函数的单调性(一)PPT教学课件
合集下载
函数的单调性课件1(苏教版必修1)
反函数的单调性判断
如果原函数在其定义域内单调递增 (或递减),则其反函数在对应的定 义域内单调递减(或递增)。
反函数的应用举例
利用反函数求值
通过反函数,可以将一个变量的值转换为另一个变量的值。例如,利用反三角函数可以求出角度的值。
利用反函数解决实际问题
在很多实际问题中,可以通过建立反函数来求解问题。例如,在物理学、工程学、经济学等领域中,常常需要利 用反函数来解决实际问题。
函数的单调性课件1(苏教版必修1)
contents
目录
• 函数单调性的定义 • 单调函数的性质 • 单调函数的应用 • 反函数与单调性 • 复合函数的单调性
01 函数单调性的定义
函数单调性的定义
函数单调性是指函数在某个区间内的增减性。如果函数在某个区间内单调递增,则对于该区间内的任意 两个数$x_1$和$x_2$($x_1 < x_2$),都有$f(x_1) < f(x_2)$;如果函数在某个区间内单调递减,则对 于该区间内的任意两个数$x_1$和$x_2$($x_1 < x_2$),都有$f(x_1) > f(x_2)$。
复合函数法
利用复合函数的单调性法则来判断 原Байду номын сангаас数的单调性。
单调函数的反例
反例1
函数f(x)=x^2在区间(-∞,0)上是单 调减少的,但在区间(0,+∞)上是单 调增加的,因此f(x)=x^2在整个定 义域上不是单调函数。
反例2
函数f(x)={ x^2 x>0; -x^2 x<0; } 在区间(-∞,0)和(0,+∞)上都是单调 减少的,但在整个定义域上不是单 调函数。
x_2$),都有$f(x_1) > f(x_2)$,则函数在该区间内单调递减。
如果原函数在其定义域内单调递增 (或递减),则其反函数在对应的定 义域内单调递减(或递增)。
反函数的应用举例
利用反函数求值
通过反函数,可以将一个变量的值转换为另一个变量的值。例如,利用反三角函数可以求出角度的值。
利用反函数解决实际问题
在很多实际问题中,可以通过建立反函数来求解问题。例如,在物理学、工程学、经济学等领域中,常常需要利 用反函数来解决实际问题。
函数的单调性课件1(苏教版必修1)
contents
目录
• 函数单调性的定义 • 单调函数的性质 • 单调函数的应用 • 反函数与单调性 • 复合函数的单调性
01 函数单调性的定义
函数单调性的定义
函数单调性是指函数在某个区间内的增减性。如果函数在某个区间内单调递增,则对于该区间内的任意 两个数$x_1$和$x_2$($x_1 < x_2$),都有$f(x_1) < f(x_2)$;如果函数在某个区间内单调递减,则对 于该区间内的任意两个数$x_1$和$x_2$($x_1 < x_2$),都有$f(x_1) > f(x_2)$。
复合函数法
利用复合函数的单调性法则来判断 原Байду номын сангаас数的单调性。
单调函数的反例
反例1
函数f(x)=x^2在区间(-∞,0)上是单 调减少的,但在区间(0,+∞)上是单 调增加的,因此f(x)=x^2在整个定 义域上不是单调函数。
反例2
函数f(x)={ x^2 x>0; -x^2 x<0; } 在区间(-∞,0)和(0,+∞)上都是单调 减少的,但在整个定义域上不是单 调函数。
x_2$),都有$f(x_1) > f(x_2)$,则函数在该区间内单调递减。
1 第1课时 函数的单调性(共44张PPT)
提示:不一定,可能是定义域的一个子区间,单调性是局部概念,不是整体 概念.
1.判断正误(正确的打“√”,错误的打“×”)
(1)所有的函数在其定义域上都具有单调性.
(×)
(2)若函数 y=f(x)在区间[1,3]上是减函数,则函数 y=f(x)的单调递减区间是
[1,3].
(×)
(3)若函数 f(x)为 R 上的减函数,则 f(-3)>f(3).
解:由题意,确定函数 y=f(x)和 y=g(x)的单调递增区间,即寻找图象呈上 升趋势的一段图象. 由题图(1)可知,在[1,4)和[4,6)内,y=f(x)是单调递增的. 由题图(2)可知,在(-4.5,0)和(4.5,7.5)内,y=g(x)是单调递增的.
()
3.设(a,b),(c,d)都是 f(x)的单调递增区间,且 x1∈(a,b),x2∈(c,d),x1<x2,
则 f(x1)与 f(x2)的大小关系为
()
A.f(x1)<f(x2)
B.f(x1)>f(x2) C.f(x1)=f(x2)
D.不能确定
解析:选 D.根据函数单调性的定义知,所取两个自变量必须是同一单调区 间内的值时,才能由该区间上函数的单调性来比较函数值的大小,而本题中 的 x1,x2 不在同一单调区间内,故 f(x1)与 f(x2)的大小不能确定.
4.若函数 f(x)在 R 上是单调递减的,且 f(x-2)<f(3),则 x 的取值范围是 ______________. 解析:函数的定义域为 R.由条件可知,x-2>3,解得 x>5. 答案:(5,+∞)
5.如图分别为函数 y=f(x)和 y=g(x)的图象,试写出函数 y=f(x)和 y=g(x)的 单调递增区间.
1.判断正误(正确的打“√”,错误的打“×”)
(1)所有的函数在其定义域上都具有单调性.
(×)
(2)若函数 y=f(x)在区间[1,3]上是减函数,则函数 y=f(x)的单调递减区间是
[1,3].
(×)
(3)若函数 f(x)为 R 上的减函数,则 f(-3)>f(3).
解:由题意,确定函数 y=f(x)和 y=g(x)的单调递增区间,即寻找图象呈上 升趋势的一段图象. 由题图(1)可知,在[1,4)和[4,6)内,y=f(x)是单调递增的. 由题图(2)可知,在(-4.5,0)和(4.5,7.5)内,y=g(x)是单调递增的.
()
3.设(a,b),(c,d)都是 f(x)的单调递增区间,且 x1∈(a,b),x2∈(c,d),x1<x2,
则 f(x1)与 f(x2)的大小关系为
()
A.f(x1)<f(x2)
B.f(x1)>f(x2) C.f(x1)=f(x2)
D.不能确定
解析:选 D.根据函数单调性的定义知,所取两个自变量必须是同一单调区 间内的值时,才能由该区间上函数的单调性来比较函数值的大小,而本题中 的 x1,x2 不在同一单调区间内,故 f(x1)与 f(x2)的大小不能确定.
4.若函数 f(x)在 R 上是单调递减的,且 f(x-2)<f(3),则 x 的取值范围是 ______________. 解析:函数的定义域为 R.由条件可知,x-2>3,解得 x>5. 答案:(5,+∞)
5.如图分别为函数 y=f(x)和 y=g(x)的图象,试写出函数 y=f(x)和 y=g(x)的 单调递增区间.
函数的单调性课件(共17张PPT)
如果我们以x表示时间间隔(单位:h),y表示记忆保持量,则 不难看出,图3-7中,y是的函数,记这个函数为y =f(x).
这个函数反映出记忆具有什么规律?你能从中得到什么启发?
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
问题情境:我们知道,“记忆”在我们的学习过程中 扮演着非常重要的角色,因此有关记忆的规律一直都 是人们研究的课題。德国心理学家艾宾浩斯曾经对记 忆保持量进行了系统的实验研究,并给出了类似图37所示的记忆规律.
创设情境,生成问题 在在活初初动中中1,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
△x表示自变量x的增量,△y表示因变量y的增量. 这时,对于属于这个区间上的任意两个不相等的值x1,x2: 这个数是增函数的充要条件是yx >0; 这个数是增函数的充要条件是y <0.
x
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
因此,函数f(x)=3x+2在(- ,+ )上是增函数.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
数学Biblioteka 基础模块(上册)第三章 函数
3.1.3 函数的单调性
这个函数反映出记忆具有什么规律?你能从中得到什么启发?
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
问题情境:我们知道,“记忆”在我们的学习过程中 扮演着非常重要的角色,因此有关记忆的规律一直都 是人们研究的课題。德国心理学家艾宾浩斯曾经对记 忆保持量进行了系统的实验研究,并给出了类似图37所示的记忆规律.
创设情境,生成问题 在在活初初动中中1,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
△x表示自变量x的增量,△y表示因变量y的增量. 这时,对于属于这个区间上的任意两个不相等的值x1,x2: 这个数是增函数的充要条件是yx >0; 这个数是增函数的充要条件是y <0.
x
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
因此,函数f(x)=3x+2在(- ,+ )上是增函数.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
数学Biblioteka 基础模块(上册)第三章 函数
3.1.3 函数的单调性
北师大版高中数学必修 -函数的单调性 PPT教学课件1
例4.(1)已知函数f(x)=x2+2(a-1)x+2在区 间(-∞,4]上是减函数,求实数a的范围。 (2)已知函数g(x)在R上是单调减函数 且g(t)>g(1-2t),求实数t的范围。
北师大版高中数学必修《函数的单调 性》PPT 教学课 件1(完 美课件 )
北师大版高中数学必修《函数的单调 性》PPT 教学课 件1(完 美课件 )
1.设值:设任意x1、x2属于给定区间,且x1< x2
则△x= x2 -x1>0时
2.作差变形:作差△y=f(x2)-f(x1)
并适当变形;
3.判断差符号:确定△y的正负; 4.下结论:由定义得出函数的单调性.
北师大版高中数学必修《函数的单调 性》PPT 教学课 件1(完 美课件 )
结
北师大版高中数学必修《函数的单调 性》PPT 教学课 件1(完 美课件 )
北师大版高中数学必修《函数的单调 性》PPT 教学课 件1(完 美课件 )
北师大版高中数学必修《函数的单调 性》PPT 教学课 件1(完 美课件 )
取自变量-1< 1,
而 f(-1) < f(1)
y
-1 1
f
(
x
)
1 x
O1
x
-1
∴不能说 y 1x在(-∞,0)∪(0,+∞)上是减函数 因为 x1、x2 不具有任意性.
(-∞,0]上当x增大时f(x)随着减小
当x增大时f(x)随着增大 (0,+∞)上当x增大时f(x)随着增大
函数在R上是增函数 函数在(-∞,0]上是减函数
函数在(0,+∞)上是增函数
北师大版高中数学必修《函数的单调 性》PPT 教学课 件1(完 美课件 )
北师大版高中数学必修《函数的单调 性》PPT 教学课 件1(完 美课件 )
北师大版高中数学必修《函数的单调 性》PPT 教学课 件1(完 美课件 )
1.设值:设任意x1、x2属于给定区间,且x1< x2
则△x= x2 -x1>0时
2.作差变形:作差△y=f(x2)-f(x1)
并适当变形;
3.判断差符号:确定△y的正负; 4.下结论:由定义得出函数的单调性.
北师大版高中数学必修《函数的单调 性》PPT 教学课 件1(完 美课件 )
结
北师大版高中数学必修《函数的单调 性》PPT 教学课 件1(完 美课件 )
北师大版高中数学必修《函数的单调 性》PPT 教学课 件1(完 美课件 )
北师大版高中数学必修《函数的单调 性》PPT 教学课 件1(完 美课件 )
取自变量-1< 1,
而 f(-1) < f(1)
y
-1 1
f
(
x
)
1 x
O1
x
-1
∴不能说 y 1x在(-∞,0)∪(0,+∞)上是减函数 因为 x1、x2 不具有任意性.
(-∞,0]上当x增大时f(x)随着减小
当x增大时f(x)随着增大 (0,+∞)上当x增大时f(x)随着增大
函数在R上是增函数 函数在(-∞,0]上是减函数
函数在(0,+∞)上是增函数
北师大版高中数学必修《函数的单调 性》PPT 教学课 件1(完 美课件 )
人教A版选择性必修第二册5.3.1函数的单调性(一)课件
所以Δ=4-4m≤0,解得m≥1,
b
(2)
t∈(a,b)时,h′(t)˂0,函数的图像是“降落”
的,函数 h(t)在(a,b)上单调递减;
这种情况是否具有一般性呢?
y y=x
y y=x2
y y=x3
y
y=
1 x
o
x
o
x
o
x
o
x
(-∞,0) 函数在R上f′(x)=1˃0,f′(x)=2x˂0,
(0,+∞), f′(x)=2x˃0
函数在R上 f′(x)=3x2≥0,
图像. 图(2)是跳水运动员的速度v随时间t的变化的函数v(t)=-9.8t+4.8的
图象.
h
Oa
(1)
思考: 运动员从起跳到最高点,及从最高点到
v
入水这两段时间的运动状态有什么区分?如何
从数学上刻画这种区分? t
O a b t∈(0,a)时,h′(t)˃0,函数的图像是“上升”
t
的,函数 h(t)在(0,a)上单调递增;
f′(x)=6x-2=2(3x2-1)
x
x
=2( 3x-1)( 3x+1), x
由 x>0,f′(x)>0,解得 x> 3. 3
由 x>0,f′(x)<0,解得 0<x< 33. ∴函数f(x)=3x2-2ln x的单调递增区间为 ( 33,+∞),单调递减区间为(0, 33).
(2)函数的定义域为D=(-∞,+∞). ∵f′(x)=(x2)′e-x+x2(e-x)′=2xe-x-x2e-x=e-x(2x-x2),令f′(x)=0, 由于e-x>0,∴x1=0,x2=2,用x1,x2分割定义域D,得下表:
b
(2)
t∈(a,b)时,h′(t)˂0,函数的图像是“降落”
的,函数 h(t)在(a,b)上单调递减;
这种情况是否具有一般性呢?
y y=x
y y=x2
y y=x3
y
y=
1 x
o
x
o
x
o
x
o
x
(-∞,0) 函数在R上f′(x)=1˃0,f′(x)=2x˂0,
(0,+∞), f′(x)=2x˃0
函数在R上 f′(x)=3x2≥0,
图像. 图(2)是跳水运动员的速度v随时间t的变化的函数v(t)=-9.8t+4.8的
图象.
h
Oa
(1)
思考: 运动员从起跳到最高点,及从最高点到
v
入水这两段时间的运动状态有什么区分?如何
从数学上刻画这种区分? t
O a b t∈(0,a)时,h′(t)˃0,函数的图像是“上升”
t
的,函数 h(t)在(0,a)上单调递增;
f′(x)=6x-2=2(3x2-1)
x
x
=2( 3x-1)( 3x+1), x
由 x>0,f′(x)>0,解得 x> 3. 3
由 x>0,f′(x)<0,解得 0<x< 33. ∴函数f(x)=3x2-2ln x的单调递增区间为 ( 33,+∞),单调递减区间为(0, 33).
(2)函数的定义域为D=(-∞,+∞). ∵f′(x)=(x2)′e-x+x2(e-x)′=2xe-x-x2e-x=e-x(2x-x2),令f′(x)=0, 由于e-x>0,∴x1=0,x2=2,用x1,x2分割定义域D,得下表:
高一数学函数的单调性 PPT课件 图文
(2)单调减区间为(-∞,0)和(0,+∞). (3)单调减区间为(-∞,0)和(0,+∞).
例题讲解
注意: (1)可以根据函数的图象写出函数的单调
区间; (2)写单调区间时,注意区间的端点; (3)将y=f(x)的图象上下平移时,单调区
间不发生改变; (4)单调区间不能随便求并集.
例题讲解
例2
求证:函数 f(x)=-
1 x
-1在区间(-∞,0)
上是单调增函数.
证明:任取x1<x2<0,则
f(x2)-f(x1)==(-1 -x12
-1)-(- 1 = x2-x1
1 -1)
x1
.
x1 x2
x1x2
因为x1<x2<0,所以x1x2>0,x2-x1>0,所
以
x2-x1 x1x2
>0,即f(x2)-f(x1)>0,
3.下列函数在区间(0,2)上是递增函数的是( )
1
A.y=
B.y=2x-1
x
C.y=1-2x
D.y=(2x-1)2
4.函数f(x)=2x2-mx+3,当x∈[2,+∞)时是增函数, x∈(-∞,2]时是减函数,则f(1)的值( )
A.1
B.y=-1
C.y=3
D.-3
5.已知函数f(x)=ax2+2(a-1)x+2在区间(-∞,1]上是减 函数,则a 的范围是( )
2.1.3 函数的简单性质
; https:/// 好系统重装助手 重装助手
ysh04zvb
在你们眼里就是这样的人?”韩哲轩满头黑线但还是坚持很勉强的笑,他把匕首从自己那边推到了桌子的另一边,“这是你 的。”“诶?”张祁潭警惕的看看韩哲轩,又看看桌子上的匕首,小心翼翼的将它拿了起来。“确实……是我的。当时找玉玺 时丢在了郭扬家……”“你想怎样!”韩哲轩归还了匕首,慕容凌娢感觉心里有底,气势就又回来了。“要不是我冒着生命危 险把匕首给找回来,以郭扬的能力,天亮之前就能找出这柄匕首的出处。”韩哲轩看向张祁潭,眼神中竟闪着凄冷的寒光, “你觉得他会饶过谁?”“哎~苍天饶过谁!”张祁潭颤抖着收起匕首,沉寂片刻,说道,“我签。”“这就签?”慕容凌娢 一脸懵逼,不过既然张祁潭要签,她也不好意思再说什么。“看在你后续工作干的不错的份上,我也签吧……”“非常感谢。” 韩哲轩心满意足的收起本子。“哦对了,你刚才说的福利……我还真是不太懂。”慕容凌娢笑容变猥琐了。“别想多。晴穿会 鱼龙混杂,干什么的都有。大多数成员在晴穿会帮助下达到自己目的后,会反馈一些东西给晴穿会以表自己的忠诚,而晴穿会 则把这些东西收集起来,作为奖励让业绩好的成员自己挑选……这样一说倒有点像绩效工资了。”韩哲轩吐槽。“你有什么想 要的东西?”慕容凌娢很奇怪,韩哲轩穿越后背景这么好,什么东西弄不到?居然要死皮赖脸靠业绩来换……“你 猜。”“嗯……”慕容凌娢装模作样的沉思片刻,“一定是很稀有的东西。祁潭,你怎么看?”“废话。拿近点看啊。”张祁 渊熟练的翻了一个白眼,只是不知道,这个白眼是送给慕容凌娢还是送给韩哲轩的。也许,是同时给她们两个的。“话说签简 体字还是繁体字?草书还是楷书?”(古风一言)柔情绕指尖,谁的琴弦,在谁的袅娜中化作悲言,指尖弦断。第116章 超自 然协会“你有想要的东西?”慕容凌娢很奇怪,韩哲轩穿越后背景这么好,什么东西弄不到?居然要死皮赖脸靠业绩来 换……“你猜。”“嗯……”慕容凌娢装模作样的沉思片刻,“一定是很稀有的东西。祁潭,你怎么看?”“废话。拿近点看 啊。”张祁渊熟练的翻了一个白眼,只是不知道,这个白眼是送给慕容凌娢还是送给韩哲轩的。也许,是同时给她们两个的。 “话说签简体字还是繁体字?草书还是楷书?”“繁体字吧。”韩哲轩把毛笔递了上去,“毕竟穿越过来之前所在时空不同, 还是统一用这个时代的繁体字比较整齐。”“呵,原来夏桦有这样的强迫症……”慕容凌娢也在本子上签下了龙飞凤舞一笔写 成的四个字。“多谢,我先走了。”韩哲轩跳到了窗台上,“明天这屋子就又归我了,你有什么东西赶快拿走。” “知道知 道,慢走不送。”慕容凌娢敷衍的挥挥手。“我也走了,拜
例题讲解
注意: (1)可以根据函数的图象写出函数的单调
区间; (2)写单调区间时,注意区间的端点; (3)将y=f(x)的图象上下平移时,单调区
间不发生改变; (4)单调区间不能随便求并集.
例题讲解
例2
求证:函数 f(x)=-
1 x
-1在区间(-∞,0)
上是单调增函数.
证明:任取x1<x2<0,则
f(x2)-f(x1)==(-1 -x12
-1)-(- 1 = x2-x1
1 -1)
x1
.
x1 x2
x1x2
因为x1<x2<0,所以x1x2>0,x2-x1>0,所
以
x2-x1 x1x2
>0,即f(x2)-f(x1)>0,
3.下列函数在区间(0,2)上是递增函数的是( )
1
A.y=
B.y=2x-1
x
C.y=1-2x
D.y=(2x-1)2
4.函数f(x)=2x2-mx+3,当x∈[2,+∞)时是增函数, x∈(-∞,2]时是减函数,则f(1)的值( )
A.1
B.y=-1
C.y=3
D.-3
5.已知函数f(x)=ax2+2(a-1)x+2在区间(-∞,1]上是减 函数,则a 的范围是( )
2.1.3 函数的简单性质
; https:/// 好系统重装助手 重装助手
ysh04zvb
在你们眼里就是这样的人?”韩哲轩满头黑线但还是坚持很勉强的笑,他把匕首从自己那边推到了桌子的另一边,“这是你 的。”“诶?”张祁潭警惕的看看韩哲轩,又看看桌子上的匕首,小心翼翼的将它拿了起来。“确实……是我的。当时找玉玺 时丢在了郭扬家……”“你想怎样!”韩哲轩归还了匕首,慕容凌娢感觉心里有底,气势就又回来了。“要不是我冒着生命危 险把匕首给找回来,以郭扬的能力,天亮之前就能找出这柄匕首的出处。”韩哲轩看向张祁潭,眼神中竟闪着凄冷的寒光, “你觉得他会饶过谁?”“哎~苍天饶过谁!”张祁潭颤抖着收起匕首,沉寂片刻,说道,“我签。”“这就签?”慕容凌娢 一脸懵逼,不过既然张祁潭要签,她也不好意思再说什么。“看在你后续工作干的不错的份上,我也签吧……”“非常感谢。” 韩哲轩心满意足的收起本子。“哦对了,你刚才说的福利……我还真是不太懂。”慕容凌娢笑容变猥琐了。“别想多。晴穿会 鱼龙混杂,干什么的都有。大多数成员在晴穿会帮助下达到自己目的后,会反馈一些东西给晴穿会以表自己的忠诚,而晴穿会 则把这些东西收集起来,作为奖励让业绩好的成员自己挑选……这样一说倒有点像绩效工资了。”韩哲轩吐槽。“你有什么想 要的东西?”慕容凌娢很奇怪,韩哲轩穿越后背景这么好,什么东西弄不到?居然要死皮赖脸靠业绩来换……“你 猜。”“嗯……”慕容凌娢装模作样的沉思片刻,“一定是很稀有的东西。祁潭,你怎么看?”“废话。拿近点看啊。”张祁 渊熟练的翻了一个白眼,只是不知道,这个白眼是送给慕容凌娢还是送给韩哲轩的。也许,是同时给她们两个的。“话说签简 体字还是繁体字?草书还是楷书?”(古风一言)柔情绕指尖,谁的琴弦,在谁的袅娜中化作悲言,指尖弦断。第116章 超自 然协会“你有想要的东西?”慕容凌娢很奇怪,韩哲轩穿越后背景这么好,什么东西弄不到?居然要死皮赖脸靠业绩来 换……“你猜。”“嗯……”慕容凌娢装模作样的沉思片刻,“一定是很稀有的东西。祁潭,你怎么看?”“废话。拿近点看 啊。”张祁渊熟练的翻了一个白眼,只是不知道,这个白眼是送给慕容凌娢还是送给韩哲轩的。也许,是同时给她们两个的。 “话说签简体字还是繁体字?草书还是楷书?”“繁体字吧。”韩哲轩把毛笔递了上去,“毕竟穿越过来之前所在时空不同, 还是统一用这个时代的繁体字比较整齐。”“呵,原来夏桦有这样的强迫症……”慕容凌娢也在本子上签下了龙飞凤舞一笔写 成的四个字。“多谢,我先走了。”韩哲轩跳到了窗台上,“明天这屋子就又归我了,你有什么东西赶快拿走。” “知道知 道,慢走不送。”慕容凌娢敷衍的挥挥手。“我也走了,拜
函数的单调性(公开课课件)
04 函数单调性的应用举例
利用函数单调性求最值问题
极值问题
通过判断函数在某一点的单调性 ,可以确定该点是否为极值点, 从而求得函数的最值。
最值问题
利用函数在整个定义域上的单调 性,可以确定函数在定义域上的 最大值和最小值。
利用函数单调性解不等式问题
单调性比较法
通过比较两个函数的单调性,可以确定它们的大小关系,从而解决一些不等式问题。
02
建议学生多参与数学建模和数学竞赛等活动,提高数学应用发展
03
学生可以通过阅读数学期刊、参加学术会议等方式,了解数学
学科的最新发展动态和前沿研究领域。
THANKS FOR WATCHING
感谢您的观看
单调性分析法
利用函数的单调性,可以分析不等式的解集和边界情况。
利用函数单调性解决实际问题
优化问题
在经济学、金融学等领域中,经常需要解决一些优化问题,如最优化生产、最优化投资等。利用函数 单调性可以找到最优解或近似最优解。
决策问题
在企业管理、市场营销等领域中,经常需要做出一些决策,如选择最佳的营销策略、确定最优的产品 价格等。利用函数单调性可以分析不同决策方案的效果,从而做出更好的决策。
03 函数单调性的判定方法
导数法判定函数单调性
总结词
通过求导数判断函数的单调性
详细描述
求函数的导数,然后分析导数的符号,如果导数大于0,则函数在该区间内单调递增;如 果导数小于0,则函数在该区间内单调递减。
举例
对于函数$f(x) = x^3$,其导数$f'(x) = 3x^2$,在$x > 0$时,$f'(x) > 0$,因此函数 $f(x)$在$x > 0$时单调递增。
人教版高中数学必修1《函数的单调性》PPT课件
k(x1 x2 ).
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
k(x1 x2 ). 由 x1 x2,得 x1 x2 0.所以
①当k 0时,k(x1 x2 ) 0.
只要 x1 x2,就有 f (x1) f (x2 ).
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
所有的 x1 x2,有 f (x1) f (x2 ).
你能由例 1、例 2 的证明过程,归纳一下用单调性定义研究或证 明一个函数在区间 D上的单调性的基本步骤吗?
证明函数在区间 D 上的单调性的基本步骤:
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数
的单调性证明.
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数 的单调性证明.
思考:“体积V 减小时,压强 p增大”的含义?
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
k(x1 x2 ). 由 x1 x2,得 x1 x2 0.所以
①当k 0时,k(x1 x2 ) 0.
只要 x1 x2,就有 f (x1) f (x2 ).
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
所有的 x1 x2,有 f (x1) f (x2 ).
你能由例 1、例 2 的证明过程,归纳一下用单调性定义研究或证 明一个函数在区间 D上的单调性的基本步骤吗?
证明函数在区间 D 上的单调性的基本步骤:
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数
的单调性证明.
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数 的单调性证明.
思考:“体积V 减小时,压强 p增大”的含义?
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
精选 《函数的单调性》完整版教学课件PPT
么参数的这个值应舍去;假设只有在个别点处有f'(x)=0,那么由
f'(x)≥0(或f'(x)≤0)恒成立解出的参数取值范围为最后解.
激趣诱思
知识点拨
3.解决该类问题常用的有关结论:
m≥f(x)恒成立⇔m≥f(x)max;
m≤f(x)恒成立⇔m≤f(x)min.
激趣诱思
知识点拨
微思考
(1)在区间(a,b)上,假设f'(x)>0,那么f(x)在此区间上单调递增,反之也
较大
较小
函数值变化
较快
较慢
函数的图象
比较“陡峭”(向上或向下)
比较“平缓”(向上或向下)
名师点析1.原函数的图象通常只看增(减)变化,而导函数的图象通
常对应只看正(负)变化.
2.导数的绝对值大(小)对应着原函数图象的陡峭(平缓).弄清楚两个
对应就能准确快速地分析函数图象的变化趋势与导数值大小的关
系.
解:①当a=0时,f(x)=x2+1,其单调递减区间为(-∞,0),单调递增区间为
(0,+∞).
2
②当 a<0 时,f'(x)=-ax2+2x.令 f'(x)>0,得(-ax+2)x>0,即 - x>0,得
2
2
2
x>0 或 x< ;令 f'(x)<0,得(-ax+2)x<0,即 - x<0,得 <x<0.故 f(x)的单
(2)函数定义域为R,f'(x)=ex-1.
知识点拨
四、解析式中含参数的函数单调区间的求法
函数解析式中含有参数时,讨论其单调性(或求其单调区间)问题,往
f'(x)≥0(或f'(x)≤0)恒成立解出的参数取值范围为最后解.
激趣诱思
知识点拨
3.解决该类问题常用的有关结论:
m≥f(x)恒成立⇔m≥f(x)max;
m≤f(x)恒成立⇔m≤f(x)min.
激趣诱思
知识点拨
微思考
(1)在区间(a,b)上,假设f'(x)>0,那么f(x)在此区间上单调递增,反之也
较大
较小
函数值变化
较快
较慢
函数的图象
比较“陡峭”(向上或向下)
比较“平缓”(向上或向下)
名师点析1.原函数的图象通常只看增(减)变化,而导函数的图象通
常对应只看正(负)变化.
2.导数的绝对值大(小)对应着原函数图象的陡峭(平缓).弄清楚两个
对应就能准确快速地分析函数图象的变化趋势与导数值大小的关
系.
解:①当a=0时,f(x)=x2+1,其单调递减区间为(-∞,0),单调递增区间为
(0,+∞).
2
②当 a<0 时,f'(x)=-ax2+2x.令 f'(x)>0,得(-ax+2)x>0,即 - x>0,得
2
2
2
x>0 或 x< ;令 f'(x)<0,得(-ax+2)x<0,即 - x<0,得 <x<0.故 f(x)的单
(2)函数定义域为R,f'(x)=ex-1.
知识点拨
四、解析式中含参数的函数单调区间的求法
函数解析式中含有参数时,讨论其单调性(或求其单调区间)问题,往
第1课时 函数的单调性 课件(42张)
点拨:二次函数的单调性与对称轴有关.
与二次函数单调性相关的参数问题 (1)若已知函数的单调区间,则对称轴即区间的端点; (2)若已知函数在某区间上的单调性,则该区间是函数相关区间的子区间,利用端 点关系求范围.
பைடு நூலகம் 【加固训练】
函数 f(x)=x2+(2a+1)x+1 在区间[1,2]上单调,则实数 a 的取值范围是( )
创新思维 抽象函数的单调性(逻辑推理) 【典例】已知函数 f(x)对任意的 a,b∈R,都有 f(a+b)=f(a)+f(b)-1,且当 x>0 时,f(x)>1. 求证:f(x)是 R 上的增函数; 【证明】设 x1,x2∈R,且 x1<x2, 则 x2-x1>0,即 f(x2-x1)>1, 所以 f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)= f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1>0. 所以 f(x1)<f(x2),所以 f(x)是 R 上的增函数.
范围为-32,+∞ ∪-∞,-25 .
解不等式
【典例】(2020·昆明高一检测)已知 f(x)是定义在 R 上的减函数,则关于 x 的不等
式 f(x2-x)-f(x)>0 的解集为( )
A.(-∞,0)∪(2,+∞)
B.(0,2)
C.(-∞,2)
D.(2,+∞)
【解析】选 B.因为 f(x)是定义在 R 上的减函数,则 f(x2-x)-f(x)>0.所以 f(x2- x)>f(x),所以 x2-x<x.即 x2-2x<0,解可得 0<x<2.即不等式的解集为(0,2).
基础类型二 利用定义证明函数的单调性(逻辑推理) 【典例】证明:函数 f(x)=x2-x 1 在区间(-1,1)上单调递减.
函数单调性课件(公开课)ppt
函数单调性课件(公开课)
目录
• 函数单调性的定义与性质 • 判断函数单调性的方法 • 单调性在解决实际问题中的应用 • 函数单调性的深入理解 • 函数单调性的实际案例分析
01 函数单调性的定义与性质
函数单调性的定义
函数单调性是指函数在某个区间内的增减性。如果函数在某个区间内单调递增, 则表示函数值随着自变量的增加而增加;如果函数在某个区间内单调递减,则表 示函数值随着自变量的增加而减小。
的计算过程。
单调性与微分方程的关系
要点一
单调性决定了微分方程解的稳定 性
对于一阶线性微分方程,如果其系数函数在某区间内单调 递增(或递减),则该微分方程的解在此区间内是稳定的 。
要点二
单调性是研究微分方程的重要工 具
通过单调性可以判断微分方程解的存在性和唯一性,以及 研究解的动态行为。
05 函数单调性的实际案例分 析
总结词
利用单调性证明或解决不等式问题
详细描述
单调性在解决不等式问题中起到关键作用。通过分析函数的单调性,我们可以证明不等式或解决与不等式相关的 问题。例如,利用单调性可以证明数学归纳法中的不等式,或者在比较大小的问题中利用单调性进行判断。
单调性在函数极值问题中的应用
总结词
利用单调性求解函数的极值
详细描述
函数单调性的定义可以通过函数的导数来判断。如果函数的导数大于0,则函数在该 区间内单调递增;如果函数的导数小于0,则函数在该区间内单调递减。
函数单调性的性质
函数单调性具有传递性,即如果函数在区间I上单调递增,且 在区间J上单调递增,则函数在区间I和J的交集上也是单调递 增的。
函数单调性具有相对性,即如果函数在区间I上单调递增,且 另一个函数在区间J上单调递增,则这两个函数在区间I和J的 交集上也是单调递增的。
目录
• 函数单调性的定义与性质 • 判断函数单调性的方法 • 单调性在解决实际问题中的应用 • 函数单调性的深入理解 • 函数单调性的实际案例分析
01 函数单调性的定义与性质
函数单调性的定义
函数单调性是指函数在某个区间内的增减性。如果函数在某个区间内单调递增, 则表示函数值随着自变量的增加而增加;如果函数在某个区间内单调递减,则表 示函数值随着自变量的增加而减小。
的计算过程。
单调性与微分方程的关系
要点一
单调性决定了微分方程解的稳定 性
对于一阶线性微分方程,如果其系数函数在某区间内单调 递增(或递减),则该微分方程的解在此区间内是稳定的 。
要点二
单调性是研究微分方程的重要工 具
通过单调性可以判断微分方程解的存在性和唯一性,以及 研究解的动态行为。
05 函数单调性的实际案例分 析
总结词
利用单调性证明或解决不等式问题
详细描述
单调性在解决不等式问题中起到关键作用。通过分析函数的单调性,我们可以证明不等式或解决与不等式相关的 问题。例如,利用单调性可以证明数学归纳法中的不等式,或者在比较大小的问题中利用单调性进行判断。
单调性在函数极值问题中的应用
总结词
利用单调性求解函数的极值
详细描述
函数单调性的定义可以通过函数的导数来判断。如果函数的导数大于0,则函数在该 区间内单调递增;如果函数的导数小于0,则函数在该区间内单调递减。
函数单调性的性质
函数单调性具有传递性,即如果函数在区间I上单调递增,且 在区间J上单调递增,则函数在区间I和J的交集上也是单调递 增的。
函数单调性具有相对性,即如果函数在区间I上单调递增,且 另一个函数在区间J上单调递增,则这两个函数在区间I和J的 交集上也是单调递增的。
函数的单调性(公开课课件)
详细描述
单调减函数是指函数在某个区间内,对于任意两个自变量$x_1$和$x_2$($x_1 < x_2$),如果$x_1$和$x_2$ 都在这区间内,那么函数值$f(x_1) geq f(x_2)$。也就是说,函数的图像随着$x$的增加而下降。
严格单调函数的定义
总结词
严格单调函数是指函数在某个区间内,严格满足单调增或单调减条件的函数。
利用单调性解方程
利用函数的单调性,可以求解方程。
通过分析函数的单调性,可以确定方程解的范围,从而求解方程。例如,对于一元二次方程$ax^2 + bx + c = 0$,如果$a > 0$,则函数$f(x) = ax^2 + bx + c$在区间$(-infty, -frac{b}{2a})$上单调递减,在区间$(-frac{b}{2a}, +infty)$上单调递增 ,因此方程的解必定落在$(-frac{b}{2a}, +infty)$区间内。
函数单调性的反例
04
单调增函数的反例
总结词
非严格单调增函数
详细描述
有些函数在其定义域内并非严格单调递增,即存在某些区间内函数值先减小后 增大。例如,函数$f(x) = x^3$在区间$(-2, -1)$内是单调减函数。
单调减函数的反例
总结词
非严格单调减函数
详细描述
有些函数在其定义域内并非严格单调递减,即存在某些区间 内函数值先增大后减小。例如,函数$f(x) = frac{1}{x}$在区 间$(1, +infty)$内是单调增函数。
详细描述
单调增函数是指函数在某个区间内,对于任 意两个自变量$x_1$和$x_2$($x_1 < x_2$ ),如果$x_1$和$x_2$都在这区间内,那么 函数值$f(x_1) leq f(x_2)$。也就是说,函数 的图像随着$x$的增加而上升。
单调减函数是指函数在某个区间内,对于任意两个自变量$x_1$和$x_2$($x_1 < x_2$),如果$x_1$和$x_2$ 都在这区间内,那么函数值$f(x_1) geq f(x_2)$。也就是说,函数的图像随着$x$的增加而下降。
严格单调函数的定义
总结词
严格单调函数是指函数在某个区间内,严格满足单调增或单调减条件的函数。
利用单调性解方程
利用函数的单调性,可以求解方程。
通过分析函数的单调性,可以确定方程解的范围,从而求解方程。例如,对于一元二次方程$ax^2 + bx + c = 0$,如果$a > 0$,则函数$f(x) = ax^2 + bx + c$在区间$(-infty, -frac{b}{2a})$上单调递减,在区间$(-frac{b}{2a}, +infty)$上单调递增 ,因此方程的解必定落在$(-frac{b}{2a}, +infty)$区间内。
函数单调性的反例
04
单调增函数的反例
总结词
非严格单调增函数
详细描述
有些函数在其定义域内并非严格单调递增,即存在某些区间内函数值先减小后 增大。例如,函数$f(x) = x^3$在区间$(-2, -1)$内是单调减函数。
单调减函数的反例
总结词
非严格单调减函数
详细描述
有些函数在其定义域内并非严格单调递减,即存在某些区间 内函数值先增大后减小。例如,函数$f(x) = frac{1}{x}$在区 间$(1, +infty)$内是单调增函数。
详细描述
单调增函数是指函数在某个区间内,对于任 意两个自变量$x_1$和$x_2$($x_1 < x_2$ ),如果$x_1$和$x_2$都在这区间内,那么 函数值$f(x_1) leq f(x_2)$。也就是说,函数 的图像随着$x$的增加而上升。
函数的单调性公开课课件
在函数值比较中的应用
1 2
利用单调性比较函数值大小
对于同一区间内的两个函数值,如果函数在该区 间内单调,则可以直接比较它们的大小。
确定函数值的范围
通过判断函数的单调性,可以确定函数在某个区 间内的取值范围。
3
举例
比较sin(π/4)和sin(π/6)的大小。由于正弦函数 在[0, π/2]区间内单调递增,因此sin(π/4) > sin(π/6)。
06
复合函数的单调性
复合函数的定义和性质
复合函数的定义
设函数$y=f(u)$的定义域为$D_f$, 函数$u=g(x)$的定义域为$D_g$, 且$g(D_g) subseteq D_f$,则称函 数$y=f[g(x)]$为$x$的复合函数。
复合函数的性质
复合函数保持原函数的定义域、值域 、周期性、奇偶性等基本性质。
以直观地判断函数在各个 区间内的单调性。
判断单调区间
根据图像的形状和走势, 确定函数在各个区间内的 单调性。
图像的绘制
通过描点法、图像变换法 等方法,绘制出函数的图 像。
04
常见函数的单调性
一次函数
一次函数单调性
一次函数$f(x) = ax + b$($a neq 0$)在其定 义域内单调增加或减少,取决于系数$a$的正负。
总结与展望
课程总结
函数的单调性定义
详细解释了函数单调性的定义,包括增函数、减函数以及常数函 数的特性。
判断函数单调性的方法
介绍了如何通过导数、二阶导数以及函数的图像来判断函数的单调 性。
函数单调性的应用
举例说明了函数单调性在解决实际问题中的应用,如优化问题、经 济学中的边际分析等。
函数单调性课件ppt
导数与函数单调性
01
02
03
导数大于0
函数在对应区间内单调递 增
导数小于0
函数在对应区间内单调递 减
导数等于0
函数可能存在拐点或不可 导点
复合函数的单调性
同增异减
内外层函数单调性相同,则复合 函数单调递增;内外层函数单调 性不同,则复合函数单调递减。
注意拐点
复合函数在拐点处可能改变单调 性。
常见函数的单调性
函数单调性课件
目录
• 函数单调性的定义 • 判断函数单调性的方法 • 函数单调性的应用 • 函数单调性的实例分析 • 函数单调性的综合练习
01
函数单调性的定义
函数单调性的定义
函数单调性是指函数在某个区间内的 增减性。如果函数在某个区间内单调 递增,那么对于该区间内的任意两个 数$x_1$和$x_2$,当$x_1 < x_2$时 ,有$f(x_1) < f(x_2)$;反之,如果 函数在某个区间内单调递减,那么对 于该区间内的任意两个数$x_1$和 $x_2$,当$x_1 < x_2$时,有 $f(x_1) > f(x_2)$。
03
函数单调性的应用
利用单调性证明不等式
总结词
单调性是证明不等式的一种有效工具 ,通过比较函数在不同区间的增减性 ,可以推导出不等式的正确性。
详细描述
利用单调性证明不等式的基本思路是 ,首先确定函数在指定区间上的单调 性,然后根据单调性定义,比较函数 值的大小,从而证明不等式。
利用单调性求函数的极值
VS
单调性是函数的一种固有属性,与函 数的定义域和值域无关,只与函数的 增减性有关。
单调增函数和单调减函数
01
单调增函数是指函数在某个区间 内单调递增的函数。对于任意两 个数$x_1$和$x_2$,当$x_1 < x_2$时,有$f(x_1) < f(x_2)$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
o
K>0时,函数在R上单调递增
x
y
K<0时,函数在R上单调递减
o
x
2021/01/21
10
练习 试一试 判断函数 f(x) = x2 (x ∈R)的单调性,并加以证明
y
0x
想一想 画出 y = 1/x 图象,回答下列两个问题
1)能不能说 f(x) = 1/x 在(- ∞,+∞)是单调递减 不能(x≠0)
T
25 20 15 10
5 o 4 8 12 16 20 24 t
2021/01/21
1
某地区24小时内的温度变化曲线如图:
T
25 20 15 10
5 o 4 8 12 16 20 24 t
2021/01/21
2
y 图象特点?
(y随x的变化趋势) f(x2)
f(x1)
o
6 x1
x2 14 x
2021/01/21
3、 多个单调增(减)区间用逗号分隔,而不用 “∪”
2021/01/21
12
THANKS FOR WATCHING
谢谢大家观看
为了方便教学与学习使用,本文档内容可以在下载后随意修改,调整。欢迎下载!
汇报人:XXX
时间:20XX.XX.XX
2021/01/21
13
2)能否说f(x)=1/x在(-∞,0)∪(0,+∞)是单调递减的
y
x1= -1, x2 =1
x1 〈 x2
0x
f(x1)〈 f (x2)
2021/01/21
11
注:
1、函数的单调性也叫函数的增减性。 2、 函数的单调性是区间性概念
1) 所研究的单调区间应为函数的定义域或其子区间 2) 函数可能在整个定义域内没有单调性, 而只在其 子区间内有单调性 3)不能在一点处说函数的单调性
2021/01/21
9
一. 定义法判定函数单调性的步骤:
1. 设x1、x2 ∈给定区间,且 x1 < x2 2. 计算f(x1)-f(x2)至最简(因式分解、配方) 3. 判断上述差的符号 4. 下结论(若差<0,则为增函数;若差>0,则为减函数)
二 .一般地,一次函数 y=kx+b (k≠0) 的单调性?
3
y y随x的增大而增大
f(x2) f(x1)
你能用数学语言去 描述函数的这个特 点吗?
o
x1 x2
x
2021/01/21
4
y
y
f(x1) O 6 x1
14 x
f(x1) O x1
f(x2) x2 x
如果一个函数在定义域
某个区间上,存在 x1 、x2,
当x1 < x2 时, f(x1) < f (x2)
o
x1 x2
x 的单调增区间
荣辱与共 增函数x,y的关系:
2021/01/21
6
y
如果在给定区间上任取x1 , x2 ,
x1 < x2
f(x1) > f (x2)
f(x1) o x1
f(x2)
那么就说f (x) 在这个区间上是 减 函 数, 给定的区间称为函数
x2 x 的 单 调 减 区 间
此消彼长 减函数x,y的关系:
2021/01/21
7
说出该图像的单调区间
T
单调增区间为
25
[4,14)
20
15
单调减区间为
10
Hale Waihona Puke [0,4),[14,24]
5
o 4 8 12 16 20 24 t
2021/01/21
8
例1. 证明函数 f(x) =3x+2 在R上是增函数
证明: 设x1 ,x2是R上的任意两个实数, 且x1 < x2 . 则f(x1)- f (x2) = (3x1 +2)-(3 x2 +2) (条件) = 3(x1 - x2) 由x1 < x2得x1 - x2 <0 于是f(x1)- f (x2) <0 即f(x1) < f(x2) (论证结果) 所以f(x)=3x+2在R上是增函数。(结论)
能不能说这个函数在这个区间 上满足:y随x的增大而增大。
答:不能 x1 、x2的选取 不具有任意性
2021/01/21
5
如何用x 与f(x)来描述上升的图象?
y 如果对于属于定义域内的某个区
间上的任意两个自变量值x1 , x2
x1 < x2
f (x1) < f (x2)
f(x1) f(x2)
那么就说f (x) 在这个区间上是 增 函 数, 给定的区间称为函数
o
K>0时,函数在R上单调递增
x
y
K<0时,函数在R上单调递减
o
x
2021/01/21
10
练习 试一试 判断函数 f(x) = x2 (x ∈R)的单调性,并加以证明
y
0x
想一想 画出 y = 1/x 图象,回答下列两个问题
1)能不能说 f(x) = 1/x 在(- ∞,+∞)是单调递减 不能(x≠0)
T
25 20 15 10
5 o 4 8 12 16 20 24 t
2021/01/21
1
某地区24小时内的温度变化曲线如图:
T
25 20 15 10
5 o 4 8 12 16 20 24 t
2021/01/21
2
y 图象特点?
(y随x的变化趋势) f(x2)
f(x1)
o
6 x1
x2 14 x
2021/01/21
3、 多个单调增(减)区间用逗号分隔,而不用 “∪”
2021/01/21
12
THANKS FOR WATCHING
谢谢大家观看
为了方便教学与学习使用,本文档内容可以在下载后随意修改,调整。欢迎下载!
汇报人:XXX
时间:20XX.XX.XX
2021/01/21
13
2)能否说f(x)=1/x在(-∞,0)∪(0,+∞)是单调递减的
y
x1= -1, x2 =1
x1 〈 x2
0x
f(x1)〈 f (x2)
2021/01/21
11
注:
1、函数的单调性也叫函数的增减性。 2、 函数的单调性是区间性概念
1) 所研究的单调区间应为函数的定义域或其子区间 2) 函数可能在整个定义域内没有单调性, 而只在其 子区间内有单调性 3)不能在一点处说函数的单调性
2021/01/21
9
一. 定义法判定函数单调性的步骤:
1. 设x1、x2 ∈给定区间,且 x1 < x2 2. 计算f(x1)-f(x2)至最简(因式分解、配方) 3. 判断上述差的符号 4. 下结论(若差<0,则为增函数;若差>0,则为减函数)
二 .一般地,一次函数 y=kx+b (k≠0) 的单调性?
3
y y随x的增大而增大
f(x2) f(x1)
你能用数学语言去 描述函数的这个特 点吗?
o
x1 x2
x
2021/01/21
4
y
y
f(x1) O 6 x1
14 x
f(x1) O x1
f(x2) x2 x
如果一个函数在定义域
某个区间上,存在 x1 、x2,
当x1 < x2 时, f(x1) < f (x2)
o
x1 x2
x 的单调增区间
荣辱与共 增函数x,y的关系:
2021/01/21
6
y
如果在给定区间上任取x1 , x2 ,
x1 < x2
f(x1) > f (x2)
f(x1) o x1
f(x2)
那么就说f (x) 在这个区间上是 减 函 数, 给定的区间称为函数
x2 x 的 单 调 减 区 间
此消彼长 减函数x,y的关系:
2021/01/21
7
说出该图像的单调区间
T
单调增区间为
25
[4,14)
20
15
单调减区间为
10
Hale Waihona Puke [0,4),[14,24]
5
o 4 8 12 16 20 24 t
2021/01/21
8
例1. 证明函数 f(x) =3x+2 在R上是增函数
证明: 设x1 ,x2是R上的任意两个实数, 且x1 < x2 . 则f(x1)- f (x2) = (3x1 +2)-(3 x2 +2) (条件) = 3(x1 - x2) 由x1 < x2得x1 - x2 <0 于是f(x1)- f (x2) <0 即f(x1) < f(x2) (论证结果) 所以f(x)=3x+2在R上是增函数。(结论)
能不能说这个函数在这个区间 上满足:y随x的增大而增大。
答:不能 x1 、x2的选取 不具有任意性
2021/01/21
5
如何用x 与f(x)来描述上升的图象?
y 如果对于属于定义域内的某个区
间上的任意两个自变量值x1 , x2
x1 < x2
f (x1) < f (x2)
f(x1) f(x2)
那么就说f (x) 在这个区间上是 增 函 数, 给定的区间称为函数