,s)的熔点为0℃、在此条件下冰的摩尔熔化焓。
已知在-10~0℃范围内过冷水(H2O,l)与冰的摩尔定压热容分别为与。
求在常压及-10℃下过冷水结冰的摩尔凝固焓。
解: 在100kPa、273、15K下,水与冰互相平衡,所以在100kPa、263、15K的过冷水凝固为冰就偏离了平衡条件,因此该过程为不可逆相变化,设计途径如下:2、32 已知水(H2O,l)在100℃的摩尔蒸发焓,水与水蒸气在25~100℃范围间的平均摩尔定压热容分别为与求在25℃时水的摩尔蒸发焓。
解:由已知温度的相变焓求未知温度的相变焓,常压下对气体摩尔焓的影响通常可以忽略,可直接应用p68公式(2、7、4)2、34 应用附录中有关物质在25℃的标准摩尔生成焓的数据,计算下列反应在25℃时的与。
解:题给各反应的与分别计算如下:(1)(2)(3)2、35 应用附录中有关物质的热化学数据,计算25℃时反应的标准摩尔反应焓,要求: (1)应用附录中25℃的标准摩尔生成焓的数据;(2)应用附录中25℃的标准摩尔燃烧焓的数据、解: (1) 由得:(2) 先分别求出CH3OH(l)、HCOOCH3(l)的标准摩尔燃烧焓、应用附录查出在25℃时CH3OH(l)、HCOOCH3(l)的燃烧反应分别为:再应用公式得:。