2018-2019学年江苏省无锡市八年级(上)期末数学试卷 (解析版)
江苏省无锡市天一实验学校2018-2019学年八年级上学期期中考试数学试题(解析版)
江苏省无锡市天一实验学校2018-2019学年八年级上学期期中考试数学试题一、选择题(本大题共10小题,共30.0分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A. B. C. D.2.点P( 2,-3 )关于x轴的对称点是()A. (−2,3 )B. (2,−3)C. (−2,3 )D. (2,3)3.下列几组数据能作为直角三角形的三边长的是()A. 2,3,4B. 4,5,6C. 4,6,9D. 5,12,134.下列各式中,正确的是()A. −√−49=−(−7)=7B. √214=112C. √4+916=2+34=234D. √0.25=±0.55.如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,要用SAS证明△ABC≌△DEF,可以添加的条件是()A. ∠A=∠DB. AC//DFC. BE=CFD. AC=DF6.已知一次函数y=kx+b,函数值y随自变量x的增大而减小,且kb<0,则函数y=kx+b的图象大致是()A. B. C. D.7.若直线l1经过点(0,4),l2经过点(3,2),且l1与l2的图象关于x轴对称,则l1与x轴的交点坐标为()A. (−2,0)B. (2,0)C. (−6,0)D. (6,0)8.已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.9.如图,△ABC中,AC=4,BC=3,AB=5,AD为△ABC的角平分线,则CD的长度为()A. 1B. 54C. 32D. 4310.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)-CD2.其中正确的是()A. ①②③④B. ②④C. ①②③D. ①③④二、填空题(本大题共8小题,共16.0分)11.6的平方根为______.12.用四舍五入法,将圆周率π=3.1415926…精确到千分位,结果是______.13.如图,数轴上点C表示的数为______.14.已知点P(a,b)在一次函数y=2x-1的图象上,则2a-b+1=______.15.在平面直角坐标系中,已知点A(-4,0)和B(0,1),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B坐标是______.16.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示,秋千摆动第一个来回需______s?17.如图,△ABD、△CDE是两个等边三角形,连接BC、BE.若∠DBC=30°,BD=2,BC=3,则BE=______.18.如图,△ABC中AC=BC=5,AB=6,CD为△ABC的中线,点E、点F分别为线段CD、CA上的动点,连结AE、EF,则AE+EF的最小值为______.三、计算题(本大题共1小题,共6.0分)19.如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.四、解答题(本大题共9小题,共68.0分)20.求下列各式的x的值:(1)x3=-8;(2)2x2=16.21.计算:(1)(-√2)2+|1-√3|-(1)-123+√(−2)2.(2)√36-√2722.如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE=CF.23.已知:如图,∠ACB=∠ADB=90°,点E、F分别是线段AB、CD的中点.求证:EF⊥CD.24.如图方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形;(2)画一个底边长为4,面积为8的等腰三角形;(3)画一个面积为5的等腰直角三角形;(4)画一个以OM、ON为邻边的四边形,且所画四边形是轴对称图形.25.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(-2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;S△BOC,求点D的坐标.(2)若点D在y轴负半轴上,且满足S△COD=1326.如图,在正方形纸片ABCD中,各边长均为5,各内角均为90°,将∠A沿BE翻折,折痕交AD于点E,点A落在正方形内的点A′,延长EA′交CD于点F,交BC延长线于点G.(1)若AE=2,求CF的长;(2)设AE=x,BG=y,求y与x的函数关系式.27.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒1cm的速度沿折线A-C-B-A运动,设运动时间为t秒(t>0).(1)当点P在AC上,且满足PA=PB时,求出此时t的值;(2)当点P在AB上,求出t为何值时,△BCP为等腰三角形.28.如图,△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时,求∠BDE的度数;(2)当∠ACB=α,其它条件不变时,∠BDE的度数是多少?(用含α的代数式表示)答案和解析1.【答案】D【解析】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.根据轴对称图形的概念求解.本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】D【解析】解:点P( 2,-3 )关于x轴的对称点是(2,3).故选:D.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.3.【答案】D【解析】解:A、22+32≠42,不是勾股数;B、42+52≠62,不是勾股数;C、42+62≠92,不是勾股数;D、52+122=132,是勾股数,故选:D.分别计算较小两数的平方和,看是否等于最大数的平方即可.本题考查了勾股数,解题的关键是利用勾股定理逆定理.4.【答案】B【解析】解:A、没意义,所以A选项错误;B、==,所以B选项正确;C、==,所以C选项错误;D、=0.5,所以D选项错误.故选:B.根据二次根式有意义的条件对A进行判断;先把2化为,再求它的算术平方根即可对B进行判断;先计算4+=,再求它的算术平方根即可对C进行判断;根据算术平方根的定义对D进行判断.本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.5.【答案】C【解析】解:∵AB∥DE,∴∠B=∠DEF,可添加条件BC=EF,理由:∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故选:C.根据AB∥DE得出∠B=∠DEF,添加条件BC=EF,则利用SAS定理证明△ABC≌△DEF.本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.【答案】A【解析】解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选:A.根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴上方.本题考查了一次函数的图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).7.【答案】B【解析】解:∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴两直线相交于x轴上,∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴直线l1经过点(3,-2),l2经过点(0,-4),把(0,4)和(3,-2)代入直线l1经过的解析式y=kx+b,则,解得:,故直线l1经过的解析式为:y=-2x+4,可得l1与l2的交点坐标为l1与l2与x轴的交点,解得:x=2,即l1与x轴的交点坐标为(2,0).故选:B.根据对称的性质得出两个点关于x轴对称的对称点,再根据待定系数法确定函数关系式,求出一次函数与x轴的交点即可.此题主要考查了待定系数法求一次函数解析式以及坐标与图形的性质,正确得出l1与l2的交点坐标为l1与l2与x轴的交点是解题关键.8.【答案】D【解析】解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;故选:D.利用线段垂直平分线的性质以及圆的性质分别分得出即可.此题主要考查了复杂作图,根据线段垂直平分线的性质得出是解题关键.9.【答案】D【解析】解:∵AC=4,BC=3,AB=5,∴BC2+AC2=32+42=52=AB2,∴∠C=90°,过D作DP⊥AP于P,∵AD平分∠BAC,∴∠CAD=∠BAD.又∵DC⊥AC、DP⊥AB,∴∠C=∠APD.在△ACD与APD中,∵,∴△ACD≌APD(AAS),∴AP=AC=4,CD=PD,在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=5.设DP为x,则DP=x,BD=3-x,在Rt△DPB中,∠DPB=90°,∴DP2+PB2=DB2,即,x2+12=(3-x)2,解得x=,∴CD=DP=.故选:D.根据角平分线的性质可知∠CAD=∠BAD,利用AAS定理可知△ACD≌APD.在在Rt△ABC中根据勾股定理得出AB的长,设DP为x,则DP=x,BD=3-x,在Rt△DPB中,利用勾股定理即可得出结论.本题考查了勾股定理的逆定理,全等三角形的判定和性质,角平分线的性质,正确的作出辅助线是解题的关键.10.【答案】A【解析】解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2-EC2=2AB2-(CD2-DE2)=2AB2-CD2+2AD2=2(AD2+AB2)-CD2.故④正确,故选:A.只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.11.【答案】±√6【解析】解:∵()2=6∴6的平方根为,故答案为:.根据平方运算,可得一个数的平方根.本题考查了平方根,平方运算是求平方根的关键.12.【答案】3.142【解析】解:将圆周率π=3.1415926…精确到千分位,结果是3.142.故答案为3.142.根据近似数的精确度求解.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.13.【答案】√5【解析】解:由勾股定理,得OA===,由圆的性质,得OC=OA=,故答案为:.根据勾股定理,可得OA,根据圆的性质,可得答案.本题考查了实数与数轴,利用勾股定理得出OA的长是解题关键.14.【答案】2【解析】解:∵点P(a,b)在一次函数y=2x-1的图象上,∴2a-1=b,∴2a-b=1,∴2a-b+1=2.故答案为:2.直接把点P(a,b)代入一次函数y=2x-1,进而可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.【答案】(4,2)【解析】解:∵点A(-4,0),点B(0,1),平移后点A、B重合,∴平移规律为向右平移4个单位,向上平移1个单位,∴点B的对应点的坐标为(4,2).故答案为:(4,2);先根据点A、B的坐标确定出平移规律,再求解即可.本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.16.【答案】2.8【解析】解:观察函数图象,可知:秋千摆动第一个来回需2.8s.故答案为:2.8.结合荡秋千的经验,秋千先从一端的最高点下落到最低点,再荡到另一端的最高点,再返回到最低点,最后回到开始的一端,符合这一过程的即是0~2.8s,由此即可得出结论.本题考查了函数的图象,观察函数图象结合生活实践找出结论是解题的关键.17.【答案】√13【解析】解:连接AC.∵△ABD、△CDE是两个等边三角形,∴DA=DB=2,DC=DE,∠ADB=∠ABD=∠CDE=60°,∴∠ADC=∠BDE,∴△ADC≌△BDE,∴AC=BE,∵∠ABD=60°,∠DBC=30°,∴∠ABC=90°,∴AC==,∴BE=,故答案为.连接AC.只要证明△ADC≌△BDE,可得AC=BE,理由勾股定理求出AC即可;本题考查全等三角形的判定和性质、等边三角形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题.18.【答案】245【解析】解:过B作BF⊥AC于F,交CD于E,则BF的长即为AE+EF的最小值,∵AC=BC=5,CD为△ABC的中线,∴AD=AB=3,∴CD==4,∵S△ABC=AB•CD=AC•BF,∴BF==,∴AE+EF的最小值为,故答案为:.过B作BF⊥AC于F,交CD于E,则BF的长即为AE+EF的最小值,根据等腰三角形的性质得到AD=AB=3,根据勾股定理得到CD==4,根据三角形的面积公式列方程即可得到结论.本题考查了轴对称-最短路线问题,等腰三角形的性质,正确的找出点E,F的位置是解题的关键.19.【答案】(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°-30°-30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC-∠DAB=120°-45°=75°;(2)证明:∵∠DAB=45°,∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,∴DC=AB.【解析】(1)由AB=AC,根据等腰三角形的两底角相等得到∠B=∠C=30°,再根据三角形的内角和定理可计算出∠BAC=120°,而∠DAB=45°,则∠DAC=∠BAC-∠DAB=120°-45°;(2)根据三角形外角性质得到∠ADC=∠B+∠DAB=75°,而由(1)得到∠DAC=75°,再根据等腰三角形的判定可得DC=AC,这样即可得到结论.本题考查了等腰三角形的性质和判定定理:等腰三角形的两底角相等;有两个角相等的三角形为等腰三角形.也考查了三角形的内角和定理.20.【答案】解:(1)x3=-8;解得:x=-2;(2)2x2=16,解得:x=±2√2.【解析】(1)直接利用立方根的定义开立方计算得出答案;(2)直接利用平方根的定义开平方计算得出答案.此题主要考查了平方根与立方根,正确把握相关定义是解题关键.21.【答案】解:(1)原式=2+√3-1-2=√3-1;(2)原式=6-3+2=5.【解析】(1)直接利用绝对值的性质以及负指数幂的性质分别化简得出答案;(2)直接利用二次根式的性质以及立方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.22.【答案】证明:∵AC=AB+BC,BD=BC+CD,AC=BD,∴AB=DC,∵AE∥DF,∴∠A=∠D,在△ABE和△DCF中,{∠A=∠D AB=DC ∠1=∠2,∴△ABE≌△DCF,∴BE=CF.【解析】根据等式的性质得出AB=DC,再利用ASA证明△ABE≌△DCF.本题考查了全等三角形的判定与性质以及平行线的判定,利用全等三角形的判定定理ASA证出△ABE≌△DCF是解题的关键.23.【答案】证明:连接DE、CE,∵△ABC中,∠ACB=90°,E是AB中点,∴CE=12AB,同理可得,DE=12AB,∴DE=CE.∵△CDE中,F是CD中点,∴EF⊥CD.【解析】根据直角三角形斜边上的中线是斜边的一半可以求得DE=CE,再根据等腰三角形的性质可以得到EF⊥CD,从而可以证明结论成立.本题考查直角三角形斜边上的中线、等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.【答案】解:(1)如图(1)所示:(2)如图(2)所示:(3)如图(3)所示:(4)如图(4)所示:【解析】(1)利用三角形面积求法以及直角三角形的性质画即可;(2)利用三角形面积求法以及等腰三角形的性质画出即可.(3)利用三角形面积求法以及等腰直角三角形的性质画出即可;(4)利用轴对称图形的性质画出即可.此题主要考查了作图问题,关键是根据等腰三角形的性质、等腰直角三角形的性质来作图.25.【答案】解:(1)当x =1时,y =3x =3,∴点C 的坐标为(1,3).将A (-2,6)、C (1,3)代入y =kx +b ,得:{k +b =3−2k+b=6,解得:{b =4k=−1.(2)当y =0时,有-x +4=0,解得:x =4,∴点B 的坐标为(4,0).设点D 的坐标为(0,m )(m <0),∵S △COD =13S △BOC ,即-12m =13×12×4×3, 解得:m =-4,∴点D 的坐标为(0,-4).【解析】(1)利用一次函数图象上点的坐标特征可求出点C 的坐标,根据点A 、C 的坐标,利用待定系数法即可求出k 、b 的值;(2)利用一次函数图象上点的坐标特征可求出点B 的坐标,设点D 的坐标为(0,m )(m <0),根据三角形的面积公式结合S △COD =S △BOC ,即可得出关于m 的一元一次方程,解之即可得出m 的值,进而可得出点D 的坐标.本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出k 、b 的值;(2)利用三角形的面积公式结合结合S △COD =S △BOC ,找出关于m 的一元一次方程.26.【答案】解:(1)如图,连接BF ,∵四边形ABCD 是正方形∴∠A =∠D =∠BCD =90°,AD =AB =CD =5,∵折叠∴AE =A 'E =2,AB =A 'B =5,∴DE =3,A 'B =BC∵A 'B =BC ,BF =BF ,∴Rt △A 'BF ≌Rt △BCF (HL )∴CF =A 'F在Rt △DEF 中,EF 2=DE 2+DF 2,(2+CF )2=9+(5-CF )2,∴CF =157(2)设AE =x ,BG =y ,∴DE =5-x ,CG =BG -BC =y -5,由(1)可知:EF =x +CF ,DF =5-CF ,EF 2=DE 2+DF 2,∴(5-x )2+(5-CF )2=(x +CF )2,∴CF =25−5x x+5∴DF =5-CF =10x x+5,∵∠FCG =∠D =90°,∠CFG =∠DFE ,∴△CFG ∽△DFE∴CG DE =CF DF∴CG 5−x =25−5x x+510x x+5∴CG =x 2−10x+252x , ∴y -5=x 2−10x+252x ∴y =x 2−10x+252x +5=x 2+252x【解析】(1)根据正方形的性质和折叠的性质可得AE=A'E=2,AB=A'B=5,根据全等三角形的性质可得CF=A'F,根据勾股定理可求CF的长;(2)根据勾股定理和相似三角形的性质可得y与x的函数关系式.本题考查了翻折变换,正方形的性质,勾股定理,相似三角形的判定和性质,熟练运用相似三角形的性质是本题的关键.27.【答案】解:(1)∵△ABC中,∠ACB=90°,AB=10cm,BC=6cm,∴由勾股定理得AC=√102−62=8,如图,连接BP,当PA=PB时,PA=PB=t,PC=8-t,在Rt△PCB中,PC2+CB2=PB2,即(8-t)2+62=t2,解得:t=25,4∴当t=25时,PA=PB;4(2)①如图3,当BP=BC=6时,△BCP为等腰三角形,∴AC+CB+BP=8+6+6=20,∴t=20÷1=20(s);②如图4,若点P在AB上,CP=CB=6,作CD⊥AB于D,则根据面积法求得CD=4.8,在Rt△BCD中,由勾股定理得,BD=3.6,∴PB=2BD=7.2,∴CA+CB+BP=8+6+7.2=21.2,此时t=21.2÷1=21.2(s);③如图5,当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,则D为BC的中点,∴PD为△ABC的中位线,∴AP=BP=1AB=5,2∴AC+CB+BP=8+6+5=19,∴t=19÷1=19(s);综上所述,20s或21.2s或19s时,△BCP为等腰三角形.【解析】(1)设存在点P,使得PA=PB,此时PA=PB=t,PC=8-t,根据勾股定理列方程即可得到t的值;(2)若点P在AB上,根据P移动的路程易得t的值;当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,根据等腰三角形的性质得BD=CD,则可判断PD 为△ABC的中位线,则AP=AB=5,易得t的值;当BP=BC=6时,△BCP为等腰三角形,易得t的值.本题考查了等腰三角形的判定与性质、角平分线的性质、勾股定理、熟练掌握等腰三角形的判定与性质,进行分类讨论是解决问题的关键.解题时需要作辅助线构造直角三角形以及等腰三角形.28.【答案】(1)①证明:如图1中,∵CA=CB,BN=AM,∴CB-BN=CA-AM即CN=CM,∵∠ACN=∠BCM∴△BCM≌△ACN(SAS)∴∠MBC=∠NAC,∵EA=ED,∴∠EAD=∠EDA,∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD,∵∠ADB+∠EDA=180°-90°=90°,∴∠BDE=90°.(2)如图2中,当点E在AN的延长线上时,易证:∠CBM=∠ADB=∠CAN,∠ACB=∠CAD,∵EA=ED,∴∠EAD=∠EDA,∴∠CAN+∠CAD=∠BDE+∠ADB,∴∠BDE=∠ACB=α.如图3中,当点E在NA的延长线上时,易证:∠1+∠2=∠CAN+∠DAC,∵∠2=∠ADM=∠CBD=∠CAN,∴∠1=∠CAD=∠ACB=α,∴∠BDE=180°-α.综上所述,∠BDE=α或180°-α.故答案为α或180°-α.【解析】(1)由“SAS”可证△BCM≌△ACN,可得∠MBC=∠NAC,由等腰三角形的性质和余角的性质可得结论;(2)分两种情形讨论求解即可,①如图2中,当点E在AN的延长线上时,②如图3中,当点E在NA的延长线上时,本题考查全等三角形的判定和性质、等腰三角形性质等知识,解题的关键是学会用分类讨论的思想思考问题.。
无锡市宜兴市20182019学年八年级上期末数学试卷含答案解析
2018-2019学年江苏省无锡市宜兴市八年级(上)期末数学试卷一、选择题:(本大题共 8小题,每题3分,共24分,在每题所给出的四个选项中,只有一项为哪一项正确的,请把正确选项前的字母代号填在题后的括号内.)1.如图,以下图案中,是轴对称图形的是( )A.(1)(2)B.(1)(3)C.(1)(4)D.(2)(3)2.以下实数中,是无理数的为( )A.B.C.0 D.﹣33.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增添以下条件后还不可以判断△ABC≌△DEF的是()A.AC=DF B.AB=DE C.∠A=∠DD.∠B=∠E4.知足以下条件的△ABC不是直角三角形的是()A.a=1、b=2,c= C.a:b:c=3:4:5B.a=1、b=2,c=D.∠A:∠B:∠C=3:4:55.如图,直线l是一条河,P,Q是两个乡村.计划在l上的某处修筑一个水泵站M,向Q两地供水.现有以下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是()P,A.B.C.D.6.设正比率函数y=mx的图象经过点A.2B.﹣2 C.4D.﹣4A(m,4),且y的值随x值的增大而减小,则m=()7.如图,在平面直角坐标系中,点P坐标为(﹣4,3),以点B(﹣1,0)为圆心,以BP 的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣6和﹣5之间B.﹣5和﹣4之间C.﹣4和﹣3之间D.﹣3和﹣2之间8.在平面直角坐标系中,点A(1,1),B(3,3),动点为极点的三角形是等腰三角形,则点C的个数为()C在x轴上,若以A、B、C三点A.2B.3C.4D.5二、填空题:(本大题共11小题,每题2分,共22分)9.16的平方根是__________.10.点A(﹣3,4)对于y轴对称的坐标为__________.11.地球上七大洲的总面积约为149480000km 2,把这个数值精准到千万位,并用科学记数法表示为__________.12.函数中自变量x的取值范围是__________.13.如图,在等腰三角形ABC中,AB=AC,DE垂直均分AB,已知∠ADE=40°,则∠DBC=__________°.14.如图,锐角△ABC的高AD、BE订交于F,若BF=AC,BC=7,CD=2,则AF的长为__________.15.如图,已知△ABC中,AB=17,AC=10,BC边上的高AD=8.则△ABC的周长为__________.16.如图,直线 y =kx+b 与x 轴交于点(2,0),若y <0时,则x 的取值范围是__________.17.已知点P (a ﹣1,a+5)在第二象限,且到y 轴的距离为2,则点P 的坐标为__________.18.函数y=kx+b (k ≠0)的图象平行于直线y=3x+2,且交y 轴于点(0,﹣1),则其函数表达式是__________.19.已知点 A (1,5),B (3,﹣1),点M 在x 轴上,当 AM ﹣BM 最大时,点 M 的坐标 为__________.三、解答题:(本大题满分 54分,解答需写必需演算步骤) 20.计算:(1)计算: + ﹣2)求4x 2﹣9=0中x 的值.3)求(x ﹣1)3=8中x 的值.( 21.已知某正数的两个平方根分别是a+3和2a ﹣15,b 的立方根是﹣2.求﹣b ﹣a 的算术平方根.(( 22.如图,四边形 ABCD 的对角线 AC 与BD 订交于点O ,AB=AD ,CB=CD .求证:( 1)△ABC ≌△ADC ;( 2)AC 垂直均分BD .23.最近几年来,江苏省实行“村村通”工程和乡村医疗卫生改革,宜兴市计划在某镇的张村、李村之间建一座定点医疗站P,张、李两村座落在两订交公路内(以下图),医疗站一定知足以下条件:①使其到两公路的距离相等;②到张、李两村的距离也相等.请你利用尺规作图确立P点的地点.(不写作法,保存作图印迹)24.如图:图①、图②都是4×4的正方形网格,小正方形的边长均为1,每个小正方形的极点称为格点.在①、②两个网格中分别标明了5个格点,按以下要求绘图:在图①图②中以5个格点中的三个格点为极点,各画一个成轴对称的三角形;并计算它的面积分别等于__________与__________.25.如图,一次函数y=(m+1)x+的图象与x轴的负半轴订交于点A,与y轴订交于点B,且△OAB面积为.(1)求m的值及点A的坐标;(2)过点B作直线BP与x轴的正半轴订交于点P,且OP=3OA,求直线BP的函数表达式.(((((((((((26.如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;(2)若BC=6,AC=8,求CE的长.27.甲、乙两人沿同样的路线由A地到B地匀速行进,A,B两地间的行程为20千米,他们行进的行程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙行进的行程与时间的函数图象以下图.依据图象信息回答以下问题:1)甲的速度是__________千米/小时,乙比甲晚出发__________小时;(2)分别求出甲、乙两人行进的行程s与甲出发后的时间t之间的函数关系式;(3)求甲经过多长时间被乙追上,此时两人距离B地还有多远?28.如图,直线y=﹣2x+7与x轴、y轴分别订交于点C、B,与直线y= x订交于点A.(1)求A点坐标;(2)假如在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,则P点坐标是__________;(3)在直线y=﹣2x+7上能否存在点Q,使△OAQ的面积等于6?若存在,恳求出Q点的坐标,若不存在,请说明原由.2018-2019学年江苏省无锡市宜兴市八年级(上)期末数学试卷一、选择题:(本大题共8小题,每题3分,共24分,在每题所给出的四个选项中,只有一项为哪一项正确的,请把正确选项前的字母代号填在题后的括号内.)1.如图,以下图案中,是轴对称图形的是()A.(1)(2)B.(1)(3)C.(1)(4)D.(2)(3)【考点】轴对称图形.【剖析】依据轴对称图形的观点对各小题剖析判断即可得解.【解答】解:(1)是轴对称图形,2)不是轴对称图形,3)不是轴对称图形,4)是轴对称图形;综上所述,是轴对称图形的是(1)(4).应选C.【评论】本题考察了轴对称图形的观点.轴对称图形的重点是找寻对称轴,后可重合.图形两部分折叠2.以下实数中,是无理数的为()A.B.C.0D.﹣3【考点】无理数.【剖析】无理数就是无穷不循环小数.理解无理数的观点,必定要同时理解有理数的观点,有理数是整数与分数的统称.即有限小数和无穷循环小数是有理数,而无穷不循环小数是无理数.由此即可判断选择项.【解答】解:A、是无理数,选项正确;B、是分数,是有理数,选项错误;C、是整数,是有理数,选项错误;D、是整数,是有理数,选项错误.应选A.【评论】本题主要考察了无理数的定义,此中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001,等有这样规律的数.3.在△ABC中和△DEF △ABC≌△DEF的是(中,已知)BC=EF,∠C=∠F,增添以下条件后还不可以判断A.AC=DF B.AB=DE C.∠A=∠DD.∠B=∠E【考点】全等三角形的判断.【剖析】全等三角形的判断定理有SAS ,ASA ,AAS ,SSS ,依据定理进行判断即可.【解答】解:A 、依据SAS 即可推出△ABC ≌△DEF ,故本选项错误;B 、不可以推出△ABC ≌△DEF ,故本选项正确;C 、依据AAS 即可推出△ABC ≌△DEF ,故本选项错误;D 、依据ASA 即可推出△ABC ≌△DEF ,故本选项错误; 应选B .【评论】本题考察了全等三角形的判断的应用, 注意:全等三角形的判断定理有SAS ,ASA ,AAS ,SSS .4.知足以下条件的△ABC 不是直角三角形的是 ()A .a=1、b=2,c=B .a=1、b=2,c=C .a :b :c=3:4:5D .∠A :∠B :∠C=3:4:5 【考点】勾股定理的逆定理;三角形内角和定理.【剖析】依据勾股定理的逆定理对 A 、B 、C 进行逐个判断,再利用三角形内角和定理可得D 选项中最大角的度数,从而可进行判断.【解答】解:A 、∵12+( )2=22,∴能构成直角三角形,故本选项不切合要求;B 、∵12+2 2= ( )2,∴能构成直角三角形,故本选项不切合要求;222,∴能构成直角三角形,故本选项不切合要求;C 、∵3+4=5 D 、∵180°× =5°,∴不可以构成直角三角形,故本选项切合要求.应选:D .22 2【评论】本题考察的是勾股定理的逆定理,即假如三角形的三边长 ,a ,b ,c 知足a +b=c那么这个三角形就是直角三角形.5.如图,直线 l 是一条河,P ,Q 是两个乡村.计划在 l 上的某处修筑一个水泵站 M ,向 Q 两地供水.现有以下四种铺设方案(图中实线表示铺设的管道) ,则所需管道最短的是 ( )P ,A .B .C .D .【考点】轴对称-最短路线问题.【剖析】用对称的性质,经过等线段代换,将所求路线长转变为两定点之间的距离. 【解答】解:作点P 对于直线 l 的对称点P ′,连结QP ′交直线l 于M .依据两点之间,线段最短,可知选项B修筑的管道,则所需管道最短.应选D.【评论】本题考察了最短路径的数学识题.这种问题的解答依照是“两点之间,线段最短”.由于所给的条件的不一样,解决方法和策略上又有所差异.6.设正比率函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=() A.2B.﹣2C.4D.﹣4【考点】正比率函数的性质.【剖析】直接依据正比率函数的性质和待定系数法求解即可.【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,因此m=﹣2,应选B【评论】本题考察了正比率函数的性质:正比率函数y=kx(k≠0)的图象为直线,当k>0,图象经过第一、三象限,y值随x的增大而增大;当k<0,图象经过第二、四象限,y值随x的增大而减小.7.如图,在平面直角坐标系中,点P坐标为(﹣4,3),以点B(﹣1,0)为圆心,以BP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣6和﹣5之间B.﹣5和﹣4之间C.﹣4和﹣3之间D.﹣3和﹣2之间【考点】勾股定理;估量无理数的大小;坐标与图形性质.【剖析】先依据勾股定理求出BP的长,因为BA=BP,得出点A的横坐标,再估量即可得出结论.【解答】解:∵点P坐标为(﹣4,3),点B(﹣1,0),∴OB=1,∴BA=BP==3,OA=3+1,∴点A的横坐标为﹣3﹣1,∵﹣6<﹣3﹣1<﹣5,∴∴点A的横坐标介于﹣6和﹣5之间.应选:A.【评论】本题考察了勾股定理、估量无理数的大小、坐标与图形性质,依据题意利用勾股定理求出BP的长是解答本题的重点.8.在平面直角坐标系中,点A(1,1),B(3,3),动点C在x轴上,若以A、B、C三点为极点的三角形是等腰三角形,则点C的个数为()A.2B.3C.4D.5【考点】等腰三角形的判断;坐标与图形性质.【剖析】第一依据线段的中垂线上的点到线段两头点的距离相等,求出AB的中垂线与x轴的交点,即可求出点C1的坐标;而后再求出AB的长,以点A为圆心,以AB的长为半径画弧,与x轴的交点为点C2、C3;最后判断出以点B为圆心,以AB的长为半径画弧,与x轴没有交点,据此判断出点C的个数为多少即可.【解答】解:如图,∵AB所在的直线是y=x,∴设AB的中垂线所在的直线是y=﹣x+b,∵点A(1,1),B(3,3),∴AB的中点坐标是(2,2),把x=2,y=2代入y=﹣x+b,解得b=4,∴AB的中垂线所在的直线是y=﹣x+4,∴C1(4,0)以点A为圆心,以AB的长为半径画弧,与x轴的交点为点C2、C3;AB==2,∵2<3,∴以点B为圆心,以AB的长为半径画弧,与x轴没有交点.综上,可得若以A、B、C三点为极点的三角形是等腰三角形,则点C的个数为3.应选:B.【评论】本题主要考察了等腰三角形的性质和应用,考察了分类议论思想的应用,要娴熟掌握,解答本题的重点是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角均分线、底边上的中线、底边上的高互相重合.二、填空题:(本大题共11小题,每题2分,共22分)9.16的平方根是±4.【考点】平方根.【专题】计算题.【剖析】依据平方根的定义,求数a的平方根,也就是求一个数的平方根,由此即可解决问题.x,使得x2=a,则x就是a2【解答】解:∵(±4)=16, ∴16的平方根是±4. 故答案为:±4.【评论】本题考察了平方根的定义.注意一个正数有两个平方根,它们互为相反数; 0的平方根是0;负数没有平方根.10.点A (﹣3,4)对于y 轴对称的坐标为( 3,4). 【考点】对于x 轴、y 轴对称的点的坐标.【剖析】依据对于y 轴对称点的坐标特色: 横坐标互为相反数, 纵坐标不变可直接获得答案. 【解答】解:点A (﹣3,4)对于y 轴对称的坐标为( 3,4). 故答案为:(3,4);【评论】本题主要考察了对于 y 轴对称点的坐标特色,重点是掌握点的坐标的变化规律.11.地球上七大洲的总面积约为149480000km2,把这个数值精准到千万位,并用科学记数法表示为1.5×108.【考点】科学记数法与有效数字.【剖析】科学记数法的表示形式为a ×10n的形式,此中1≤|a|<10,n 为整数.确立n 的值时,要看把原数变为a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值>1时,n 是正数;当原数的绝对值<1 时,n 是负数.【解答】解:将149480000用科学记数法表示为:1.4948×108≈1.5×108.故答案为:1.5×108. a ×10n的形式,此中1≤|a|【评论】本题考察科学记数法的表示方法. 科学记数法的表示形式为 <10,n 为整数,表示时重点要正确确立a 的值以及n 的值.12.函数 中自变量 x 的取值范围是 x ≥2.【考点】函数自变量的取值范围.【剖析】依据二次根式的性质,被开方数大于等于 0,就能够求解.【解答】解:依题意,得 x ﹣2≥0,解得:x ≥2, 故答案为:x ≥2.【评论】本题主要考察函数自变量的取值范围, 考察的知识点为: 二次根式的被开方数是非负数.13.如图,在等腰三角形 ABC 中,AB=AC ,DE 垂直均分 AB ,已知∠ADE=40°,则∠DBC=15°.【考点】线段垂直均分线的性质;等腰三角形的性质.【剖析】依据线段垂直均分线求出AD=BD ,推出∠A=∠ABD=50°,依据三角形内角和定理和等腰三角形性质求出∠ABC ,即可得出答案.【解答】解:∵DE垂直均分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.【评论】本题考察了等腰三角形的性质,线段垂直均分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解本题的重点,难度适中.14.如图,锐角△ABC的高AD、BE订交于F,若BF=AC,BC=7,CD=2,则AF的长为3.【考点】全等三角形的判断与性质.【剖析】先证出∠DBF=∠DAC,由AAS证明△BDF≌△ADC,得出对应边相等AD=BD=BCCD=5,DF=CD=2,即可得出AF的长.【解答】解:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠DBF+∠C=90°,∠DAC+∠C=90°,∴∠DBF=∠DAC,在△BDF与△ADC中,∴△BDF≌△ADC(ASA),∴AD=BD=BC﹣CD=7﹣2=5,DF=CD=2,∴AF=AD﹣DF=5﹣2=3;故答案为:3.【评论】本题考察了全等三角形的判断和性质;证明三角形的全等得出对应边相等是解本题的重点.15.如图,已知△ABC中,AB=17,AC=10,BC边上的高AD=8.则△ABC的周长为48.【考点】勾股定理.【剖析】分别在两个直角三角形中求得线段BD和线段求得周长.【解答】解:在直角三角形ABD中,AB=17,AD=8,依据勾股定理,得BD=15;CD的长,而后求得BC的长,从而在直角三角形ACD中,AC=10,AD=8,依据勾股定理,得CD=6;∴BC=15+6=21,∴△ABC的周长为17+10+21=48,故答案为:48.【评论】本题考察了勾股定理及解直角三角形的知识,在解本题时应分两种状况进行议论,易错点在于漏解,同学们思虑问题必定要全面,有必定难度,本题因给出了图形,故只有一种状况.16.如图,直线y=kx+b与x轴交于点(2,0),若y<0时,则x的取值范围是x>2.【考点】一次函数与一元一次不等式.【剖析】依据函数的图象直接解答即可.【解答】解:由直线y=kx+b的图象可知,当x>2时函数的图象在x轴的下方.故答案为x>2.【评论】本题考察了一次函数与不等式,利用数形联合是解题的重点.17.已知点P(a﹣1,a+5)在第二象限,且到y轴的距离为2,则点P的坐标为(﹣2,4).【考点】点的坐标.【剖析】直接利用第二象限点的坐标性质联合到y轴的距离为2,得出a的值,从而得出点P的坐标.【解答】解:∵点P(a﹣1,a+5)在第二象限,且到y轴的距离为2,∴a﹣1=﹣2,解得:a=﹣1,∴a+5=4,则点P的坐标为:(﹣2,4).故答案为:(﹣2,4).【评论】本题主要考察了点的坐标,正确利用坐标性质得出a的值是解题重点.18.函数y=kx+b(k≠0)的图象平行于直线y=3x+2,且交y轴于点(0,﹣1),则其函数表达式是y=3x﹣1.【考点】两条直线订交或平行问题.【剖析】依据平行直线的分析式求出k值,再把点的坐标代入分析式求出b值,即可得解.【解答】解:∵y=kx+b的图象平行于直线y=3x+2,∴k=3,又∵与y轴的交点坐标为(0,﹣1),∴b=﹣1,∴函数的表达式是y=3x﹣1.故答案为:y=3x﹣1.【评论】本题考察了两直线平行的问题,依据平行直线的分析式的k值相等求出k的值是解题的重点,也是本题的难点.19.已知点A(1,5),B(3,﹣1),点M在x轴上,当AM﹣BM最大时,点 M的坐标为(,0).【考点】轴对称-最短路线问题;坐标与图形性质.【剖析】作点B对于x轴的对称点B′,连结AB′并延伸与x轴的交点,即为所求的M点.利用待定系数法求出直线AB′的分析式,而后求出其与x轴交点的坐标,即M点的坐标.【解答】解:如图,作点B对于x轴的对称点B′,连结AB′并延伸与x轴的交点,即为所求的M点.此时AM﹣BM=AM﹣B′M=AB′.不如在x轴上任取一个另一点M′,连结M′A、M′B、M′B′.则M′A﹣M′B=M′A﹣M′B′<AB′(三角形两边之差小于第三边).∴M′A﹣M′B<AM﹣BM,即此时AM﹣BM最大.∵B′是B(3,﹣1)对于x轴的对称点,∴B′(3,1).设直线AB′分析式为y=kx+b,把A(1,5)和B′(3,1)代入得:,解得,∴直线AB′分析式为y=﹣2x+7.令y=0,解得x=,∴M点坐标为(,0).故答案为:(,0).【评论】本题考察了轴对称﹣﹣最短路线问题、坐标与图形性质.解题时可能感觉无从下手,主要原由是平常习惯了线段之和最小的问题,忽然遇到线段之差最大的问题感觉一筹莫展.其实两类问题实质上是相通的,前者是经过对称转变为 “ ”两点之间线段最短 问题,尔后者(本题)是经过对称转变为“三角形两边之差小于第三边 ”问题.可见学习知识要活学活用,灵巧变通.(( 三、解答题:(本大题满分 54分,解答需写必需演算步骤)( 20.计算: ( (1)计算:+﹣( 2)求4x 2﹣9=0中x 的值.3(3)求(x ﹣1)=8中x 的值.【考点】实数的运算;平方根;立方根. 【专题】计算题;实数.【剖析】(1)原式利用平方根、立方根定义计算即可获得结果; (2)方程整理后,利用平方根定义开方即可求出解; (3)方程利用立方根定义开立方即可求出 x 的值. 【解答】解:(1)原式=3+3﹣2=4;(2)方程整理得:x 2=,开方得:x=±;3)开立方得:x ﹣1=2,解得:x=3.【评论】本题考察了实数的运算,娴熟掌握运算法例是解本题的重点.21.已知某正数的两个平方根分别是 a+3和2a ﹣15,b 的立方根是﹣ 方根.【考点】平方根;算术平方根;立方根.【剖析】依据两个平方根互为相反数进行解答即可. 【解答】解:∵某正数的两个平方根分别是 a+3和2a ﹣15,2.求﹣b ﹣a 的算术平可得:a+3+2a ﹣15=0, 解得:a=4,∵b 的立方根是﹣ 2, 可得:b=﹣8,把a=4,b=﹣8代入﹣b﹣a=8﹣4=4,因此﹣b﹣a的算术平方根是2.【评论】本题考察平方根问题,重点是依据两个平方根互为相反数得出a的值.22.如图,四边形ABCD的对角线AC与BD订交于点O,AB=AD,CB=CD.求证:1)△ABC≌△ADC;2)AC垂直均分BD.【考点】全等三角形的判断与性质;线段垂直均分线的性质;等腰三角形的性质.【专题】证明题.【剖析】(1)依据SSS定理推出即可;(2)依据全等三角形的性质得出∠BAC=∠DAC,依据等腰三角形的性质得出即可.【解答】证明:(1)∵在△ABC与△ADC中,∴△ABC≌△ADC(SSS);2)∵△ABC≌△ADC,∴∠BAC=∠DAC,又∵AB=AD,∴AC垂直均分BD.【评论】本题考察了全等三角形的性质和判断,等腰三角形的性质的应用,能求出△ABC≌△ADC是解本题的重点,注意:全等三角形的对应边相等,对应角相等.23.最近几年来,江苏省实行“村村通”工程和乡村医疗卫生改革,宜兴市计划在某镇的张村、李村之间建一座定点医疗站P,张、李两村座落在两订交公路内(以下图),医疗站一定知足以下条件:①使其到两公路的距离相等;②到张、李两村的距离也相等.请你利用尺规作图确立P点的地点.(不写作法,保存作图印迹)【考点】作图—应用与设计作图.【剖析】医疗站到两村的距离相等,所点P在张村与李村所构成线段的垂直均分线上,医疗站到两公路的距离相等,则医疗站在公路夹角的均分线上.【解答】解:以下图:点P即为所求作的点.【评论】本题主要考察的是作图﹣﹣应用与设计作图,掌握角均分线的性质和线段垂直均分线的性质是解题的重点.24.如图:图①、图②都是4×4的正方形网格,小正方形的边长均为1,每个小正方形的极点称为格点.在①、②两个网格中分别标明了5个格点,按以下要求绘图:在图①图②中以5个格点中的三个格点为极点,各画一个成轴对称的三角形;并计算它的面积分别等于4与.【考点】利用轴对称设计图案.【剖析】利用轴对称图形的性质得出切合题意的三角形,再利用三角形面积求法得出答案.【解答】解:以下图:图①的面积是:3×3﹣×1×3﹣×1×3﹣×2×2=4,图②的面积是:2×3﹣×1×2﹣×1×3﹣×1×2=.故答案为:4,.【评论】本题主要考察了利用轴对称设计图案以及三角形面积求法,正确掌握轴对称图形的性质是解题重点.25.如图,一次函数y=(m+1)x+的图象与x轴的负半轴订交于点A,与y轴订交于点B,且△OAB面积为.(1)求m的值及点A的坐标;(2)过点B作直线BP与x轴的正半轴订交于点P,且OP=3OA,求直线BP的函数表达式.【考点】两条直线订交或平行问题.【专题】计算题.【剖析】(1)先利于y=(m+1)x+可求出B(0,),因此OB=,则利用三角形面积公式计算出OA=1,则A(﹣1,0);而后把点A(﹣1,0)代入y=(m+1)x+可求出m的值;(2)利用OP=3OA=3可获得点P的坐标为(3,0),而后利用待定系数法求直线BP的函数分析式.【解答】解:(1)当x=0时,y=(m+1)x+=,则B(0,),因此OB=,∵S△OAB=,∴×OA×OB=,解得OA=1,∴A(﹣1,0);把点A(﹣1,0)代入y=(m+1)x+得﹣m﹣1+=0,∴m=;2)∵OP=3OA,∴OP=3,∴点P的坐标为(3,0),设直线BP的函数表达式为y=kx+b,把P(3,0)、B(0,)代入得,解得,∴直线BP的函数表达式为y=﹣x+.【评论】本题考察了两直线订交或平行问题: 两条直线的交点坐标, 就是由这两条直线相对 应的一次函数表达式所构成的二元一次方程组的解; 若两条直线是平行的关系, 那么他们的 自变量系数同样,即 k 值同样.也考察了待定系数法求一次函数分析式.26.如图,已知 R t △ABC 中,∠C=90°.沿DE 折叠,使点 A 与点B 重合,折痕为 DE . 1)若DE=CE ,求∠A 的度数;2)若BC=6,AC=8,求CE 的长.【考点】翻折变换(折叠问题);勾股定理. 【剖析】(1)利用翻折变换的性质得出 DE 垂直均分 AB ,从而得出∠1=∠2=∠A 即可得出答案;(2)利用勾股定理得出CE 的长,即可得出 CD 的长.【解答】解:(1)∵折叠使点 A 与点B 重合,折痕为 DE .∴DE 垂直均分 AB . AE=BE , ∴∠A=∠1,又∵DE ⊥AB ,∠C=90°,DE=CE , ∴∠1=∠2, ∴∠1=∠2=∠A .由∠A+∠1+∠2=90°,解得:∠A=30°;2)设CE=x ,则AE=BE=8﹣x . 在Rt △BCE 中,由勾股定理得:BC 2+CE 2=BE 2.2 22即6+x=(8 ﹣x ),解得:x=,即CE= .【评论】本题主要考察了翻折变换的性质以及勾股定理, 依据已知娴熟应用勾股定理得出是解题重点.27.甲、乙两人沿同样的路线由A地到B地匀速行进,A,B两地间的行程为20千米,他们行进的行程为s(单位:千米),甲出发后的时间为与时间的函数图象以下图.依据图象信息回答以下问题:t(单位:小时),甲、乙行进的行程(1)甲的速度是5千米/小时,乙比甲晚出发1小时;(2)分别求出甲、乙两人行进的行程s与甲出发后的时间t之间的函数关系式;(3)求甲经过多长时间被乙追上,此时两人距离B地还有多远?【考点】一次函数的应用.【剖析】(1)依据速度,行程,时间三者之间的关系求得结果;2)设乙的分析式为s=kt+b(k≠0),而后利用待定系数法求解即可;3)联立两函数分析式,解方程组即可.【解答】解:(1)甲的速度是:20÷4=5,乙比甲晚出发1小时;故答案为:5,1;2)设甲的分析式为:s=mt,则20=4m,∴m=5,∴甲的分析式为:s=5t,设乙的分析式为s=kt+b(k≠0),则,解得,∴乙的分析式为s=20t﹣20;(3)解得,km.∴甲经过h被乙追上,此时两人距离B地还有两直线交【评论】本题考察了一次函数的应用,主要利用了待定系数法求一次函数分析式,点的求法,需娴熟掌握并灵巧运用是解题的重点.28.如图,直线y=﹣2x+7与x轴、y轴分别订交于点C、B,与直线y= x订交于点A.(1)求A点坐标;(2)假如在y 轴上存在一点 P ,使△OAP 是以OA 为底边的等腰三角形, 则P 点坐标是(0,);(3)在直线y=﹣2x+7上能否存在点Q ,使△OAQ 的面积等于6?若存在,恳求出Q 点的坐标,若不存在,请说明原由.【考点】一次函数综合题. 【专题】压轴题;数形联合.【剖析】(1)联立方程,解方程即可求得;2)设P 点坐标是(0,y ),依据勾股定理列出方程,解方程即可求得;3)分两种状况:①当Q 点在线段AB 上:作QD ⊥y 轴于点D ,则QD=x ,依据S △OBQ =S △OAB﹣S △OAQ 列出对于x 的方程解方程求得即可;②当Q 点在AC 的延伸线上时,作QD ⊥x 轴于点D ,则QD=﹣y ,依据S △OCQ =S △OAQ ﹣S △OAC 列出对于y 的方程解方程求得即可.【解答】解:(1)解方程组: 得:∴A 点坐标是(2,3);(2)设P 点坐标是(0,y ),∵△OAP 是以OA 为底边的等腰三角形, ∴OP=PA ,22+(3﹣y )2=y 2, 解得y=,∴P 点坐标是(0, ),故答案为(0, );(3)存在;由直线y=﹣2x+7可知B (0,7),C (,0),∵S△AOC =××3=<6,S △AOB =×7×2=7>6,∴Q 点有两个地点: Q 在线段AB 上和AC 的延伸线上,设点 Q 的坐标是(x ,y ),当Q 点在线段AB 上:作QD ⊥y 轴于点D ,如图①,则QD=x ,∴S △OBQ =S △OAB ﹣S △OAQ =7﹣6=1,∴OB?QD=1,即×7x=1,∴x= ,精选文档21把x=代入y=﹣2x+7,得y=,∴Q 的坐标是(, ),当Q 点在AC 的延伸线上时,作 QD ⊥x 轴于点D ,如图②则QD=﹣y ,∴S △OCQ =S △OAQ ﹣S △OAC =6﹣ =,OC?QD=,即××(﹣y )=,y=﹣,把y=﹣代入y=﹣2x+7,解得x=,∴Q 的坐标是( ,﹣),综上所述:点 Q 是坐标是( , )或( ,﹣).【评论】本题是一次函数的综合题,考察了交点的求法,勾股定理的应用,三角形面积的求法等,分类议论思想的运用是解题的重点.。
2019江苏省无锡市惠山区2018-2019学年八年级上学期期末考试数学试卷Word版含答案
2018-2019年无锡初二期末数学 学生版一、选择题1、16的值是( )A .4B .2C .4±D .2±2、若52-x 没有平方根,则x 的取值范围为( )A .25>x B .25≥x C .25≠x D .25<x 3、把29500精确到1000的近似数是( )A .31095.2⨯B .41095.2⨯C .4109.2⨯D .4100.3⨯4、下列图案中的轴对称图形是( )A .B .C .D .5、若等腰三角形中,有两边的长分别是5和11,则这个三角形的周长为( )A .21B .27C .16或27D .21或27 6、一下各组数为边长的三角形,其中构成直角三角形的一组是( )A .4、5、6B .3、5、6C .532、、D .532、、7、在平面直角坐标系中,点(-3,4)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限8、下列函数中,y 是x 的正比例函数的是( )A .x y 21-=B .22--=x yC .)2(2-=x yD .xy 2= 9、给出下列4个命题:①两边及其中一边上的中线对应相等的两个三角形全等;②两边及其中一边上的高对应相等的两个三角形全等;③两边及一角对应相等的两个三角形全等;④有两角及其中一角的角平分线对应相等的两个三角形全等。
其中正确的的个数有( )A .1个B .2个C .3个D .4个10、如图,在四边形ABCD 中,对角线BD AC ⊥,垂足为点O ,且 45=∠OAB ,82==OA OC ,ODA OCB ∠=∠21,则四边形ABCD 的面积为( ) A .32 B .36 C .42 D .4811.27的立方根是 .12.若某个证书的两个平方根是a-3与a+5,则a= .13.如果等腰三角形的一个外角是80°,那么它的底角的度数为 .14.如果正比例函数y=3x 的图像沿y 轴方向向下平移2个单位,则所得图像所对应的函数表达式是 .15.如图,三角形ABC 中,D 是BC 边上的一点,若AC=AD=DB ,且AC=AD=DB ,且∠BAC=105°,则∠ADC= .16.如图,已知一次函数b x y +=1与一次函数n mx y -=2的图像相交于点P (-2,1),则关于不等式x+b ≥mx-n 的解集为 .17、如图,在平面直角坐标系中,以A (2,0),B (0,t )为顶点作等腰直角△ABC (其中∠ABC=90°,且点C 落在第一象限内),则点C 关于y 轴的对称点C ’的坐标为 .(用t 的代数式表示)18、在平面直角坐标系中,坐标原点O 到一次函数y=kx-2k+1图像的距离的最大值为 .三、计算题19(1)计算0132009)21(8+--- (2)求()04912=-+x 中x 的值20、如图,点B 、F 、C 、E 在同一直线上,且BF=CE ,∠B=∠E ,AC ,DF 相交于点O ,且OF=OC , 求证:(1)△ABC ≌△DEF (2)OA=OD21、如图,已知△ABC(AC<AB<BC),请用无刻度的直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹);(1)在AB边上寻找一点M,使得点M到AC、BC的距离相等;(2)在BC边上寻找一点N,使得NA+NB=BC22、如图,点B、C、D在一直线上,△ABC和△ADE都是等边三角形(1)请找出图中的全等三角形,并说明理由;(2)求证:EF∥AC23、如图,在平面直角坐标系中,△ABC的顶点分别为A(-8,0)、B(6,0)、C(0,6),DOC中点,连接BD并延长交AC于点E,求四边形AODE的面积。
2018-2019学年江苏省扬州市江都区八年级(上)期末数学试卷(解析版)
2018-2019学年江苏省扬州市江都区八年级(上)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分.每小题只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上)1.(3分)传统佳节“春节”临近,剪纸民俗魅力四射,对称现象无处不在.观察下面的四幅剪纸,其中不是轴对称图形的是()A.B.C.D.2.(3分)下列实数中是无理数的是()A.B.πC.D.3.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC4.(3分)点A(3,5)关于x轴的对称点的坐标为()A.(3,﹣5)B.(﹣3,﹣5)C.(﹣3,5)D.(﹣5,3)5.(3分)已知m=+,则以下对m的估算正确的是()A.3<m<4B.4<m<5C.5<m<6D.6<m<76.(3分)若实数m、n满足|m﹣3|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12B.15C.12或15D.167.(3分)已知一次函数y=kx+b,若k+b=0,则该函数的图象可能()A.B.C.D.8.(3分)如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个二、填空题(本大题共10小题,每小题3分,共30分.请将答案填在答题卡相应位置上)9.(3分)=.10.(3分)若=12.6389823,则≈.(精确到0.01).11.(3分)小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成.12.(3分)将函数y=5x的图象沿y轴向下平移3个单位长度,所得直线的函数表达式为.13.(3分)若,则a b=.14.(3分)直线l1:y=a1x﹣b1与直线l2:y=a2x﹣b2相交于点P(﹣2,7),则方程组的解为.15.(3分)规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的底角为.16.(3分)如图,正方形ABCD中,AD=12,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是.17.(3分)如图,函数y=﹣4x和y=kx+b的图象相交于点A(m,﹣8),则关于x的不等式(k+4)x+b>0的解集为.18.(3分)如图,在△ABC中,AB=AC=4,BC=2,点P、E、F分别为边BC、AB、AC 上的任意点,则PE+PF的最小值是.三、解答题(本大题共10小题,共96分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(8分)(1)已知:2(x﹣3)2=50,求x;(2)计算:20.(8分)已知:y﹣2与x成正比例,且x=2时,y=8.(1)求y与x之间的函数关系式;(2)当y<3时,求x的取值范围.21.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.22.(8分)如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:△ABC 关于y 轴对称的图形△A 1B 1C 1;(2)将点A 先向上平移3个单位,再向右平移8个单位得到点A 2的坐标为 ; (3)△ABC 的面积为 ;(4)若Q 为x 轴上一点,连接AQ 、BQ ,则△ABQ 周长的最小值为 .23.(10分)如图,在△ABC 中,AB =AC ,DE 是边AB 的垂直平分线,交AB 于E 、交AC 于D ,连接BD .(1)若∠A =40°,求∠DBC 的度数;(2)若△BCD 的周长为16cm ,△ABC 的周长为26cm ,求BC 的长.24.(10分)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图象交于点C ,点C 的横坐标为1. (1)求k 、b 的值;(2)若点D 在y 轴上,且满足S △COD =S △BOC ,求点D 的坐标.25.(10分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.26.(10分)如图,在平面直角坐标系中,直线分别与x轴,y轴交于A,B两点.(1)求线段AB的长度;(2)若点C在第二象限,且△ABC为等腰直角三角形,求点C的坐标;27.(12分)对于三个数a,b,c,用max{a,b,c}表示这三个数中最大数,例如:max{﹣2,1,0}=1,max解决问题:(1)填空:max{1,2,3}=,如果max{3,4,2x﹣6}=2x﹣6,则x的取值范围为;(2)如果max{2,x+2,﹣3x﹣7}=5,求x的值;(3)如图,在同一坐标系中画出了三个一次函数的图象:y=﹣x﹣3,y=x﹣1和y=3x ﹣3请观察这三个函数的图象,①在图中画出max{﹣x﹣3,x﹣1,3x﹣3}对应的图象(加粗);②max{﹣x﹣3,x﹣1,3x﹣3}的最小值为.28.(12分)基本图形:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.探索:(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;(2)连接DE,如图②,试探索线段DE,BD,CD之间满足的等量关系,并证明结论;联想:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=3,CD=1,则AD的长为.2018-2019学年江苏省扬州市江都区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.每小题只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上)1.(3分)传统佳节“春节”临近,剪纸民俗魅力四射,对称现象无处不在.观察下面的四幅剪纸,其中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,不符合题意.故选:C.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.2.(3分)下列实数中是无理数的是()A.B.πC.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是分数,属于有理数;B、π是无理数;C、=3,是整数,属于有理数;D、﹣是分数,属于有理数;故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.4.(3分)点A(3,5)关于x轴的对称点的坐标为()A.(3,﹣5)B.(﹣3,﹣5)C.(﹣3,5)D.(﹣5,3)【分析】直接利用关于x轴对称点的性质得出答案.【解答】解:点A(3,5)关于x轴的对称点的坐标为:(3,﹣5).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的符号是解题关键.5.(3分)已知m=+,则以下对m的估算正确的是()A.3<m<4B.4<m<5C.5<m<6D.6<m<7【分析】直接化简二次根式,得出的取值范围,进而得出答案.【解答】解:∵m=+=2+,2<<3,∴4<2+<5∴4<m<5,故选:B.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.6.(3分)若实数m、n满足|m﹣3|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12B.15C.12或15D.16【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【解答】解|m﹣3|+=0,∴m﹣3=0,n﹣6=0,解得m=3,n=6,当m=3作腰时,三边为3,3,6,不符合三边关系定理;当n=6作腰时,三边为3,6,6,符合三边关系定理,周长为:3+6+6=15.故选:B.【点评】本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求m、n的值,再根据m或n作为腰,分类求解.7.(3分)已知一次函数y=kx+b,若k+b=0,则该函数的图象可能()A.B.C.D.【分析】由k+b=0可得出一次函数y=kx+b的图象过点(1,0),观察四个选项即可得出结论.【解答】解:∵在一次函数y=kx+b中k+b=0,∴一次函数y=kx+b的图象过点(1,0).故选:A.【点评】本题考查了一次函数的图象,由k+b=0找出一次函数y=kx+b的图象过点(1,0)是解题的关键.8.(3分)如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.二、填空题(本大题共10小题,每小题3分,共30分.请将答案填在答题卡相应位置上)9.(3分)=5.【分析】根据开方运算,可得一个正数的算术平方根.【解答】解:=5,故答案为:5.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根.10.(3分)若=12.6389823,则≈12.64.(精确到0.01).【分析】根据四舍五入法即可求解.【解答】解:∵=12.6389823,∴≈12.64.故答案为:12.64.【点评】考查了立方根,近似数,关键是熟练掌握四舍五入法求近似数.11.(3分)小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成(3,4).【分析】直接利用两只眼睛关于嘴的横坐标所在直线对称,即可得出另一只眼的坐标.【解答】解:∵用(1,4)表示一只眼,用(2,2)表示嘴,∴另一只眼的位置可以表示成:(3,4).故答案为:(3,4).【点评】此题主要考查了坐标确定位置,利用点的对称性得出对应点坐标是解题关键.12.(3分)将函数y=5x的图象沿y轴向下平移3个单位长度,所得直线的函数表达式为y=5x﹣3.【分析】根据函数图象上加下减,可得答案.【解答】解:将函数y=5x的图象沿y轴向下平移3个单位长度,所得直线的函数表达式为:y=5x﹣3,故答案为:y=5x﹣3.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律是解题关键.13.(3分)若,则a b=﹣8.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,a+2=0,b﹣3=0,解得a=﹣2,b=3,所以,a b=(﹣2)3=﹣8.故答案为:﹣8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.(3分)直线l1:y=a1x﹣b1与直线l2:y=a2x﹣b2相交于点P(﹣2,7),则方程组的解为.【分析】方程组的解就是方程组中两个一次函数的交点,依此求解即可.【解答】解:∵直线l1:y=a1x﹣b1与直线l2:y=a2x﹣b2相交于点P(﹣2,7),∴方程组的解为.故答案为.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.15.(3分)规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的底角为80°.【分析】先根据等腰三角形的性质得出∠B=∠C,再根据三角形内角和定理得出9∠A =180°,即可求解.【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵该等腰三角形的顶角与一个底角度数的比值为1:4,∴∠A:∠B=1:4,∵∠A+∠B+∠C=180°,∴∠A+4∠A+4∠A=180°,即9∠A=180°,∴∠A=20°,∠B=80°,故答案为:80°.【点评】本题考查了三角形内角和定理和等腰三角形的性质,能根据等腰三角形性质、三角形内角和定理得出9∠A=180°是解此题的关键.16.(3分)如图,正方形ABCD中,AD=12,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是4.【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,得出EF=DE,设DE=FE=x,则EC=12﹣x.在Rt△ECG中,根据勾股定理得出方程,解方程即可求出DE的长.【解答】解:连接AE,如图所示:∵四边形ABCD是正方形,∴AB=BC=CD=AD=12,∠B=∠C=∠D=90°,由折叠的性质得:AF=AB=12,∠AFG=∠B=90°,BG=FG,∴∠AFE=90°,在Rt△AFE和Rt△ADE中,,∴Rt△AFE≌Rt△ADE(HL),∴EF=DE,设DE=FE=x,则EC=12﹣x.∵G为BC中点,BC=12,∴BG=CG=6,∴FG=6,在Rt△ECG中,根据勾股定理,得:(12﹣x)2+62=(x+6)2,解得x=4,∴DE=4,故答案为4.【点评】本题考查了翻折变换的性质、正方形的性质、全等三角形的判定与性质以及勾股定理;熟练掌握翻折变换的性质和正方形的性质,根据勾股定理得出方程是解题关键.17.(3分)如图,函数y=﹣4x和y=kx+b的图象相交于点A(m,﹣8),则关于x的不等式(k+4)x+b>0的解集为x>2.【分析】直接利用函数图象上点的坐标特征得出m的值,再利用函数图象得出答案.【解答】解:∵函数y=﹣4x和y=kx+b的图象相交于点A(m,﹣8),∴﹣8=﹣4m,解得:m=2,故A点坐标为:(2,﹣8),∵kx+b>﹣4x时,∴(k+4)x+b>0,则关于x的不等式(k+4)x+b>0的解集为:x>2.故答案为:x>2.【点评】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.18.(3分)如图,在△ABC中,AB=AC=4,BC=2,点P、E、F分别为边BC、AB、AC上的任意点,则PE+PF的最小值是.【分析】如图作出F关于AB的对称点M,再过M作ME⊥AD,交AB于点P,此时PE+PF最小,此时PE+PF=ME,根据等腰三角形的性质得到BH=CB=1,由勾股定理可得到AH==,连接CM,得到∠FCB=∠MCB,推出CM∥AB,过C作CD ⊥AB于D,根据平行四边形的性质得到CD=EM,根据三角形的面积公式列方程即可得到结论.【解答】解:如图作出F关于AB的对称点M,再过M作ME⊥AD,交AB于点P,此时PE+PF最小,此时PE+PF=ME,过A作AH⊥BC于H,∵AC=AB,∴BH=CB=1,由勾股定理可得,AH==,连接CM,则∠FCB=∠MCB,∵∠ABC=∠ACB,∴∠ABC=∠MCB,∴CM∥AB,过C作CD⊥AB于D,∴ME∥CD,∴四边形CDEM是平行四边形,∴CD=EM,∵S=AH•BC=AB•CD,△ABC∴CD==,∴EM=,故答案为:.【点评】本题考查了轴对称﹣最短路线问题,平行四边形的判定和性质,解直角三角形,等腰三角形的性质,正确的作出辅助线是解题的关键.三、解答题(本大题共10小题,共96分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(8分)(1)已知:2(x﹣3)2=50,求x;(2)计算:【分析】(1)直接利用平方根的定义计算得出答案;(2)直接利用立方根以及绝对值的性质分别化简得出答案.【解答】解:(1)(x﹣3)2=25,则x﹣3=±5,解得:x=8或x=﹣2;(2)原式=2﹣3﹣(﹣1)=﹣1﹣+1=﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8分)已知:y﹣2与x成正比例,且x=2时,y=8.(1)求y与x之间的函数关系式;(2)当y<3时,求x的取值范围.【分析】(1)设y﹣2=kx,利用待定系数法确定函数关系式即可;(2)把y<3代入解析式,得出不等式的解集即可.【解答】解;(1)∵y﹣2与x成正比例∴设y﹣2=kx∵x=2时,y=8∴8﹣2=2k∴k=3∴y=3x+2(2)∵y<3∴3x+2<3即.【点评】此题考查待定系数法确定函数关系式,关键是利用待定系数法确定函数关系式解答.21.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.22.(8分)如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:△ABC关于y轴对称的图形△A1B1C1;(2)将点A先向上平移3个单位,再向右平移8个单位得到点A2的坐标为(3,2);(3)△ABC的面积为;(4)若Q为x轴上一点,连接AQ、BQ,则△ABQ周长的最小值为.【分析】(1)根据轴对称的性质,即可得到△ABC关于y轴对称的图形△A1B1C1;(2)依据平移的方向和距离,即可得到点A2的坐标;(3)根据割补法即可得到△ABC的面积;(4)作点A关于x轴的对称点A',连接A'B交x轴于Q,则AQ+BQ的最小值为A'B的长,依据AB和A'B的长,即可得到△ABQ周长的最小值.【解答】解:(1)如图,△A1B1C1即为所求;(2)将点A先向上平移3个单位,再向右平移8个单位得到点A2的坐标为(3,2);故答案为:(3,2);(3)△ABC 的面积为:4×7﹣×2×3﹣×1×7﹣×4×5=;故答案为:;(4)由图可得,AB ==, 作点A 关于x 轴的对称点A ',连接A 'B 交x 轴于Q ,则AQ +BQ 的最小值为A 'B 的长,又∵A 'B ==5,∴△ABQ 周长的最小值为.故答案为:.【点评】本题主要考查了利用轴对称变换以及平移变换作图以及勾股定理的运用,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.23.(10分)如图,在△ABC 中,AB =AC ,DE 是边AB 的垂直平分线,交AB 于E 、交AC 于D ,连接BD .(1)若∠A =40°,求∠DBC 的度数;(2)若△BCD 的周长为16cm ,△ABC 的周长为26cm ,求BC 的长.【分析】(1)首先计算出∠ABC 的度数,再根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AD =BD ,进而可得∠ABD =∠A =40°,然后可得答案;(2)根据线段垂直平分线的性质可得AD =DB ,AE =BE ,然后再计算出AC +BC 的长,再利用△ABC 的周长为26cm 可得AB 长,进而可得答案.【解答】解:(1)∵AB =AC ,∴∠ABC =∠C ,∠A =40°,∴∠ABC ==70°,∵DE 是边AB 的垂直平分线,∴DA =DB ,∴∠DBA =∠A =40°,∴∠DBC =∠ABC ﹣∠DBA =70°﹣40°=30°;(2)∵△BCD 的周长为16cm ,∴BC +CD +BD =16,∴BC +CD +AD =16,∴BC +CA =16,∵△ABC 的周长为26cm ,∴AB =26﹣BC ﹣CA =26﹣16=10,∴AC =AB =10,∴BC =26﹣AB ﹣AC =26﹣10﹣10=6cm .【点评】此题主要考查了线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.24.(10分)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图象交于点C ,点C 的横坐标为1. (1)求k 、b 的值;(2)若点D 在y 轴上,且满足S △COD =S △BOC ,求点D 的坐标.【分析】(1)利用一次函数图象上点的坐标特征可求出点C 的坐标,根据点A 、C 的坐标,利用待定系数法即可求出k 、b 的值;(2)利用一次函数图象上点的坐标特征可求出点B 的坐标,设点D 的坐标为(0,m ),根据三角形的面积公式结合S △COD =S △BOC ,即可得出关于m 的一元一次方程,解之即可得出m 的值,进而可得出点D 的坐标.【解答】解:(1)当x =1时,y =3x =3,∴点C 的坐标为(1,3).将A (﹣2,6)、C (1,3)代入y =kx +b ,得:,解得:.(2)当y =0时,有﹣x +4=0,解得:x =4,∴点B 的坐标为(4,0).设点D 的坐标为(0,m ),∵S △COD =S △BOC ,即|m |=×4×3,解得:m =±12,∴点D 的坐标为D (0,12)或D (0,﹣12).【点评】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出k 、b 的值;(2)利用三角形的面积公式结合结合S △COD =S △BOC ,找出关于m 的一元一次方程.25.(10分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.【分析】(1)由图象可知:汽车行驶400千米,剩余油量30升,行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升),故加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70,求出解析式,当y=5 时,可得x=650.【解答】解:(1)由图象可知:汽车行驶400千米,剩余油量30升,∵行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升)∴加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),把(0,70),(400,30)坐标代入可得:k=﹣0.1,b=70∴y=﹣0.1x+70,当y=5 时,x=650即已行驶的路程的为650千米.【点评】该题是根据题意和函数图象来解决问题,考查学生的审题识图能力和待定系数法求解析式以及根根解析式求值.26.(10分)如图,在平面直角坐标系中,直线分别与x轴,y轴交于A,B两点.(1)求线段AB的长度;(2)若点C在第二象限,且△ABC为等腰直角三角形,求点C的坐标;【分析】(1)直线分别与x轴,y轴交于A,B两点,可以求出A,B两点的坐标,通过勾股定理,可以求出AB长度;(2)点C在第二象限,△ABC为等腰直角三角形,可分是三种情况进行讨论.【解答】解:(1)∵直线分别与x轴,y轴交于A,B两点,∴A(﹣4,0),B(0,3),OA=4,OB=4,由勾股定理得:AB==5(2)∵△ABC为等腰直角三角形,∴分三种情况进行讨论.①当AB=AC=5时,此时BC=5,此时C(﹣7,4);②当AB=BC=5时,此时AC=7,此时C(﹣3,7);③当AC=BC时,此时AB=5时,AC=BC=,此时C().C的坐标(﹣3,7);C(﹣7,4);C().【点评】本题考查了一次函数图象与x轴,y轴坐标计算.另外,考查了一次函数图象与三角形的结合.27.(12分)对于三个数a,b,c,用max{a,b,c}表示这三个数中最大数,例如:max{﹣2,1,0}=1,max解决问题:(1)填空:max{1,2,3}=3,如果max{3,4,2x﹣6}=2x﹣6,则x的取值范围为x≥5;(2)如果max{2,x+2,﹣3x﹣7}=5,求x的值;(3)如图,在同一坐标系中画出了三个一次函数的图象:y=﹣x﹣3,y=x﹣1和y=3x ﹣3请观察这三个函数的图象,①在图中画出max{﹣x﹣3,x﹣1,3x﹣3}对应的图象(加粗);②max{﹣x﹣3,x﹣1,3x﹣3}的最小值为﹣2.【分析】max{a,b,c}表示这三个数中最大数,只要找出a,b,c中的最大数即可解答.【解答】解:(1)max{1,2,3}中3为最大数,故max{1,2,3}=3∵max{3,4,2x﹣6}=2x﹣6∴2x﹣6≥4,解得x≥5故答案为:3;x≥5(2)∵max{2,x+2,﹣3x﹣7}=5∴①x+2=5,解得x=3,验证得﹣3×3﹣7=﹣16<5,成立②﹣3x﹣7=5,解得x=﹣4,验证得﹣4+2=﹣2<2<5,故成立故max{2,x+2,﹣3x﹣7}=5时,x的值为﹣4或3(3)①图象如图所示②由图象可以知,max{﹣x﹣3,x﹣1,3x﹣3}的最小值为直线y=﹣x﹣3与y=x﹣1的交点,解得y=﹣2,即最小值为﹣2故答案为﹣2【点评】此题考查的是代数式和一次函数的综合题.要注意(2)中在分情况讨论才可符合题意.28.(12分)基本图形:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.探索:(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;(2)连接DE,如图②,试探索线段DE,BD,CD之间满足的等量关系,并证明结论;联想:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=3,CD=1,则AD的长为2.【分析】(1)结论:BC=DC+EC.证明△BAD≌△CAE(SAS)即可解决问题.(2)结论:BD2+CD2=DE2.由△BAD≌△CAE,推出BD=CE,∠ACE=∠B,可得∠DCE=90°,利用勾股定理即可解决问题.(3)法一:构造如图所示图形,△ADE是等腰直角三角形,易得△ABE≌△ACD,BE=CD,∠BEA=∠ADC=45°,再得△BED是直角三角形,得,所以AD =2.法二:作AE⊥AD,使AE=AD,连接CE,DE.由△BAD≌△CAE(SAS),推出BD=CE=3,由∠ADC=45°,∠EDA=45°,可得∠EDC=90°,再利用勾股定理即可解决问题.【解答】解:(1)结论:BC=DC+EC.理由:如图①中,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∴BC=BD+CD=EC+CD,即:BC=DC+EC;(2)结论:BD2+CD2=DE2.理由:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2.(3)法一:构造如图所示图形,△ADE是等腰直角三角形,易得△ABE≌△ACD,BE=CD,∠BEA=∠ADC=45°,再得△BED是直角三角形,得,所以AD =2.法二:作AE⊥AD,使AE=AD,连接CE,DE.∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=3,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==,∵∠DAE=90°,∴AD2+AE2=DE2∴AD=2.故答案为2.【点评】本题属于几何变换综合题,考查了等腰直角三角形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2018-2019学年度八年级上数学期末试卷(解析版)
2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2018-2019学年江苏省无锡市八年级(上)期末数学试卷解析版
2018-2019学年江苏省无锡市八年级(上)期末数学试卷一、选择题1.(3分)的值是()A.4B.2C.±4D.±22.(3分)若2x﹣5没有平方根,则x的取值范围为()A.x B.x C.x D.x3.(3分)把29500精确到1000的近似数是()A.2.95×103B.2.95×104C.2.9×104D.3.0×1044.(3分)下列图案中的轴对称图形是()A.B.C.D.5.(3分)等腰三角形的两边长分别为5和11,则这个三角形的周长为()A.16B.27C.16或27D.21或276.(3分)以下各组数为边长的三角形,其中构成直角三角形的一组是()A.4、5、6B.3、5、6C.D.2,7.(3分)在平面直角坐标系中,点(﹣3,4)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)下列函数中,y是x的正比例函数的是()A.y=﹣B.y=﹣2x﹣2C.y=2(x﹣2)D.y=9.(3分)给出下列4个命题:①两边及其中一边上的中线对应相等的两个三角形全等;②两边及其中一边上的高对应相等的两个三角形全等;③两边及一角对应相等的两个三角形全等;④有两角及其中一角的角平分线对应相等的两个三角形全等.其中正确的个数有()A.1个B.2个C.3个D.4个10.(3分)如图,在四边形ABCD中,对角线AC⊥BD,垂足为点O,且∠OAB=45°,OC=2OA=8,∠OCB=∠ODA,则四边形ABCD的面积为()A.32B.36C.42D.48二、填空题11.(3分)27的立方根为.12.(3分)若某个正数的两个平方根是a﹣3与a+5,则a=.13.(3分)如果等腰三角形的一个外角为80°,那么它的底角为度.14.(3分)如果正比例函数y=3x的图象沿y轴方向向下平移2个单位,则所得图象所对应的函数表达式是.15.(3分)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=105°,则∠ADC=°.16.(3分)如图,已知一次函数y1=x+b与一次函数y2=mx﹣n的图象相交于点P(﹣2,1),则关于不等式x+b ≥mx﹣n的解集为.17.(3分)如图,在平面直角坐标系中,以A(2,0),B(0,t)为顶点作等腰直角△ABC(其中∠ABC=90°,且点C落在第一象限内),则点C关于y轴的对称点C’的坐标为.(用t的代数式表示)18.(3分)在平面直角坐标系中,坐标原点O到一次函数y=kx﹣2k+1图象的距离的最大值为.三、计算题19.(8分)(1)计算﹣()﹣1+20090(2)求(x+1)2﹣49=0中x的值20.(8分)如图,点B、F、C、E在同一直线上,且BF=CE,∠B=∠E,AC,DF相交于点O,且OF=OC,求证:(1)△ABC≌△DEF;(2)OA=OD.21.(6分)如图,已知△ABC(AC<AB<BC),请用无刻度的直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹);(1)在AB边上寻找一点M,使得点M到AC、BC的距离相等;(2)在BC边上寻找一点N,使得NA+NB=BC.22.(8分)如图,点B、C、D在一直线上,△ABC和△ADE都是等边三角形(1)请找出图中的全等三角形,并说明理由;(2)求证:EF∥AC.23.(8分)如图,在平面直角坐标系中,△ABC的顶点分别为A(﹣8,0)、B(6,0)、C(0,6),点D是OC中点,连接BD并延长交AC于点E,求四边形AODE的面积.24.(8分)某农户以1500元/亩的单价承包了15亩地种植板栗,每亩种植80株优质板栗嫁接苗,购买嫁接苗,购买价格为5元/株,且每亩地的管理费用为800元,一年下来喜获丰收平均每亩板栗产量为600kg,已知当地板栗的批发和;零售价格分别如下表所示:通过市场调研发现,批发与零售的总销量只能达到总产量的70%,其中零售量不高于总销售量的40%,经多方协调当地食品加工厂承诺以7元/kg的价格收购该农户余下的板栗,设板栗全部售出后的总利润为y元,其中零售xkg.(1)求y与x之间的函数关系;(2)求该农户所收获的最大利润.(总利润=总销售额﹣总承包费用﹣购买板栗苗的费用﹣总管理费用)25.(10分)如图,四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)求证:AE⊥BD;(2)若AD=2,CD=3,试求出四边形ABCD的对角线BD的长.26.(10分)如图,已知一次函数y=﹣x+b的图象与x轴交于A(﹣6,0)与y轴相交于点B,动点P从A出发,沿x轴向x轴的正方向运动.(1)求b的值,并求出△P AB为等腰三角形时点P的坐标;(2)在点P出发的同时,动点Q也从点A出发,以每秒个单位的速度,沿射线AB运动,运动时间为t(s)①求点Q的坐标;(用含t的表达式表示)②若点P的运动速度为每秒k个单位,请直接写出当△APQ为等腰三角形时k的值.2018-2019学年江苏省无锡市八年级(上)期末数学试卷参考答案与试题解析一、选择题1.【解答】解:∵42=16,∴16的算术平方根是4,即=4,故选:A.2.【解答】解:由题意知2x﹣5<0,解得x<,故选:D.3.【解答】解:把29500精确到1000的近似数是3.0×104.故选:D.4.【解答】解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、是轴对称图形,本选项正确;D、不是轴对称图形,本选项错误.故选:C.5.【解答】解:①11是腰长时,三角形的三边分别为11、11、5,能组成三角形,周长=11+11+5=27;②11是底边时,三角形的三边分别为11、5、5,∵5+5=10<11,∴不能组成三角形,综上所述,三角形的周长为27.故选:B.6.【解答】解:A、52+42≠62,故不是直角三角形,故不正确;B、52+32≠62,故不是直角三角形,故不正确;C、()2+()2=()2,故是直角三角形,故正确;D、22+()2≠()2,故不是直角三角形,故不正确.故选:C.7.【解答】解:点(﹣3,4)所在的象限是第二象限,故选:B.8.【解答】解:A、该函数是正比例函数,故本选项正确.B、该函数是一次函数,故本选项错误.C、该函数是一次函数,故本选项错误.D、该函数是反比例函数,故本选项错误.故选:A.9.【解答】解:①两边及其中一边上的中线对应相等的两个三角形全等,正确;②两边及其中一边上的高对应相等的两个三角形不一定全等,错误;③两边及一角对应相等的两个三角形全等,如SSA不能判定全等,错误;④有两角及其中一角的角平分线对应相等的两个三角形全等,正确;故选:B.10.【解答】解:在OC上截取OE=OD,连接BE,如图所示:∵OC=2OA=8,∴OA=4,∵AC⊥BD,∠OAB=45°,∴∠AOD=∠BOE=90°,△OAB是等腰直角三角形,∴OB=OA=4,∴AC=OA+OC=12,在△AOD和△BOE中,,∴△AOD≌△BOE(SAS),∴∠ODA=∠OEB,∵∠OCB=∠ODA,∵∠OEB=∠OCB+∠EBC,∴∠OCB=∠ECB,∴BE=CE,设BE=CE=x,则OE=8﹣x,在Rt△OBE中,由勾股定理得:42+(8﹣x)2=x2,解得:x=5,∴CE=5,OD=OE=3,∴BD=OB+OD=4+3=7,∵AC⊥BD,∴四边形ABCD的面积=AC×BD=×12×7=42;故选:C.二、填空题11.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.12.【解答】解:由题意知a﹣3+a+5=0,解得:a=﹣1,故答案为:﹣1.13.【解答】解:∵等腰三角形的一个外角为80°,∴相邻角为180°﹣80°=100°,∵三角形的底角不能为钝角,∴100°角为顶角,∴底角为:(180°﹣100°)÷2=40°.故答案为:40.14.【解答】解:将函数y=3x的图象沿y轴向下平移2个单位长度后,所得图象对应的函数关系式为:y=3x﹣2.故答案为:y=3x﹣2.15.【解答】解:∵AC=AD=DB,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=105°,∴∠DAC=105°﹣,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+105°﹣=180°,解得:α=50°.故答案为:50.16.【解答】解:∵一次函数y1=x+b与一次函数y2=mx﹣n的图象相交于点P(﹣2,1),∴不等式x+b≥mx﹣n的解集是x≥﹣2.故答案为:x≥﹣2.17.【解答】解:过C作CE⊥y轴于E,并作C关于y轴的对称点C',∵A(2,0),B(0,t),∴OA=2,OB=t,∵△ABC是等腰直角三角形,∴AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠CBE+∠BCE=90°,∴∠ABO=∠BCE,∵∠AOB=∠BEC,∴△AOB≌△BEC(AAS),∴AO=BE=2,OB=CE=t,∴C(t,t+2),∴C'(﹣t,t+2),故答案为:(﹣t,t+2).18.【解答】解:y=kx﹣2k+1=k(x﹣2)+1,即该一次函数经过定点(2,1),设该定点为P,则P(2,1),当直线OP与直线y=kx﹣2k+1垂直时,坐标原点O到一次函数y=kx﹣2k+1的距离最大,如下图所示:最大距离为:=,故答案为:.三、计算题19.【解答】解:(1)原式=﹣2﹣2+1=﹣3;(2)(x+1)2﹣49=0则x+1=±7,解得:x=6或﹣8.20.【解答】证明:(1)∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵OF=OC,∴∠OCF=∠OFC,在△ABC与△DEF中,∴△ABC≌△DEF(ASA);(2)∵△ABC≌△DEF,∴AC=DF,∵OF=OC,∴AC﹣OC=DF﹣OF,即OA=OD.21.【解答】解:(1)如图所示:(2)如图所示:22.【解答】解:(1)△ACD≌△ABE,理由如下:∵△ABC,△ADE为等边三角形,∴AB=AC,AE=AD,∠BAC=∠DAE=60°,∴∠BAC+∠BAD=∠DAE+∠BAD,即∠CAD=∠BAE,在△ACD与△ABE中,∴△ACD≌△ABE(SAS),(2)∵△ACD≌△ABE,∴∠ABE=∠C=60°,∴∠ABE=∠BAC,∴EB∥AC.23.【解答】解:∵D是OC中点,C(0,6),∴D(0,3),设直线AC的解析式为:y=kx+b,∵A(﹣8,0)、C(0,6),∴,∴,∴直线AC的解析式为:y=x+6,直线BD的解析式为:y=mx+n,∵B(6,0)、D(0,2),∴,∴,∴直线BD的解析式为:y=﹣x+3;解得,,∴E(﹣,),∴S四边形AODE=S△ABE﹣S△OBD=×14×﹣×6×3=.24.【解答】解:(1)由题意得y=14x+10(600×15×70%﹣x)+7×600×15×30%﹣(1500+800+80×5)×15整理得y=4x+41400故y与x之间的函数关系式为y=4x+41400(2)∵零售量不高于总销售量的40%∴x≤600×15×70%×40%即:x≤2520又∵4>0,∴对于y=4x+41400而言,y随着x的增大而增大,∴当x取最大值2520时,y得最大值为51480答:该农户所收获的最大利润为51480元.25.【解答】解:(1)如图,设AC与BD的交点为点M,BD与AE的交点为点N,∵旋转∴AC=BC,∠DBC=∠CAE又∵∠ABC=45°,∴∠ABC=∠BAC=45°,∴∠ACB=90°,∵∠DBC+∠BMC=90°∴∠AMN+∠CAE=90°∴∠AND=90°∴AE⊥BD,(2)如图,连接DE,∵旋转∴CD=CE=3,BD=AE,∠DCE=∠ACB=90°∴DE==3,∠CDE=45°∵∠ADC=45°∴∠ADE=90°∴EA==∴BD=26.【解答】解:(1)把A(﹣6,0)代入y=﹣x+b得,b=﹣2,∴B(0,﹣2),AO=6,OB=2,AB===2,∵△P AB为等腰三角形,∴当AP=AB时,AP=2,∴P(2﹣6,0);当BP=BA时,OP=OA=6,∴P(6,0);当P A=PB时,设OP=x,则P A=PB=6﹣x,在Rt△OPB中,∵OP2+OB2=PB2,∴x2+22=(6﹣x)2,解得:x=,∴P(﹣,0);综上所述,当△P AB为等腰三角形时点P的坐标为(2﹣6,0)或(6,0)或(﹣,0);(2)①∵点Q在直线y=﹣x+b上,∴设Q(a,﹣a﹣2),作QH⊥x轴于H,则QH=a+2,AH=6+a,∴AQ==(a+2),∵AQ=t,∴t=a+2,∴a=3t﹣6,∴Q(3t﹣6,﹣t);②由题意得,AQ=t,AP=kt,∵△APQ为等腰三角形,∴当AP=AQ时,t=kt,∴k=,当AQ=PQ时,即AH=AP,∴3t=kt,∴k=6;当P A=PQ时,在Rt△PQH中,∵HP2+HQ2=PQ2,∴(3t﹣kt)2+t2=(kt)2,∴k=,综上所述,当△APQ为等腰三角形时k的值为或6或.。
江苏无锡市2018-2019学年第二学期期末考试八年级数学试题及答案
2018-2019学年初二数学第二学期期末参考答案与评分标准 一、选择题(本大题共10小题,,每小题3分,共30分.)1.D 2.B 3.A 4.B 5.C 6.B 7.C 8.D 9.A 10.C 二、填空题(本大题共8小题,每小题2分,共16分.)11.1- 12.2x ≥ 13.3 14.3-15.10 16.2 17. 11 18.2 三、解答题(本大题共8小题,共74分.) 19.(本题满分8分)解:(1)原式(22=+ ············································································ 3分= ································································································ 4分 (2)原式193=+- ······················································································· 3分5= ························································································· 4分 20.(本题满分12分)(1)原式23(3)189m m +-=- ························································································· 2分 3(3)(3)(3)m m m -=+- ····················································································· 3分33m =+ ·································································································· 4分(2)当1a =,1b =原式22222a ab b aa ab -+=-g ········································································· 1分 2()()()a b aa ab a b -=+-g········································································ 2分 a ba b -=+ ··································································································· 3分2==····························································································· 4分 (3)去分母得:3(2)(2)(2)(2)x x x x x -=+-+-, ·········································· 2分解得:10x =, ····························································································· 3分 经检验10x =是分式方程的解. ································································· 4分 21.(本题满分8分)解:(1)50; ············································································································ 2分(2)20,0.24 ··········································································································· 4分 (3)画图略(20); ································································································ 6分 (4)0.52. ··············································································································· 8分22. (本题满分8分)证明:(1)∵四边形ABCD 是平行四边形 ∴AD =BC ,∠A =∠C ····················· 2分∵在△ADE 和△CBF 中,⎩⎨⎧AD =BC ,∠A =∠C ,AE =CF ,∴△ADE ≌△CBF ··································· 4分(2)∵四边形ABCD 是平行四边形 ∴AB ∥CD ,AB =CD. ······························································································· 5分∵AE =CF ∴DF =EB ································································································· 6分∴四边形DEBF 是平行四边形 ················································································· 7分 又∵DF =FB ∴四边形DEBF 为菱形 ······································································· 8分 23. (本题满分6分) 解:如图所示: ········································································································ 6分矩形OAPB 、矩形OCDP 以及矩形OCDP 关于OP 对称的矩形(略)即为所求作的图形.24. (本题满分10分) 解:(1)设甲种商品的每件进价为x 元,则乙种商品的每件进价为(x +8)元.根据题意,得,20000240008x x =+ ································································· 2分 解得 x =40. ···································································································· 3分 经检验,x =40是原方程的解. ····································································· 4分 答:甲种商品的每件进价为40元,乙种商品的每件进价为48元; ··············· 5分(2)甲乙两种商品的销售量为2000040=500.设甲种商品按原销售单价销售a 件, 6分则(6040)(600.740)(500)(8848)50024600a a -+⨯--+-⨯≥, ··············· 8分解得 a ≥200. ······························································································· 9分 答:甲种商品按原销售单价至少销售200件. ··············································· 10分 25. (本题满分10分)解:(1)由已知,点C (8,2)-在y 1=xk(0x <)的图象上∴16k =- ∴116y x=- …………………………………………………………………1分∵点A 的横坐标为2- ∴点A 为(2,8)-,B 为(2,﹣8)……………………………3分把B (2,-8),C (8,2)-代入y 2=mx +n 得13m n =-⎧⎨=-⎩∴(2)分别过点A 、C 作AD ⊥x 轴于点D ,CE ⊥x∵O 为AB 中点 ∴ S △AOC =21S △ABC =8 …………∵点A 、C 在双曲线上 ∴S △AOD =S △COE∴S △AOC =S 梯形ADEC =8 ………………………………8设点A 的横坐标为a ,则点A 、C 坐标表示为(a ,ak )、(4a ,4ka )∴1()(3)824k ka a a⨯+⨯-=………………………9分 解得 6415k =- ………………………1026. (本题满分12分) 解:(1)作FH ⊥AB 交AB 延长线于H∵正方形ADEF 中,AD =AF ,∠DAF =90°………1分 ∴∠DAH +∠FAH =90°∵∠H =90°∴∠FAH +∠AFH =90°∴∠DAH =∠AFH ………………………2分 ∵矩形OABC 中,AB =5,∠ABD =90°∴∠ABD =∠H ∴△ABD ≌△FHA (3)∴FH =AB =5 ∴112555222AEF S AB FH =⨯=⨯⨯=V g …………4(2)①当EB =EF 时,作EG ⊥CB ∵正方形ADEF 中,ED =EF ∴ED =EB ∴DB =2DG同(1)理得△ABD ≌△GDE ……………………5∴DG =AB=5 ∴ DB =10∴AD ==…………………6分 ②当EB =BF 时,∠BEF =∠BFE∵正方形ADEF 中,ED =AF ,∠DEF =∠AFE =90° ∴∠BED =∠BFA ∴△ABF ≌△DBE ………………7∴BD =AB =5 ∵矩形OABC 中,∠ABD =90°∴ AD ==8分 ③当FB =FE 时,作FQ ⊥AB 同理得BQ =AQ=52, BD =AQ=52,…………………9∴AD ==10分(3)22(517)y x x =-+≤≤ (12)。
无锡市南长区2018-2019年八年级上期末考试数学试题及答案
学校_____________________班级_____________姓名___________________学号__________ ………………………………装………………………………订………………………………线………………………………2019——2019学年度第一学期期末八年级数学试卷考试时间:100分钟 满分分值:120分一.选择题(每题3分,共30分)1.在3.14、227、- 2 、327、π、0.2020020002这六个数中,无理数有…………( )A .1个B .2个C .3个D .4个2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是…………( )3.若分式 2x -1有意义,则x 的取值范围是………………………………………… ( ) A .x ≠1B .x >1C .x =1D .x <14.下列命题中,正确的是………………………………………………………………( ) A .有理数和数轴上的点一一对应 B. 等腰三角形的对称轴是它的顶角平分线 C.全等的两个图形一定成轴对称 D. 有理数和无理数统称为实数5.已知点A (a ,2019)与点B (2019,b )关于x 轴对称,则a +b 的值为……………( ) A .-1 B .1 C .2 D .3 6.如果把分式2xx -y中的x 和y 都扩大5倍,那么分式的值………………………… ( ) A .扩大5倍 B .扩大10倍 C .不变 D .缩小157.如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌ △ADC 的是……………………………………………………………………………………( ) A .CB =CD B .∠BAC =∠DAC C .∠BCA =∠DCA D .∠B =∠D =90° 8.在直线y =12 x +12 上且到x 轴或y 轴距离为1的点有…………………………( )个A .1B .2C .3D .4 第7题 第9题 第10题9.如图,在矩形ABCD 中,AB =2,AD =3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A →D →C →E 运动,则△APE 的面积y 与点P 经过的路径长x 之间的函数关系用图象表示大致是………………………………………………( )10.如图,已知等腰△ABC 中,AB =AC ,∠BAC =120°,AD ⊥BC 于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP =OC ,下面的结论: ①∠APO +∠DCO =30°;②△OPC 是等边三角形;A. D. C.B . DC AB A BCDE PA B C DPOA B . D C. AB C D③AC =AO +AP ;④S △ABC =S 四边形AOCP ,其中正确的个数是( )A .1B .2C .3D .4 二.填空题(每空2分,共22分)11.(1)16的算术平方根是_______; (2)化简:a 2+2aa = _________.12.用四舍五入法把9.456精确到百分位,得到的近似值是 . 13.若一个等腰三角形的一个内角为80°,则它的底角的度数是 度. 14.将函数y =3x 的图象向上平移2个单位所得函数图象的解析式为 . 15.若直角三角形两直角边长为3和4,则斜边上的中线为____________. 16.分式 x 2-1x -1的值为0,则x = .17.如图,△OAD ≌△OBC ,且∠O =72°,∠C =20°,则∠AEB =_____度. 18.如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为 .19.如图,已知函数y =3x +b 和y =ax -3的图像交于点P (-2,-5),则根据图像可得不等式ax -3<3x+b <0的解集是 .第17题 第18题 第19题 20.如图,等腰直角三角形ABC 中,∠BAC =90°,AB =AC ,点M ,N 在边BC 上,且∠MAN =45°,若BM =1,CN =3,则MN 的长为 . 三.解答题(共8题,共68分) 21.计算(每小题4分,共8分)(1)(-3)2+|1- 2 |-38-(π-1)0(2)x 2+1x -2 - 3-4x2-x22.解方程(每小题4分,共8分) ⑴ 9x 2-121=0; (2) (x -1)3+27=023.(本题6分)先化简,再求值:1-2a +b a +b ÷ 4a 2+4ab +b 2a 2-b 2其中a =-1,b = 12 .第20题 BM A C N A B C D M N A B C D E OP24.(本题8分)如图所示,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F . 求证:(1) FC =AD ;(2) AB =BC +AD .25.(本题6分)△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4).(1)请画出△ABC 向左平移5个单位长度后得到的△A 1B 1C 1;(2)在x 轴上求作一点P ,使△P AB 的周长最小,请画出△P AB ,并直接写...出.P 的坐标.[来26.(本题12分) 某工厂有甲种原料69千克,乙种原料52千克,现计划用这两种原料生产A ,B 两种型号的产品共80件,已知每件A 型号产品需要甲种原料0.6千克,乙种原料0.9千克;每件B 型号产品需要甲种原料1.1千克,乙种原料0.4千克.请解答下列问题: (1)该工厂有哪几种生产方案?(2)在这批产品全部售出的条件下,若1件A 型号产品获利35元,1件B 型号产品获利25元,(1)中哪种方案获利最大?最大利润是多少?(3)在(2)的条件下,工厂决定将所有利润的25%全部用于再次购进甲、乙两种原料,要求每种原料至少购进4千克,且购进每种原料的数量均为整数.若甲种原料每千克40元,乙种原料每千克60元,请直接写出购买甲、乙两种原料之和最多的方案.27.(本题10分)已知直线y =-43 x +4与x 轴和y 轴分别交与B 、A 两点,另一直线经过点B 和点D (11,6).(1)求A 、B 的坐标;(2)证明:△ABD 是直角三角形;(3)在x 轴上找点C ,使△ACD 是以AD 为底边的等腰三角形,求出C 点坐标.A BCDEF-4 -3 -2 -1 1234xy -4 ―3 -2 ―1 0 1 2 3 4xyO28.(本题10分)对于平面直角坐标系中的任意两点P 1(x 1,y 1),P 2(x 2,y 2),我们把 |x 1-x 2|+|y 1-y 2|叫做P 1、P 2两点间的直角距离,记作d (P 1,P 2).(1) 令P 0(2,-3),O 为坐标原点,则d (O ,P 0)= ;(2)已知O 为坐标原点,动点P (x ,y )满足d (O ,P )=1,请写出x 与y 之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P 所组成的图形;(3)设P 0(x 0,y 0)是一定点,Q (x ,y )是直线y =ax +b 上的动点,我们把d (P 0,Q )的最小值叫做P 0到直线y=ax +b 的直角距离. 若P (a ,-3)到直线y =x +1的直角距离为6,求a 的值.xy O一.选择1—10题 B A A D B C C C A D二.填空11. 4 a +2 12. 9.46 13. 50或80 14. y =3x +2 15. 5216. —1 17. 112 18. 419. —2< x < —1320. 10 三.21.(1)(—3)2 +︱1— 2 ︱—38—(π—1)0=3+ 2 -1-2-1……………………………………3分= 2 -1………………………………………………4分(2).x 2+1x -2 —3—4x 2-x=x 2+1x -2 +3—4x x -2 …………………………………………1分 =x2-4x +4x -2………………………………………………2分=(x -2)2x -2 ………………………………………………3分=x -2………………………………………………………4分 22.(1)9x 2-121=09x 2=121………………………………………1分 x 2=1219………………………………………2分 x =±113……………………………………4分(2). (x -1)3+27=0(x -1)3=—27……………………………………………1分x -1=-3……………………………………………3分x =-2……………………………………………4分23. 1—2a +b a +b ÷4a 2+4ab +b 2a 2-b 2=1-2a +b a +b ÷(2a +b )2(a +b )(a -b ) ……………………………………1分=1-a -b 2a +b ………………………………………………………………3分=a +2b2a +b…………………………………………………………………4分 当a =一1,b =12时原式=—1+1—2+12……………………………………………………………5分原式=0……………………………………………………………………6分24.(1)∵AD ∥BC (已知)∴∠ADC=∠ECF (两直线平行,内错角相等)………………………………1分 ∵E 是CD 的中点(已知)∴DE=EC (中点的定义)………………………………………………………2分 ∵在△ADE 与△FCE 中,∠ADC=∠ECF DE=EC ∠AED=∠CEF∴△ADE ≌△FCE (ASA )……………………………………………………3分 ∴FC=AD (全等三角形的性质)……………………………………………4分(2)∵△ADE ≌△FCE∴AE=EF ,AD=CF (全等三角形的对应边相等)………………………………5分∵BE ⊥AE∴BE 是线段AF 的垂直平分线…………………………………………………6分 ∴AB=BF=BC+CF…………………………………………………………………7分 ∵AD=CF (已证)∴AB=BC+AD (等量代换)……………………………………………………8分(1)画对图形………………2分(2)作出对称点……………3分作出P点………………4分P(2,0)…………………6分26. 解:(1)设生产A型号产品x件,则生产B型号产品(80﹣x)件,由题意,得,………………………………………2分解得:38≤x≤40.………………………………………………………3分∵x为整数,∴x=38,39,40,∴有3种购买方案:方案1,生产A型号产品38件,生产B型号产品42件;方案2,生产A型号产品39件,生产B型号产品41件;方案3,生产A型号产品40件,生产B型号产品40件.…………………4分(2)设所获利润为W元,由题意,得W=35x+25(80﹣x),w=10x+2000,…………………………………………………………………6分∴k=10>0,∴W随x的增大而增大,∴当x=40时.W最大=2400元.∴生产A型号产品40件,B型号产品40件时获利最大,最大利润为2400元.………………8分(3)设购买甲种原料m千克,购买乙种原料n千克,由题意,得40m+60n=2400×25%2m+3n=30.…………………………………………………………………10分—4—4—3—3—2—2—1—10 1 2 3 41234xyABCP∵m +n 要最大, ∴n 要最小. ∵m ≥4,n ≥4, ∴n =4. ∴m =9.答:购买甲种原料9千克,乙种原料4千克.…………………………12分27.(1) A(0,4),B(3,0)………………………………………………………… 2分 (2)过点D 作DH x H ⊥轴于,11,2,DH AH ==、由勾股定理得125AD =,……………………………………………… 4分 再由2225,100AB BD ==, 那么222AB BD AD +=,所以ABD ∆是直角三角形. …………………………………………………6分 (3)设OC 长为x ,则由等腰三角形以及勾股定理得到22226)11(4+-=+x x ……… 8分解得14122x = ……………………………………………………… 9分 141(,0)22C ∴ ……………………………………………………… 10分28.(1) 5………………………………………2分 (2)由题意,得|x |+|y|=1………………3分所有符合条件的点P 组成的图形如图所示…4分(3) ∵P (a ,﹣3)到直线y =x +1的直角距离为6,∴设直线y =x +1上一点Q (x ,x+1),则d (P ,Q )=6,∴|a ﹣x |+|﹣3﹣x ﹣1|=6,即|a ﹣x |+|x +4|=6,………………………………5分 当a ﹣x ≥0,x ≥﹣4时,原式=a ﹣x +x +4=6,解得a =2;……………………………7分 当a ﹣x <0,x <﹣4时,原式=x ﹣a ﹣x ﹣4=6,解得a =﹣10.……………………9分 故答案为:2或﹣10……………………………………………………………………10分。
无锡市2018-2019学年八上数学期末试卷
无锡市2018-2019 学年八上数学期末试卷一、选择题1.如果分式ly 二7的值为0,那么y 的值是(7- ya+b 的正方形纸片中剪去一个边长为a-b 的正方形(a>b ),剩余部分沿虚线又剪D. -1OP 最短时,点P 的坐标为()8.如图,△ ABC 中,BO 平分/ ABC CO 平分/ ACB MNg 过点 O,与AB, AC 相交于点 M N,且 MN/ BC,若 AB=5, AC=6,贝U△ AMN 勺周长为()A. -7B. 7C. 0D. 7 或—72 .施工队为抢修其中一段120米的铁路,每天比原计划多修每天修多少米?设原计划每天修“ 120 120A.------C 120 120C. ---- Ix x-5x 2. 4 3 .若分式二一4 x 米,所列方程正确的是(c 120 120B.—— 5X「120 120的值为零,则x 等于(A. 0B. 2C. 2 或-2 5米,结果提前4天开通了列车.问原计划 )D. -2D. 2a6. A. B. C. 下列各式由左边到右边的变形,属于因式分解的是((x+1) ( x- 1 ) = x 2- 1 x 2+2x+1=x (x+2) +1-4a2+9b2= (- 2a+3b) ( 2a+3b) D.7.1、 2x+1 = x ( 2+ 一)x如图,在平面直角坐标系中,△ABO^底角是30°的等腰三角形, OA= AB= 4,。
为坐标原点,点 BC. (3, 73)D. (2, 2)4.如图,从边长为拼成一个长方形(不重叠无缝隙),则该长方形的面积是C. 0 A . 2 B . 1 ()在x 轴上,点P 在直线AB 上运动,当线段如图,E, F 分别是?ABCM 边AR BC 上的点,EF= 6, / DEE 60° ,将四边形 EFCW EF 翻折,得 )D. 1811 .如图,已知/ 1 = / 2,要使△ ABD^AACtD 需从下列条件中增加一个,错误的选法是(14 .如图,已知 O 为直线 AB 上一点,OC 平分/ AOD / BOD=4/ DOE / COE=(,则/ BOE 勺度数为A. B. 9 C. 11D. 16在^ ABC 中,AB=BC /B=120° , AB 的垂直平分线交 AC 于点D.若AC=6cm 则C. 5D. 2A. / ADB= / ADCB. / B=/ CC.AB = ACD.DB= DCABC 中,/ C=90 ,AD 平分/ BAC 且CDBD=3: 4.若BC=21,则点 D 到AB 边的距离A. 7B. 9C. 11D. 1413.已知三角形的两边长分别为 3cm 和9cm,则下列长度的四条线段中能作为第三边的是(A. 12 cmB. 10 cmC. 6 cmD. 3 cm 7 9.A. 9B. 1210.如图, AD=()cm.312.如图,已知△ 为()D -A. 360° -4 1B. 180° -4 1C.1D. 270° -3 115 .若一个三角形的两边长分别为 3和7,则第三边长可能是()A. 2 B . 3 C . 4 D.5二、填空题16 .在实数范围内分解因式: x 3y 2_4x=.【答案】x(xy -2)(xy 2)x 2 -117 .若式子 -------------- 的值为零,则x 的值为 .x-1 x 218 .如图,点P 是等边三角形 ABC 内一点,将CP 绕点C 逆时针旋转600得到CQ ,连接AP, BP , BQ, PQ ,若/PBQ=40° ,下列结论:① 陕CP0△BCQ ;②/APB= 1000;③/BPQ = 500,其(填序号).19 .如图,在^ ABC 中,AB=AC /A=40° ,则外角/ ACD= _______________ 度.点 M N 在射线 OA± (都不与点。
2018-2019学年 八年级(上)期末数学试卷(有答案和解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.如图所示的图案是我国几家银行标志,其中不是轴对称图形的是()A.B.C.D.2.下列运算中,正确的是()A.a2•a4=a8B.a10÷a5=a2C.(a5)2=a10D.(2a)4=8a43.下列变形属于因式分解的是()A.4x+x=5x B.(x+2)2=x2+4x+4C.x2+x+1=x(x+1)+1D.x2﹣3x=x(x﹣3)4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣115.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1等于()A.72°B.60°C.50°D.58°6.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.16C.8D.107.下列各式成立的是()A.B.(﹣a﹣b)2=(a+b)2C.(a﹣b)2=a2﹣b2D.(a+b)2﹣(a﹣b)2=2ab8.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF9.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④10.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0B.1C.5D.12二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:2a2﹣8=.12.若代数式有意义,则实数x的取值范围是.13.一个n边形的内角和是540°,那么n=.14.如图,Rt△ABC中,∠C=90°,AD为△ABC的角平分线,与BC相交于点D,若CD=4,AB =15,则△ABD的面积是.15.如图,在△ABC中,AB=AC,点D在AC上,过点D作DF⊥BC于点F,且BD=BC=AD,则∠CDF的度数为.16.如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC﹣∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有(填序号).三、解答题17.(10分)计算(1)(2﹣)0﹣()﹣2(2)(﹣3a2)3÷6a+a2•a318.(10分)计算(1)(x+1)2﹣(x+1)(x﹣1)(2)﹣x﹣219.(10分)如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.20.(10分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).21.(12分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.22.(10分)已知代数式.(1)先化简,再求当x=3时,原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?23.(12分)如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE =AB.(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;(3)若AC=8,∠E=15°,求三角形ABE的面积.24.(14分)因式分解是把多项式变形为几个整式乘积的形式的过程.(1)设有多项式x2+2x﹣m分解后有一个因式是x+4,求m的值.(2)若有甲、乙两个等容积的长方体容器,甲容器长为x﹣1,宽为x﹣2.体积为x4﹣x3+ax2+bx ﹣6,(x为整数),乙容器的底面是正方形.①求出a,b的值;②分别求出甲、乙两容器的高.(用含x的代数式表示)25.(14分)在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=;CM=.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据同底数幂的乘除法则,及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、a2•a4=a6,计算错误,故本选项错误;B、a10÷a5=a5,计算错误,故本选项错误;C、(a5)2=a10,计算正确,故本选项正确;D、(2a)4=16a4,计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘除运算及幂的乘方的运算,属于基础题,掌握运算法则是关键.3.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,结合选项进行判断即可.【解答】解:A、是整式的计算,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选:D.【点评】本题考查了因式分解的意义,属于基础题,掌握因式分解的定义是关键.4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【分析】根据全等三角形的性质即可求出答案.【解答】解:由于两个三角形全等,∴∠1=180﹣50°﹣72°=58°,故选:D.【点评】本题考查了全等三角形的性质,属于基础题型.解答本题的关键是熟练运用全等三角形的性质6.【分析】由于△ABC是等腰三角形,底边BC=5,周长为21,由此求出AC=AB=8,又DE是AB的垂直平分线,根据线段的垂直平分线的性质得到AE=BE,由此得到△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB,然后利用已知条件即可求出结果.【解答】解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.7.【分析】根据完全平方公式和分式的化简判断即可.【解答】解:A、,错误;B、(﹣a﹣b)2=(a+b)2,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(a+b)2﹣(a﹣b)2=4ab,错误;故选:B.【点评】此题考查完全平方公式,关键是根据完全平方公式和分式的化简判断.8.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.9.【分析】根据等边三角形的判定判断,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【解答】解:①两个角为60度,则第三个角也是60度,则其是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③三个外角相等,则三个内角相等,则其是等边三角形;④根据等边三角形的性质,可得该等腰三角形的腰与底边相等,则三角形三边相等.所以都正确.故选:A.【点评】此题主要考查等边三角形的判定,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.10.【分析】依据x﹣3y=5两边平方,可得x2﹣6xy+9y2=25,再根据x2﹣7xy+9y2=24,即可得到xy的值,进而得出x2y﹣3xy2的值.【解答】解:∵x=3y+5,∴x﹣3y=5,两边平方,可得x2﹣6xy+9y2=25,又∵x2﹣7xy+9y2=24,两式相减,可得xy=1,∴x2y﹣3xy2=xy(x﹣3y)=1×5=5,故选:C.【点评】本题主要考查了完全平方公式的运用,应用完全平方公式时,要注意:公式中的a,b 可是单项式,也可以是多项式;对形如两数和(或差)的平方的计算,都可以用这个公式.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.【分析】根据分式有意义的条件可得x﹣3≠0,再解即可.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.13.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.14.【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=,故答案为:30【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【分析】设∠A=α,可得∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,再根据△ABC中,∠A+∠ABC+∠C=180°,即可得到∠C的度数,再根据DF⊥BC,即可得出∠CDF的度数.【解答】解:∵AB=AC,BD=BC=AD,∴∠ACB=∠ABC,∠A=∠ABD,∠C=∠BDC,设∠A=α,则∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,∵△ABC中,∠A+∠ABC+∠C=180°,∴α+2α+2α=180°,∴α=36°,∴∠C=72°,又∵DF⊥BC,∴Rt△CDF中,∠CDF=90°﹣72°=18°,故答案为:18°.【点评】本题主要考查了等腰三角形的性质以及三角形内角和定理的运用,解题时注意:等腰三角形的两个底角相等.16.【分析】①利用三角形的内角和定理以及角平分线的定义即可判断.②利用反证法进行判断.③根据∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),由此即可判断.④利用全等三角形的性质证明CA=CB即可判断.【解答】解:∵△ABC角平分线AE、CF交于点P,∴∠CAP=∠BAC,∠ACP=∠ACB,∴∠APC=180°﹣(∠CAP+∠ACP)=180°﹣(∠BAC+∠ACB)=180°﹣(180°﹣∠ABC)=90°+∠ABC,故①正确,∵PA=PA,∠PAF=∠PAH,AF=AH,∴△PAF≌△PAH(SAS),∴∠APF=∠APH,若PH是∠APC的平分线,则∠APF=60°,显然不可能,故②错误,∵∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),故③错误,∵BD⊥AC,PH∥BD,∴PH⊥AC,∴∠PHA=∠PFA=90°,∵∠ACF=∠BCF,CF=CF,∠CFA=∠CFB=90°,∴△CFA≌△CFB(ASA),∴CA=CB,故④正确,故答案为①④.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题17.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则计算得出答案.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=﹣27a6÷6a+a2•a3=﹣a5+a5=﹣3a5.【点评】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.18.【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+2x+1﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2;(2)原式=﹣=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减混合运算顺序和运算法则及完全平方公式、平方差公式.19.【分析】(1)由垂直的定义,结合题目已知条件可利用HL证得结论;(2)由(1)中结论可得到∠D=∠B,则可证得结论.【解答】证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即对应边相等、对应角相等)是解题的关键.20.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【解答】解:(1)如图1所示,△A1B1C1即为所求;C1的坐标为(2,1).(2)如图所示,连接AB1,交x轴于点P,点P的坐标为(2,0).【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.21.【分析】(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由提前完成的天数=工作总量÷原计划工作效率﹣工作总量÷现在工作效率,即可得出结论.【解答】解:(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,依题意,得:=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=200.答:现在平均每天生产200台机器.(2)﹣=20﹣15=5(天).答:现在比原计划提前5天完成.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)根据题意得出=﹣1,解之求得x的值,再根据分式有意义的条件即可作出判断.【解答】解:(1)原式=[﹣]•=(﹣)•=•=,当x=3时,原式==2;(2)若原代数式的值等于﹣1,则=﹣1,解得x=0,而x=0时,原分式无意义,所以原代数式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.23.【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠ABE=∠ACF;(3)作高线EG,根据三角形的外角性质得∠EAG=30°,根据直角三角形的性质可得高线EG =4,根据三角形面积公式可得结论.【解答】(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF,∵AB=AE,∴∠ABE=∠E,∴∠ABE=∠ACF.(3)解:如图,过E作EG⊥AB,交BA的延长线于G,∵AB=AC=AE=8,∴∠ABE=∠AEB=15°,∴∠GAE=∠ABE+∠AEB=30°,∴EG=AE=4,∴三角形ABE的面积===16.【点评】本题考查了全等三角形的判断与性质,等腰三角形的性质,角平分线的作法,确定出全等三角形的条件是解题的关键.24.【分析】(1)根据分解因式的定义,假设未知数,进行求解;(2)同上一问,假设未知数,进行求解;然后对体积的表达式进行因式分解,得到乙容器的高;【解答】解:(1)设原式分解后的另一个因式为x+n,则有:x2+2x﹣m=(x +4)(x +n )=x 2+(4+n )x +4n∴4+n =2可得n =﹣24n =﹣m 可得m =8综上所述:m =8(2)①设甲容器的高为x 2+mx ﹣3,则有:(x ﹣1)(x ﹣2)(x 2+mx ﹣3)=x 4﹣x 3+ax 2+bx ﹣6 ∴x •(﹣2)•x 2+(﹣1)•x •x 2+x •x •mx =﹣2x 3﹣x 3+mx 3=(m ﹣3)x 3=﹣x 3从而得m ﹣3=﹣1m =2原甲容器的体积=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=x 4﹣x 3﹣9x 2+13x ﹣6从而得a =﹣9,b =13②由乙容器的底面为正方形可得:x 4﹣x 3﹣9x 2+13x ﹣6=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=(x ﹣1)(x ﹣2)(x +3)(x ﹣1)=(x ﹣1)2(x 2+x ﹣6)故答案为:甲容器的高为x 2+2x ﹣3,乙容器的高为x 2+x ﹣6【点评】该题通过设置未知数,运用多项式乘多项式的方法求解未知数的值.25.【分析】(1)根据路程=速度×时间,可用含t 的代数式表示BN ,CM 的长,即可用含t 的代数式表示AN 的长;(2)①由题意可得S △ABM =S △BNC ,根据三角形面积公式可求t 的值;②过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,可证四边形PGBF 是矩形,可得PF =BG ,根据三角形的面积公式,可得方程组,求出PG ,PF 的长,根据勾股定理可求PN 的长,通过证△ANE ∽△CNB ,可求AE ,NE 的长,即可求∠APN 的度数.【解答】解:(1)∵M ,N 两点均以1个单位/秒的速度匀速运动,∴CM =BN =t ,∴AN =8﹣t ,故答案为:8﹣t ,t ;(2)①若△CPM 和△APN 的面积相等∴S △CPM +S 四边形BMPN =S △APN +S 四边形BMPN ,∴S △ABM =S △BNC ,∴=∴8×(5﹣t )=5t∴t =∴当t =时,△CPM 和△APN 的面积相等;②如图,过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,∵PG ⊥AB ,PF ⊥BC ,∠B =90°,∴四边形PGBF 是矩形,∴PF =BG ,∵t =3,∴CM =3=BN ,∴BM =2,AN =5,∵S △ABM =S △ABP +S △BPM ,∴∴16=8PG +2PF ①∵S △BCN =S △BCP +S △BPN ,∴×5×3=∴15=3PG +5PF ②由①②组成方程组解得:PG =,PF =,∴BG =∴NG =BN ﹣BG =3﹣=在Rt△PGN中,PN==,在Rt△BCN中,CN==∵∠B=∠E=90°,∠ANE=∠BNC∴△ANE∽△CNB∴∴∴AE=,NE=∵PE=EN+PN∴PE=+=∴AE=PE,且AE⊥PE∴∠APN=45°【点评】本题是三角形综合题,考查了三角形的面积公式,勾股定理,矩形的判定,相似三角形的判定和性质等知识,本题的关键是求出PN的长.。
江苏省无锡市滨湖区2018-2019学年八年级上学期期中考试数学试题含参考答案
2018-2019学年江苏省无锡市滨湖区八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.以下图形中对称轴的数量小于3的是()A.B.C.D.2.下列各式中,正确的是()A.(﹣)2=9B.=﹣2C.±=±3D.=﹣33.在实数:﹣3.14,,π,4.3333,中,无理数的个数为()A.0个B.1个C.2个D.3个4.把0.356按四舍五入法精确到0.01的近似值是()A.0.3B.0.36C.0.35D.0.3505.如图,∠C=∠D=90°,AC=AD,那么△ABC与△ABD全等的理由是()A.HL B.SAS C.ASA D.AAS6.下列数组作为三角形的三条边,其中不能构成直角三角形的是()A.1、、4B.1.5、2、2.5C.、、5D.、、7.如图,在△ABC中,AC的垂直平分线分别交AB、AC于点D、E,EC=5,△ABC的周长为26,则△BDC 的周长为()A.14B.16C.18D.198.如图,在2×3的正方形网络中,有一个以格点为顶点的三角形,此网格中所有与该三角形成轴对称且以格点为顶点的三角形共有()A.1个B.2个C.3个D.4个9.如图,在Rt△ABC中,∠C=90°,沿过点A的一条直线AE折叠Rt△ABC,使点C恰好落在AB边的中点D处,则∠B的度数是()A.25°B.30°C.40°D.45°10.如图,已知AB=2,BF=8,BC=AE=6,CE=CF=7,则△CDF与四边形ABDE的面积比值是()A.1:1B.2:1C.1:2D.2:3二、填空题(每小题2分,共16分)11.﹣27的立方根是.12.若一个直角三角形的两直角边长分别为12、5,则其斜边长为.13.已知a、b为两个连续的整数,且,则a+b=.14.如图,点D是BC上的一点,若△ABC≌△ADE,且∠B=65°,则∠EAC=°.15.如图,已知AD∥BC,DE、CE分别平分∠ADC、∠DCB,AB过点E,且AB⊥AD,若AB=8,则点E到CD的距离为.16.如图,已知△ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点,如果点M在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点N在线段CA上由C点向A点运动,若使△BDM与△CMN全等,则点N的运动速度应为厘米/秒.17.如图,在△ABC和△ADC中,已知AB=8,∠ACB=105°,∠B=45°,且∠ACB=∠BAD,∠B=∠D,则线段CD的长是.18.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=5,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是.三、解答题(共74分)19.(10分)计算:(1);(2)(2018﹣π)0﹣()﹣1++|﹣2|20.(10分)求下列各式中x的值:(1)9x2﹣4=0;(2)(3x﹣1)3+64=0.21.(6分)已知某正数的平方根是2a﹣7和a+4,b﹣12的立方根为﹣2.(1)求a、b的值;(2)求a+b的平方根.22.(6分)如图,点E在线段AC上,BC∥DE,AC=DE,CB=CE,求证:∠A=∠D.23.(6分)如图,在长度为1个单位的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线MN成轴对称的△A1B1C1;(不写画法)(2)请你判断△ABC的形状,并求出AC边上的高.24.(8分)在等腰△ABC中,已知AB=AC,BD⊥AC于D.(1)若∠A=48°,求∠CBD的度数;(2)若BC=15,BD=12,求AB的长.25.(8分)已知两个等腰直角△ABC和△CDE,它们的两个直角顶点B、D在直线MN上,过点A、E分别作AG⊥MN,EF⊥MN,垂足分别为G、F.(1)如图1,当△ABC和△CDE在△BCD的外部时,请你探索线段EF、DB、AG之间的数量关系,其数量关系为.(2)如图2,将图1中的△ABC沿BC翻折,其他条件不变,那么(1)中的结论是否仍然成立?若成立,请你给出证明,若不成立,请探索它们的数量关系,并说明理由.26.(10分)画图计算:(1)已知△ABC,请用尺规在图1中△ABC内确定一个点P,使得点P到AB和BC的距离相等,且满足P 到点B和点C的距离相等(不写作法,保留作图痕迹).(2)如图2,如果点P是(1)中求作的点,点E、F分别在边AB、BC上,且PE=PF.①若∠ABC=60°,求∠EPF的度数;②若BE=2,BF=8,EP=5,求BP的长.(3)如图3,如果点P是△ABC内一点,且点P到点B的距离是7,若∠ABC=45°,请分别在AB、BC上求作两个点M、N,使得△PMN的周长最小(不写作法,保留作图痕迹),则△PMN的最小值为27.(10分)【定义】数学课上,陈老师对我们说,如果1条线段将一个三角形分成2个等腰三角形,那么这1条线段就称为这个三角形的“好线”,如果2条线段将一个三角形分成3个等腰三角形,那么这2条线段就称为这个三角形的“好好线”.【理解】如图①,在△ABC中,∠A=36°,∠C=72°,请你在这个三角形中画出它的“好线”,并标出等腰三角形顶角的度数.如图②,已知△ABC是一个顶角为45°的等腰三角形,请你在这个三角形中画出它的“好好线”,并标出所分得的等腰三角形底角的度数.【应用】(1)在△ABC中,已知一个内角为42°,若它只有“好线”,请你写出这个三角形最大内角的所有可能值;(2)在△ABC中,∠C=27°,AD和DE分别是△ABC的“好好线”,点D在BC边上,点E在AB边上,且AD=DC,BE=DE,请你根据题意画出示意图,并求∠B的度数.参考答案与试题解析一、选择题(每小题3分,共30分)1.以下图形中对称轴的数量小于3的是()A.B.C.D.【分析】根据对称轴的概念求解.【解答】解:A、有4条对称轴;B、有6条对称轴;C、有4条对称轴;D、有2条对称轴.故选:D.【点评】本题考查了轴对称图形,解答本题的关键是掌握对称轴的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.2.下列各式中,正确的是()A.(﹣)2=9B.=﹣2C.±=±3D.=﹣3【分析】根据二次根式的性质:和,以及立方根的概念,即可得到结论.【解答】解:A.(﹣)2=3,故本选项错误;B.==2,故本选项错误;C.±=±3,故本选项正确;D.=﹣3,故本选项错误;故选:C.【点评】本题主要考查了立方根,平方根以及算术平方根的概念,解题时注意:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.3.在实数:﹣3.14,,π,4.3333,中,无理数的个数为()A.0个B.1个C.2个D.3个【分析】由于无理数就是无限不循环小数,利用无理数的定义即可判定选择项.【解答】解:在所列实数中,无理数只有π这1个数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.4.把0.356按四舍五入法精确到0.01的近似值是()A.0.3B.0.36C.0.35D.0.350【分析】根据近似数的精确度求解.【解答】解:0.356≈0.36(精确到0.01).故选:B.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.5.如图,∠C=∠D=90°,AC=AD,那么△ABC与△ABD全等的理由是()A.HL B.SAS C.ASA D.AAS【分析】已知∠C=∠D=90°,AC=AD,且公共边AB=AB,故△ABC与△ABD全等【解答】解:在Rt△ABC与Rt△ABD中,∴Rt△ABC≌Rt△ABD(HL)故选:A.【点评】本题考查全等三角形的判定,解题的关键是注意AB是两个三角形的公共边,本题属于基础题型.6.下列数组作为三角形的三条边,其中不能构成直角三角形的是()A.1、、4B.1.5、2、2.5C.、、5D.、、【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【解答】解:A、12+()2=4,能构成直角三角形,故选项错误;B、(1.5)2+22=52,能构成直角三角形,故选项错误;C、1.52+22=2.52,能构成直角三角形,故选项错误;D、()2+()2≠()2,不能构成直角三角形,故选项正确;故选:D.【点评】本题考查了勾股定理的逆定理,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.7.如图,在△ABC中,AC的垂直平分线分别交AB、AC于点D、E,EC=5,△ABC的周长为26,则△BDC 的周长为()A.14B.16C.18D.19【分析】根据线段的垂直平分线的性质得到DA=DC,AC=2EC=10,根据三角形的周长公式计算即可.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,AC=2EC=10,∵△ABC的周长为26,∴AB+AC+BC=26,∴AB+BC=16,∴△BDC的周长=BD+CD+BC=BD+AD+BC=AB+BC=16,故选:B.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.8.如图,在2×3的正方形网络中,有一个以格点为顶点的三角形,此网格中所有与该三角形成轴对称且以格点为顶点的三角形共有()A.1个B.2个C.3个D.4个【分析】因为对称图形是全等的,所以面积相等,据此连接矩形的对角线,观察得到的三角形即可解答.【解答】解:如图,与△ABE成轴对称的格点三角形有△ABF、△AEF、△EBC共3个,故选:C.【点评】此题考查利用轴对称设计图案,要做到全部找到不漏掉还是不容易的,解题的关键是仔细观察.9.如图,在Rt△ABC中,∠C=90°,沿过点A的一条直线AE折叠Rt△ABC,使点C恰好落在AB边的中点D处,则∠B的度数是()A.25°B.30°C.40°D.45°【分析】由折叠的性质可得出:∠CAE=∠DAE,∠ADE=∠C=90°,结合点D为线段AB的中点,利用等腰三角形的三线合一可得出AE=BE,进而可得出∠B=∠DAE,再利用三角形内角和定理,即可求出∠B 的度数.【解答】解:由折叠,可知:∠CAE=∠DAE,∠ADE=∠C=90°,∴ED⊥AB.∵点D为线段AB的中点,ED⊥AB,∴AE=BE,∴∠B=∠DAE.又∵∠CAE+∠DAE+∠B+∠C=180°,∴3∠B=9°,∴∠B=30°.故选:B.【点评】本题考查了翻折变换、等腰三角形的性质以及三角形内角和定义,根据折叠的性质及等腰三角形的性质找出∠B=∠DAE=∠CAE是解题的关键.10.如图,已知AB=2,BF=8,BC=AE=6,CE=CF=7,则△CDF与四边形ABDE的面积比值是()A.1:1B.2:1C.1:2D.2:3【分析】由题意得AC =CB +BA =8,可得AC =BF ,利用SSS 可证得△AEC ≌△BCF ,从而可得S △AEC =S △BCF ,也就得出S △CDF +S △CDB =S 四边形ABDE +S △CDB ,这样可求出四边形ABDE 与△CDF 面积的比值. 【解答】解:由题意得AC =CB +BA =8, ∴AC =BF ,在△AEC 和△BCF 中,∴△AEC ≌△BCF (SSS ), ∴S △AEC =S △BCF ,故可得S △CDF +S △CDB =S ABDE +S △CDB ⇒S 四边形ABDE =S △CDF , ∴四边形ABDE 与△CDF 面积的比值是1:1. 故选:A .【点评】本题考查了面积及等积变换的知识,难度一般,根据题意证明△AEC ≌△BCF 是解答本题的关键,另外要注意等量代换在解答数学题目中的运用. 二、填空题(每小题2分,共16分) 11.﹣27的立方根是 ﹣3 . 【分析】根据立方根的定义求解即可. 【解答】解:∵(﹣3)3=﹣27,∴=﹣3故答案为:﹣3.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同. 12.若一个直角三角形的两直角边长分别为12、5,则其斜边长为 13 . 【分析】由两个直角边的长度,利用勾股定理可求出斜边的长度,此题得解.【解答】解:=13.故答案为:13.【点评】本题考查了勾股定理,牢记“在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方”是解题的关键.13.已知a 、b 为两个连续的整数,且,则a +b = 11 .【分析】先求出,得出a =5,b =6,代入求出即可.【解答】解:∵∴∵a<b,且a、b为两个连续的整数∴a=5,b=6∴a+b=5+6=11,故答案为11.【点评】本题考查了估计无理数的大小的应用,解此题的关键是确定的范围,题目比较好,但是一道比较容易出错的题目.14.如图,点D是BC上的一点,若△ABC≌△ADE,且∠B=65°,则∠EAC=50°.【分析】根据全等三角形的性质得到AB=AD,∠EAD=∠CAB,根据等腰三角形的性质、三角形内角和定理计算,得到答案.【解答】解:∵△ABC≌△ADE,∴AB=AD,∠EAD=∠CAB,∴∠ADB=∠B=65°,∠EAD﹣∠CAD=∠CAB﹣∠CAD,∴∠EAC=∠BAD=50°,故答案为:50.【点评】本题考查的是全等三角形的性质,等腰三角形的性质,掌握全等三角形的对应角相等、对应边相等是解题的关键.15.如图,已知AD∥BC,DE、CE分别平分∠ADC、∠DCB,AB过点E,且AB⊥AD,若AB=8,则点E到CD的距离为4.【分析】过点E作EF⊥CD于F,根据两直线平行,同旁内角互补可得∠B=90°,然后根据角平分线上的点到角的两边距离相等可得AE=EF=BE,从而得解.【解答】解:如图,过点E作EF⊥CD于F,∵AD∥BC,AB⊥AD,∴∠A=∠B=180°﹣90°=90°,∵CE平分∠BCD,DE平分∠ADC,∴AE=EF=BE,∵AB=8,∴EF=×8=4,即点E到CD的距离为4.故答案为:4.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作出辅助线构造出角平分线的性质的应用条件是解题的关键.16.如图,已知△ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点,如果点M在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点N在线段CA上由C点向A点运动,若使△BDM与△CMN全等,则点N的运动速度应为2或3厘米/秒.【分析】分两种情形讨论①当BD=CM=4,BM=CN时,△DBM≌△MCN,②当BD=CN,BM=CM时,△DBM≌△NCM,再根据路程、时间、速度之间的关系求出点N的速度.【解答】解:∵AB=AC,∴∠B=∠C,①当BD=CM=6厘米,BM=CN时,△DBM≌△MCN,∴BM=CN=2厘米,t==1,∴点N运动的速度为2厘米/秒.②当BD=CN,BM=CM时,△DBM≌△NCM,∴BM=CM=4厘米,t==2,CN=BD=6厘米,∴点N的速度为:=3厘米/秒.故点N的速度为2或3厘米/秒.故答案为:2或3.【点评】本题考查等腰三角形的性质、全等三角形的判定和性质,用分类讨论是正确解题的关键.17.如图,在△ABC和△ADC中,已知AB=8,∠ACB=105°,∠B=45°,且∠ACB=∠BAD,∠B=∠D,则线段CD的长是8.【分析】根据题意和图形,利用勾股定理,锐角三角函数可以求得CD的长,本题得以解决.【解答】解:作CE⊥AB于点E,作AF⊥CD于点F,则∠CED=∠CEB=90°,∠AFD=∠AFC=90°,∵在△ABC和△ADC中,AB=8,∠ACB=105°,∠B=45°,且∠ACB=∠BAD,∠B=∠D,∴∠BCE=45°,∠D=45°,∠BAD=105°,∴∠ECA=60°,∴∠CAE=30°,∴∠DAC=75°,∴∠DCA=60°,设BE=a,则CE=a,AE=8﹣a,∵∠CAE=30°,∠CEA=90°,∴=tan30°,解得,a=4(﹣1),∴AC=2a=8(﹣1),∵∠AFC=90°,∠ACF=60°,∴CF=4(﹣1),AF=12﹣4,∵∠AFD=90°,∠D=45°,∴DF=AF=12﹣4,∴CD=DF+CF=12﹣4+4(﹣1)=8,故答案为:8.【点评】本题考查勾股定理、含30°角的直角三角形、等腰直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=5,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是.【分析】如图,取AB的中点E,连接CE,PE.由△QBC≌△PBE(SAS),推出QC=PE,推出当EP⊥AC 时,QC的值最小;【解答】解:如图,取AB的中点E,连接CE,PE.∵∠ACB=90°,∠A=30°,∴∠CBE=60°,∵BE=AE,∴CE=BE=AE,∴△BCE是等边三角形,∴BC=BE,∵∠PBQ=∠CBE=60°,∴∠QBC=∠PBE,∵QB=PB,CB=EB,∴△QBC≌△PBE(SAS),∴QC=PE,∴当EP⊥AC时,QC的值最小,在Rt△AEP中,∵AE=,∠A=30°,∴PE=AE=,∴CQ的最小值为.【点评】本题考查全等三角形的判定和性质,等边三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.三、解答题(共74分)19.(10分)计算:(1);(2)(2018﹣π)0﹣()﹣1++|﹣2|【分析】(1)直接利用二次根式以及立方根的性质分别化简得出答案;(2)利用负指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:(1)原式=4+2﹣1=5;(2)原式=1﹣2+3+2﹣=4﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(10分)求下列各式中x的值:(1)9x2﹣4=0;(2)(3x﹣1)3+64=0.【分析】(1)先移项,然后开方即可得出x的值.(2)先移项,然后开立方可得出3x﹣1的值,进而可得出x的值.【解答】解:(1)原方程可化为:x2=,∴x=±;(2)原方程可化为:(3x﹣1)3=﹣64,∴3x﹣1=﹣4,解得:x=﹣1.【点评】本题考查了平方根和立方根的知识点.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.21.(6分)已知某正数的平方根是2a﹣7和a+4,b﹣12的立方根为﹣2.(1)求a、b的值;(2)求a+b的平方根.【分析】利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a的值,根据立方根的定义求出b的值,根据算术平方根的定义求出a+b的算术平方根.【解答】解:(1)由题意得,2a﹣7+a+4=0,解得:a=1,b﹣12=﹣8,解得:b=4;(2)a+b=5,a+b的平方根为.【点评】本题考查的是平方根、立方根和算术平方根的定义,正数的平方根有两个,且互为相反数;正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.22.(6分)如图,点E在线段AC上,BC∥DE,AC=DE,CB=CE,求证:∠A=∠D.【分析】根据平行线的性质和全等三角形的判定可以判断△ABC≌△DCE,然后根据全等三角形的性质即可证明结论成立.【解答】证明:∵BC∥DE,∴∠BCA=∠CED,在△ABC和△DCE中,,∴△ABC≌△DCE(SAS),∴∠A=∠D.【点评】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,利用全等三角形的判定和性质解答.23.(6分)如图,在长度为1个单位的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线MN成轴对称的△A1B1C1;(不写画法)(2)请你判断△ABC的形状,并求出AC边上的高.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)利用勾股定理以及勾股定理的逆定理判断即可;【解答】解:(1)△A1B1C1如图所示.(2)∵AB==,BC==,AC==,∴AB2+BC2=AC2,AB=BC,∴△ABC是等腰直角三角形.设AC边上的高为h,则有:=•h,∴h=.∴AC边上的高为.【点评】本题考查作图﹣轴对称变换,勾股定理,勾股定理的逆定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(8分)在等腰△ABC中,已知AB=AC,BD⊥AC于D.(1)若∠A=48°,求∠CBD的度数;(2)若BC=15,BD=12,求AB的长.【分析】(1)根据等腰三角形的性质和直角三角形的两个锐角互余,可以求得∠CBD的度数;(2)根据题目中的数据和勾股定理,可以求得AB的长.【解答】解:(1)∵在等腰△ABC中,AB=AC,BD⊥AC,∴∠ABC=∠C,∠ADB=90°,∵∠A=48°,∴∠ABC=∠C=66°,∠ABD=42°,∴∠CBD=24°;(2)∵BD⊥AC,∴∠BDC=90°,∵BC=15,BD=12,∴CD=9,设AB=x,则AD=x﹣9,∵∠ADB=90°,BD=12,∴122+(x﹣9)2=x2,解得,x=,即AB=.【点评】本题考查勾股定理,等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.(8分)已知两个等腰直角△ABC和△CDE,它们的两个直角顶点B、D在直线MN上,过点A、E分别作AG⊥MN,EF⊥MN,垂足分别为G、F.(1)如图1,当△ABC和△CDE在△BCD的外部时,请你探索线段EF、DB、AG之间的数量关系,其数量关系为BD=EF+AG..(2)如图2,将图1中的△ABC沿BC翻折,其他条件不变,那么(1)中的结论是否仍然成立?若成立,请你给出证明,若不成立,请探索它们的数量关系,并说明理由.【分析】(1)结论:BD=EF+AG.只要证明△FDE≌△HCD(AAS),可得EF=DH,同理可证:△BHC≌△AGB,可得AG=BH,即可解决问题;(2)结论不变,证明方法类似;【解答】解:(1)结论:BD=EF+AG.理由:如图1中,作CH⊥MN于H.∵EF⊥MN,AG⊥MN,∴∠EFD=∠EDC=∠CHD=90°,∴∠EDF+∠CDH=90°,∠CDH+∠DCH=90°,∴∠EDF=∠DCH,∵DE=DC,∴△FDE≌△HCD(AAS),∴EF=DH,同理可证:△BHC≌△AGB,∴AG=BH,∴BD=EF+AG.故答案为BD=EF+AG.(2)结论不变.理由:如图2中,作CH⊥MN于H.∵EF⊥MN,AG⊥MN,∴∠EFD=∠EDC=∠CHD=90°,∴∠EDF+∠CDH=90°,∠CDH+∠DCH=90°,∴∠EDF=∠DCH,∵DE=DC,∴△FDE≌△HCD(AAS),∴EF=DH,同理可证:△BHC≌△AGB,∴AG=BH,∴BD=EF+AG.故答案为BD=EF+AG.【点评】本题考查翻折变换、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.26.(10分)画图计算:(1)已知△ABC,请用尺规在图1中△ABC内确定一个点P,使得点P到AB和BC的距离相等,且满足P 到点B和点C的距离相等(不写作法,保留作图痕迹).(2)如图2,如果点P是(1)中求作的点,点E、F分别在边AB、BC上,且PE=PF.①若∠ABC=60°,求∠EPF的度数;②若BE=2,BF=8,EP=5,求BP的长.(3)如图3,如果点P是△ABC内一点,且点P到点B的距离是7,若∠ABC=45°,请分别在AB、BC上求作两个点M、N,使得△PMN的周长最小(不写作法,保留作图痕迹),则△PMN的最小值为7【分析】(1)作∠ABC的平分线BM,线段BC的垂直平分线EF,直线EF交射线BM于点P,点P即为所求;(2)①由Rt△PME≌Rt△PNF(HL),推出∠EPM=∠FPN,推出∠EPF=∠MPN,即可解决问题;②由Rt△PMB≌Rt△PNB(HL),推出BM=BN,由Rt△PME≌Rt△PNF(HL),推出EM=FN,推出BE+BF=BM﹣EM+BN+NF=2BN=10,推出BN=NM=5,再利用勾股定理即可解决问题;(3)分别作点P关于边AB、BC的对称点E、F,连接EF,分别与边AB、BC交于点M、N,连接PM、PN.则线段EF的长度即为△PMN的周长的最小值;【解答】解:(1)如图,点P即为所求;(2)①连接BP,作PM⊥AB于M,PN⊥BC于N.∵BP平分∠ABC,PM⊥AB,PN⊥BC,∴PM=PN,∵PE=PF,∠PME=∠PNF=90°,∴Rt△PME≌Rt△PNF(HL),∴∠EPM=∠FPN,∴∠EPF=∠MPN,∵∠MPN=360°﹣90°﹣90°﹣60°=120°,∴∠EPF=120°.②∵PB=PB,PM=PN,∠PMB=∠PFB=90°∴Rt△PMB≌Rt△PNB(HL),∴BM=BN,∵Rt△PME≌Rt△PNF(HL),∴EM=FN,∴BE+BF=BM﹣EM+BN+NF=2BN=10,∴BN=NM=5,∵BE =2,PE =5,∴EM =3,PM ==4,∴BP ==.(3)分别作点P 关于边AB 、BC 的对称点E 、F ,连接EF ,分别与边AB 、BC 交于点M 、N ,连接PM 、PN .则线段EF 的长度即为△PMN 的周长的最小值.∵点E 与点P 关于AB 对称,点F 与点P 关于BC 对称, ∴∠EBA =∠PBA ,∠FBC =∠PBC ,BE =BF =BP =7.∴EF =BE =7∴△PMN 周长的最小值为7.故答案为7.【点评】本题考查作图﹣复杂作图,角平分线的性质,线段的垂直平分线的性质,轴对称最短问题等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用轴对称解决最短问题,属于中考常考题型.27.(10分)【定义】数学课上,陈老师对我们说,如果1条线段将一个三角形分成2个等腰三角形,那么这1条线段就称为这个三角形的“好线”,如果2条线段将一个三角形分成3个等腰三角形,那么这2条线段就称为这个三角形的“好好线”.【理解】如图①,在△ABC 中,∠A =36°,∠C =72°,请你在这个三角形中画出它的“好线”,并标出等腰三角形顶角的度数.如图②,已知△ABC 是一个顶角为45°的等腰三角形,请你在这个三角形中画出它的“好好线”,并标出所分得的等腰三角形底角的度数. 【应用】(1)在△ABC 中,已知一个内角为42°,若它只有“好线”,请你写出这个三角形最大内角的所有可能值 84°或103.5°或124°或117°或126° ;(2)在△ABC 中,∠C =27°,AD 和DE 分别是△ABC 的“好好线”,点D 在BC 边上,点E 在AB 边上,且AD =DC ,BE =DE ,请你根据题意画出示意图,并求∠B 的度数.【分析】【定义】如图①,如图②所示,根据题意画出图形即可;【应用】(1)①如图③当∠B=42°,AD为“好线”,②如图④当∠B=42°,AD为“好线”,③如图⑤当∠ABC=42°时,BD为“好线”,④如图⑥,当∠B=42°时,CD为“好线”,⑤如图⑦,当∠B=42°时,CD为“好线”,根据等腰三角形的性质即可得到结论;(2)设∠B=x°,①当AD=DE时,如图1(a),②当AD=AE时,如图1(b),③当EA=DE时,根据等腰三角形的性质列方程即可得到结论.【解答】解:【定义】如图①,如图②所示,【应用】(1)①如图③当∠B=42°,AD为“好线”,则AD=AD=BD,故这个三角形最大内角是∠C=84°;②如图④当∠B=42°,AD为“好线”,则AB=AD,AD=CD,这个三角形最大内角是∠BAC=103.5°;③如图⑤当∠ABC=42°时,BD为“好线”,则AD=BD,CD=BC,故这个三角形最大内角是∠C=124°,④如图⑥,当∠B=42°时,CD为“好线”,则AD=CD=BC,故这个三角形最大内角是∠ACB=117°,⑤如图⑦,当∠B=42°时,CD为“好线”,则AD=AC,CD=BD,故这个三角形最大内角是∠ACB=126°,综上所述,这个三角形最大内角的所有可能值是84°或103.5°或124°或117°或126°,故答案为:84°或103.5°或124°或117°或126°;(2)设∠B=x°,①当AD=DE时,如图1(a),∵AD=CD,∴∠C=∠CAD=27°,∵DE=EB,∴∠B=∠EDB=x°∴∠AED=∠DAE=2x°,∴27×2+2x+x=180,∴x=42,∴∠B=42°;②当AD=AE时,如图1(b),∵AD=CD,∴∠C=∠CAD=27°,∵DE=EB,∴∠B=∠EDB=x°∴∠AED=∠ADE=2x°,∴2x+x=27+27,∴x=18,∴∠B=18°.③当EA=DE时,∵90﹣x+27+27+x=180,∴x不存在,应舍去.综合上述:满足条件的x=42°或18°.【点评】本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键,并注意第二问的分类讨论的思想,不要丢解.。
人教版2018-2019年八年级上期末数学试卷含答案解析
八年级(上)期末数学试卷一、选择题1.下列各式中计算正确的是()A.B.C.D.2.根据下列表述,能确定具体位置的是()A.某电影院2排 B.大桥南路C.北偏东30°D.东经118°,北纬40°3.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2 B.8 C.D.4.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60° B.65° C.75° D.80°5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.6.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角7.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:册数0 1 2 3 4人数 3 13 16 17 1则这50名学生读数册数的众数、中位数是()A.3,3 B.3,2 C.2,3 D.2,28.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对9.对于一次函数y=x+6,下列结论错误的是()A .函数值随自变量增大而增大B .函数图象与x 轴正方向成45°角C .函数图象不经过第四象限D .函数图象与x 轴交点坐标是(0,6)10.如果方程组的解与方程组的解相同,则a+b 的值为( )A .﹣1B .2C .1D .011.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么(a+b )2的值为( )A .49B .25C .13D .112.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x 元,包子每个y 元,则所列二元一次方程组正确的是( )A .B .C .D .13.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A.B.C.D.14.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B. C. D.15.如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γ B.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°二、填空题16.若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第象限.17.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.18.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠BAC的度数是.19.如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x= .20.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为.21.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为.三、解答题22.(1)计算:(2)解方程组:.23.(1)如图1,一住宅楼发生火灾,消防车立即赶到准备在距大厦6米处升起云梯到火灾窗口展开营救,已知云梯AB长15米,云梯底部B距地面2米,此时消防队员能否成功救下等候在距离地面约14米窗口的受困人群?说说你的理由.(2)如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.24.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试75 80 90面试93 70 68根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?25.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.26.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.27.小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min 速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?28.平面内的两条直线有相交和平行两种位置关系,下面我们就来研究其中的几种位置关系中角所存在的几种数量关系.(1)问题探究1:如图①,若AB∥CD,点P在AB、CD外部,则有∠D=∠BOD,又因为∠BOD是△POB的外角,故∠BOD=∠BPD+∠B,得∠BPD=∠D﹣∠B.将点P移到AB、CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)问题探究2:在图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD延长线于点Q,如图③,则∠BPD﹑∠B﹑∠PDQ﹑∠BQD之间有何数量关系?请证明你的结论;(3)根据(2)的结论直接写出图④中∠A+∠B+∠C+∠D+∠E+∠F的度数.八年级(上)期末数学试卷参考答案与试题解析一、选择题1.下列各式中计算正确的是()A.B.C.D.【考点】立方根;算术平方根.【分析】根据算术平方根和立方根的概念计算即可求解.【解答】解:A、=9,故选项错误;B、=5,故选项错误;C、=﹣1,故选项正确;D、(﹣)2=2,故选项错误.故选:C.【点评】本题考查了算术平方根和立方根的概念.算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.2.根据下列表述,能确定具体位置的是()A.某电影院2排 B.大桥南路C.北偏东30°D.东经118°,北纬40°【考点】坐标确定位置.【分析】根据坐标的定义,确定位置需要两个数据对各选项分析判断利用排除法求解.【解答】解:A、某电影院2排,不能确定具体位置,故本选项错误;B、大桥南路,不能确定具体位置,故本选项错误;C、北偏东30°,不能确定具体位置,故本选项错误;D、东经118°,北纬40°,能确定具体位置,故本选项正确.故选D.【点评】本题考查了坐标确定位置,理解确定坐标的两个数是解题的关键.3.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2 B.8 C.D.【考点】算术平方根.【专题】压轴题;图表型.【分析】根据图中的步骤,把64输入,可得其算术平方根为8,8再输入得其算术平方根是,是无理数则输出.【解答】解:由图表得,64的算术平方根是8,8的算术平方根是;故选D.【点评】本题考查了算术平方根的定义,看懂图表的原理是正确解答的关键.4.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60° B.65° C.75° D.80°【考点】平行线的性质.【分析】根据三角形外角性质求出∠EOB,根据平行线性质得出∠C=∠EOB,代入即可得出答案.【解答】解:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°,∵AB∥CD,∴∠C=∠EOB=75°,故选C.【点评】本题考查了平行线性质和三角形外角性质的应用,关键是得出∠C=∠EOB和求出∠EOB的度数.5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.【考点】一次函数的图象;正比例函数的性质.【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=kx+k的图象经过一、二、三象限.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.6.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角【考点】命题与定理.【分析】分别根据平行线的性质、直角三角形的性质、三角形的外角分别对每一项进行分析即可.【解答】解:A.两直线平行,同旁内角互补,故本选项错误,是假命题,B.直角三角形的两锐角互余,正确,是真命题,C.三角形的一个外角等于与它不相邻的两个内角之和,故本选项错误,是假命题,D.三角形的一个外角大于与它不相邻的内角,故本选项错误,是假命题,故选:B.【点评】此题考查了命题与定理,用到的知识点是平行线的性质、直角三角形的性质、三角形的外角,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:册数0 1 2 3 4人数 3 13 16 17 1则这50名学生读数册数的众数、中位数是()A.3,3 B.3,2 C.2,3 D.2,2【考点】众数;中位数.【分析】在这组样本数据中,3出现的次数最多,所以求出了众数,将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2;【解答】解:∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,有=2,∴这组数据的中位数为2;故选B.【点评】本题考查的知识点有:用样本估计总体、众数以及中位数的知识,解题的关键是牢记概念及公式.8.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:∵正方形小方格边长为1,∴BC==2,AC==,AB==,在△ABC中,∵BC2+AC2=52+13=65,AB2=65,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选:A.【点评】考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.9.对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【考点】一次函数的性质.【专题】探究型.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵一次函数y=x+6中k=1>0,∴函数值随自变量增大而增大,故A选项正确;B、∵一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),(0,6),∴此函数与x轴所成角度的正切值==1,∴函数图象与x轴正方向成45°角,故B选项正确;C、∵一次函数y=x+6中k=1>0,b=6>0,∴函数图象经过一、二、三象限,故C选项正确;D、∵令y=0,则x=﹣6,∴一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),故D选项错误.故选:D.【点评】本题考查的是一次函数的性质,熟知一次函数的增减性及与坐标轴的交点坐标是解答此题的关键.10.如果方程组的解与方程组的解相同,则a+b的值为()A.﹣1 B.2 C.1 D.0【考点】二元一次方程组的解.【分析】把代入方程组,即可得到一个关于a,b的方程组,即可求解.【解答】解:把代入方程组,得:,方程左右两边相加,得:7(a+b)=7,则a+b=1.故选C.【点评】本题考查了二元一次方程组的解的定义,理解定义是关键.11.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.1【考点】勾股定理.【专题】图表型.【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=24.根据完全平方公式即可求解.【解答】解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b)2=25+24=49.故选:A.【点评】本题考查了勾股定理的应用,解题的关键是注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.12.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①5个馒头的钱+3个包子的钱=10+1元;②(8个馒头的钱+6个包子的钱)×9折=18元,根据等量关系列出方程组即可.【解答】解:若馒头每个x元,包子每个y元,由题意得:,故选:B .【点评】此题主要考查了由实际问题抽象出二元一次方程组的应用,关键是正确理解题意,根据花费列出方程.13.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A .B .C .D .【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【解答】解:直线l 1经过(2,3)、(0,﹣1),易知其函数解析式为y=2x ﹣1;直线l 2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l 1,l 2的交点坐标为解的方程组是:.故选C.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.14.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B. C. D.【考点】函数的图象.【分析】根据玉米种子的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子的价格打6折,可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,即可得到答案.【解答】解:可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,故选:B.【点评】本题主要考查了函数的图象,关键是分析出分两段,每段y都随x的增大而增大,只不过快慢不同.15.如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γ B.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°【考点】平行线的性质;垂线.【专题】探究型.【分析】此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系.【解答】解:延长DC交AB与G,延长CD交EF于H.直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,因为AB∥EF,所以∠1=∠2,于是90°﹣α=β﹣γ,故α+β﹣γ=90°.故选D.【点评】此题主要是通过作辅助线,构造了三角形以及由平行线构成的内错角.掌握三角形的外角的性质以及平行线的性质:两条直线平行,内错角相等.二、填空题16.若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第一象限.【考点】点的坐标.【分析】根据第三象限内点的坐标,可得关于b 的不等式,根据不等式的性质,可得b 的相反数的取值范围,根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【解答】解:由点A (﹣2,b )在第三象限,得b <0,两边都除以﹣1,得﹣b >0,4>0,B (﹣b ,4)在第 一象限,故答案为:一.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).17.一组数据1,3,2,5,x 的平均数为3,那么这组数据的方差是 2 .【考点】方差;算术平均数.【专题】计算题.【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算.一般地设n 个数据,x 1,x 2,…x n 的平均数为, =(x 1+x 2+…+x n ),则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].【解答】解:x=5×3﹣1﹣3﹣2﹣5=4,s 2= [(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2.故答案为2.【点评】本题考查了方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为, =(x 1+x 2+…+x n ),则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠BAC 的度数是 80° .【考点】三角形内角和定理.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠PCD=∠P+∠PCB ,根据角平分线的定义可得∠PCD=∠ACD ,∠PBC=∠ABC ,然后整理得到∠PCD=∠A ,再代入数据计算即可得解.【解答】解:在△ABC 中,∠ACD=∠A+∠ABC ,在△PBC 中,∠PCD=∠P+∠PBC ,∵PB 、PC 分别是∠ABC 和∠ACD 的平分线,∴∠PCD=∠ACD,∠PBC=∠ABC,∴∠P+∠PCB=(∠A+∠ABC)=∠A+∠ABC=∠A+∠PCB,∴∠PCD=∠A,∴∠BPC=40°,∴∠A=2×40°=80°,即∠BAC=80°.故答案为:80°.【点评】本题考查了三角形内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记定理与性质并求出∠PCD=∠A是解题的关键.19.如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x= 4 .【考点】一次函数与一元一次方程.【分析】根据一次函数图象可得一次函数y=ax+b的图象经过(4,1)点,进而得到方程的解.【解答】解:根据图象可得,一次函数y=ax+b的图象经过(4,1)点,因此关于x的方程ax+b=1的解x=4,故答案为:4.【点评】此题主要考查了一次函数与方程,关键是正确利用数形结合的方法从图象中找到正确答案.20.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为14或4 .【考点】勾股定理.【专题】分类讨论.【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为DC﹣BD=9﹣5=4.故答案为14或4.【点评】本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.21.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为(36,0).【考点】旋转的性质;坐标与图形性质;勾股定理.【专题】压轴题;规律型.【分析】如图,在△AOB中,∠AOB=90°,OA=3,OB=4,则AB=5,每旋转3次为一循环,则图③、④的直角顶点坐标为(12,0),图⑥、⑦的直角顶点坐标为(24,0),所以,图⑨、⑩10的直角顶点为(36,0).【解答】解:∵在△AOB中,∠AOB=90°,OA=3,OB=4,∴AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0).故答案为:(36,0).【点评】本题主要考查了旋转的性质、坐标与图形的性质及勾股定理,找出图形旋转的规律“旋转3次为一循环”,是解答本题的关键.三、解答题22.(1)计算:(2)解方程组:.【考点】二次根式的混合运算;解二元一次方程组.【分析】(1)直接利用二次根式混合运算法则化简求出答案;(2)直接利用代入消元法解方程得出答案.【解答】解:(1)=3﹣6﹣3=﹣6;(2),由②得:x=6﹣3y,则2(6﹣3y)+y=5,解得:y=﹣1,则2x﹣1=5,解得:x=3,故方程组的解为:.【点评】此题主要考查了二次根式的混合运算以及二元一次方程组的解法,正确化简二次根式是解题关键.23.(1)如图1,一住宅楼发生火灾,消防车立即赶到准备在距大厦6米处升起云梯到火灾窗口展开营救,已知云梯AB长15米,云梯底部B距地面2米,此时消防队员能否成功救下等候在距离地面约14米窗口的受困人群?说说你的理由.(2)如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.【考点】勾股定理的应用;平行线的判定与性质.【分析】(1)先根据题意建立直角三角形,然后利用勾股定理求出AB的长度,最后于云梯的长度比较即可得出答案.(2)由已知条件和对顶角相等得出∠1=∠3,证出BD∥CE,由平行线的性质得出∠ABD=∠C,在证出∠ABD=∠D,得出AC∥DF,由平行线的性质即可得出结论.【解答】(1)解:能救下.理由如下:如图所示:由题意得,BC=6米,AC=14﹣2=12米,在RT△ABC中,AB2=AC2+BC2,∴AB2=(14﹣2)2+62=144+36=180,而152=225>180,故能救下.(2)证明:∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF,∴∠A=∠F.【点评】此题考查了勾股定理的应用、平行线的判定与性质;熟练掌握勾股定理和平行线的判定与性质,在(1)中,根据题意得出AC、BC的长度,利用勾股定理求出AB是解答本题的关键.24.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试75 80 90面试93 70 68根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?【考点】加权平均数;统计表;扇形统计图.【分析】(1)根据扇形统计图中的数据即可求得甲、乙、丙的民主评议得分;(2)根据平均数的概念求得甲、乙、丙的平均成绩,进行比较;(3)根据加权成绩分别计算三人的个人成绩,进行比较.【解答】解:(1)甲、乙、丙的民主评议得分分别为:200×25%=50分,200×40%=80分,200×35%=70分;(2)甲的平均成绩为:,乙的平均成绩为:,丙的平均成绩为:.由于76.67>76>72.67,所以候选人乙将被录用;(3)如果将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么甲的个人成绩为:,乙的个人成绩为:,丙的个人成绩为:.由于丙的个人成绩最高,所以候选人丙将被录用.【点评】本题考查了加权平均数的概念及求法,属于基础题,牢记加权平均数的计算公式是解题的关键.25.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.【考点】一次函数图象上点的坐标特征.【分析】(1)把x=0,y=0分别代入函数解析式,即可求得相应的y、x的值,则易得点A、B的坐标;=AP•OB=,则AP=.设(2)由B、A的坐标易求:OB=3,OA=.然后由三角形面积公式得到S△ABP点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,由此可以求得m的值.【解答】解:(1)由x=0得:y=3,即:B(0,3).由y=0得:2x+3=0,解得:x=﹣,即:A(﹣,0);(2)由B(0,3)、A(﹣,0)得:OB=3,OA==AP•OB=∵S△ABP∴AP=,解得:AP=.设点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,解得:m=1或﹣4,∴P点坐标为(1,0)或(﹣4,0).【点评】本题考查了一次函数图象上点的坐标特征.一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.26.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.【考点】二元一次方程组的应用;二元一次方程的应用.【分析】(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B 型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.【解答】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;。
江苏无锡市2018-2019学年第二学期期末考试八年级数学试题及答案
江苏无锡市2018-2019学年第二学期期末考试八年级数学试题2019.6本试卷分试题和答案卷两部分,所有答案一律写在答题卷上.考试时间为100分钟,试卷满分120分.注意事项:1.答题前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、班级、考试号填写在答题卷的相应位置上,并认真核对姓名、班级、考试号是否与本人的相符合.2.答题必须用0.5毫米黑色墨水签字笔作答,写在答题卷上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10小题,每题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请把正确选项的字母代号填涂在答题卷相应位置.)1.下列图案中,既是中心对称图形又是轴对称图形的是( )2.为了解我市八年级8000名学生其中数学考试情况,从中抽取了500名学生的数学成绩进行统计,下列说法正确的是( )A.这种调查方式是普查B.每名学生的数学成绩是个体C.8000名学生是总体D.500名学生是总体的一个样本 3.412的值等于( ) A.23 B.23- C.23± D.1681 4.下列事件中,属于随机事件的是( )A.一组对边平行且一组对边相等的四边形是平行四边形.B.一组对边平行另一组对边相等的四边形是平行四边形.C.矩形的两条对角线相等.D.菱形的每一条对角线平分一组对角.5.如图,ABC △中,AC AB =,︒=∠40A ,将ABC △绕点B 逆时针旋转得到EBD △,若点C 的对应点D 落在AB 边上,则旋转角为( )A.︒140B.︒80C.︒70D.︒406.函数1-=kx y 与)0(≠=k xk y 在同一坐标系内的图象可能是( )7.已知反比例函数xy 6=的图像上有两点)2,3(b a A -,)2,(-b a B ,且0<a ,则b 的取值范围是( ) A.2<b B.0<b C.02<<-b D.2-<b8.如图,四边形ABCD 中,E 是BC 的中点,连接DE 并延长,交AB 的延长线于F 点,BF AB =.添加一个条件,使四边形ABCD 是平行四边形.则下面正确的是( )A.BC AD =B.BF CD =C.C A ∠=∠D.CDE F ∠=∠9.矩形ABCD 与矩形CEFG 如图放置,点E C B 、、共线,点G D C 、、共线,连接AF ,取AF 的中点H ,连接GH .若3==EF BC ,1==CE CD ,=GH ( ) A.2 B.3 C.2 D.34 10.如图,矩形OABC 在平面直角坐标系中,5=AC ,3=OA ,把矩形OABC 沿直线DE 对折使点C 落在点A 处,直线DE 与AB AC OC 、、的交点分别为E F D 、、,点M 在y 轴上,点N 在坐标平面内,若四边形MFDN 是菱形,则菱形MFDN 的面积是( ) A.825 B.413 C.827 D.415二、填空题;(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置上.........) 11.若分式xx 1+值的0,则x 的值为 . 12.式子2-x 有意义的实数x 的取值范围是 .13.若12与最简二次根式a 是同类二次根式,则=a .14.若关于x 的方程xk x x -=--323会产生增根,则k 的值为 . 15.在平行四边形ABCD 中,AC AB ⊥,若4=AB ,6=AC ,则BD 的长是 .16.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交BC AD 、于F E 、两点,若32=AC ,︒=∠30DAO ,则FB 的长度为 .17.如图,平行四边形ABCD 中,点E 为BC 边上一点,AE 和BD 交于点F ,已知ABF △的面积等于6,BEF △的面积等于4,则四边形CDFE 的面积等于 .18.如图,将边长为4的正方形ABCD 纸片沿EF 折叠,点C 落在AB 边上的点G 处,点D 与点H 重合,CG 与EF 交于点P ,取GH 的中点Q ,连接PQ ,则GPQ △的周长最小值是 .三、解答题(本大题共8小题,共计74分.解答需写出必要的文字说明或演算步骤.)19.(本题满分8分)计算:(1)2)2(228-+--; (2))33)(33(333-++-20.(本题满分12分)化简或解方程:(1)化简:291833mm -+-(2)先化简再求值:ab a a b ab a 222)2(-÷--,其中21+=a ,21-=b .(3)解分式方程:1223--=+x x x .21.(本题满分8分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x (分),且10050<≤x (无满分),将其按分数段分为五组,绘制出以下不完整表格:根据表格提供的信息,解答以下问题:(1)本次决赛共有 名学生参加;(2)直接写出表中:=a =b ;(3)请补全右面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .22.(本题满分8分)在平行四边形ABCD 中,点F E 、分别在CD AB 、上,且CF AE =.(1)求证:CBF ADE △△≅;(2)若BF DF =,求证:四边形DEBF 为菱形.23.(本题满分6分)如图,反比例函数)0(>=x xk y 的图象过格点P (网格线的焦点). 在图中用直尺和2B 铅笔画出三个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O ,点P ;②矩形的面积等于k 的值.24.(本题满分10分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了24000元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于24600元,问甲种商品按原销售单价至少销售多少件?25.(本题满分10分)如图,在平面直角坐标系xoy 中,位于第二象限的点A 在反比例函数)0(1<=x x k y 的图像上,点B 与点A 关于原点O 对称,直线n mx y +=2经过点B ,且与反比例函数)0(1<=x xk y 的图像交于点C .(1)当点A 的横坐标是2-,点C 坐标是)2,8(-时,分别求出21y y 、的函数表达式;(2)若点C 的横坐标是点A 的横坐标的4倍,且ABC △的面积是16,求k 的值.26.(本题满分12分)如图,在平面直角坐标系xoy 中,矩形OABC 的顶点B 坐标为)5,12(,点D 在CB 边上从点C 运动到点B ,以AD 为边作正方形ADEF ,连BF BE 、,在点D 运动过程中,请探究以下问题:(1)ABF △的面积是否改变,如果不变,求出该定值;如果改变,请说明理由;(2)若BEF △为等腰三角形,求此时正方形ADEF 的边长;(3)设),(y x E ,直接写出y 关于x 的函数关系式及自变量x 的取值范围.。
最新2018-2019学年苏教版数学八年级上册期末模拟检测卷及答案解析-精品试卷
苏教版八年级第一学期期末模拟考试数学试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是(,).9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为人.11.比较大小:1(填“>”、“<”或“=”).12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= .16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是(填序号).三、解答题(本大题共10小题,共68分)17.(4分)计算:.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= km,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数就是无限不循环小数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批圆珠笔的寿命,调查具有破坏性,适合抽样调查,故A错误;B、检查一枚用于发射卫星的运载火箭的各零部件是精确度要求高的调查,适合普查,故B正确;C、考察人们保护海洋的意识,调查范围广适合抽样调查,故C错误;D、了解全国九年级学生的身高现状,调查范围广适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【解答】解:A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、线段有2条对称轴,故此选项错误;B、角有1条对称轴,故此选项错误;C、等腰三角形有1条或3条对称轴,故此选项错误;D、正方形有4条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,关键是正确确定对称轴.5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质可知一次函数y=2x﹣3的图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【解答】解:∵y=2x﹣3,∴该函数的图象经过第一、三、四象限,不经过第二象限,故选:B.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【解答】解:A、从一装有2个白球和1个红球的袋子中任取一球,取到白球的概率是≈0.67>0.16,故此选项错误;B、从一副扑克牌中任意抽取一张,这张牌是“红色的概率=≈0.24>0.16,故此选项错误;C、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率==0.5>0.16,故此选项错误;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率=≈0.16故此选项正确,故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是±2 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是( 1 ,﹣1 ).【分析】让横坐标不变,纵坐标加1可得到所求点的坐标.【解答】解:∵﹣2+1=﹣1,∴点B的坐标是(1,﹣1),故答案为:1,﹣1.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为①③②.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【解答】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;②面朝上的点数大于2的有4种结果,其概率为=;③面朝上的点数是奇数的有3种结果,其概率为=;所以按事件发生的可能性大小,按从小到大排列为①③②,故答案为:①③②.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为120 人.【分析】用学校总人数乘以教师所占的百分比,计算即可得解.【解答】解:1500×(1﹣48%﹣44%)=1500×8%=120.故答案为:120.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.11.比较大小:>1(填“>”、“<”或“=”).【分析】直接估计出的取值范围,进而得出答案.【解答】解:∵2<<3,∴1<﹣1<2,故>1.故答案为:>.【点评】此题主要考查了实数大小比较,正确得出的取值范围是解题关键.12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b .【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.【点评】本题考查了一次函数的性质,解题的关键是找出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数的性质,找出该函数的单调性是关键.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为x>﹣1 .【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【解答】解:当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为:x>﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.【分析】根据线段的垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE==,故答案为:.【点评】本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= 2 .【分析】求出∠BDE=∠FEC=∠AFD=30°,求出∠DEF=∠DFE=∠EDF=60°,推出DF=DE=EF,即可得出等边三角形DEF,根据全等三角形性质推出三个三角形全等即可.求出AB=3BE,即可解答.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC,∠B=∠C=∠A=60°,∵DE⊥BC、EF⊥AC、FD⊥AB,∴∠DEB=∠EFC=∠FDA=90°,∴∠BDE=∠FEC=∠AFD=30°,∴∠DEF=∠DFE=∠EDF=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形,在△ADF、△BED、△CFE中∴△ADF≌△BED≌△CFE,∴AD=BE=CF,∵∠DEB=90°,∠BDE=30°,∴BD=2BE,∴AB=3BE,∴BE=AB=2.故答案为:2.【点评】本题考查了等边三角形性质,含30度角的直角三角形性质,解决本题的关键是熟记含30度角的直角三角形性质.16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是①②③(填序号).【分析】根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【解答】解:由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19﹣9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000﹣1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.【点评】此题主要考查了一次函数的应用,利用数形结合得出乙的运动速度是解题关键.三、解答题(本大题共10小题,共68分)17.(4分)计算:.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=﹣2﹣2+1=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50 ,并补全频数分布直方图;(2)C组学生的频率为0.32 ,在扇形统计图中D组的圆心角是72 度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【分析】(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.【解答】解:(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=人,故答案为:(1)50;(2)0.32;72.【点评】此题考查频数分布直方图,关键是根据频数分布直方图得出信息进行计算.19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.【分析】欲证明DE∥CF,只要证明∠ADE=∠BCF,只要证明△AED≌△BFC即可;【解答】证明:∵AE∥BF,∴∠A=∠B,∵AC=BD,∴AC+BD=BD+CD,即:AD=BC,在△AED和△BFC中,∴△AED≌△BFC(SAS),∴∠ADE=∠BCF,∴DE∥CF.【点评】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.【分析】(1)根据角平分线的尺规作图即可得;(2)作DE⊥AB,由△ADB的面积为15cm2求得DE=3cm,再根据角平分线的性质可得.【解答】解:(1)如图所示,AD即为所求;(2)过D作DE⊥AB,E为垂足,由△ADB的面积为15cm2,得AB•ED=15,解得:ED=3cm,∵AD平分∠BAC,DE⊥AB,∠ACB=90°∴CD=ED=3cm.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握角平分线的尺规作图及角平分线的性质.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.【分析】(1)根据平行一次函数的定义可知:k=2,再利用待定系数法求出b的值即可;(2)过点A作AD⊥x轴于D点,利用三角形面积公式解答即可.【解答】解:(1)由已知可设l1对应的函数表达式为y=2x+b,把x=﹣2,y=1代入表达式解得:b=5,∴l1对应的函数表达式为y=2x+5,画图如下:,(2)设l1与l2的交点为A,过点A作AD⊥x轴于D点,由题意得,解得即A(,),则AD=,设l1、l2分别交x轴的于点B、C,由y=﹣2x+4=0,解x=2,即C(2,0)由y=2x+5=0解得,即B(,0)∴BC=,∴即l2与l1及x轴所围成的三角形的面积为.【点评】本题考查了函数的平移和两条直线的平行问题;同时还要熟练掌握若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= 240 km,AB两地的距离为390 km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【分析】(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【解答】解:(1)由题意和图象可得,a=千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:y1=150﹣60xMN所表示的函数关系式为:y2=60x﹣150(3)由y1=60得 150﹣60x=60,解得:x=1.5由y2=60得 60x﹣150=60,解得:x=3.5由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.【分析】(1)只要证明△BDH≌△CEK,即可解决问题;(2)只要证明△DHO≌△EKO即可解决问题;【解答】解:(1)∵DH⊥BC,EK⊥BC,∴∠DHB=∠K=90°,∵AB=AC,∴∠B=∠ACB,又∵∠ACB=∠ECK,∴∠B=∠ECK,在△BDH和△CEK中∵∠ACB=∠ECK,∠B=∠ECK,BD=CE∴△BDH≌△CEK(AAS).∴DH=EK.(2)∵DH⊥AC,EK⊥BC,∴∠DHO=∠K=90°,由(1)得EK=DH,在△DHO和△EKO中,∵∠DHO=∠K,∠DOH=∠EOK,DH=EK∴△DHO≌△EKO(AAS),∴DO=EO.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?【分析】(1)根据总成本y=A种购物袋x个的成本+B种购物袋x个的成本即可得到答案.(2)列出不等式,根据函数的增减性解决.【解答】解:(1)根据题意得:y=(2.3﹣2)x+(3.5﹣3)(4500﹣x)=﹣0.2x+2250即y与x的函数表达式为:y=﹣0.2x+2550,(2)根据题意得:﹣x+13500≤10000,解得:x≥3500元,∵k=﹣0.2<0,∴y随x增大而减小,∴当x=3500时,y取得最大值,最大值y=﹣0.2×3500+2250=1550,答:该厂每天最多获利1550元.【点评】本题考查了销售量、成本、售价、利润之间的关系,正确理解这些量之间的关系是解决问题的关键,学会用函数的增减性解决实际问题.26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.【分析】(1)作△ADC关于CD的对称图形△A′DC,再证明AD=BA′即可;(2)如图,作△ADC关于AC的对称图形△A′DC.过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.由此构建方程即可解决问题;【解答】(1)证明:作△ADC关于CD的对称图形△A′DC,∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,∵CD平分∠ACB,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°﹣∠A=30°,∵CD平分∠ACB,∴∠ACD=45°在△ACD中,∠ADC=180°﹣∠A﹣∠A CD=75°∴∠A′DC=∠ADC=75°,∴∠A′DB=180°﹣∠ADC﹣∠A′DC=30°,∴∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=C A′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△A′DC.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点评】本题考查全等三角形的判定和性质、直角三角形30度角性质、轴对称、勾股定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.。
2018-2019学年江苏省苏州市八年级(上)期末数学试卷(解析版)
2018-2019学年江苏省苏州市八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列四个图标中,轴对称图案为()A.B.C.D.2.(2分)下面四个实数中,是无理数的为()A.0B.C.﹣2D.3.(2分)最“接近”(﹣1)的整数是()A.0B.1C.2D.34.(2分)如图,在△ABC中,AD=BD=AC,∠B=25°,则∠DAC为()A.70°B.75°C.80°D.85°5.(2分)在同一平面直角坐标系中,函数y=﹣x与y=3x﹣4的图象交于点P,则点P 的坐标为()A.(﹣1,1)B.(1,﹣1)C.(2,﹣2)D.(﹣2,2)6.(2分)已知三组数据:①2,3,4;②3,4,5;③,2,.以每组数据分别作为三角形的三边长,其中能构成直角三角形的为()A.①B.①②C.①③D.②③7.(2分)等腰三角形的底边长为24,底边上的高为5,它的腰长为()A.10B.11C.12D.138.(2分)已知m为任意实数,则点A(m,m2+1)不在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限9.(2分)如图,函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,∠BAO的平分线AC与y轴交于点C,则点C的纵坐标为()A.B.C.2D.10.(2分)如图,已知P(3,2),B(﹣2,0),点Q从P点出发,先移动到y轴上的点M处,再沿垂直于y轴的方向向左移动1个单位至点N处,最后移动到点B处停止,当点Q移动的路径最短时(即三条线段PM、MN、NB长度之和最小),点M的坐标为()A.(0,)B.(0,)C.(0,)D.(0,)二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题卡相应位置上,)11.(2分)π﹣30.14.(填“>”、“<”或“=”)12.(2分)27的立方根为.13.(2分)已知一次函数y=kx+1的图象经过点P(﹣1,0),则k=.14.(2分)如图,已知CB⊥AD,AE⊥CD,垂足分别为B、E,AE、BC相交于点F,AB =BC.若AB=8,CF=2,则CD=.15.(2分)如图,直线l1:y=kx+b与直线l2:y=mx+n相交于点P(1,2),则不等式kx+b>mx+n的解集为.16.(2分)如图,△ABC为等腰直角三角形,∠ABC=90°,△ADB为等边三角形,则∠ADC=°.17.(2分)如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D 的对应点D′恰好在线段BE上.若AD=3,DE=1,则AB=.18.(2分)如图,已知点A(a,0)在x轴正半轴上,点B(0,b)在y轴的正半轴上,△ABC为等腰直角三角形,D为斜边BC上的中点,若OD=,则a+b=.三、解答题(本大题共10小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明证明过程或演算步骤.)19.(5分)计算:(﹣)2﹣+(﹣1)0.20.(5分)某人平均一天饮水1980毫升.(1)求此人30天一共饮水多少毫升?(2)用四舍五入法将(1)中计算得到的数据精确到10000,并用科学记数法表示.21.(5分)如图,已知AB⊥BC,AE⊥BE,CD⊥BE,垂足分别为B、E、D,AB=BC.求证:BE=CD.22.(5分)如图,在△ABC中,∠C=90°,DE为AB的垂直平分线,DE交AC于点D,连接BD.若∠ABD=2∠CBD,求∠A的度数.23.(6分)如图,在正方形网格纸中,每个小正方形的边长为1,△ABC三个顶点都在格点上.(1)写出点A、B、C的坐标;(2)直线l经过点A且与y轴平行,画出△ABC关于直线l成轴对称的△A1B1C1,连接BC1,求线段BC1的长.24.(6分)如图,在△ABD和△ABC中,∠ADB=∠ACB=90°,点E为AB中点,AB =8,CD=4,点E、F关于CD成轴对称,连接FD、FC.(1)求证:△FDC为等边三角形;(2)连接EF,求EF的长.25.(8分)如图,已知直线l1:y=kx+2与x轴的负半轴交于点A,与y轴交于点B,OA =1.直线l2:y=﹣2x+4与x轴交于点D,与l1交于点C.(1)求直线l1的函数表达式;(2)求四边形OBCD的面积.26.(8分)如图,在四边形ABCD中,已知AB∥CD,AD⊥AB,AD=2,AB+CD=4,点E为BC的中点.(1)求四边形ABCD的面积;(2)若AE⊥BC,求CD的长.27.(8分)如图,在边长为12cm的正方形ABCD中,M是AD边的中点,点P从点A出发,在正方形边上沿A→B→C→D的方向以大于1cm/s的速度匀速移动,点Q从点D出发,在CD边上沿D→C方向以1cm/s的速度匀速移动,P、Q两点同时出发,当点P、Q相遇时即停止移动.设点P移动的时间为t(s),正方形ABCD与∠PMQ的内部重叠部分面积为y(cm2).已知点P移动到点B处,y的值为96(即此时正方形ABCD与∠PMQ的内部重叠部分面积为96cm2).(1)求点P的速度;(2)求y与t的函数关系式,并直接写出t的取值范围.28.(8分)如图①,A、B两个圆柱形容器放置在同一水平桌面上,开始时容器A中盛满水,容器B中盛有高度为1dm的水,容器B下方装有一只水龙头,容器A向容器B匀速注水.设时间为t(s),容器A、B中的水位高度h A(dm)、h B(dm)与时间t(s)之间的部分函数图象如图②所示.根据图中数据解答下列问题:(1)容器A向容器B注水的速度为dm3/s(结果保留π),容器B的底面直径m =dm;(2)当容器B注满水后,容器A停止向容器B注水,同时开启容器B的水龙头进行放水,放水速度为dm3/s.请在图②中画出容器B中水位高度h B与时间t(t≥4)的函数图象,说明理由;(3)当容器B注满水后,容器A继续向容器B注水,同时开启容器B的水龙头进行放水,放水速度为2πdm3/s,直至容器A、B水位高度相同时,立即停止放水和注水,求容器A向容器B全程注水时间t.(提示:圆柱体积=圆柱的底面积×圆柱的高)2018-2019学年江苏省苏州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列四个图标中,轴对称图案为()A.B.C.D.【分析】根据轴对称图形的概念解答.【解答】解:A、是轴对称图形,符合题意;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.【点评】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(2分)下面四个实数中,是无理数的为()A.0B.C.﹣2D.【分析】根据无理数的定义:无限不循环小数是无理数即可求解.【解答】解:A、0是有理数,故选项错误;B、是无理数,故选项正确;C、﹣2是有理数,故选项错误;D、是有理数,故选项错误.故选:B.【点评】此题主要考查了无理数的定义.初中常见的无理数有三类:①π类;②开方开不尽的数,如;③有规律但无限不循环的数,如0.8080080008…(每两个8之间依次多1个0).3.(2分)最“接近”(﹣1)的整数是()A.0B.1C.2D.3【分析】先估计的大小,进而解答即可.【解答】解:∵,∴,∴最“接近”(﹣1)的整数是0,故选:A.【点评】此题考查无理数的大小估计,关键是根据无理数对进行估计解答.4.(2分)如图,在△ABC中,AD=BD=AC,∠B=25°,则∠DAC为()A.70°B.75°C.80°D.85°【分析】先根据等腰三角形的性质及三角形外角与内角的关系求出∠ADC的度数,再根据等腰三角形的性质及三角形内角和定理求出∠DAC的度数即可.【解答】解:∵△ABD中,AD=BD,∠B=25°,∴∠BAD=25°,∴∠ADC=25°×2=50°,∵AD=AC,∴∠C=50°,∴∠DAC=180°﹣50°×2=80°.故选:C.【点评】本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.5.(2分)在同一平面直角坐标系中,函数y=﹣x与y=3x﹣4的图象交于点P,则点P 的坐标为()A.(﹣1,1)B.(1,﹣1)C.(2,﹣2)D.(﹣2,2)【分析】联立两一次函数的解析式求出x、y的值即可得出P点坐标.【解答】解:解得,,∴点P的坐标为(1,﹣1),故选:B.【点评】本题考查的是两条直线相交或平行问题.正确的得出方程组的解是解答此题的关键.6.(2分)已知三组数据:①2,3,4;②3,4,5;③,2,.以每组数据分别作为三角形的三边长,其中能构成直角三角形的为()A.①B.①②C.①③D.②③【分析】如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.依据勾股定理的逆定理进行判断即可.【解答】解:①22+32≠42,故不能构成直角三角形;②42+32=52,故能构成直角三角形;③()2+22=()2,故能构成直角三角形;故选:D.【点评】本题主要考查了勾股定理的逆定理,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.7.(2分)等腰三角形的底边长为24,底边上的高为5,它的腰长为()A.10B.11C.12D.13【分析】根据题意画出图形,根据等腰三角形的性质得出BD的长,由勾股定理求出AB 的长即可.【解答】解:如图所示,∵△ABC是等腰三角形,且AB=AC,AD是底边BC的高,∴BD=BC=×24=12,∴AB===13.故选:D.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.8.(2分)已知m为任意实数,则点A(m,m2+1)不在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【分析】根据非负数的性质判断出点A的纵坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵m2≥0,∴m2+1>0,∴点A(m,m2+1)不在第三、四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.(2分)如图,函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,∠BAO的平分线AC与y轴交于点C,则点C的纵坐标为()A.B.C.2D.【分析】过点C作CF⊥BA,由题意可得AO=4,BO=3,根据“AAS”可证△ACF≌△ACO,可得CO=CF,AO=AF=4,再根据勾股定理可求OC的长,即可得点C的纵坐标.【解答】解:如图,过点C作CF⊥BA,∵y=﹣x+3的图象分别与x轴、y轴交于点A、B,∴点A坐标为(4,0),点B坐标为(0,3),∴AO=4,BO=3,在Rt△ABO中,AB==5,∵AC平分∠BAO,∴∠FAC=∠OAC,且AC=AC,∠CFA=∠COA=90°,∴△ACF≌△ACO(AAS)∴CO=CF,AO=AF=4∴BF=1,在Rt△BCF中,BC2=BF2+CF2,∴(3﹣CO)2=1+CO2,∴CO=故选:B.【点评】本题考查了一次函数图象上点的坐标特征,勾股定理,全等三角形的判定和性质等知识,灵活运用相关的性质定理进行推理是本题的关键.10.(2分)如图,已知P(3,2),B(﹣2,0),点Q从P点出发,先移动到y轴上的点M处,再沿垂直于y轴的方向向左移动1个单位至点N处,最后移动到点B处停止,当点Q移动的路径最短时(即三条线段PM、MN、NB长度之和最小),点M的坐标为()A.(0,)B.(0,)C.(0,)D.(0,)【分析】将BN沿NM方向平移MN长的距离得到AM,连接AB,可得四边形ABNM是平行四边形,根据当A,M,P在同一直线上时,AM+PM有最小值,最小值等于线段AP 的长,即BN+PM的最小值等于AP长,可得PM、MN、NB长度之和最小,再根据待定系数法求得AP的解析式,即可得到点M的坐标.【解答】解:如图,将BN沿NM方向平移MN长的距离得到AM,连接AB,则BN=AM,∴四边形ABNM是平行四边形,∴MN=AB=1,∴当A,M,P在同一直线上时,AM+PM有最小值,最小值等于线段AP的长,即BN+PM 的最小值等于AP长,此时PM、MN、NB长度之和最小,∵P(3,2),B(﹣2,0),AB=1,∴A(﹣1,0),设AP的解析式为y=kx+b,则,解得,∴y=x+,令x=0,则y=,即M(0,),故选:A.【点评】本题主要考查了最短路线问题以及待定系数法的运用,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题卡相应位置上,)11.(2分)π﹣3>0.14.(填“>”、“<”或“=”)【分析】直接得出π的近似值,进而得出答案.【解答】解:∵π≈3.14159,∴π﹣3≈0.14159,∴π﹣3>0.14.故答案为:>.【点评】此题主要考查了实数比较大小,正确得出π的近似值是解题关键.12.(2分)27的立方根为3.【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.13.(2分)已知一次函数y=kx+1的图象经过点P(﹣1,0),则k=1.【分析】将点P坐标代入解析式可求k的值.【解答】解:∵一次函数y=kx+1的图象经过点P(﹣1,0),∴0=﹣k+1∴k=1故答案为:1【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握函数图象上的点的坐标满足函数解析式.14.(2分)如图,已知CB⊥AD,AE⊥CD,垂足分别为B、E,AE、BC相交于点F,AB =BC.若AB=8,CF=2,则CD=10.【分析】先利用垂直得到∠ABF=∠CEF=90°,再证明∠A=∠C,然后根据“ASA”可以判断△ABF≌△CBD,从而得到BF=BD,求出BC,BD,利用勾股定理即可解决问题.【解答】证明:∵CB⊥AD,AE⊥DC,∴∠ABF=∠CEF=90°,∵∠AFB=∠CFE,∴∠A=∠C,在△ABF和△CBD中,∴△ABF≌△CBD(ASA),∴BF=BD,∵AB=BC=8,CF=2,∴BF=BD=8﹣2=6,在Rt△BCD中,CD===10,故答案为10.【点评】本题考查了全等三角形的判定与性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.15.(2分)如图,直线l1:y=kx+b与直线l2:y=mx+n相交于点P(1,2),则不等式kx+b>mx+n的解集为x>1.【分析】观察函数图象得到,当x>1时,一次函数y=kx+b的图象都在一次函数y=mx+n 的图象的上方,由此得到不等式kx+b>mx+n的解集.【解答】解:不等式kx+b>mx+n的解集为x>1.故答案为:x>1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.(2分)如图,△ABC为等腰直角三角形,∠ABC=90°,△ADB为等边三角形,则∠ADC=135°.【分析】利用等腰三角形的性质分别求出∠ADB,∠BDC即可解决问题.【解答】解:∵△ABD是等边三角形,∴∠ABD=∠ADB=60°,BA=BD,∵BA=BC,∠ABC=90°,∴BD=BC,∠CBD=30°,∴∠BDC=∠BCD=(180°﹣30°)=75°,∴∠ADC=∠ADB+∠BDC=135°,故答案为135.【点评】本题考查了等腰直角三角形的性质,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(2分)如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D 的对应点D′恰好在线段BE上.若AD=3,DE=1,则AB=5.【分析】由折叠的性质可得AD=AD'=3,DE=D'E=1,∠DEA=∠D'EA,根据矩形的性质可证∠EAB=∠AEB,即AB=BE,根据勾股定理可求AB的长.【解答】解:∵折叠,∴△ADE≌△AD'E,∴AD=AD'=3,DE=D'E=1,∠DEA=∠D'EA,∵四边形ABCD是矩形,∴AB∥CD,∴∠DEA=∠EAB,∴∠EAB=∠AEB,∴AB=BE,∴D'B=BE﹣D'E=AB﹣1,在Rt△ABD'中,AB2=D'A2+D'B2,∴AB2=9+(AB﹣1)2,∴AB=5故答案为:5【点评】本题考查了折叠的性质,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.18.(2分)如图,已知点A(a,0)在x轴正半轴上,点B(0,b)在y轴的正半轴上,△ABC为等腰直角三角形,D为斜边BC上的中点,若OD=,则a+b=2.【分析】作CP⊥x轴于点P,由余角的性质得到∠OBA=∠PAC,根据全等三角形的性质得到AP=OB=b,PC=OA=a.于是得到C点坐标是(a+b,a),求得D(,),根据勾股定理即可得到结论.【解答】解:如图:作CP⊥x轴于点P,∴∠APC=90°,∵△ABC为等腰直角三角形,∴∠BAC=90°,∴∠ABO+∠BAO=∠BAO+∠CAP=90°,∴∠OBA=∠PAC,在△OBA和△PAC中,,∴△OBA≌△PAC(AAS),∴AP=OB=b,PC=OA=a.由线段的和差,得OP=OA+AP=a+b,即C点坐标是(a+b,a),∵B(0,b),C(a+b,a),∵D是BC的中点,得D(,),∵OD=,∴()2+()2=2,∴a+b=2,故答案为:2.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.三、解答题(本大题共10小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明证明过程或演算步骤.)19.(5分)计算:(﹣)2﹣+(﹣1)0.【分析】直接利用立方根以及零指数幂的性质分别化简得出答案.【解答】解:原式=3﹣2+1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)某人平均一天饮水1980毫升.(1)求此人30天一共饮水多少毫升?(2)用四舍五入法将(1)中计算得到的数据精确到10000,并用科学记数法表示.【分析】(1)用天数乘以日饮水量即可求得总饮水量;’(2)先用科学记数法表示,然后根据近似数的精确度求解.【解答】解:(1)∵平均一天饮水1980毫升,∴30天一共饮水30×1980=59400毫升;(2)59400≈6×104(精确到10000).【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.21.(5分)如图,已知AB⊥BC,AE⊥BE,CD⊥BE,垂足分别为B、E、D,AB=BC.求证:BE=CD.【分析】欲证明BE=CD,只要证明△ABE≌△BCD(AAS)即可解决问题;【解答】证明:∵AB⊥BC,AE⊥BE,CD⊥BE,∴∠AEC=∠CDB=∠ABC=90°,∴∠A+∠ABE=90°,∠ABE+∠CBD=90°,∴∠A=∠CBD,在△ABE和△BCD中,,∴△ABE≌△BCD(AAS),∴BE=CD.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.22.(5分)如图,在△ABC中,∠C=90°,DE为AB的垂直平分线,DE交AC于点D,连接BD.若∠ABD=2∠CBD,求∠A的度数.【分析】依据线段垂直平分线的性质,可得∠A=∠ABD=2∠CBD,设∠A=α,则∠ABD=α,∠CBD=α,依据三角形内角和定理,即可得到∠A的度数.【解答】解:∵DE为AB的垂直平分线,∴∠A=∠ABD,又∵∠ABD=2∠CBD,∴∠A=∠ABD=2∠CBD,设∠A=α,则∠ABD=α,∠CBD=α,又∵∠C=90°,∴∠A+∠ABC=90°,即α+α+α=90°,解得α=36°,∴∠A=36°.【点评】此题考查了线段垂直平分线的性质,等腰三角形性质,三角形内角和定理的应用,解题的关键是注意线段垂直平分线上任意一点,到线段两端点的距离相等.23.(6分)如图,在正方形网格纸中,每个小正方形的边长为1,△ABC三个顶点都在格点上.(1)写出点A、B、C的坐标;(2)直线l经过点A且与y轴平行,画出△ABC关于直线l成轴对称的△A1B1C1,连接BC1,求线段BC1的长.【分析】(1)依据△ABC三个顶点的位置,即可得到点A、B、C的坐标;(2)依据轴对称的性质,即可得到△ABC关于直线l成轴对称的△A1B1C1,依据勾股定理进行计算,即可得出线段BC1的长.【解答】解:(1)A(1,1),B(3,4),C(4,2);(2)如图所示,△A1B1C1即为所求;由勾股定理可得,BC1==.【点评】本题主要考查了勾股定理以及轴对称性质的运用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.24.(6分)如图,在△ABD和△ABC中,∠ADB=∠ACB=90°,点E为AB中点,AB =8,CD=4,点E、F关于CD成轴对称,连接FD、FC.(1)求证:△FDC为等边三角形;(2)连接EF,求EF的长.【分析】(1)首先证明CD=DE=EC,再证明FD=FC=DC即可.(2)连接EF,设EF交CD于点O.分别求出OE,OF即可解决问题.【解答】(1)证明:连接DE,EC.∵∠ADB=∠ACB=90°,AE=EB,∴DE=EC=AB=4,∵CD=4,∴DE=EC=CD=4,∴△DEC是等边三角形,∵E,F关于CD对称,∴DF=DE,FC=CE,∴DF=FC=CD,∴△DFC是等边三角形,(2)解:连接EF,设EF交CD于点O.∵△DCE,△DFC都是等边三角形,边长为4,∴FD=FC=ED=EC,∴EF⊥CD,∴OE=×4=2,OF=×4=2,∴EF=4.【点评】本题考查轴对称的性质,等边三角形的判定和性质,直角三角形斜边中线的性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.25.(8分)如图,已知直线l1:y=kx+2与x轴的负半轴交于点A,与y轴交于点B,OA =1.直线l2:y=﹣2x+4与x轴交于点D,与l1交于点C.(1)求直线l1的函数表达式;(2)求四边形OBCD的面积.【分析】(1)由已知得到A(﹣1,0),把(﹣1,0)代入y=kx+2即可得到结论;(2)解方程组得到C (,3),根据三角形的面积公式即可得到结论.【解答】解:(1)∵OA =1,∴A (﹣1,0),把(﹣1,0)代入y =kx +2得,k =2,∴直线l 1的函数表达式为:y =2x +2;(2)解得,∴C (,3),∵B (0,2),∴OB =2,当y =0时,﹣2x +4=0,∴x =2,∴D (2,0),∴AD =3,∴四边形OBCD 的面积=S △ACD ﹣S △AOB =×3×3﹣×1×2=.【点评】本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.26.(8分)如图,在四边形ABCD 中,已知AB ∥CD ,AD ⊥AB ,AD =2,AB +CD =4,点E 为BC 的中点.(1)求四边形ABCD 的面积;(2)若AE ⊥BC ,求CD 的长.【分析】(1)作辅助线,构建三角形全等,将四边形ABCD 的面积转化为三角形DAF 的面积来解答;(2)连接AC ,设CD =x ,根据勾股定理列方程可解答.【解答】解:(1)如图1,连接DE 并延长,交AB 的延长线于F ,∵DC ∥AB ,∴∠C =∠EBF ,∵CE =BE ,∠DEC =∠FEB ,∴△DCE ≌△FBE (ASA ),∴BF =DC ,∵AB +CD =4,∴AB +BF =4=AF ,∴S 四边形ABCD =S 四边形ABED +S △DCE =S 四边形ABED +S △EBF =S △DAF ===4;(2)如图2,连接AC ,∵CE =BE ,AE ⊥BC ,∴AC =AB ,设CD =x ,则AB =AC =4﹣x ,Rt △ACD 中,由勾股定理得:CD 2+AD 2=AC 2,x 2+22=(4﹣x )2,x =,∴CD =.【点评】本题考查了直角梯形的性质,还考查了线段垂直平分线的性质,全等三角形的性质和判定,勾股定理的应用,能正确作辅助线是解此题的关键.27.(8分)如图,在边长为12cm的正方形ABCD中,M是AD边的中点,点P从点A出发,在正方形边上沿A→B→C→D的方向以大于1cm/s的速度匀速移动,点Q从点D出发,在CD边上沿D→C方向以1cm/s的速度匀速移动,P、Q两点同时出发,当点P、Q相遇时即停止移动.设点P移动的时间为t(s),正方形ABCD与∠PMQ的内部重叠部分面积为y(cm2).已知点P移动到点B处,y的值为96(即此时正方形ABCD与∠PMQ的内部重叠部分面积为96cm2).(1)求点P的速度;(2)求y与t的函数关系式,并直接写出t的取值范围.【分析】(1)根据正方形的性质得到∠A=∠D=90°,AB=AD=CD=BC=12,AM=AD=6,根据三角形的面积公式列方程即可得到结论;(2)分三种情况:当点P在边AB上时,当点P在边BC上时,当点P在边CD上时,列函数关系式即可.【解答】解:(1)∵在边长为12cm的正方形ABCD中,M是AD边的中点,∠A=∠D=90°,AB=AD=CD=BC=12,AM=AD=6,∴根据题意得,12×12﹣×12×6﹣×6t=96,解得:t=4,∴点P的速度为=3cm/s;(2)当点P在边AB上时,y=12×12﹣×6×3t﹣×6t=144﹣12t(0≤t≤4);当点P在边BC上时,y=×(24﹣3t)×12+×6×(12﹣t)=180﹣21t(4<t≤8);当点P在边CD上时,y=×(36﹣4t)×6=﹣12t+108(8<t≤9);综上所述,y与t的函数关系式为:y=.【点评】本题考查了正方形的性质,根据实际问题列函数关系式,三角形的面积,正确的理解题意是解题的关键.28.(8分)如图①,A、B两个圆柱形容器放置在同一水平桌面上,开始时容器A中盛满水,容器B中盛有高度为1dm的水,容器B下方装有一只水龙头,容器A向容器B匀速注水.设时间为t(s),容器A、B中的水位高度h A(dm)、h B(dm)与时间t(s)之间的部分函数图象如图②所示.根据图中数据解答下列问题:(1)容器A向容器B注水的速度为dm3/s(结果保留π),容器B的底面直径m=2dm;(2)当容器B注满水后,容器A停止向容器B注水,同时开启容器B的水龙头进行放水,放水速度为dm3/s.请在图②中画出容器B中水位高度h B与时间t(t≥4)的函数图象,说明理由;(3)当容器B注满水后,容器A继续向容器B注水,同时开启容器B的水龙头进行放水,放水速度为2πdm3/s,直至容器A、B水位高度相同时,立即停止放水和注水,求容器A向容器B全程注水时间t.(提示:圆柱体积=圆柱的底面积×圆柱的高)【分析】(1)注水速度=注水体积÷注水时间,圆柱体积=圆柱的底面积×圆柱的高,代入公式求解即可.(2)放水时间=放水体积÷放水速度,求出时间补全图象.(3)圆柱的高=圆柱体积÷圆柱的底面积,代入公式求解.【解答】解:(1)由图象可知,4秒,A容器内水的高度下降了1dm,V=sh=π()2•1=3π,则注水速度u==,由图象可知,4秒,B容器内水的高度上升了3dm,B容器增加的水的体积等于A容器减少的水的体积,V1=sh=π()2•3=,∴=3π,∴d=2.故答案为;2.(2)注满后B容器中水的总体积为:4π,∵放水速度为dm3/s,∴放空所需要的时间为:4π÷()=16.(3)A容器内水的高度:B容器内水的高度:∴=解得,t=6,∴容器A向容器B全程注水时间t为6s.【点评】此题考查了一次函数与注水的相关问题,注水速度=注水体积÷注水时间,圆柱体积=圆柱的底面积×圆柱的高,这两个公式为解题关键.。
2018-2019学年度八年级上数学期末试卷(解析版) (2)
2018-2019学年八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义; 所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解. 答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE . (1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明; (3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题; 【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2018-2019学年江苏省无锡市八年级(上)期末数学试卷
2018-2019学年江苏省无锡市八年级(上)期末数学试卷一、选择题1. √16的值是()A.2B.4C.±2D.±42. 若2x−5没有平方根,则x的取值范围为()A.x≥52B.x>52C.x≠52D.x<523. 把29500精确到1000的近似数是()A.2.95×104B.2.95×103C.2.9×104D.3.0×1044. 下列图案中的轴对称图形是()A. B. C. D.5. 等腰三角形的两边长分别为5和11,则这个三角形的周长为()A.27B.16C.16或27D.21或276. 以下各组数为边长的三角形,其中构成直角三角形的一组是()A.3、5、6B.4、5、6C.2,√3,√5D.√2,√3,√57. 在平面直角坐标系中,点(−3, 4)所在的象限是()A.第二象限B.第一象限C.第三象限D.第四象限8. 下列函数中,y是x的正比例函数的是()A.y=−2x−2B.y=−12x C.y=2(x−2) D.y=2x9. 给出下列4个命题:①两边及其中一边上的中线对应相等的两个三角形全等;②两边及其中一边上的高对应相等的两个三角形全等;③两边及一角对应相等的两个三角形全等;④有两角及其中一角的角平分线对应相等的两个三角形全等.其中正确的个数有()A.2个B.1个C.3个D.4个10. 如图,在四边形ABCD中,对角线AC⊥BD,垂足为点O,且∠OAB=45∘,OC=2OA=8,∠OCB=12∠ODA,则四边形ABCD的面积为()A.36B.32C.42D.48二、填空题27的立方根为________.若某个正数的两个平方根是a−3与a+5,则a=________.如果等腰三角形的一个外角为80∘,那么它的底角为________度.如果正比例函数y=3x的图象沿y轴方向向下平移2个单位,则所得图象所对应的函数表达式是________.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=105∘,则∠ADC=________∘.如图,已知一次函数y1=x+b与一次函数y2=mx−n的图象相交于点P(−2, 1),则关于不等式x+b≥mx−n的解集为________.如图,在平面直角坐标系中,以A(2, 0),B(0, t)为顶点作等腰直角△ABC (其中∠ABC =90∘,且点C 落在第一象限内),则点C 关于y 轴的对称点C ’的坐标为________.(用t 的代数式表示)在平面直角坐标系中,坐标原点O 到一次函数y =kx −2k +1图象的距离的最大值为________. 三、计算题(1)计算√−83−(12)−1+20090 (2)求(x +1)2−49=0中x 的值如图,点B 、F 、C 、E 在同一直线上,且BF =CE ,∠B =∠E ,AC ,DF 相交于点O ,且OF =OC ,求证:(1)△ABC ≅△DEF ;(2)OA =OD .如图,已知△ABC(AC <AB <BC),请用无刻度的直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹);(1)在AB 边上寻找一点M ,使得点M 到AC 、BC 的距离相等;(2)在BC 边上寻找一点N ,使得NA +NB =BC .如图,点B 、C 、D 在一直线上,△ABC 和△ADE 都是等边三角形 (1)请找出图中的全等三角形,并说明理由;(2)求证:EF // AC .如图,在平面直角坐标系中,△ABC 的顶点分别为A(−8, 0),B(6, 0),C(0, 6),点D 是OC 中点,连接BD 并延长交AC 于点E ,求四边形AODE 的面积.某农户以1500元/亩的单价承包了15亩地种植板栗,每亩种植80株优质板栗嫁接苗,购买嫁接苗,购买价格为5元/株,且每亩地的管理费用为800元,一年下来喜获丰收平均每亩板栗产量为600kg ,已知当地板栗的批发和;零售价格分别如下表所示:通过市场调研发现,批发与零售的总销量只能达到总产量的70%,其中零售量不高于总销售量的40%,经多方协调当地食品加工厂承诺以7元/kg的价格收购该农户余下的板栗,设板栗全部售出后的总利润为y元,其中零售xkg.(1)求y与x之间的函数关系;(2)求该农户所收获的最大利润.(总利润=总销售额-总承包费用-购买板栗苗的费用-总管理费用)如图,四边形ABCD中,∠ABC=∠ADC=45∘,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)求证:AE⊥BD;(2)若AD=2,CD=3,试求出四边形ABCD的对角线BD的长.如图,已知一次函数y=−13x+b的图象与x轴交于A(−6, 0)与y轴相交于点B,动点P从A出发,沿x轴向x轴的正方向运动.(1)求b的值,并求出△PAB为等腰三角形时点P的坐标;(2)在点P出发的同时,动点Q也从点A出发,以每秒√10个单位的速度,沿射线AB运动,运动时间为t(s)①求点Q的坐标;(用含t的表达式表示)②若点P的运动速度为每秒k个单位,请直接写出当△APQ为等腰三角形时k的值.参考答案与试题解析2018-2019学年江苏省无锡市八年级(上)期末数学试卷一、选择题1.【答案】此题暂无答案【考点】算三平最根【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】平方根【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】科学记数来与有获数字【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】轴正算图形【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】三角常三簧关系等腰三验库的性质【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】勾股定体的展定理【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】点较严标【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】正比例因数的印义【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】命体与白理【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】勾体定展全根三烛形做给质与判定【解析】此题暂无解析【解答】此题暂无解答二、填空题【答案】此题暂无答案【考点】立方根来实际慢用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】平方根【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】等腰三验库的性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】正比例来数的斗象一正间仅图宽与几何变换【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】等腰三验库的性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次验我与一萄一次人等式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】等腰于角三旋形关于较洗、y装对氢的点的坐标【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次水体的性质一次射可的图象一次常数图按上点入适标特点【解析】此题暂无解析【解答】此题暂无解答三、计算题【答案】此题暂无答案【考点】实因归运算零因优幂零使数解、达制数指数幂平方根【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】全根三烛形做给质与判定【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】作图常复占作图角平较线的停质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】等边三根形的性隐全根三烛形做给质与判定【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】待定正数键求一程植数解析式三角表的病积【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次水根的应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】旋因末性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次函常的头合题【解析】此题暂无解析【解答】此题暂无解答。
2018-2019学年八年级上期末数学试卷(含答案解析)(可编辑修改word版)
2018-2019 学年八年级(上)期末数学试卷一、选择题:(本大题共8 小题,每小题3 分,共24 分,每小题只有一个选项是正确的,请把你认为正确的选项代号填写在括号里,)1.4的平方根是()A.±2 B.2 C.±D.2.下列图形中,不是轴对称图形的是()A.B.C.D.3.下列各组数中,可以构成直角三角形的是()A.2,3,5 B.3,4,5 C.5,6,7 D.6,7,84.点A(﹣3,2)关于x 轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)5.一次函数y=x+1 不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.下列各式中,正确的是()A.=±2 B.=3 C.=﹣3 D.=﹣3 7.如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD,则CE 的长为()A.1cm B.2cm C.3cm D.4cm8.如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB,过O 作DE∥BC,分别交AB、AC于点D、E,若DE=5,BD=3,则线段CE 的长为()A.3 B.1 C.2 D.4二、填空题:(共8 小题,每题3 分,共24 分。
将结果直接填写在横线上.)9.一个等腰三角形的两边长分别为5 和2,则这个三角形的周长为.10.把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是.1.函数y=kx 的图象过点(﹣1,2),那么k= .12.取=1.4142135623731…的近似值,若要求精确到0.01,则= .13.如图,AB 垂直平分CD,AD=4,BC=2,则四边形ACBD 的周长是.14.将函数y=2x 的图象向下平移3 个单位,则得到的图象相应的函数表达式为.15.已知点A(1,y1)、B(2,y2)都在直线y=﹣2x+3 上,则y1与y2的大小关系是.16.如图,在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A、B 分别在x、y轴的正半轴上,OA=3,OB=4,D 为OB 边的中点,E 是OA 边上的一个动点,当△CDE 的周长最小时,E 点坐标为.三、解答题(共10 小题,共102 分。
江苏省无锡市惠山区2018-2019学年七校联考八年级(上)期中数学试卷(附详细答案)
2018-2019学年江苏省无锡市惠山区七校联考八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图形中,轴对称图形的个数为()A. 4个B. 3个C. 2个D. 1个2.在实数:0、、2.020020002、、2π、中,无理数的()A. 1个B. 2个C. 3个D. 4个3.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A. 9B. 12C. 7或9D. 9或124.下列二次根式中,最简二次根式为()A. B. C. D.5.下列说法正确的是()A. 1的平方根是1B. 的立方根是C. D.6.如图,点E、F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A. B. C. D.7.在下列各组数据中,不能作为直角三角形的三边边长的是()A. 3,4,6B. 7,24,25C. 6,8,10D. 9,12,158.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3.则AB的长为()A. 3B. 4C. 5D. 69.如图,已知△ABC是等腰三角形,AC=BC=5,AB=8,D为底边AB上的一个动点(不与A、B重合),DE⊥AC,DF⊥BC,垂足分别为E、F,则DE+DF的值为()A. 3B. 4C.D.10.如图,△ABC中,∠ACB=90°,BC=3,AC=4,点D是AB的中点,将△ACD沿CD翻折得到△ECD,连接AE,BE,则线段BE的长等于()A.B.C.D. 2二、填空题(本大题共8小题,共18.0分)11.4的平方根是______.12.当x______时,二次根式有意义.13.y=++,则xy=______.14.据统计,2018年国家公务员考试报名最终共有1 659 745人通过了招聘单位的资格审查,这个数据用科学记数法可表示为______(精确到万位)15.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的表示的数为______.16.如图,△ABC中,AB=AC=a,BC=b,DE垂直平分AB,则(1)△BEC的周长为______;(2)若EF=BF,BE⊥AC于E,则∠EFC=______°.17.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要______18.如图,已知△ABC中,∠ABC=50°,P为△ABC内一点,过点P的直线MN分別交AB、BC于点M、N.若M在PA的中垂线上,N在PC的中垂线上,则∠APC的度数为______三、计算题(本大题共1小题,共8.0分)19.解方程(1)2x2-32=0;(2)3(x-3)3=-81四、解答题(本大题共7小题,共44.0分)20.计算:(1)|-2|+-(π-3.142)0(2)(18-312)×621.如图,点A,B,D,E在同一直线上,AD=EB,AC∥EF,∠C=∠F.求证:AC=EF.22.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).23.如图是一副秋千架,左图是从正面看,当秋千绳子自然下垂时,踏板离地面0.5m(踏板厚度忽略不计),右图是从侧面看,当秋千踏板荡起至点B位置时,点B离地面垂直高度BC为1m,离秋千支柱AD的水平距离BE为1.5m(不考虑支柱的直径).求秋千支柱AD的高.24.如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G为垂足.(1)求证:DC=BE;(2)若∠AEC=66°,求∠BCE的度数.25.如图,矩形ABCD中,AB=9,AD=4.E为CD边上一点,CE=6.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t 秒.(1)求AE的长;(2)当t为何值时,△PAE为直角三角形?(3)是否存在这样的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,请说明理由.26.概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.答案和解析1.【答案】C【解析】解:第二个图形,第三个图形是轴对称图形,故选:C.根据轴对称图形的定义,可得答案.本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】B【解析】解:在所列的数中,无理数有、2π这2个,故选:B.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此可得答案.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.【答案】B【解析】解:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故选:B.题目给出等腰三角形有两条边长为5和2,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.4.【答案】C【解析】解:A、负数不能开平方,错误;B、,不是最简二次根式,错误;C、是最简二次根式,正确;D、不是最简二次根式,错误;故选:C.要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.由被选答案可以用排除法可以得出正确答案.本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.5.【答案】B【解析】解:A.1的平方根是±1,此选项错误;B.-8的立方根是-2,此选项正确;C.=2,此选项错误;D.=2,此选项错误;故选:B.根据平方根、算术平方根的定义逐一判别可得.本题主要考查平方根与立方根,解题的关键是掌握平方根和算术平方根及立方根的定义.6.【答案】D【解析】解:∠D=∠B,理由是:∵在△ADF和△CBE中,∴△ADF≌△CBE(SAS),即选项D正确;具备选项A、选项B,选项C的条件都不能推出两三角形全等,故选:D.全等三角形的判定定理有SAS,ASA,AAS,SSS,根据以上定理逐个进行判断即可.本题考查了全等三角形的判定定理的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.7.【答案】A【解析】解:A、32+42≠62,故A符合题意;B、72+242=252,故B不符合题意;C、62+82=102,故C不符合题意;D、92+122=152,故D不符合题意.故选:A.根据勾股定理的逆定理,只需验证两较小边的平方和是否等于最长边的平方即可.本题考查了勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.8.【答案】D【解析】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8-3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.9.【答案】D【解析】解:连接AD,过点C作CE⊥AB于点E,∵AC=BC=5,AB=8,∴AE=4,∴CE==3,∴S△ABC=AB•CE=×8×3=12.∵DE⊥AC,DF⊥BC,∴S△ABC=S△ACD+S△BDC=AC•DE+BC•DF=×5×(DE+DF)=12,∴DE+DF=.连接AD,过点C作CE⊥AB于点E,根据勾股定理求出CE的长,再由三角形的面积公式即可得出结论.本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.10.【答案】A【解析】解:如图延长CD交AE于点H,作CF⊥AB,垂足为F.∵在Rt△ABC中,AC=4,BC=3,∴AB=5.∵D为AB的中点,∴AD=BD=DC.∵AC•BC=AB•CF,∴×3×4=×5×CF,解得CF=.由翻折的性质可知AC=CE,AD=DE,∴CH⊥AE,AH=HE.∵DC=DB,BD•CF=DC•HE,∴HE=CF=.∴AE=.∵AD=DE=DB,∴△ABE为直角三角形.∴BE===.故选:A.延长CD交AE于点H,作CF⊥AB,垂足为F.首先证明DC垂直平分线段AE,△ABE是直角三角形,求出AE的长,在Rt△ABE中,利用勾股定理即可解决问题.本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.11.【答案】±2【解析】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.【答案】≥5【解析】解:根据题意知:x-5≥0,解得,x≥5.故答案是:x≥5.根据二次根式的性质意义,被开方数大于等于0,就可以求解.考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.13.【答案】1【解析】解:∵y=++,∴x=2018,故y=,则xy=2018×=1.故答案为:1.直接利用二次根式的性质得出x,y的值,进而得出答案.此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.14.【答案】1.66×106【解析】解:1659745用科学记数法可表示为1.66×106(精确到万位),故答案为:1.66×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.【答案】【解析】解:AC===,则AM=,∵A点表示-1,∴M点表示-1,故答案为:-1.首先根据勾股定理计算出AC的长,进而得到AM的长,再根据A点表示-1,可得M点表示的数.此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边边长的平方.16.【答案】a+b45【解析】解:(1)∵DE垂直平分AB,∴AE=BE,∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC=a+b,故答案为:a+b;(2)∵AE=BE,BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAC=∠ABE=45°,又∵AB=AC,∴∠ABC=(180°-∠BAC)=(180°-45°)=67.5°,∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°,∵BF=EF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°,故答案为:45.(1)先根据线段垂直平分线的性质及三角形的周长公式即可得到结论;(2)根据等腰直角三角形的性质和三角形外角的性质即可得出结论.本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键,同时要熟悉直角三角形中,斜边的中线等于斜边的一半.17.【答案】10cm【解析】解:将长方体展开,如图,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,∴根据两点之间线段最短,AB′==10cm.要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.考查了平面展开-最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.18.【答案】115°【解析】解:∵∠B+∠BMN+∠BNM=180°,∴∠BMN+∠BNM=180°-50°=130°,∵M在PA的中垂线上,∴MA=MP,∴∠MAP=∠MPA,同理,∠NCP=∠NPC,∵∠BMN=∠MAP+∠MPA,∠BNM=∠NPC+∠NCP,∴∠MPA+∠NPC=×130°=65°,∴∠APC=180°-65°=115°,故答案为:115°.根据三角形内角和定理得到∠BMN+∠BNM=130°,根据线段垂直平分线的性质得到MA=MP,根据等腰三角形的性质,三角形的外角的性质计算.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.19.【答案】解:(1)2x2-32=0,2x2=32,x2=16,则x=±4;(2)3(x-3)3=-81,(x-3)3=-27,x-3=-3,则x=0.【解析】(1)移项后,两边都除以2,再根据平方根的定义求解可得;(2)两边都除以3,再根据立方根的定义计算,继而解方程求解可得.本题主要考查立方根、平方根,解题的关键是掌握平方根和立方根的定义.20.【答案】解:(1)原式=2-+3-1=4-;(2)(18-312)×6=294×6=1764.【解析】(1)直接利用绝对值的性质以及零指数幂的性质化简得出答案;(2)直接利用有理数混合运算法则计算得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.【答案】证明:∵AC∥EF,∴∠A=∠E,∵AD=EB,∴AD-BD=EB-BD,即AB=ED,在△ABC和△EDF中,,∴△ABC≌△EDF(AAS),∴AC=EF.【解析】根据两直线平行,内错角相等可得∠A=∠E,再求出AB=ED,然后利用“角角边”证明△ABC和△EDF全等,根据全等三角形对应边相等证明即可.本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判定方法是解题的关键,要注意需要求出对应边AB=ED.22.【答案】解:如图所示:点P即为所求.【解析】到AB、BC距离相等的点在∠ABC的平分线上,到点A、D的距离相等的点在线段AD的垂直平分线上,AD的中垂线与∠B的平分线的交点即为点P的位置.此题主要考查了应用设计与作图,正确掌握角平分线以及线段垂直平分线的性质是解题关键.23.【答案】解:设AD=xm,则由题意可得AB=(x-0.5)m,AE=(x-1)m,在Rt△ABE中,AE2+BE2=AB2,即(x-1)2+1.52=(x-0.5)2,解得x=3.即秋千支柱AD的高为3m.【解析】直接利用AE2+BE2=AB2,进而得出答案.此题主要考查了勾股定理的应用,正确得出关于x等式是解题关键.24.【答案】解:(1)如图,∵G是CE的中点,DG⊥CE,∴DG是CE的垂直平分线,∴DE=DC,∵AD是高,CE是中线,∴DE是Rt△ADB的斜边AB上的中线,∴DE=BE=AB,∴DC=BE;(2)∵DE=DC,∴∠DEC=∠BCE,∴∠EDB=∠DEC+∠BCE=2∠BCE,∵DE=BE,∴∠B=∠EDB,∴∠B=2∠BCE,∴∠AEC=3∠BCE=66°,则∠BCE=22°.【解析】(1)由G是CE的中点,DG⊥CE得到DG是CE的垂直平分线,根据线段垂直平分线的性质得到DE=DC,由DE是Rt△ADB的斜边AB上的中线,根据直角三角形斜边上的中线等于斜边的一半得到DE=BE=AB,即可得到DC=BE;(2)由DE=DC得到∠DEC=∠BCE,由DE=BE得到∠B=∠EDB,根据三角形外角性质得到∠EDB=∠DEC+∠BCE=2∠BCE,则∠B=2∠BCE,由此根据外角的性质来求∠BCE的度数.本题考查了线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等.也考查了直角三角形斜边上的中线性质.25.【答案】解:(1)∵矩形ABCD中,AB=9,AD=4,∴CD=AB=9,∠D=90°,∴DE=9-6=3,∴AE===5;(2)①若∠EPA=90°,t=6;②若∠PEA=90°,(6-t)2+42+52=(9-t)2,解得t=.综上所述,当t=6或t=时,△PAE为直角三角形;(3)假设存在.∵EA平分∠PED,∴∠PEA=∠DEA.∵CD∥AB,∴∠DEA=∠EAP,∴∠PEA=∠EAP,∴PE=PA,∴(6-t)2+42=(9-t)2,解得t=.∴满足条件的t存在,此时t=.【解析】(1)在直角△ADE中,利用勾股定理进行解答;(2)需要分类讨论:AE为斜边和AP为斜边两种情况下的直角三角形;(3)假设存在.利用角平分线的性质,平行线的性质以及等量代换推知:∠PEA=∠EAP,则PE=PA,由此列出关于t的方程,通过解方程求得相应的t 的值即可.本题考查了四边形综合题,综合勾股定理,直角三角形的性质,一元二次方程的应用等知识点,要注意分类讨论,以防漏解.26.【答案】解:(1)△ABC与△ACD,△ABC与△BCD,△ACD与△BCD是“等角三角形”;(2)∵在△ABC中,∠A=40°,∠B=60°∴∠ACB=180°-∠A-∠B=80°∵CD为角平分线,∴∠ACD=∠DCB=∠ACB=40°,∴∠ACD=∠A,∠DCB=∠A,∴CD=DA,∵在△DBC中,∠DCB=40°,∠B=60°,∴∠BDC=180°-∠DCB-∠B=80°,∴∠BDC=∠ACB,∵CD=DA,∠BDC=∠ACB,∠DCB=∠A,∠B=∠B,∴CD为△ABC的等角分割线;(2)当△ACD是等腰三角形,DA=DC时,∠ACD=∠A=42°,∴∠ACB=∠BDC=42°+42°=84°,当△ACD是等腰三角形,DA=AC时,∠ACD=∠ADC=69°,∠BCD=∠A=42°,∴∠ACB=69°+42°=111°,当△BCD是等腰三角形,DC=BD时,∠ACD=∠BCD=∠B=46°,∴∠ACB=92°,当△BCD是等腰三角形,DB=BC时,∠BDC=∠BCD,设∠BDC=∠BCD=x,则∠B=180°-2x,则∠ACD=∠B=180°-2x,由题意得,180°-2x+42°=x,解得,x=74°,∴∠ACD=180°-2x=32°,∴∠ACB=106°,∴∠ACB的度数为111°或84°或106°或92°.【解析】(1)根据“等角三角形”的定义解答;(2)根据三角形内角和定理求出∠ACB,根据角平分线的定义得到∠ACD=∠DCB=∠ACB=40°,根据“等角三角形”的定义证明;(3)分△ACD是等腰三角形,DA=DC、DA=AC和△BCD是等腰三角形,DB=BC、DC=BD四种情况,根据等腰三角形的性质、三角形内角和定理计算.本题“等角三角形”的定义、等腰三角形的性质、三角形内角和定理,灵活运用分情况讨论思想是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年江苏省无锡市八年级(上)期末数学试卷一、选择题(共10小题).1.(3分)16的值是()A.4B.2C.4±D.2±2.(3分)若25x-没有平方根,则x的取值范围为()A.52x>B.52x C.52x≠D.52x<3.(3分)把29500精确到1000的近似数是()A.32.9510⨯B.42.9510⨯C.42.910⨯D.43.010⨯4.(3分)下列图案中的轴对称图形是()A.B.C.D.5.(3分)等腰三角形的两边长分别为5和11,则这个三角形的周长为() A.16B.27C.16或27D.21或27 6.(3分)以下各组数为边长的三角形,其中构成直角三角形的一组是() A.4、5、6B.3、5、6C2,3,5D.23,5 7.(3分)在平面直角坐标系中,点(3,4)-所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)下列函数中,y是x的正比例函数的是()A.12y x=-B.22y x=--C.2(2)y x=-D.2yx=9.(3分)给出下列4个命题:①两边及其中一边上的中线对应相等的两个三角形全等;②两边及其中一边上的高对应相等的两个三角形全等;③两边及一角对应相等的两个三角形全等;④有两角及其中一角的角平分线对应相等的两个三角形全等.其中正确的个数有()A.1个B.2个C.3个D.4个10.(3分)如图,在四边形ABCD中,对角线AC BD⊥,垂足为点O,且45OAB∠=︒,28OC OA ==,12OCB ODA ∠=∠,则四边形ABCD 的面积为( )A .32B .36C .42D .48二、填空题11.(3分)27的立方根为 .12.(3分)若某个正数的两个平方根是3a -与5a +,则a = .13.(3分)如果等腰三角形的一个外角为80︒,那么它的底角为 度.14.(3分)如果正比例函数3y x =的图象沿y 轴方向向下平移2个单位,则所得图象所对应的函数表达式是 .15.(3分)如图,ABC ∆中,D 是BC 上一点,AC AD DB ==,105BAC ∠=︒,则ADC ∠= ︒.16.(3分)如图,已知一次函数1y x b =+与一次函数2y mx n =-的图象相交于点(2,1)P -,则关于不等式x b mx n +-的解集为 .17.(3分)如图,在平面直角坐标系中,以(2,0)A ,(0,)B t 为顶点作等腰直角ABC ∆(其中90ABC ∠=︒,且点C 落在第一象限内),则点C 关于y 轴的对称点C ’的坐标为 .(用t 的代数式表示)18.(3分)在平面直角坐标系中,坐标原点O 到一次函数21y kx k =-+图象的距离的最大值为 .三、计算题19.(8分)(1)计算10318()20092---+ (2)求2(1)490x +-=中x 的值20.(8分)如图,点B 、F 、C 、E 在同一直线上,且BF CE =,B E ∠=∠,AC ,DF 相交于点O ,且OF OC =,求证:(1)ABC DEF ∆≅∆;(2)OA OD =.21.(6分)如图,已知()ABC AC AB BC ∆<<,请用无刻度的直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹);(1)在AB 边上寻找一点M ,使得点M 到AC 、BC 的距离相等;(2)在BC 边上寻找一点N ,使得NA NB BC +=.22.(8分)如图,点B 、C 、D 在一直线上,ABC ∆和ADE ∆都是等边三角形(1)请找出图中的全等三角形,并说明理由;(2)求证://EB AC .23.(8分)如图,在平面直角坐标系中,ABC ∆的顶点分别为(8,0)A -、(6,0)B 、(0,6)C ,点D 是OC 中点,连接BD 并延长交AC 于点E ,求四边形AODE 的面积.24.(8分)某农户以1500元/亩的单价承包了15亩地种植板栗,每亩种植80株优质板栗嫁接苗,购买嫁接苗,购买价格为5元/株,且每亩地的管理费用为800元,一年下来喜获丰收平均每亩板栗产量为600kg ,已知当地板栗的批发和;零售价格分别如下表所示: 销售方式批发 零售 售价(元/)kg 10 14 通过市场调研发现,批发与零售的总销量只能达到总产量的70%,其中零售量不高于总销售量的40%,经多方协调当地食品加工厂承诺以7元/kg 的价格收购该农户余下的板栗,设板栗全部售出后的总利润为y 元,其中零售xkg .(1)求y 与x 之间的函数关系;(2)求该农户所收获的最大利润.(总利润=总销售额-总承包费用-购买板栗苗的费用-总管理费用)25.(10分)如图,四边形ABCD 中,45ABC ADC ∠=∠=︒,将BCD ∆绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE ∆.(1)求证:AE BD ⊥;(2)若2AD =,3CD =,试求出四边形ABCD 的对角线BD 的长.26.(10分)如图,已知一次函数13y x b=-+的图象与x轴交于(6,0)A-与y轴相交于点B,动点P从A出发,沿x轴向x轴的正方向运动.(1)求b的值,并求出PAB∆为等腰三角形时点P的坐标;(2)在点P出发的同时,动点Q也从点A出发,以每秒10个单位的速度,沿射线AB运动,运动时间为()t s①求点Q的坐标;(用含t的表达式表示)②若点P的运动速度为每秒k个单位,请直接写出当APQ∆为等腰三角形时k的值.参考答案一、选择题1.(3分)16的值是()A.4B.2C.4±D.2±解:2416=,16∴的算术平方根是4,即164=,故选:A.2.(3分)若25x-没有平方根,则x的取值范围为()A.52x>B.52x C.52x≠D.52x<解:由题意知250x-<,解得52x<,故选:D.3.(3分)把29500精确到1000的近似数是()A.32.9510⨯B.42.9510⨯C.42.910⨯D.43.010⨯解:把29500精确到1000的近似数是43.010⨯.故选:D.4.(3分)下列图案中的轴对称图形是()A.B.C.D.解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、是轴对称图形,本选项正确;D、不是轴对称图形,本选项错误.故选:C.5.(3分)等腰三角形的两边长分别为5和11,则这个三角形的周长为()A .16B .27C .16或27D .21或27解:①11是腰长时, 三角形的三边分别为11、11、5,能组成三角形,周长1111527=++=;②11是底边时,三角形的三边分别为11、5、5,551011+=<,∴不能组成三角形,综上所述,三角形的周长为27.故选:B .6.(3分)以下各组数为边长的三角形,其中构成直角三角形的一组是( )A .4、5、6B .3、5、6CD .2 解:A 、222546+≠,故不是直角三角形,故不正确;B 、222536+≠,故不是直角三角形,故不正确;C 、222+=,故是直角三角形,故正确;D 、2222+≠,故不是直角三角形,故不正确.故选:C .7.(3分)在平面直角坐标系中,点(3,4)-所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 解:点(3,4)-所在的象限是第二象限,故选:B .8.(3分)下列函数中,y 是x 的正比例函数的是( )A .12y x =-B .22y x =--C .2(2)y x =-D .2y x= 解:A 、该函数是正比例函数,故本选项正确.B 、该函数是一次函数,故本选项错误.C 、该函数是一次函数,故本选项错误.D 、该函数是反比例函数,故本选项错误.故选:A .9.(3分)给出下列4个命题:①两边及其中一边上的中线对应相等的两个三角形全等;②两边及其中一边上的高对应相等的两个三角形全等;③两边及一角对应相等的两个三角形全等;④有两角及其中一角的角平分线对应相等的两个三角形全等.其中正确的个数有()A.1个B.2个C.3个D.4个解:①两边及其中一边上的中线对应相等的两个三角形全等,正确;②两边及其中一边上的高对应相等的两个三角形不一定全等,错误;③两边及一角对应相等的两个三角形全等,如SSA不能判定全等,错误;④有两角及其中一角的角平分线对应相等的两个三角形全等,正确;故选:B.10.(3分)如图,在四边形ABCD中,对角线AC BD⊥,垂足为点O,且45OAB∠=︒,28 OC OA==,12OCB ODA∠=∠,则四边形ABCD的面积为()A.32B.36C.42D.48解:在OC上截取OE OD=,连接BE,如图所示:28OC OA==,4OA∴=,AC BD⊥,45OAB∠=︒,90AOD BOE∴∠=∠=︒,OAB∆是等腰直角三角形,4OB OA∴==,12AC OA OC ∴=+=,在AOD ∆和BOE ∆中,OA OB AOD BOE OD OE =⎧⎪∠=∠⎨⎪=⎩,()AOD BOE SAS ∴∆≅∆,ODA OEB ∴∠=∠,12OCB ODA ∠=∠, 2OEB ODA OCB ∴∠=∠=∠,OEB OCB EBC ∠=∠+∠,OCB ECB ∴∠=∠,BE CE ∴=,设BE CE x ==,则8OE x =-,在Rt OBE ∆中,由勾股定理得:2224(8)x x +-=,解得:5x =,5CE ∴=,3OD OE ==,437BD OB OD ∴=+=+=,AC BD ⊥,∴四边形ABCD 的面积111274222AC BD =⨯=⨯⨯=; 故选:C .二、填空题11.(3分)27的立方根为 3 .解:3327=,27∴的立方根是3,故答案为:3.12.(3分)若某个正数的两个平方根是3a -与5a +,则a = 1- . 解:由题意知350a a -++=,解得:1a =-,故答案为:1-.13.(3分)如果等腰三角形的一个外角为80︒,那么它的底角为 40 度. 解:等腰三角形的一个外角为80︒,∴相邻角为18080100︒-︒=︒,三角形的底角不能为钝角,100∴︒角为顶角,∴底角为:(180100)240︒-︒÷=︒.故答案为:40.14.(3分)如果正比例函数3y x =的图象沿y 轴方向向下平移2个单位,则所得图象所对应的函数表达式是 32y x =- .解:将函数3y x =的图象沿y 轴向下平移2个单位长度后,所得图象对应的函数关系式为:32y x =-.故答案为:32y x =-.15.(3分)如图,ABC ∆中,D 是BC 上一点,AC AD DB ==,105BAC ∠=︒,则ADC ∠= 50 ︒.解:AC AD DB ==,B BAD ∴∠=∠,ADC C ∠=∠,设ADC α∠=,2B BAD α∴∠=∠=,105BAC ∠=︒,1052DAC α∴∠=︒-,在ADC ∆中,180ADC C DAC ∠+∠+∠=︒,21051802αα∴+︒-=︒,解得:50α=︒.故答案为:50.16.(3分)如图,已知一次函数1y x b =+与一次函数2y mx n =-的图象相交于点(2,1)P -,则关于不等式x b mx n +-的解集为 2x - .解:一次函数1y x b =+与一次函数2y mx n =-的图象相交于点(2,1)P -,∴不等式x b mx n +-的解集是2x -.故答案为:2x -.17.(3分)如图,在平面直角坐标系中,以(2,0)A ,(0,)B t 为顶点作等腰直角ABC ∆(其中90ABC ∠=︒,且点C 落在第一象限内),则点C 关于y 轴的对称点C ’的坐标为(,2)t t -+ .(用t 的代数式表示)解:过C 作CE y ⊥轴于E ,并作C 关于y 轴的对称点C ',(2,0)A ,(0,)B t ,2OA ∴=,OB t =,ABC ∆是等腰直角三角形,AB BC ∴=,90ABC ∠=︒,90ABO CBE ∴∠+∠=︒,90CBE BCE ∠+∠=︒,ABO BCE ∴∠=∠,AOB BEC ∠=∠,()AOB BEC AAS ∴∆≅∆,2AO BE ∴==,OB CE t ==,(,2)C t t ∴+,(,2)C t t '∴-+,故答案为:(,2)t t -+.18.(3分)在平面直角坐标系中,坐标原点O 到一次函数21y kx k =-+图象的距离的最大值为 5 . 解:21(2)1y kx k k x =-+=-+,即该一次函数经过定点(2,1),设该定点为P ,则(2,1)P ,当直线OP 与直线21y kx k =-+垂直时,坐标原点O 到一次函数21y kx k =-+的距离最大,如下图所示:22215+=,5.三、计算题19.(8分)(1)计算10318()20092---+ (2)求2(1)490x +-=中x 的值解:(1)原式221=--+3=-;(2)2(1)490x +-=则17x +=±,解得:6x =或8-.20.(8分)如图,点B 、F 、C 、E 在同一直线上,且BF CE =,B E ∠=∠,AC ,DF 相交于点O ,且OF OC =,求证:(1)ABC DEF ∆≅∆;(2)OA OD =.【解答】证明:(1)BF CE =,BF FC CE FC ∴+=+,即BC EF =,OF OC =,OCF OFC ∴∠=∠,在ABC ∆与DEF ∆中B E BC EFOCF OFC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABC DEF ASA ∴∆≅∆;(2)ABC DEF ∆≅∆,AC DF ∴=,OF OC =,AC OC DF OF ∴-=-,即OA OD =.21.(6分)如图,已知()ABC AC AB BC ∆<<,请用无刻度的直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹);(1)在AB 边上寻找一点M ,使得点M 到AC 、BC 的距离相等;(2)在BC 边上寻找一点N ,使得NA NB BC +=.解:(1)如图所示:(2)如图所示:22.(8分)如图,点B 、C 、D 在一直线上,ABC ∆和ADE ∆都是等边三角形(1)请找出图中的全等三角形,并说明理由;(2)求证://EB AC .解:(1)ACD ABE ∆≅∆,理由如下:ABC ∆,ADE ∆为等边三角形,AB AC ∴=,AE AD =,60BAC DAE ∠=∠=︒,BAC BAD DAE BAD ∴∠+∠=∠+∠,即CAD BAE ∠=∠,在ACD ∆与ABE ∆中AC AB CAD BAE AE AD =⎧⎪∠=∠⎨⎪=⎩,()ACD ABE SAS ∴∆≅∆,(2)ACD ABE ∆≅∆,60ABE C ∴∠=∠=︒,ABE BAC ∴∠=∠,//EB AC ∴.23.(8分)如图,在平面直角坐标系中,ABC ∆的顶点分别为(8,0)A -、(6,0)B 、(0,6)C ,点D 是OC 中点,连接BD 并延长交AC 于点E ,求四边形AODE 的面积.解:D 是OC 中点,(0,6)C ,(0,3)D ∴,设直线AC 的解析式为:y kx b =+,(8,0)A -、(0,6)C ,∴806k b b -+=⎧⎨=⎩, ∴346k b ⎧=⎪⎨⎪=⎩,∴直线AC 的解析式为:364y x =+, 直线BD 的解析式为:y mx n =+,(6,0)B 、(0,2)D ,∴606m n n +=⎧⎨=⎩,∴123m n ⎧=-⎪⎨⎪=⎩,∴直线BD 的解析式为:132y x =-+; 解364132y x y ⎧=+⎪⎪⎨⎪=-+⎪⎩得,125215x y ⎧=-⎪⎪⎨⎪=⎪⎩, 12(5E ∴-,21)5, 121110214632525ABE OBD AODE S S S ∆∆∴=-=⨯⨯-⨯⨯=四边形. 24.(8分)某农户以1500元/亩的单价承包了15亩地种植板栗,每亩种植80株优质板栗嫁接苗,购买嫁接苗,购买价格为5元/株,且每亩地的管理费用为800元,一年下来喜获丰收平均每亩板栗产量为600kg ,已知当地板栗的批发和;零售价格分别如下表所示:通过市场调研发现,批发与零售的总销量只能达到总产量的70%,其中零售量不高于总销售量的40%,经多方协调当地食品加工厂承诺以7元/kg 的价格收购该农户余下的板栗,设板栗全部售出后的总利润为y 元,其中零售xkg .(1)求y 与x 之间的函数关系;(2)求该农户所收获的最大利润.(总利润=总销售额-总承包费用-购买板栗苗的费用-总管理费用) 解:(1)由题意得1410(6001570%)76001530%(1500800805)15y x x =+⨯⨯-+⨯⨯⨯-++⨯⨯ 整理得441400y x =+故y 与x 之间的函数关系式为441400y x =+(2)零售量不高于总销售量的40%6001570%40%x ∴⨯⨯⨯即:2520x又40>,∴对于441400y x =+而言,y 随着x 的增大而增大, ∴当x 取最大值2520时,y 得最大值为51480答:该农户所收获的最大利润为51480元.25.(10分)如图,四边形ABCD中,45∠=∠=︒,将BCD∆绕点C顺时针旋转一ABC ADC定角度后,点B的对应点恰好与点A重合,得到ACE∆.(1)求证:AE BD⊥;(2)若2AD=,3CD=,试求出四边形ABCD的对角线BD的长.解:(1)如图,设AC与BD的交点为点M,BD与AE的交点为点N,旋转∠=∠AC BC∴=,DBC CAE又45ABC∠=︒,ABC BAC∴∠=∠=︒,45∴∠=︒,ACB90∠+∠=︒DBC BMC90∴∠+∠=︒AMN CAE90∴∠=︒90AND∴⊥,AE BD(2)如图,连接DE,旋转3CD CE ∴==,BD AE =,90DCE ACB ∠=∠=︒ 2232DE CD CE ∴=+=,45CDE ∠=︒ 45ADC ∠=︒90ADE ∴∠=︒2222EA AD DE ∴=+=22BD ∴=26.(10分)如图,已知一次函数13y x b =-+的图象与x 轴交于(6,0)A -与y 轴相交于点B ,动点P 从A 出发,沿x 轴向x 轴的正方向运动.(1)求b 的值,并求出PAB ∆为等腰三角形时点P 的坐标;(2)在点P 出发的同时,动点Q 也从点A 出发,以每秒10个单位的速度,沿射线AB 运动,运动时间为()t s①求点Q 的坐标;(用含t 的表达式表示) ②若点P 的运动速度为每秒k 个单位,请直接写出当APQ ∆为等腰三角形时k 的值.解:(1)把(6,0)A -代入13y x b =-+得,2b =-,(0,2)B ∴-,6AO =,2OB =,AB ===, PAB ∆为等腰三角形,∴当AP AB =时,AP =,6P ∴-,0);当BP BA =时,6OP OA ==, (6,0)P ∴;当PA PB =时,设OP x =,则6PA PB x ==-, 在Rt OPB ∆中,222OP OB PB +=, 2222(6)x x ∴+=-, 解得:83x =, 8(3P ∴-,0);综上所述,当PAB ∆为等腰三角形时点P 的坐标为6,0)或(6,0)或8(3-,0); (2)①点Q 在直线13y x b =-+上, ∴设1(,2)3Q a a --,作QH x ⊥轴于H , 则123QH a =+,6AH a =+,110(2)3AQ a ∴==+, 10AQ t =,123t a ∴=+, 36a t ∴=-,(36,)Q t t ∴--;②由题意得,AQ =,AP kt =, APQ ∆为等腰三角形,∴当AP AQ =时,kt =,10k ∴=, 当AQ PQ =时,即12AH AP =, 132t kt ∴=, 6k ∴=; 当PA PQ =时,在Rt PQH ∆中, 222HP HQ PQ +=, 222(3)()t kt t kt ∴-+=, 53k ∴=, 综上所述,当APQ ∆为等腰三角形时k 的值为10或6或53.。