反馈控制系统的特性
第8-6章前馈控制系统
+ Y=T2
例:加热炉出口温度前馈-串级控制系统
原油
燃料
8.6.3 前馈控制系统的应用场合
1)干扰幅值大而频繁、对被控变量影响剧烈,仅采用反馈 控制达不到要求的对象。 2)主要干扰是可测而不可控的变量。 3)当对象的控制通道的惯性和滞后大,反馈控制不及时, 控制质量差时,可引入前馈控制。
4)当工艺上要求实现变量间的某种特殊的关系,而需要通 过建立数学模型来实现控制时,可以引入前馈控制。
过程控制
8. 6 前馈控制系统
6.2前馈控制
8.6.1 概述 8.6.2 前馈控制系统的结构 8.6.3 前馈控制系统的应用场合
8.6.1 概述
反馈控制特点(例:换热器温度控制系统)
蒸汽
Q1:冷物料流量 pD :蒸汽压力
TC
pD , Q2 Q1,T1 T2 给定值 偏差
T1:冷物料温度 T2:热物料温度
换热器温度前馈-反馈控制系统
前馈控制器的传递函数:
W
ff
(S )
W PD ( S ) W PC ( S )
前馈反馈控制系统实现完 全补偿与开环前馈比较前 馈控制器传函相同。
Q1 前馈-反馈控制原理方块图
Wff(S)
+
WPD(S) WPC(S)
+ T 2
T1i
-
WC(S)
前馈-反馈控制方框图
前馈-反馈控制系统优点: 1、只需对主要的干扰进行前馈补偿,其它 干扰可由反馈控制予以校正; 2、反馈回路的存在,降低了前馈控制模型 的精度要求,为工程上实现比较简单的通用 模型创造了条件; 3、负荷变化时,模型特性也要变化,可由 反馈控制加以补偿,因此具有一定自适应能 力。
自控试题练习题集
第一章习题1-1日常生活中有许多开环和闭环控制系统,试举几个具体例子,并说明它们的工作原理。
1-2说明负反馈的工作原理及其在自动控制系统中的应用。
自动驾驶器用控制系统将汽车的速度限制在允许范围内。
画出方块图说明此反馈系统。
1-3双输入控制系统的一个常见例子是由冷热两个阀门的家用沐浴器。
目标是同时控制水温和流量,画出此闭环系统的方块图,你愿意让别人给你开环控制的沐浴器吗?1-4开环控制系统和闭环控制系统各有什么优缺点?1-5反馈控制系统的动态特性有哪几种类型?生产过程希望的动态过程特性是什么?1-6对自动控制系统基本的性能要求是什么?最主要的要求是什么?1-7下图表示一个水位自动控制系统,试说明其作用原理.1-8下图是恒温箱的温度自动控制系统.要求:(1) 画出系统的原理方框图;(2) 当恒温箱的温度发生变化时,试述系统的调解过程;(3) 指出系统属于哪一类型?1-9 下图为位置随动系统,输入量为转角r θ,输出量为转角c θ,p R 为圆盘式滑动电位器,s K 为功率放大器SM 为伺服电动机.要求: (1)说明系统由哪几部分组成,各起什么作用? (2)画出系统原理方框图;(3)说明当r θ 变化时, c θ的跟随过程.1-10 位置随动系统如下图所示,回答以下问题 1.说明该系统的以下(1)-(10)各是什么:(1)被控制对象 (2)被控制量 (3)给定元件 (4)给定量 (5)主反馈元件 (6)主反馈量 (7)误差量 (8)负载 (9)积分元件 (10)执行元件. 2.画出系统作用方框图,表出个环节的输入输出量。
3.判断(在括号内对的上面打"对号")(1)该系统是(按偏差;按扰动)原则的控制系统; (2)该系统是(有差;无差)系统; (3)该系统是(0型,1型,2型)系统; (4)该系统的输入量是(rr U Q 、);(5)该系统的输出量是(c c U Q 、)。
1-11下图为温度自动控制系统,改变a 点位置可以改变恒温温度.试说明该系统的工作原理和性能,并指出它属何种类型?1-12如题图(a )、(b )所示两水位控制系统,要求∙ 画出方块图(包括给定输入量和扰动输入量); ∙ 分析工作原理,讨论误差和扰动的关系。
反馈控制系统的特性
《现代控制系统》[美] R . C . 多尔夫,R . H . 毕晓普著第四章:反馈控制系统的特性4.1 开环和闭环控制系统既然我们已经能够设计出控制系统组成部分的数学模型,所以这节我们将研究控制系统的特性。
在1.1节,控制系统被定义为组成系统的各部分的互联关系,该系统是能够实现预定响应的。
因为理想系统响应是已知的,所以就会产生和偏差成比例的信号,这个偏差是理想响应和实际响应之间的差值。
在闭环过程中,利用这个偏差信号来控制信号输出的系统就叫做反馈系统。
这个闭环系统的操作过程如图4.1所示。
为了改善控制系统,引入反馈是非常必要的。
有趣的是,在自然环境中也存在这种反馈系统,例如生物和生理系统,在这些系统中反馈是与生俱来的。
例如,心脏控制系统就是一个反馈控制系统。
为了解释引入反馈以后系统的特性和好处,我们将举一个单一回路的反馈例子。
虽然很多控制系统都不是单一反馈的,但是单个回路反馈比较容易解释。
研究单个回路反馈能够最好地说明反馈回路的所有优点,然后我们再把它延伸到多个回路反馈系统。
没有反馈的系统通常被称为直接系统或开环系统,如图4.2所示。
与之相反的是闭环系统,如图4.3所示的负反馈控制系统。
没有反馈的开环{直接}系统就是对应与输入直接产生一个输出。
闭环控制系统就是对输出信号进行测量,然后与理想值进行比较,产生一个偏差信号,最后再把偏差信号送入调节器。
两种形式的控制系统都由相同的的方框图和信号流线图组成,但是,信号流线图对信号输出的结果起了主要作用。
一般情况下,H (s )等于1或者不是1的其他常数。
这个常数包括单位转换,例如,弧度转化为电压。
首先,我们先讨论H (s )=1时的单位反馈。
那么这时Ea(s)=E(s),并且Y(s)=G(s)E(s)=G(s)[R(s)-Y(s)]解出Y(s),得到()()()1()G s Y s R s G s =+ (4.1) 偏差信号是1()()1()E s R s G s =+ 因此,为了减小偏差,在S 的取值范围内,必须使[1+G (s )]的值远大于1。
自动控制题库答案
第一章1.开环控制和闭环控制的主要区别是什么?主要区别是有无输出量的反馈,将输出量和定值比较后形成差值反馈给对象的输入端,就是闭环控制,无此过程就是开环控制。
2. 电加热炉炉温控制中,热电阻丝端电压U及炉内物体质量M的变化,哪个是控制量?哪个是扰动?为什么?U是控制量,改变U可以控制温度的高低;M是扰动,它的增减对温度产生不希望的影响,即影响炉温的高低。
3. 简述自动控制所起的作用是什么?作用是在人不直接参与的情况下,使某些被控量按指定规律变化。
4.恒值调节和随动调节的区别是什么?恒值调节的给定量为一常值,随动调节的给定量是个随时间变化的不能预知的量。
5. 简述自动控制电加热炉炉温控制的原理。
1)由热电偶测得炉温2)和给定温度值比较3)温度差大于0,则减小电炉电压使炉温降低,反之则增大电压。
6.比较被控量输出和给定值的大小,根据其偏差实现对被控量的控制,这种控制方式称为闭环控制。
7.简述控制系统由哪三大部分组成?测量,比较,控制1.反馈控制系统是指:a.负反馈 b.正反馈答案a.负反馈2.反馈控制系统的特点是:答案控制精度高、结构复杂3.开环控制的特点是:答案控制精度低、结构简单4.闭环控制系统的基本环节有:给定、比较、控制、对象、反馈5.自控系统各环节的输出量分别为:给定量、反馈量、偏差、控制量输出量。
6.自控系统的数学模型主要有以下三种:微分方程、传递函数、频率特性7.实际的物理系统都是:a.非线性的 b.线性的 a.非线性的8.线性化是指在工作点附近用代替曲线。
切线9.传递函数等于输出像函数比输入像函数。
10.传递函数只与系统结构参数有关,与输出量、输入量无关。
11.惯性环节的惯性时间常数越大,系统快速性越差。
12.二阶系统阻尼系数>1,系统就不会出现过调。
13.最佳阻尼系数ξ=0.707。
14.小时间迟后环节可近似为惯性环节。
15.分析某一时间的误差可用:a.终值定理 b.误差级数 c.拉氏反变换。
反馈控制系统稳定性问题及改进方法研究
反馈控制系统稳定性问题及改进方法研究1. 研究背景反馈控制系统是一种常用的控制系统,广泛应用于工业自动化、机器人控制、飞行器等领域。
然而,反馈控制系统在实际应用中常常面临稳定性问题,如系统振荡、不稳定等。
这些问题对系统的性能、可靠性和安全性都会产生负面影响,因此需要进行研究和改进。
2. 稳定性问题的原因分析反馈控制系统稳定性问题的产生原因有多种,主要包括以下几个方面:a. 参数不确定性:如果系统参数存在不确定性,如变化范围较大或存在随机性,会导致系统的稳定性下降。
b. 时滞问题:反馈控制系统中的时滞(包括传感器延迟、信号传输延迟等)会导致系统的稳定性退化。
c. 非线性特性:系统的非线性特性会导致系统稳定性问题的产生和加剧。
d. 信号干扰:如果系统受到外部信号干扰或噪声干扰,会导致系统的稳定性受到影响。
3. 稳定性改进方法针对反馈控制系统的稳定性问题,可以采取如下改进方法:a. 参数估计与鲁棒控制:通过参数估计技术,对系统的参数进行辨识和估计,从而提高系统的鲁棒性和稳定性。
鲁棒控制策略可以针对参数不确定性,克服参数变化带来的稳定性问题。
b. 时滞补偿:采用时滞补偿技术,通过估计和预测时滞,对控制器进行补偿,消除由于时滞引起的不稳定性。
c. 非线性控制方法:针对系统的非线性特性,可以采用模糊控制、神经网络控制等非线性控制方法。
这些方法可以更好地处理系统的非线性特性,提高系统的稳定性和性能。
d. 信号处理与滤波:对于受到信号干扰的系统,可以通过信号处理和滤波技术来减小干扰的影响,提高系统的稳定性。
4. 实验研究为了验证改进方法的有效性,可以进行实验研究。
首先,建立反馈控制系统的数学模型,并模拟各种稳定性问题的影响。
然后,针对每个稳定性问题,应用相应的改进方法进行实验,比较改进前后系统的稳定性和性能。
实验结果可以提供参考,为实际应用中的系统优化提供指导。
5. 结论反馈控制系统的稳定性问题对于系统的性能和可靠性具有重要影响,需要进行研究和改进。
控制系统的特性分析
为了提高控制系统的鲁棒性,可以采用多种措施,例如引入滤波器、采 用鲁棒控制算法等。这些措施能够减小不确定因素对系统性能的影响, 提高系统的鲁棒性。
03 控制系统的性能指标
调节时间
总结词
调节时间是指控制系统达到稳定状态所需的时间。
详细描述
调节时间是评估控制系统性能的重要指标,它反映了系统对外部扰动或变化响应 的快慢。较短的调节时间意味着系统能够更快地达到稳定状态,从而提高生产效 率。在分析调节时间时,通常采用系统的阶跃响应曲线来评估其性能。
02 控制系统的基本特性
稳定性
稳定性的定义
稳定性是控制系统的重要特性,指系统在受到扰动后能否回到原始平衡状态的能力。如果系统受到扰动后能回到原始 平衡状态,则称系统是稳定的。
稳定性的分类
根据系统回到平衡状态的快慢,稳定性可以分为超调和欠调。超调是指系统在达到新的平衡状态之前,其输出值超过 其新的平衡值;欠调则是指系统在达到新的平衡状态之前,其输出值低于其新的平衡值。
稳定性的判定方法
判定系统稳定性的方法有多种,包括劳斯判据、赫尔维茨判据、奈奎斯特判据等。这些方法通过分析系 统的极点和零点,可以判定系统的稳定性。
动态特性
动态特性的定义
动态特性的描述
动态特性的优化
动态特性是指系统在输入信号的作用 下,其输出信号随时间变化的特性。 动态特性反映了系统的响应速度、超 调和调节时间等性能指标。
能源管理
工业控制系统可以对工厂或车间的能源使用进行 监控和调节,通过实时数据采集和反馈控制,实 现能源的有效利用和节约。
质量检测
工业控制系统集成各种传感器和检测设备,对生 产过程中的产品进行实时检测,确保产品质量符 合标准。
自控所有答案 教材:《现代控制系统》(第八版)谢红卫等译 高等教育出版社,2001.6
被测变量:功率
控制装置:微处理器
#
P1.7[解]
正反馈占优
时间误差
#
P1.11[解]
利用浮球保持水箱的液面高度,使得滴水孔的流水量均衡,从而使得液面高度与时间成线性关系,保持了水钟的准确度。
#
E2.4[解]
#
E2.5[解]
#
E2.8[解]
#
E2.26[解]
#
P2.7[解]
#
P2.8[解]
subplot(2,1,2),step([2,16],[1,6,16],t),
#
P5.4略
AP5.4略
E6.4[解]
令首列不变号的:
#
E6.6[解]
令s1列全为0得
由
#
P6.6[解]
略
#
AP6.3[解]
略
#
E7.1[解]
(a)>> rlocus([1,4,0] ,[1,2,2])
(b)
令
得:
(c)对应闭环极点(特征根)为
#
P9.2[解]
1)像点映射:
K=4;
num=[K];den =[1,1,4,0];
Gs=tf(num,den);nyquist(Gs);
2)围线与实轴负向的交点为:
令虚部为零得 ,
此时,频率特性函数的实部为:
所以,K的最大取值为 #
P9.4[解]略#
10.1、已知系统如下所示, ,
试设计控制器Gc(s),要求系统在单位阶跃输入下性能指标如下:
P180
E4.1、E4.4、P4.8
AP4.8
MP4.2
第五章反馈控制系统的性能
P235
单位负反馈控制系统G
单位负反馈控制系统G(s)=4/s(s+1)引言:单位负反馈控制系统是自动控制理论中的一个重要概念,它广泛应用于各种工程和技术领域。
单位负反馈控制系统的传递函数G(s)描述了系统输出与输入之间的关系,对于分析和设计控制系统具有重要意义。
本文将深入探讨单位负反馈控制系统G(s)=4/s(s+1),分析其特性、应用和优势。
一、单位负反馈控制系统的基本原理单位负反馈控制系统是一种闭环控制系统,其中系统的输出与输入之间存在一个负反馈回路。
这个负反馈回路将系统的输出信号与输入信号进行比较,并调整系统的控制信号,以达到期望的控制效果。
单位负反馈控制系统的传递函数G(s)描述了系统输出与输入之间的关系,它是系统稳定性、响应性和鲁棒性的关键因素。
二、G(s)=4/s(s+1)的特性分析1. 稳定性:传递函数G(s)=4/s(s+1)的零点位于s=-1和s=0,其中s=-1是一个稳定的零点,而s=0是一个不稳定的零点。
这意味着系统在s=-1时具有稳定性,但在s=0时可能存在振荡或发散的行为。
因此,为了确保系统的稳定性,需要采取适当的控制策略来补偿不稳定的零点。
2. 响应性:传递函数G(s)=4/s(s+1)的分母为s(s+1),这意味着系统在低频区域具有较快的响应速度,而在高频区域响应速度较慢。
因此,系统在处理低频信号时能够迅速响应,而在处理高频信号时可能存在延迟或振荡的问题。
3. 鲁棒性:传递函数G(s)=4/s(s+1)的分子为常数4,这表明系统对于输入信号的幅度变化具有一定的鲁棒性。
然而,由于分母包含s(s+1)项,系统对于输入信号的变化频率较为敏感,可能存在频率响应的问题。
三、单位负反馈控制系统的应用1. 工程领域:单位负反馈控制系统广泛应用于各种工程领域,如机械控制、电子电路、化学工艺等。
通过合理设计控制器的传递函数,可以实现系统的稳定控制、精确控制和快速响应。
2. 机器人控制:单位负反馈控制系统在机器人控制中起着重要作用。
控制系统中前馈控制与反馈控制的区别-文档资料
控制系统中前馈控制与反馈控制的区别在自动控制系统中,反馈控制是闭环控制,所谓的闭环控制是将输出信号反送到控制器的输入端与给定值(给定控制信号)进行比较,得到偏差信号作为控制器的输入信号.(如何构成的“环路”?对整个控制系统来讲包含两条主要通路信号,一条是从控制器传送到控制对象的前向通道信号,还有一条是从控制对象反馈到控制器输入的反向信号,整个系统构成一个闭和的环路,因此称为闭环)。
前馈控制则是指不存在给定信号与控制对象的输出信号进行比较的过程,直接对控制对象进行控制的一种控制方式,是一种开环的控制方式。
它是在从给定值到控制对象的称为“前向”控制通道上加上控制信号的一种控制方式。
因此称为“前馈”。
前馈控制一般由前馈控制器完成,前馈控制器输出到“前向通道”的信号(作用在控制系统的信号)称为前馈信号。
前馈控制器的输入一般是对系统的某种扰动进行检测和处理后的信号。
那么二者之间究竟有怎么的区别和联系,笔者对此做了以下的见点介绍。
图1 反馈控制框图图2 前馈控制框图上面的两个框图分别是反馈控制框图和前馈控制框图,从图上分析可知二者之间的区别:1。
所测量的信号量不同,前馈系统中所测的信号量是干扰量,反馈系统中所测量的信号量是被控变量。
一般反馈控制系统是按照测量值与给定值比较得到的偏差进行调节的,这都属于闭环负反馈调节,其特点是在被控变量出现偏差后才进行调节。
如果干扰已经发生而没有产生偏差,调节器不会进行工作。
所以反馈系统的调节作用落后于干扰作用。
前馈调节是按照干扰作用来进行调节的。
它的特点是把干扰测量出来,直接引入调节装置。
不像反馈控制那样一定要产生偏差后再来调节,所以前馈控制系统能很好的克服干扰的作用。
2。
前馈控制根据其特定的控制规律需要用专用调节器,反馈控制一般只需采用通用调节器即可。
由于前馈控制的精确性和及时性取决于干扰通道和调节通道的特性,且要求较高,因此,要根据被控制对象的特点来确定调节规律,进而选择所需要的专用调节器,而反馈基本上不管干扰通道的特性,且允许被控变量有波动,因此,反馈调节通常采用PID调节规律,常用常规仪表或DCS等控制系统实现,可采用通用调节器。
反馈控制系统的组成、工作过程和特点
起的反馈信号变化就愈大。这样,对于相同的参考信号与反 馈信号之间的起始偏差,在系统重新达到稳定后,通路增益 高,误差信号变化就小,整个系统调整的质量就高。应该指 出,提高通路增益只能减小误差信号变化,而不能将这个变 化减小到零。这是因为补偿参考信号与反馈信号之间的起始 偏差所需的反馈信号变化,只能由误差信号的变化产生。
总之,由于反馈控制作用,较大的参考信号变化和输出 信号变化,只引起小的误差信号变化。
欲得此结果,需满足如下两个条件: 一是要反馈信号变化的方向与参考信号变化的方向一致.
因为比较器输出的误差信号e是参考信号r与反馈信号f之差, 即e=r-f,所以,只有反馈信号与参考信号变化方向一致,才 能抵消参考信号的变化,从而减小误差信号的变化。
图8.1 反馈控制系统系统已处于稳定状态,这是输入信号为s0,输出信 号y0,参考信号为r0,比较器输出的误差信号为e0。 ①参考信号r0保持不变,输出信号y发生了变化。y发生 了变化的原因可以是输入信号s(t)发生了变化,也可以是可控 特性设备本身的特性发生了变化。y的变化经过反馈环节将 表现为反馈信号f的变化,使得输出信号y向趋近于y0的方向 进一步变化。在反馈控制系统中,总是使输出信号y进一步 变化的方向与原来的变化方向相反,也就是要减小y的变化 量。y的变化减小将使得比较器输出的误差信号减小。适当
反馈控制系统的组成、工作过程和特点
反馈控制系统的方框图如图8.1所示。图中,比较器的作 用是将外加的参考信号r(t)和f(t)进行比较,通常是取其差值, 并输出比较后的差值信号e(t),起检测误差信号和产生控制信 号的作用。可控特性设备是在输入信号s(t)的作用下产生输出 信号y(t),其输出与输入特性的关系受误差信号e(t)的控制,起 误差信号的校正作用。反馈环节的作用是将输出信号y(t)按 一定的规律反馈到输入端,这个规律可以随着要求的不同而 不同,它对整个环路的性能起着重要的作用。
线性反馈控制系统的基本结构及其特点
求得ωb≈9.0;综合考虑响应速度和带宽要求,取ωn=10。于是,
闭环主导极点为s1,2=-7.07±j7.07,取非主导极点为s3=-10ωn=100。
第6章 线性定常系统的综合
(3)确定状态反馈矩阵K。状态反馈系统的特征多项式为
第6章 线性定常系统的综合
定理6.6-受控系统(A,B,C)通过状态反馈实现解耦控制的
环极点任意配置的充要条件是该受控系统状态完全可观。
证 根据对偶原理,如果受控系统Σ0(A,B,C)可观,则对偶系
统Σ0(AT,BT,CT)必然可控,因而可以任意配置(AT-CTHT)的特征
值。而(AT-CTHT)的特征值与(A-HC)的特征值是相同的,故当
且仅当Σ0(A,B,C)可观时,可以任意配置(A-HC)的特征值。
减小ζ,这就会使系统最大超调 Mp 增大。可见只靠调整增益
K 无法同时使ζ和ωn 都取最佳值。这从根轨迹来看,由于可调
参数只有 K,故系统特征根,即闭环极点只能在系统的根轨迹
这条线上,而无法在根轨迹以外的s 平面的其他点上实现。
第6章 线性定常系统的综合
方法二:状态反馈法。
第6章 线性定常系统的综合
图6-9 模拟结构图
第6章 线性定常系统的综合
第6章 线性定常系统的综合
第6章 线性定常系统的综合
图6-10 加入状态反馈后的模拟结构图
第6章 线性定常系统的综合
6.2.2 输出反馈极点配置
输出反馈有两种方式
(1)采用从输出到ሶ 反馈,如图6-3所示。
定理6.4 对受控系统采用从输出到ሶ 的线性反馈实现闭
图6-4 控制系统结构图
前馈反馈控制系统
前馈—反馈复合控制系统摘要流量是工业生产过程中重要的被控量之一,因而流量控制的研究具有很大的现实意义。
锅炉的流量控制对石油、冶金、化工等行业来说必不可少。
本论文的目的是锅炉进水流量定值控制,在设计中充分利用自动化仪表技术,计算机技术,自动控制技术,以实现对水箱液位的过程控制。
首先对被控对象的模型进行分析,并采用实验建模法求取模型的传递函数。
然后,根据被控对象模型和被控过程特性并加入PID调节器设计流量控制系统,采用动态仿真技术对控制系统的性能进行分析。
同时,通过对实际控制的结果进行比较,验证了过程控制对提高系统性能的作用。
随着计算机控制技术的迅速发展,组态技术开始得到重视与运用,它能够很好地解决传统工业控制软件存在的种种问题,使用户能根据控制对象和控制目的任意组态,完成最终的自动化控制工程。
关键词:流量定值;过程控制;PID调节器;前馈控制;系统仿真目录一.前馈控制1.前馈控制的定义2.换热器前馈控制二.前馈控制的特点及局限性1.前馈控制的特点2.前馈控制的局限性三.反馈控制1.定义2.反馈控制的特点四.复合控制系统特性1.前馈-反馈复合控制原理2.复合控制系统特点五.小结六.参考文献一、前馈控制1.前馈控制的定义前馈控制(英文名称为Feedforward Control),是按干扰进行调节的开环调节系统,在干扰发生后,被控变量未发生变化时,前馈控制器根据干扰幅值,变化趋势,对操纵变量进行调节,来补偿干扰对被控变量的影响,使被控变量保持不变的方法。
2.换热器前馈控制在热工控制系统中,由于控对象通常存在一定的纯滞后和容积滞后,因而从干扰产生到被调量发生变化需要一定的时间。
从偏差产生到调节器产生控制作用以及操纵量改变到被控量发生变化又要经过一定的时间,可见,这种反馈控制方案的本身决定了无法将干扰对被控量的影响克服在被控量偏离设定植之前,从而限制了这类控制系统控制质量的进一步提高。
考虑到偏差产生的直接原因是干扰作用的结果,如果直接按扰动而不是按偏差进行控制,也就是说,当干扰一出现调节器就直接根据检测到的干扰大小和方法按一定规律去控制。
(参考资料)降维状态观测器课件
总结
包含观测器的状态反馈系统特性
维数增加:引入观测器增加了系统维数;
dim(KB ) dim(0 ) dim(OB )
特征值分离性:包含观测器的反馈系统的特征值集合具有
分离性 (KB ) {(K ), (OB )} i ( A BK);i (F)
分离原理:独立地分别设计状态反馈控制律和状态观测器 (引入观测器不影响由状态反馈所配置的特征值,也不影 响已设好的观测器的特征值)
方案2的降维状态观测器结构图
6.14 Kx―函数观测器
Kx―函数观测器
基本思想
有时重构状态的最终目的是为了获得状态的某种组合如 Kx 的估计。 直接重构 Kx可能使观测器的维数较降维状态观测器的维数更低。
问题描述
给定线性系统
x :n 维 u :p 维 y :q维
:
x& y
Ax Bu, Cx, Kx
kxkxkxkxkxkx函数观测器组成结构图615615615基于观测器的状态反馈控制系统的特性615具有观测器状态反馈控制系统和具有补偿器输出反馈系统的等价性615具有观测器状态反馈控制系统和具有补偿器输出反馈系统的等价性包含观测器的状态反馈系统特性维数增加
6.13 降维状态观测器
降维观测器
基本思想(降维观测器在结构上比全维观测器简单)
x(0) x0
寻找观测器
z : m 维, 观测器维数m<n w:r维
z& Fz Gy Hu, ob : w Mz Ny
z(0) z0
K rn
使得 lim(w(t) Kx(t)) 0 t
Kx―函数观测器的条件
结论 对连续时间线性时不变被观测系统,线性时不变系统
可成为Kx-函数观测器即成立的充分必要条件为
反馈控制系统的特性
E ( s ) 1 R ( s ) G ( s ) T d ( s ) G c ( s ) G ( s )N ( s ) 1 G c ( s ) G ( s ) 1 G c ( s ) G ( s ) 1 G c ( s ) G ( s )
6
二、系统灵敏度定义
系统灵敏度定义为系统传递函数的变化率与对象传递函数(或参数)的变 化率之比。
S T T lnT GG lnG
显然,对开环系统 S=1。闭环系统灵敏度为:
T(s) G(s) 1G(s)H(s)
SG T G TG T[1G 1 H ]2G(1G GH )1G(1 s)H(s)
关于系统灵敏度和鲁棒性的深入讨论见教材第12章。
第三章反馈控制系统的特性feedbackcontrolsystemcharacteristics本章主要内容本章主要内容工程应用本章目标深刻认识误差在系统分析中的重要地位充分理解反馈对消除干扰噪声和参数变化对系统影响的作用理解系统对动态响应和静态响应控制的区别明白反馈的作用和代价参阅教材第4章p15117931反馈控制系统工程应用中的两大类自动控制系统
S (s) 1 1
灵敏度✓ 函C数(s)+S(s)=1,两者不可能同时小,必须折
F (s) 1 L(s)
中。
C (s) L(s) 1 L(s)
灵敏度补✓偿具函体数讲,要有效消除扰动的影响,需要大 的开环增益L(s)或者大的控制器增益Gc(s);
要有效消除噪声影响,必须有小的开环增益
1
G(s)
第三章 反馈控制系统的特性 Feedback Control System Characteristics
简述控制系统的特点
简述控制系统的特点控制系统是实现过程控制、设备运行管理以及系统优化的重要组成部分,其特点主要包括以下几点:1.目的性:控制系统具有明确的目标,即通过调控手段使被控对象的输出状态达到预期设定值或满足特定性能指标。
无论是工业生产过程还是其他领域,控制系统都旨在保持系统稳定运行,并在变化条件下维持目标性能。
2.反馈机制:控制系统的核心特点是基于反馈原理进行工作,它通过传感器获取系统的实际输出信号(称为反馈信号),并与设定的理想输出值进行比较,产生偏差信号,然后根据偏差采取相应的控制动作以减少误差。
3.动态响应与稳定性:控制系统需具备良好的动态响应特性,能够快速准确地响应外部扰动和内部参数变化,同时确保系统在各种工况下都能保持稳定,不发生振荡或失控现象。
4.自适应性:优秀的控制系统应具有一定的自适应能力,即能随着环境条件、负载需求或系统本身特性的变化而自动调整控制策略,以保证系统始终处于最优或接近最优的工作状态。
5.鲁棒性:鲁棒性是指控制系统在面对不确定性、噪声、参数变化以及未知干扰时仍能保持稳定性和控制性能的能力。
6.可控性与可观测性:一个有效的控制系统需要确保被控对象的状态是可以控制和观测的,这样才能对系统的状态有清晰的认识并实施有效控制。
7.结构化设计:控制系统通常由输入、控制器、执行器及被控对象等组成,它们之间通过合理的连接和算法设计形成一个完整的闭环系统。
8.智能化:现代控制系统越来越多地融入了智能技术,如模糊逻辑控制、神经网络控制、专家系统控制、预测控制等,使得系统不仅能在正常情况下良好运行,还能处理复杂、非线性或不确定性的控制问题。
9.灵活性与可扩展性:好的控制系统应该具有灵活配置和升级扩展的功能,以便随着应用需求的变化进行相应的更新与优化。
第五章2前馈-反馈控制系统
5.2.3 前馈控制规律
2.模拟仪表实施
• KF型前馈调节器:利用常规的比例调节器等仪表来实现。
WFF (s) K F
•
KF
T1 s T2 s
1 1
型前馈调节器:一阶超前-滞后的前馈控制器。
不考虑Kf时,这种前馈控制器在单位阶跃干扰作用下的时间特性表示为:
m
f
(t)
1
T2 T1 T2
T2s 1
-
+
输出
+
K
t
W
f
(s)
K
f
[
T2
K s 1
1
K
]
K T1 1 T2
令K T1 1时,有 T2
Wf
(s)
K
f
[(T1/T2 )-1 T2s 1
1
T1 T2
1]
Kf
T1s 1 T2s 1
东北大学
常规仪表实现时,由一个正微分器、反微分器及比值器串联而成。
(3)前馈控制模型的精度也受到多种因素的限制,对象特性要 受到负荷和工况等因素的影响而产生漂移,导致扰动通道 的传递函数和控制通道的传递函数的变化。
东北大学
5.2.2 前馈控制系统的结构形式
3.前馈-反馈控制系统
反馈控制:在稳态时,使系统在稳态时能准确地使被控量等于给定值; 前馈控制:在动态时,依靠前馈控制能有效地减少被控量的动态偏差,从而提高 控制质量。 在过程控制中这是一种较理想的控制方案.
误差分析: 由于对象干扰通道和调节通道的动态特性
不同所引起的动态偏差,这种偏差是静 态前馈控制无法避免的。
机械工程中的控制系统动态特性分析
机械工程中的控制系统动态特性分析一、引言控制系统在机械工程中扮演着重要的角色,它可以用于实现对机械设备的精确控制。
而控制系统的动态特性是评价其性能优劣的重要指标之一。
在本文中,我们将对机械工程中的控制系统动态特性进行深入分析,并探讨相关的研究领域和方法。
二、控制系统的动态特性控制系统的动态特性是指系统对输入信号变化的响应速度和稳定性。
动态特性分析可以帮助工程师了解控制系统在不同条件下的性能表现,并为系统优化提供依据。
常见的控制系统动态特性参数包括响应时间、超调量、稳态误差等。
1. 响应时间响应时间是指控制系统从接收到输入信号开始,到达稳定状态所需要的时间。
响应时间短意味着系统能够更快地对外界变化做出反应,因此在对于快速变化的控制任务中尤为重要。
工程师可以通过调整系统的参数来降低响应时间,例如增加控制器的增益或优化系统的结构。
2. 超调量超调量是指控制系统在响应过程中达到的最大偏离稳定状态的幅度。
超调量的大小反映了系统的稳定性和控制精度。
太大的超调量可能导致系统不稳定或产生震荡,而过小的超调量则可能导致系统响应过于迟缓。
因此,合理地控制超调量对于优化控制系统的性能至关重要。
3. 稳态误差稳态误差是指在稳定状态下,系统输出与设定值之间的差异。
稳态误差的大小可以反映系统的精确度和偏差。
在实际工程中,稳态误差往往是无法完全消除的,但工程师可以通过增加控制增益或改进系统结构来降低稳态误差。
三、控制系统动态特性分析方法为了准确地分析控制系统的动态特性,工程师们发展了各种分析方法和工具。
下面我们介绍几种常用的方法。
1. 传递函数法传递函数法是一种基于传递函数表示的分析方法。
通过建立控制系统的传递函数模型,可以对系统的动态特性进行数学分析和仿真。
传递函数法可以帮助工程师预测系统的响应时间、超调量等指标,并进行参数调整和优化。
2. 时域分析法时域分析法是一种基于时间响应的分析方法。
通过对系统输入信号和输出信号的时序数据进行处理,可以得到系统的动态特性参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档
• 以普通家用压力锅的温度控制过程为例,在密 闭状态下,锅内的温度与压力呈对应关系。加热 锅体,锅内温度逐步升高,锅内压力也随之升高; 当锅内的压力达到设定值时,高压将顶开压在排 气阀上的重锤,排出蒸汽,使锅内压力降低,压 力的降低又造成温度的降低。由于重锤的重量是 恒定,因此当温度达到设定值之后,加热量和排 气量将呈动态平衡,锅内压力保持在高于大气压 力的一个恒定值上,锅内温度也保持在高于常压 水的沸点温度的一个恒定值上(一般为110℃左 右),不再继续升高。过程如下图所示:
这就是我们下节课程要学习的闭环控制系统
实用文档
• 闭环控制系统
控制过程中有反馈环节可以把控制结果反馈回 来与期望值进行比较,并根据它们的误差及时调 整控制作用,控制流向形成了闭合回路
特点 实时的 连续的 反馈环节必须对控制作用产生影响 比如空调房间温度的控制,只要房间实际 温度和设定的温度有误差,它就要实施控 制,直到实际温度和设定的温度相等,控 制过程就结束。 实用文档
实用文档
一、控制系统
什么是控制系统
任何一种控制的实现,都应通过若干个环节, 这些环节就构成了一个系统---控制系统。
为了分析的方便,我们一般用框图的形式描述一 个控制系统,这种图称为控制系统方框图。
控制系统方框图的输入和输出之间是有一定的关 系的。
控制系统通常又分为开环控制系统和闭环控制系
统。
实用文档
实用文档
开环控制与闭环控制的Байду номын сангаас别
实用文档
• “开环控制”与“闭环控制”的区别就在于控
制系统中有无反馈环节,所谓闭环控制就是存在
反馈环节的控制。这样的系统能够适时地检测控
制的输出结果,并将检测到的信息通过反馈环节
反映到输入端,调整输入量,达到修正控制误差、
提高控制精确度的目的。反馈技术被广泛应用在
实用文档
实用文档
• 分析这样一个控制问题,首先要界定所考察的系统范 围。从整体效果上看,该控制过程的输入量是加热锅体, 加热锅体导致的三个结果:锅体升温、锅内升压以及排 气孔排气,都是输出量,而输出量并未反馈回来影响输 入量,因此它是一个开环控制系统。而更细致的分析, 应该把升温过程与恒压/恒温过程分别进行分析。分析 时考察的系统范围不同,结论也不同。
各种需要精确控制的系统中,尤其是电子控制系
统,比如:各种放大电路中的增益控制;环境的
温度、湿度、水位、压力的控制;机械结构的位
置控制、速度控制等等。因此常常使人觉得:闭
环控制是复杂的、精确的、自动的控制方式,而
开环控制相对的简单、粗糙和非自动。这种感觉
常常造成初学者在分析系统时的误判,需要特别
注意。
• 思考:闭上眼睛写字与睁开眼睛写字的区别在 哪里?为什么?
• 以色列的“定点清除”,能够把炮弹打到几千 公里以外的行驶的汽车,这是为什么?是不是 炮弹长了“眼睛”?对了,正是炮弹长了“眼 睛”,这不是普通炮弹,而是导弹。导弹打得 准是因为它具备了自动修正的能力。
• 睁开眼睛写字是否具备自动修正的能力? • :在控制系统中如何才能具备自动修正的能力?
• 请写出“芝麻开门”声控开门系统的控制 方框图,有兴趣的同学课后可以制作模型, 把神话变成现实。
• 谁不懂写,请举手。 • 当你 明确“芝麻开门”声控开门系统是开
环控制系统之后方框图 • 你可以把开环控制系统方框图拿出来,想
一想,控制器、执行器、被控对象分别是 什么?
实用文档
• 2、公共汽车车门的开关控制。
如果进水管的进水量是均匀的,游泳池中的水 位高度与进水的时间是一一对应的。我们可以在 注水口处装一个定时器,通过定时器来控制注水 过程(时间)。
设定注 入时间
(输入)
定时器
流水量
进水阀
游泳池
游泳池 的水位
(输出)
实用文档
开环控制系统的例子
红外自动门
实用文档
红外线自动门
人靠近门
红外线 控制
旋转量
电动机
第三章反馈控制系统 的特性
实用文档
自行车的速度控制
脚踩的力 (输入)
脚蹬曲柄链轮 中轴链条飞轮
行使的速度 (输出)
一定范围内输入的力实用与文档输出的速度 是成正比的。
电风扇的风速控制
电风扇风 速的挡位
(输入)
电机
扇叶
电风扇 的风速
(输出)
选择不同的挡位输入,输出的风速不同, 一个挡位对应着一个风速。
实用文档
小试验:闭上眼睛写“控制系统” 要求体验输出、输入、控制器、执行器、被控对象
分别是什么。
输入量:老师的指令 输出量:所写的字 分析:大脑——控制器,手——执行器,笔——被控对象
输入量:老师的指令 输出量:所写的字 分析:大脑——控制器,手——执行器,笔——被控对象
实用文档
• 请同学们课后去试验:睁开眼睛写“控制系统” 四个字。
• 下列说法正确的是
A、闭环控制都是自动的控制系统 B、开环控制都是人工的控制系统 C、闭环控制一定比开环的好 D、按时间顺序进行的控制都是开环控制
输入量:作用于控制系统的物理量,可分为使系 统具有预定功能的控制输入量(简称控制量)和破 坏系统控制输入量和输出量之间预定规律的干扰 输入量(简称干扰或扰动量)。 输出量:控制系统或被控对象的需要进行控制的 物理量。
输入
输出
电饭煲
接通电源的 电信号
锅内的温度
脱粒机
接通电源的 脱粒机脱粒
电信号
的量
红外线自动 红外装置检测到
水龙头
人手发出的信号 实用文档
出水量
一、开环控制系统 1、什么是开环控制系统
定义:控制系统的输出量不对系 统的控制产生任何影响。
实用文档
游泳池注水1
一般情况下,一池水需要很长的时间才能灌满, 如果由人工控制整个注水过程,很费时间 。
门
打开门
实用文档
2、开环控制系统的组成方框图
控制量
输入 控制器 执行器
被控对象 输出
抓罪犯
公安局
法院
罪犯
依法判刑
控制器:对输入信号进行处理并发出 控制命令的装置或元件,如控制电路。
执行器:直接对被控对象进行控制的 装置或元件。 实用文档
《一千零一夜》里的一个故事:阿 里巴巴和四十大盗的故事
实用文档
• ①压力锅的加热、升温、升压过程
• 把加热炉具与压力锅看成一个系统,压力锅体因外部加 热而升温,分析加热的过程。输入量——接通电源或点 火,输出量——锅体升温、锅内升压以及排气孔排气。 控制过程如下图所示,与用炉火加热普通锅体的过程相 同,属于开环自动控制。实用文档