DC-DC变换器的基本分类
DC-DC变换器讲解学习
输入输出关系:
图3-6 Sepic斩波电路和Zeta斩波电路
U otto ofnf ETt otn onE1 E (2-49)
3-25
2.1.5 Sepic斩波电路和Zeta斩波电路
Zeta斩波电路原理
V处于通态期间,电源E经开关
V向电感L1贮能。
V关断后,L1-VD-C1构成振
荡回路, L1的能量转移至C1,
电压源 电压源的变换
o
t
b)
图3-4 升降压斩波电路及其波形
a)电路图
b)波形
3-20
2.1.4升降压斩波电路和Cuk斩波电路
稳态时,一个周期T内电感L两端电压uL对时间的积分为零,即
数量关系
T
0 uL dt 0
(2-39)
V处于通态
V处于断态
uL = E
EtonUotoff
uL = - uo
(2-40)
能量全部转移至C1上之后,VD
b) Zeta斩波电路
关断,C1经L2向负载供电。
输入输出关系:
Uo
1
E
图3-6 Sepic斩波电路 和 Zeta斩波电路 (2-50)
相同的输入输出关系。Sepic电路的电源电流和负载电流均
连续,Zeta电路的输入、输出电流均是断续的。
两种电路输出电压为正极性的。
3-26
t1 E
I 20
t2
E
t
O
EM
t
c) 电流断续时的波形
图3-1 降压斩波电路得原理图及波形
3-4
2.1.1 降压斩波电路
数量关系
电流连续
负载电压平均值:
Uoton t otnof
DCDC直流变换器
第一章绪论本章介绍了双向DC/DC变换器(Bi-directionalDC/DCConverter,BDC)的基本原理概述、研究背景和应用前景,并指出了目前双向直流变换器在应用中遇到的主要问题。
1.1双向DC/DC变换器概述所谓双向DC/DC变换器就是在保持输入、输出电压极性不变的情况下,根据具体需要改变电流的方向,实现双象限运行的双向直流/直流变换器。
相比于我们所熟悉的单向DC/DC变换器实现了能量的双向传输。
实际上,要实现能量的双向传输,也可以通过将两台单向DC/DC变换器反并联连接,由于单向变换器主功率传输通路上一般都需要二极管,因此单个变换器能量的流通方向仍是单向的,且这样的连接方式会使系统体积和重量庞大,效率低下,且成本高。
所以,最好的方式就是通过一台变换器来实现能量的双向流动,BDC就是通过将单向开关和二极管改为双向开关,再加上合理的控制来实现能量的双向流动。
1.2双向直流变换器的研究背景在20世纪80年代初期,由于人造卫星太阳能电源系统的体积和重量很大,美国学者提出了用双向Buck/Boost直流变换器来代替原有的充、放电器,从而实现汇流条电压的稳定。
之后,发表了大量文章对人造卫星应用蓄电池调节器进行了系统的研究,并应用到了实体中。
1994年,香港大学陈清泉教授将双向直流变换器应用到了电动车上,同年,F.Caricchi等教授研制成功了用20kW水冷式双向直流变换器应用到电动车驱动,由于双向直流变换器的输入输出电压极性相反,不适合于电动车,所以他提出了一种Buck-Boost级联型双向直流变换器,其输入输出的负端共用。
1998年,美国弗吉尼亚大学李泽元教授开始研究双向直流变换器在燃料电池上的配套应用。
可见,航天电源和电动车辆的技术更新对双向直流变换器的发展应用具有很大的推动力,而开关直流变换器技术为双向DC/DC变换器的发展奠定了基础。
1994年,澳大利亚FelixA.Himmelstoss发表论文,总结出了不隔离双向直流变换器的拓扑结构。
第2章 基本DC-DC变换器
以上讨论了buck型 变换器的构建,那 么如何实现升压型 (boost)的电压变 换和升流型(boost )的电流变换呢?
2.1.2 boost型 DC-DC变换器的基本结构
L VT VD C + VD L buck型电压变 从图3-2c 所示的 换器电路出发,便可以导出 io boost型电流变换器电路 VT C
+
RL
VT
Ui
UO Ii -
ui
VT
+ C
VT
RL
IO
RL
-
uo ii
uo
Ui
a)
io
Ii
b)
a)
UO
IO
2.1.1 buck型 DC-DC变换器的基本结构
为抑制输出电流脉动,可在图3-1b所示的基本原理 电路中加入输出滤波元件(如:电感L)如图3-2b 所示
L
+ UO Ii
ui
VT
VT
+ C
RL
学习指导
建议重点学习以下主要内容 ⑴ DC-DC变换器基本电路构成的基本思路与换流分析 ⑵ 开关变换器中电感、电容元件的基本特性——伏秒平衡 特性(电感元件)、 安秒平衡特性(电容元件),是定量 分析开关变换器的基础 (学会应用该特性进行定量分析) ⑶ 电流连续条件下的DC-DC变换器基本特性分析,这是 DC-DC变换器性能分析和参数设计的基础,主要包括:稳 态增益、电感电流及电容电压脉动量、功率器件中的电压 及电流关系等
c)
2.1.2 boost型 DC-DC变换器的基本结构
若考虑变换器输入、输出能量的不变性 (忽略电路及元件的损耗),则buck型电 压变换器在完成降压变换的同时也完成了 升流(boost)变换。同理buck型电流变换 器在完成降流变换的同时也完成了升压( boost)变换。 boost型电压变换和buck型电流变换以及 boost型电流变换和buck型电压变换存在功 能上的对偶性。若已知某种升(降)压电 压变换器电路则相应的降(升)流电流变 换器电路可以利用对偶原理求出
六种基本DCDC变换器拓扑结构总结
六种基本DCDC变换器拓扑结构总结DC-DC变换器是一种将一种直流电压转换为另一种直流电压的电子设备。
根据其拓扑结构,可以将DC-DC变换器分为六种基本拓扑结构。
下面将对这六种拓扑结构进行总结。
1. 升压型拓扑结构(Boost Converter):升压型拓扑结构是将输入电压提升到更高电压的一种拓扑结构。
其基本结构由一个电感、一个开关管、一个二极管和一个输出滤波电容组成。
工作原理为当开关管打开时,电感储存能量;当开关管关闭时,电感释放储存的能量,将电流经过二极管和输出滤波电容供给负载。
2. Buck拓扑结构(降压型拓扑结构):Buck拓扑结构是将输入电压降低到更低电压的一种拓扑结构。
其基本结构由一个电感、一个开关管和一个输出滤波电容组成。
工作原理为当开关管打开时,电感储存能量;当开关管关闭时,电感释放储存的能量,将电流经过输出滤波电容供给负载。
3. Buck-Boost拓扑结构(降升压型拓扑结构):Buck-Boost拓扑结构可以实现输入电压的增益和降低。
其基本结构由一个电感、一个开关管和一个输出滤波电容组成。
工作原理为当开关管打开时,电感储存能量;当开关管关闭时,电感释放储存的能量,将电流经过输出滤波电容供给负载。
该拓扑结构可以实现输入电压大于、等于或小于输出电压的转换。
4. 反激型拓扑结构(Flyback Converter):反激型拓扑结构是一种将输入电压转换为输出电压的一种拓扑结构。
其基本结构由一个变压器、一个开关管和一个输出滤波电容组成。
工作原理为开关管导通时,电能储存在变压器中;开关管关闭时,变压器释放储存的能量,将电流经过输出滤波电容供给负载。
5. 单边反激型拓扑结构(Half-Bridge Converter):单边反激型拓扑结构也是一种将输入电压转换为输出电压的一种拓扑结构。
其基本结构由两个开关管、一对二极管和一个输出滤波电容组成。
工作原理为开关管交替导通和关闭,将输入直流电压分别连接到变压器的两个输入端,以实现电压的转换。
双向DCDC变换器设计
双向DCDC变换器设计双向直流-直流(DC-DC)变换器是一种电力电子设备,能够实现两个不同电压等效电路之间的能量转换和传输。
这种变换器常用于电池系统、节能转换系统和电网隔离系统等应用中。
本文将介绍双向DC-DC变换器的设计原理、工作原理和性能评估。
一、设计原理双向DC-DC变换器可以分为两个部分:升压变换器和降压变换器。
升压变换器将低电压输入提升为较高电压输出,而降压变换器则将高电压输入降压为较低电压输出。
这两个变换器可以通过一个可调节的开关来实现输出电压的控制。
在实际应用中,通过PWM(脉宽调制)技术来控制开关的导通时间,从而实现输出电压的调节。
二、工作原理双向DC-DC变换器的工作原理如下:1.当升压变换器开关导通时,输入电压经过电感储能,同时输出电容储能开始将能量传递到输出端。
2.当升压变换器开关断开时,储能元件的电感和电容开始释放储存的能量,使输出电压保持稳定。
3.当降压变换器开关导通时,输入电压先通过输出电容释放能量,同时电感储能元件开始储存电能。
4.当降压变换器开关断开时,储能元件释放储存的能量,实现输出电压的稳定。
三、性能评估设计双向DC-DC变换器时需要评估以下几个关键性能参数:1.效率:双向DC-DC变换器的效率主要取决于开关的损耗和传输效率。
通过合理选择开关元件和功率传输电路,可以提高变换器的效率。
2.响应时间:双向DC-DC变换器需要能够快速响应输入电压和输出负载的变化。
降低电路和控制系统的响应时间可以提高变换器的动态性能。
3.稳定性:双向DC-DC变换器需要具有良好的稳定性,以确保输出电压在不同负载条件下保持稳定。
在设计过程中应考虑噪声抑制和滤波技术。
4.安全性:在设计双向DC-DC变换器时,需要考虑过电流、过压和过温等保护功能,以防止电路损坏和事故发生。
在实际设计过程中,还需要考虑其他因素,如电路拓扑选择、元件选择、控制算法和布局布线等。
针对不同的应用需求,可能需要做出不同的设计决策。
dc-dc变换器
dc-dc变换器DC-DC变换器概述DC-DC变换器是一种用于将直流电压转换为不同电压级别的电子设备。
它们在各种应用中被广泛使用,例如电力电子系统、通信设备、汽车电子和工业控制等领域。
DC-DC变换器的主要功能是将输入电压转换为所需的输出电压,并为负载提供恒定的电源。
工作原理DC-DC变换器的工作原理基于电感和电容的特性。
它通常由开关器件(如晶体管或MOSFET)、电感、电容和控制电路组成。
当开关器件关闭时,电感储存了电能,并将其传输到输出电路。
当开关器件打开时,电容通过输出电路释放储存的电能,从而为负载提供所需的电源。
类型DC-DC变换器有多种类型,根据其拓扑结构可以分为多种类型,包括升压变换器、降压变换器、升降压变换器和隔离型变换器等。
每种类型都有其适用的应用场景。
升压变换器升压变换器将输入电压转换为更高的输出电压。
它通常用于需要提供高电压的应用,例如太阳能和风能系统。
降压变换器降压变换器将输入电压转换为更低的输出电压。
它通常用于需要提供低电压的应用,如便携式电子设备和电动车辆。
升降压变换器升降压变换器可以在输入和输出之间进行电压转换。
它具有较强的适应性,适用于输入输出电压波动较大的应用,如太阳能系统。
隔离型变换器隔离型变换器通过磁耦合实现输入和输出之间的电气隔离。
它主要用于需要提供电气隔离的敏感应用,如医疗设备和工业控制系统。
效能和特性DC-DC变换器的效能和特性对于其性能至关重要。
以下是一些常见的效能和特性指标:1. 效率:变换器的效率是指输出功率与输入功率之比。
高效的变换器可以提高系统的能量利用率。
2. 转换速度:变换器的转换速度是指输出电压从一个电平转换到另一个电平所需的时间。
快速的转换速度可以减少能量损耗和电压波动。
3. 稳定性:变换器的稳定性是指在输入电压和负载变化时,输出电压的稳定性。
稳定的输出电压可以保证负载的正常运行。
4. 输入和输出电压范围:变换器应具有足够的输入和输出电压范围以适应各种应用场景。
DCDC变换器的基本手段和分类
开关变换器和开关电源电源有如人体的心脏,是所有电设备的动力。
标志电源特性的参数有功率、电压、频率、噪声及带负载时参数的变化等;在同一参数要求下,又有体积、重量、形态、效率、可靠性等指标。
在有些情况下,一般电力要经过转换才能符合使用的需要。
例如,交流转换成直流,高电压变成低电压等。
按电力电子的习惯称谓,AC-DC(理解成AC转换成DC,其中AC表示交流电,DC表示直流电)称为整流(包括整流及离线式变换),DC-AC称为逆变,AC-AC称为交流-交流直接变频(同时也可以是变压),DC-DC称为直流-直流变换。
为达到转换目的,手段是多样的。
20世纪60年代前,研发了半导体器件,并以次器件为主实现这些转换。
电力电子学科从此形成并有了近30年的迅速发展。
所以,广义地说,凡半导体功率器件作为开关,将一种电源形态转变成为另一形态的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称开关电源(Switching Power Supply)。
开关电源主要组成部分是DC-DC变换器,因为它是转换的核心,涉及频率变换。
目前DC-DC变换中所用的频率提高最快,它在提高频率中碰到的开关过程、损失机制,为提高效率而采用的方法,也可作为其他转换方法参考。
常见到离线式开关变换器(Off-line Switching Converter)名称,即AC-DC变换,也常称开关整流器;它不仅包含整流,而且整流后又做了DC-DC变换。
所谓离线并不是变换器与市电线路无关的意思,只是变换器中因有高频变压器隔离,使输出的直流与市电隔离,所以称离线式开关变换器。
稳压电源的分类及基本知识开关型交流稳压电源它应用于高频脉宽调制技术,与一般开关电源的区别是它的输出量必须是与输入侧同上频、同相的交流电压。
它的输出电压波型有准方波、梯型波、正弦波等,市场上的不间断电源(UPS)抽掉其中的蓄电源和充电器,就是一台开关型交流稳压电源的稳压性好,控制功能强,易于实现智能化,是非常具有前途的交流稳压电源。
DC-DC Converter (直流变换器)资料
Ui
D
L
iL iO
R
Uo C
L
S
导通 Ui
C
电感电流:
连续 (CCM-Continuous Current Mode)
临界 断续(DCM-Discontiuous Current Mode)
S 阻断
电压纹波、谐波、内阻 ……
L
iL 0
C
iL 0
C
R Uo
R
Uo
R Uo
1 电流的不同状态
★ 电流连续状态:
uL iC
S1
S1
T
S2
t
S1 S2
S2
★ 电流临界状态:
I LM
1 L
tON 0
uLdt
1 L
(U i
Uo )tON
DTUi (1 D) L
临界电流平均值:
I LC
1 2
I
LM
UiT D(1 D) 2L
4I LCM D(1 D)
I LCM
TUi 8L
Ui
UO
ton
toff
t
DT
D=0.1
D=0.5
D=0.9
★ 电流断续状态:
uL Ui -UO
(1-D)T
t
DT
1T
-UO
2T
(Ui Uo )DT 1TUo Uo D Ui D 1
D 1 1 Uo
续流时间=?
Ui
iS ii S
D
L
iL iO
R
Uo C
Io
1 2
I LM
(D
1 )T
/T
Uo 2L
1T
(
常见DC/DC电源变换器的拓扑类型
DC/DC电源变换器的拓扑类型0 引言本文的第一部分为“DC/DC电源变换器拓扑的分类”,第二部分是在参考美国TI公司资料的基础上撰写而成的,新增加了各种DC/DC电源变换器的主要特点及PWM控制器的典型产品,另外还按照目标对电路结构、波形参数和汁算公式中的物理量作了统一。
本文的特点足以表格形式归纳了常见DC/DC电源变换器的拓扑结构.这对电源专业的广大技术人员是一份不可多得的技术资料。
1 DC/DC电源变换器拓扑结构的分类DC/DC电源变换器的拓扑类型主要有以下13种:(1)Buck Converter降压式变换器;(2)Boost Conyerter升压式变换器;(3)Buck—Boost Converter降压/升压式变换器,含极性反转(Inverting)式变换器;(4)Cuk Converter升压,升压串联式变换器;(5)SEPIC(Single EndcdPdimary Inductor Converter)单端一次侧电感式变换器;(6)F1yback Converter反激式(亦称回扫式)变换器;(7)Forward Converter正激式变换器:(8)Double Switches Forward Converter双开关正激式变换器;(9)Active Clamp Forward Converter有源箝位(0)Half Bridge Converter半桥式变换器;(11)Full Bridge Converter全桥式变换器;(12)Push pull Convener推挽式变换器:(13)Phase Shift Switching ZVT(Phase Shift Switching Zero Voltage Transition)移相式零电压开关变换器。
2 常见DC/DC电源变换器的拓扑类型常见DC/DC电源变换器的拓扑类型见表1~表3所列。
表中给出不同的电路结构,同时也给出相应的电压及电流波形(设相关的电感电流为连续工作方式)。
dcdc培训资料2
02
DC/DC转换器的类型
隔离式和非隔离式
隔离式
转换器输入和输出之间存在电气隔离 ,通常使用变压器实现。优点是可以 在不同电压级别之间转换,提高安全 性。缺点是体积较大,成本较高。
非隔离式
转换器输入和输出之间没有电气隔离 。优点是成本较低,体积较小。缺点 是安全性较低,只能用于相同电压级 别之间的转换。
纹波和噪声
纹波
指输出电压或电流中的交流成分,会影响输出电压和电流的质量和稳定性。
噪声
指DC/DC转换器内部或外部产生的干扰信号,可能会影响输出电压和电流的稳定 性和性能。
尺寸和重量
尺寸
DC/DC转换器的物理尺寸,会影响其 在系统中的应用和布局。
重量
DC/DC转换器的重量,会影响其在系 统中的安装和固定方式。
全桥式
通过四个开关管和两个磁性元件,将输入直流电压转换为另 一个直流电压。优点是输出电压精度高,效率高。缺点是电 路复杂,成本较高。
03
DC/DC转换器的性能参数
输入电压和输出电压
输入电压
DC/DC转换器的输入电压范围决 定了其适应的电源范围,通常根 据系统需求和电源供应情况而定 。
输出电压
输出电压是DC/DC转换器所能够 调整和稳定的直流电压,通常需 要根据负载的需求进行设定。
dcdc培训资料2
汇报人: 2023-12-23
目录
• DC/DC转换器简介 • DC/DC转换器的类型 • DC/DC转换器的性能参数 • DC/DC转换器的选择 • DC/DC转换器的使用和注意
事项 • DC/DC转换器的常见问题和
解决方案
01
DC/DC转换器简介
DC/DC转换器的定义
DC-DC升压变换器模块分类及型号,GRB12150D-2W
DC-DC升压变换器模块分类及型号(GRB12150D-2W)模块电源的分类按现代电力电子技术的应用领域,模块电源的分类如下:①绿色电源。
高速发展的计算机技术带领人类进入信息社会,同时也促进模块电源技术的迅速发展。
20世纪80年代,计算机全面采用开关电源,率先完成计算机的电源换代。
接着,开关电源技术相继进入电子、电器设备领域。
计算机技术的发展,提出绿色计算机和绿色电源绿色计算机泛指对环境无害的个人计算机和相关产品。
绿色电源系指与绿色计算机相关的高效清洁电源。
根据美国环境保护署1992年6月17日“能源之星”计划的规定,桌上型个人计算机或相关的外围设备,在睡眠状态下的耗电量若小于30W,就符合绿色计算机要求,提高电源效率是降低电源消耗的根本途径。
就效率为75%的200W开关电源而言,电源自身要消耗50W的能源。
②高频开关电源。
通信业的迅速发展极大推动了通信电源的发展,高频小型化的开关电源及其技术已成为现代通信供电系统的主流。
在通信领域中,通常将整流器称为一次电源,而将直流/直流(DC/DC)变换器称为二次电源。
一次电源的作用是将单相或三相交流电变换成标称值为48V的直流电源。
目前,在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称开关型整流器SMR)主开关(MOSFET或IGBT)的开关频率一般控制在50~100kHz范围内,可实现高效率和小型化。
近几年,开关整流器的功率容量不断扩大单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。
因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,因此在通信供电系统中采用高功率密度的高频DCDC隔离模块电源,将中间母线电压(一般为48V直流)变换成所需的各种直流电压,即可大大减少损耗、方便维护,且安装、增加非常方便,一般都可直接安装在标准控制板上。
对二次电源的要求是高功率密度,因通信容量的不断增加,通信电源容量也将不断增加。
DCDC变换的电路计算
DCDC变换的电路计算DC-DC变换是一种电路转换技术,通过改变输入直流电压的值,可以得到所需的输出直流电压。
这种技术在电子设备中被广泛使用,特别是在便携式电子设备、电动汽车和太阳能发电系统等领域。
一、基本原理DC-DC变换电路一般由输入滤波电路、开关电路、控制电路和输出滤波电路等组成。
输入滤波电路是为了去除输入直流电压中的高频噪声,保证输入电源的稳定性。
它通常由电感、电容和电阻等元件组成。
开关电路是DC-DC变换电路的核心部分,它通过一个开关管来控制输入电压的开关,进而改变输出电压的值。
开关电路分为直流开关和交流开关两种。
直流开关常用的有开关二极管、场效应管和双极性晶体管等。
交流开关常用的有双极型晶体管和绝缘栅双极型晶体管等。
控制电路用来控制开关电路的开关时间,一般采用反馈控制的方式。
常用的控制方法有脉宽调制(PWM)控制、频率调制(FM)控制和电压调制(VM)控制等。
输出滤波电路是为了去除输出电压中的高频噪声,使输出电压更加平稳。
它通常由电感和电容等元件组成。
二、DC-DC变换器的分类根据输出电压和输入电压的关系,DC-DC变换器可以分为降压变换器、直流稳压变换器和升压变换器三种。
降压变换器是将输入电压降低到所需的输出电压。
常用的降压变换器有降压开关电路和降压线性电路等。
直流稳压变换器是将输入电压保持在一个稳定的值。
常用的直流稳压变换器有稳压二端子元件、稳压三端子元件和稳压集成电路等。
升压变换器是将输入电压升高到所需的输出电压。
常用的升压变换器有升压开关电路、升压变压器和升压线性电路等。
三、DC-DC变换器的计算1.降压变换器的计算降压变换器的关键参数包括输入电压Vin、输出电压Vout、输出电流Iout、开关管的最大电流Isw和开关频率f等。
输出电流Iout的计算公式为:Iout = Vout / R其中R为输出电路的负载电阻。
开关管的最大电流Isw的计算公式为:Isw = D * Iout / (1 - D)其中D为开关管的工作占空比,表示开关管的开启时间与一个周期时间的比值。
第四章直流直流(DCDC)变换
第四章直流—直流(DC-DC)变换将大小固定的直流电压变换成大小可调的直流电压的变换称为DC-DC变换,或称直流斩波。
直流斩波技术可以用来降压、升压和变阻,已被广泛应用于直流电动机调速、蓄电池充电、开关电源等方面,特别是在电力牵引上,如地铁、城市轻轨、电气机车、无轨电车、电瓶车、电铲车等。
这类电动车辆一般均采用恒定直流电源(如蓄电池、不控整流电源)供电,以往采用变阻器来实现电动车的起动、调速和制动,耗电多、效率低、有级调速、运行平稳性差等。
采用直流斩波器后,可方便地实现了无级调速、平稳运行,更重要的是比变阻器方式节电(20~30)%,节能效果巨大。
此外在AC-DC变换中,还可采用不控整流加直流斩波调压方式替代晶闸管相控整流,以提高变流装置的输入功率因数,减少网侧电流谐波和提高系统动态响应速度。
DC-DC变换器主要有以下几种形式:(1)Buck(降压型)变换器;(2)Boost(升压型)变换器;(3)Boost-Buck(升-降压型)变换器;(4)Cúk变换器;(5)桥式可逆斩波器等。
其中Buck和Boost为基本类型变换器,Boost-Buck和Cúk为组合变换器,而桥式可逆斩波器则是Buck变换器的拓展。
此外还有复合斩波和多相、多重斩波电路,它们更是基本DC-DC变换器的组合。
4.1 DC-DC变换的基本控制方式DC-DC变换是采用一个或多个开关(功率开关器件)将一种直流电压变换为另一种直流电压。
当输入直流电压大小恒定时,则可控制开关的通断时间来改变输出直流电压的大小,这种开关型DC-DC变换器原理及工作波形如图4-1所示。
如果开关K导通时间为,关断时间为,则在输入电压E恒定条件下,控制开关的通、断时间、的相对长短,便可控制输出平均电压U0的大小,实现了无损耗直流调压。
从工作波形来看,相当于是一个将恒定直流进行“斩切”输出的过程,故称斩波器。
斩波器有两种基本控制方式:时间比控制和瞬时值控制。
隔离型dc-dc变流器种类及拓扑结构
隔离型dc-dc变流器种类及拓扑结构1.隔离型dc-dc变流器有多种种类,包括正激变流器、反激变流器、谐振变流器和双拓扑结构变流器。
Isolated dc-dc converters come in various types,including forward converters, flyback converters, resonant converters, and dual topology converters.2.正激变流器是一种常见的隔离型dc-dc变流器,能够实现高效率和高稳定性。
Forward converters are a common type of isolated dc-dc converter that can achieve high efficiency and stability.3.反激变流器具有简单的拓扑结构,适用于输出功率较小的应用。
Flyback converters have a simple topology and aresuitable for applications with low output power.4.谐振变流器采用谐振电路来实现高效率和低电磁干扰。
Resonant converters use resonant circuits to achieve high efficiency and low electromagnetic interference.5.双拓扑结构变流器结合了正激变流器和反激变流器的优点,适用于中等功率的应用。
Dual topology converters combine the advantages of forward converters and flyback converters and are suitablefor medium power applications.6.隔离型dc-dc变流器在电力电子领域扮演着重要的角色,广泛应用于工业、通信和汽车电子等领域。
六种基本DCDC变换器拓扑结构总结
六种基本DC/DC变换器拓扑,依次为buck,boost,buck-boost,cuk,zeta,sepic变换器半桥变换器也是双端变换器,以上是两种拓扑。
半桥开关管电压应力为输入电压.而且由于另外一个桥臂上的电容,具有抗偏磁能力,但是对于上面一种拓扑,通常还会加隔直电容来提高抗偏磁能力.但是如果采用峰值电流控制,要注意一个问题,就是有可能会导致电容安秒不平衡的问题.要需要其他方法来解决。
半桥变换器可以通过不对称控制来实现ZVS,也就是两个管子交替导通,一个占空比为D,另外一个就为1-D.就是所谓的不对称半桥,通常采用下面一种拓扑.对于不对称半桥可以采用峰值电流控制。
正激变换器绕组复位正激变换器LCD复位正激变换器RCD复位正激变换器有源钳位正激变换器双管正激吸收双正激有源钳位双正激原边钳位双正激软开关双正激推挽变换器无损吸收推挽变换器推挽变换器:推挽变换器是双端变换器.其实是两个正激变换器通过变压器耦合而来,基本推挽变换器好处是驱动不需隔离,变压器双端磁化,只要两个开关管.但是,变压器绕组利用率低,开关管电压应力为输入两倍,所以一般只适合低压输入的场合.而且有个问题就是会出现偏磁,所以要采用电流型控制等方法来避免.如果将两个双管正激同样耦合,可以构成四开关管的推挽变换器,也就是所谓的双双管正激.其管子电压应力下降为输入电压.其他等同.推挽正激是最近出现的一种新拓扑,通过一个电容来解决变换器漏感尖峰,偏磁等问题.在VRM中有应用.半桥变换器也是双端变换器,以上是两种拓扑.半桥开关管电压应力为输入电压.而且由于另外一个桥臂上的电容,具有抗偏磁能力,但是对于上面一种拓扑,通常还会加隔直电容来提高抗偏磁能力.但是如果采用峰值电流控制,要注意一个问题,就是有可能会导致电容安秒不平衡的问题.要需要其他方法来解决.半桥变换器可以通过不对称控制来实现ZVS,也就是两个管子交替导通,一个占空比为D,另外一个就为1-D.就是所谓的不对称半桥,通常采用下面一种拓扑.对于不对称半桥可以采用峰值电流控制.全桥变换器全桥变换器在大功率场合是最常用了,特别是移项ZVS和ZVZCS 接下去,会收集一些三电平变换器贴出来,在以后就给出boost族的隔离变换器....反激变换器.....正反激变换器......APFC.....PPFC.... 单级PFC.....谐振变换器等.....三电平变换器(three level converter)选了看起来比较舒服的两个拓扑,这些三电平是半桥演化而来,同样可以演化出多电平变换器,合适高压输入场合.而且可以通过全桥的移相控制方式实现软开关.。
DCDC基础知识
• MOSFET LDO 能支持非常低的压降、低静态电流、改善的 噪声性能和低电源抑制。
6
有关 LDO 压降的更多信息
• 在 LDO 数据表中,只规定了最大输出电流条件下的压 降。在其他的工作条件下,压降可以通过计算求出。
AC 输入
变压器耦合
横跨隔离边界的信号反馈回路 通常需要一个光耦合器做隔离
具有功率因数校正 (PFC) 功能的初级侧开关模式电源
7
控制器与稳压器
• 控制器
– 分立式 MOSFET – 负责提供控制功率级所需的“智能” – 设计更加精细复杂 – 可全面控制 FET 选择、开关频率、过流、补偿、软起动 – 可通过优化设计调整使电源满足您的特殊需求
• 而且,还可以控制 开关阻抗以使其实 际上起一个后置稳 压器的作用
6
电荷泵
Q 1
+ VIN Q
2
C
Q
F
3
VCF+ Q
4
Io
+
Co
LOA V
D
o-
优点
• 中等效率 • 由于电荷泵将电容器两端的电压接入输出端及从输
出端接出,因此:
– 无需电感器 – VOUT 可高于、低于和等于 VIN
• 较少的组件使电荷泵更易于设计
应用
• 需要一个低输出电流的应用 • 具有中等的输入-输出电压差的应用 • 存在空间限制的应用
• 全集成型稳压器
– 集成型开关 – “即插即用型” 设计 – 输出滤波器组件的选择范围受限 – 对于功能性的控制受限
• 部分集成型稳压器
– 可提供全部或部分特性集,内部或外部补偿 – 内部功率 FET、外部同步 FET 或箝位二极管 – 对于频率、过流、软起动等功能的控制受限 – 可提供较宽的输出滤波器组件选择范围
电力电子技术课件-10-DCDC变换器
t off
L I L UO
根据式(3.2.4)、(3.2.5)可求出开关周期TS为
TS1ftontoffUO (IU LdLU dUO)
ILU O (U fdL dU U O)U dD (f1 LD )
流 可一 得上周式期中内△的I平L为均流值过与电负感载电电流流的IO峰相-等峰,即值同,最时大代为入I关2,最系小式为△II1L。= 电I2-感I电1
IOBU2dLTOS D(1D)
式中IOB为电感电流临界连续时的负载电流平均值。
总结:临界负载电流 IOB与输入电压Ud、电感L、开关频率f以及开关管T 的占空比D都有关。
当实际负载电流Io> IOB时,电感电流连续;
当实际负载电流Io = IOB时,电感电流处于连续(有断流临界点);
当实际负载电流Io <IOB时,电感电流断流;
I0
I2
2
I1
(3.2.8)
I1I0U2dLTS D(1D)
2021/5/4
10
4.1.1 Buck变换器
电感电流iL临界连续状态:
变换电路工作在临界连续状态时,即有I1=0,由
I1I0U2dLTS D(1D)
可得维持电流临界连续的电感值L0为:
Lo
UdTS 2I0B
D(1D)
即电感电流临界连续时的负载电流平均值为 :
2021/5/4
基本的斩波器电路及 其负载波形
3
4.1 直流变换电路的工作原理
直流变换电路的常用工作方式主要有两种:
① 脉冲频率调制(PFM)工作方式:
即维持导通时间不变,改变工作周期。在这种调 压方式中,由于输出电压波形的周期是变化的,因此 输出谐波的频率也是变化的,这使得滤波器的设计比 较困难,输出谐波干扰严重,一般很少采用。
DC-DC变换器的基本手段和分类
DC-DC变换器的基本手段和分类作者:时间:2007-12-13 来源:电子元器件网浏览评论推荐给好友我有问题个性化定制关键词:DC-DC变换器电源把直流电压变换为另一数值的直流电压最简单方法是串联一个电阻,这样不涉及变频的问题,显得很简单,但是效率低。
用一个半导体功率器件作为开关,使带有滤波器(L或/和C)的负载线路与直流电压一会儿接通,一会儿断开,则负载上也得到另一个直流电压,这就是DC-DC的基本手段,类似于“斩波”(Chop)作用。
一个周期T s内,电子开关接通时间t on所占整个周期T s的比例,称接通占空比D,D=t on/T s;断开时间t off所占T s比例,称断开占空比D’,D’= t off/T s。
很明显,接通占空比越大,负载上电压越高;1/T s=f s称开关频率,f s越高,负载上电压也越高。
这种DC-DC变换器中的开关都在某一固定频率下(如几百千赫兹)工作,这种保持开关频率恒定,但改变接通时间长短(即脉冲的宽度),使负载变化时,负载上电压变化不大的方法,称脉宽调制法(Pulse Width Modulation,简称为PWM)。
由于电子开关按外加控制脉冲而通断,控制与本身流过的电流、二端所加的电压无关,因此电子开关称为“硬开关”。
很明显,由于硬开关关断和开通时,开关上同时存在电压、电流,损耗是比较大的,但无论如何比串联电阻变换方法损耗小得多。
这就是开关电源的优点之一。
凡用脉宽调制方式控制电子开关的开关变换器,称为PWM开关变换器。
它是以使用“硬开关”为主要特征的。
另一类称之为软开关。
凡用控制方法使电子开关在其两端电压为零时导通电流,或使流过电子开关电流为零时关断,此开关称为软开关。
软开关的开通、关断损耗理想值为零。
由于损耗小,开关频率可提高到兆赫级,开关电源体积、重量显著减少。
可用谐振(Resonance)的方法使电子开关上电压或电流为零,谐振分为串联谐振和并联谐振。
第五章DC DC变换器
直流斩波
图 5.2 Buck变换器
电路图及其主要波形
直流斩波
在整个开关周期中,流过电感的电流均不为零, 被称为电流连续工况。这时Buck电路在一个开关 周期期间输出电压波形为宽度为、数值为的矩形 波电压。
直流斩波
电路的开关状态和工作波形
iS
VS
o + T
v EO
E + G D
vl
L C
-
vo
T G D
E
v EO
+
vl
L
C
-
vo
iC
C
V g
iL
io
R
io
o
直流斩波
滤波
滤波器电抗对谐波 的阻抗为:
wL
iS
+ o
T G D
E
v EO
+
vl
L C
-
vo
iC
C
滤波器电容对谐波 的阻抗为:
V S
V g
iL
io
R
io
o
buck 电路图
1 wC
如果:
wL >> 1 wC
各谐波经过滤波器后几乎衰减为零。
iC
C
vg
io
R
T on
Toff
I L max
t
Ts
I L min
Vg
iL
iL
I L = Io
io
o
t
iT
iT
I L max I L min
iS VS
+ L
vl- i l
C
iD
iT
vO
i
DC-DC变换电路的分析以及分类
2)电感电流断续工作方式(Discontinuous current mode) 图5-6b给出了电感电流断续时的工作波形,它有 三种工作状态:①Q导通,电感电流iL从零增长 到 ;②Q关断,二极管D续流,iL从 降到零; ③Q和D均截止,在此期间iL保持为零,负载电流 由输出滤波电容供电。这三种工作状态对应三种 不同的电路结构,如图5-2b、c、d所示。 Q导通期间,电感电流从零开始增长,其增长量为 Q截止后,电感电流从最大值线性下降,在 时刻下降到零,其减小量为:
4)按电力半导体器件在开关过程中是否承受电压、电流应 力划分。可分为硬开关和软开关。所谓软开关是指电力半 导体器件在开关过程中承受零电压(ZVS)或零电流 (ZIS)。 5)按输入输出电压大小划分。可分为降压型和升压型。 6)按输入与输出之间是否有电气隔离划分。可分为隔离型 和不隔离型。隔离型DC-DC变换器按电力半导体器件的个 数可分为:单管DC-DC变换器[单端正激(Forward)、单 端反激(Flyback)];双管DC-DC变换器[双管正激(Double transistor forward converter)、双管反激(Double transistor flyback converter)、推挽电路(Pushpull converter)和半桥电路(Half-bridge converter) 等];四管DC-DC变换器即全桥DC-DC变换器(Full-bradge converter)。不隔离型主要有降压式(Buck)变换器、 升压式(Boost)变换器、升降压式(Buck-Boost)变换 器、Cuk变换器、Zeta变换器、Sepic变换器等。
vCE
vCE
IL Vs
a