结构力学-曲杆和三铰拱-PPT
合集下载
结构力学-3.6 三铰拱.ppt
7.5 0.832 9.015kN
kN
9
N图
13.300 10.958 9.015 7.749 7.500 7.433 1.421 6.796 3.325 11.235 11.665 11.700
0.600 0.354 0.003 0.472 1.000
3.331 1.060 0.600
Q图 kN
对于三铰拱,竖向荷载作用下任意截面上弯矩计算公式为:
M M Hy
它是由两项组成,第一项是简支梁的弯矩,而后一项与拱轴形状有关。
令
M M Hy 0
yx M x
H
在竖向荷载作用下,三铰拱的合理轴线的纵标值与简支梁
的弯矩纵标值成比例。
10
例1 设三铰拱承受沿水平方向均匀分布的竖向荷载,求其合理轴线。
qc+.f
qc q qc y
yx
f y*
d2y dx2
1 H
d 2M dx2
对简支梁来说,
d2M dx 2
qx
而 qx qc y,
d2y dx 2
1 H
qc
y
即 y y qc , 特征方程为:
HH
2 0
H
H
x
x
y C1e H C2e H
y
ex shx chx ex chx shx
q
y
C
q
A l/2
f
Bx
A
ql x
l/2
2
B
ql 2
[解] 由式 yx M x 先列出简支梁的弯矩方程
H
M x q xl x
2
拱的推力为:
H
M
C
ql 2
f 8f
kN
9
N图
13.300 10.958 9.015 7.749 7.500 7.433 1.421 6.796 3.325 11.235 11.665 11.700
0.600 0.354 0.003 0.472 1.000
3.331 1.060 0.600
Q图 kN
对于三铰拱,竖向荷载作用下任意截面上弯矩计算公式为:
M M Hy
它是由两项组成,第一项是简支梁的弯矩,而后一项与拱轴形状有关。
令
M M Hy 0
yx M x
H
在竖向荷载作用下,三铰拱的合理轴线的纵标值与简支梁
的弯矩纵标值成比例。
10
例1 设三铰拱承受沿水平方向均匀分布的竖向荷载,求其合理轴线。
qc+.f
qc q qc y
yx
f y*
d2y dx2
1 H
d 2M dx2
对简支梁来说,
d2M dx 2
qx
而 qx qc y,
d2y dx 2
1 H
qc
y
即 y y qc , 特征方程为:
HH
2 0
H
H
x
x
y C1e H C2e H
y
ex shx chx ex chx shx
q
y
C
q
A l/2
f
Bx
A
ql x
l/2
2
B
ql 2
[解] 由式 yx M x 先列出简支梁的弯矩方程
H
M x q xl x
2
拱的推力为:
H
M
C
ql 2
f 8f
下篇 结构力学部分 第15章 三铰拱
-0.600 -0.707
0.800 0.707
-25 -25
50 0
-52.5 0
2.5 0
-20 -17.7
18 21.2
-2 3.5
返回
第三节 三铰拱压力线及合理拱轴线
上一页 下一页
返回
一、压力线及合理拱轴线的概念
1. 压力线的概念 由静力学可知,三铰拱任意截面上的三个内力分量 MK、FSK、FNK可以合成为一个合力FRK。因为拱截面上 的轴力通常为压力,所以合力FRK称为该截面的总压力。 三铰拱各截面总压力作用点的连线,称为三铰拱的压力 三铰拱的压力 线。
(b)
FAx FAy
A
B
FBx FBy
5 (c) 7.5 10 7.5 10 9 2.5 _ 2.5 5 46 (e) 9 39 33.5 30.3 30 + 30.3 29 + _
5 Mͼ(kN m)
(d)
3.6 2 +
3.5 + 2
FSͼ(kN)
38 39 38.9 FNͼ(kN)
图15-7
24.8 15 6.7 1.2 0 1.2 2.25
21.2 24 26.8 29.1 30 29.1
6
3.00
-0.50
-0.447
0.894 -25
100
-90
10 -22.3
26.8 -9 11.2 15 17.7 24 21.2 38 39 38.9
上一页 下一页
7 8
1.75 0
-0.75 -1
40kN
(b)
FAx FAy
A
B
FBx FBy
5 (c) 7.5 10 7.5 10 9 2.5 _ 2.5 5 46 (e) 9 39 33.5 30.3 30 + 30.3 29 + _
结构力学5三铰拱课件
拱架搭设
根据设计要求,选用合适的材料搭设拱架;
施工流程与工艺要求
02
01
03
拱体安装
按照从两端向跨中的顺序,对称安装拱体构件;
拱顶合拢
在拱顶设置临时支撑,确保拱体稳定;
施工监测
对施工过程进行实时监测,确保施工安全和质量。
施工流程与工艺要求
工艺要求 拱架搭设应符合设计要求,确保稳定性和承载力;
拱体安装应保证构件对接准确,避免出现错位和扭曲;
施工流程与工艺要求
01
临时支撑设置应合理,确保拱体 在合拢过程中保持稳定;
02
施工监测应实时进行,及时发现 和解决施工中的问题。
安装方法与注意事项
安装方法 采用分段吊装法,将拱体分成若干段,分别吊装到位;
对接安装时,应保证对接位置准确,避免出现错位和扭曲;
安装方法与注意事项
• 合拢时,应设置临时支撑,确保拱体稳定。
结构力学5三铰拱课件
目
CONTENCT
录
• 三铰拱概述 • 三铰拱的力学分析 • 三铰拱的设计与计算 • 三铰拱的施工与安装 • 三铰拱的维护与加固
01
三铰拱概述
定义与特点
定义
三铰拱是一种静定结构,由两个 固定端和三个铰链支承构成。
特点
拱顶在竖向荷载作用下主要承受 压力,并通过铰链传递水平推力 ,保持拱的平衡。
保持三铰拱的清洁,避免 积尘、腐蚀等影响其使用 寿命的因素。
紧固与润滑
对三铰拱的连接部位进行 紧固,对活动部位进行润 滑,确保其正常运转。
常见问题与处理方法
1 2
结构损伤
如发现三铰拱出现裂纹、变形等损伤,应立即采 取措施进行修复或更换。
连接松动
根据设计要求,选用合适的材料搭设拱架;
施工流程与工艺要求
02
01
03
拱体安装
按照从两端向跨中的顺序,对称安装拱体构件;
拱顶合拢
在拱顶设置临时支撑,确保拱体稳定;
施工监测
对施工过程进行实时监测,确保施工安全和质量。
施工流程与工艺要求
工艺要求 拱架搭设应符合设计要求,确保稳定性和承载力;
拱体安装应保证构件对接准确,避免出现错位和扭曲;
施工流程与工艺要求
01
临时支撑设置应合理,确保拱体 在合拢过程中保持稳定;
02
施工监测应实时进行,及时发现 和解决施工中的问题。
安装方法与注意事项
安装方法 采用分段吊装法,将拱体分成若干段,分别吊装到位;
对接安装时,应保证对接位置准确,避免出现错位和扭曲;
安装方法与注意事项
• 合拢时,应设置临时支撑,确保拱体稳定。
结构力学5三铰拱课件
目
CONTENCT
录
• 三铰拱概述 • 三铰拱的力学分析 • 三铰拱的设计与计算 • 三铰拱的施工与安装 • 三铰拱的维护与加固
01
三铰拱概述
定义与特点
定义
三铰拱是一种静定结构,由两个 固定端和三个铰链支承构成。
特点
拱顶在竖向荷载作用下主要承受 压力,并通过铰链传递水平推力 ,保持拱的平衡。
保持三铰拱的清洁,避免 积尘、腐蚀等影响其使用 寿命的因素。
紧固与润滑
对三铰拱的连接部位进行 紧固,对活动部位进行润 滑,确保其正常运转。
常见问题与处理方法
1 2
结构损伤
如发现三铰拱出现裂纹、变形等损伤,应立即采 取措施进行修复或更换。
连接松动
三铰拱PPT课件
F B
FS
FN FQ0sin FS cos
I
l/2
FVB
.
【例2】求图示三铰拱式屋架在竖向荷载作用下的支反力和内力。
解: (1) 计算支座反力
F H 0 , F V A F V 0 A , F V B F V 0 B
(2)计算拉杆内力:F S
M
0 C
f
(3)计算拱身内力
q
y FH
A FVA
受轴向压力FN作用。
仅在左半跨作用均布 荷载时的M图
仅在左半跨作用均布 荷载时的FQ图
仅在右半跨作用均布 荷载时的M图
仅在右半跨作用均布 荷载时的FQ图
(3) 这种在给定荷载作用下,拱处于无弯矩状态的拱轴线,是三
铰拱最合理的拱轴线( reasonable axis of arch) 。
.
• 三铰拱的合理拱轴线计算公式:
.
三铰拱压力线的求解步骤
设三铰拱所承受荷载如图4-8a所 示,现作其压力线。 第一步,作合力多边形
• 第二步,确定各截面合力的作 用线。
• 第三步,确定压力线 多边形AHIJB是由拱各段的 合力作用线构成的,称为三 铰拱在所给荷载作用下的压 力多边形,简称压力线 。 压力线应通过A、B、C三个 铰的铰心。
第五章 三铰拱( three-hinged arch )
.
内容: 三铰拱的支座反力和内力,合理拱轴。
要求: 1、了解静定拱的合理拱轴线的概念; 2、理解静定拱的基本概念及基本特点; 3、掌握静定拱的反力及内力计算。
重点:静定拱反力、内力的计算。 难点:静定拱的内力计算。
.
§5-1 概述 一、实例——拱桥(Arch Bridge)
.
3.6 三铰拱
H f y 0
因事先M 得不到,故改用q(x)和y(x)表示:
d y dx
2 2
qc+.f
y
f
y f y
y*
x
1 H
d M dx
2
2
2
对简支梁来说, d M
dx
2
e
qx
2
x
shx chx
e
x
chx shx
x
qc
y x A ch
第五章
3.6 三铰拱 (arch)
拱的实例
三铰拱的特点
P1
H
l
三铰拱的类型、基本参数
P2
f H
f
VB
VA
1 1 / 10
l
曲杆轴线形状:抛物线、圆弧、悬链线
1
杆轴线为曲线 在竖向荷载作 用下不产生水 平反力。
拱--杆轴线为曲
线,在竖向荷载 作用下会产生水 平推力的结构。
曲梁
FP
三铰拱
2
拱的有关名称
1.5 k N m
tg
2
dy dx
x3
ห้องสมุดไป่ตู้
4f 2x 1 l l
x3
44 2 3 1 12 12
Q2 Q2 cos
2
H sin
2
1 1 2 3 0 .8 3 2
0 .6 6 7
7 .5 0 .5 5 5 0 .0 0 2 5 k N 0 .0 0 3 k N
哈工大·结构力学(32学时) 课件 3.2-三铰拱
抛物线
例 :试求图示抛物线 y 4 fx(l x) / l 2 三铰拱距左支座5m的截面内力
解:一、先求支座反力 1、取整体为分离体
m (F ) 0
B
FAy 20m 200kN.m 20 10 15kN.m 0
整理可得
FAy 160kN
2、取AC为分离体
m (F ) 0
0
合理拱轴线
合理拱轴线:拱在给定荷载作用下只产生
轴力的拱轴线被称为 与该荷载对应的合理 拱轴线,当拱轴线为合理拱轴线时,拱截面 上只受压力(弯矩和剪力均为零)
作业:
3-7;3-9
小结:
以结点作为平衡对象,结点承受汇交力系 作用。
按与“组成顺序相反”的原则,逐次建立 各结点的平衡方程,则桁架各结点未知内 力数目一定不超过独立平衡方程数。
由结点平衡方程可求得桁架各杆内力。
在用结点法进行计算时,注意以下三点,可 使计算过程得到简化。
1. 对称性的利用 如果结构的杆件轴线对某轴(空间桁架为某 面)对称,结构的支座也对同一条轴对称的静 定结构,则该结构称为对称结构 (symmetrical structure)。 对称结构在对称或反对称的荷载作用下,结 构的内力和变形(也称为反应)必然对称或反 对称,这称为对称性(symmetry)。
n m 1 3 A 2.5FP FP 4 n2m FP FP B FP FP 6m
6 5m
2.5FP
截面单杆
FN1 =-3.75FP FN2 =3.33FP FN4=0.65FP
截面法取出的隔离体,不管其 上有几个轴力,如果某杆的轴力可以通过列一 个平衡方程求得,则此杆称为截面单杆。可能 的截面单杆通常有相交型和平行型两种形式。
例 :试求图示抛物线 y 4 fx(l x) / l 2 三铰拱距左支座5m的截面内力
解:一、先求支座反力 1、取整体为分离体
m (F ) 0
B
FAy 20m 200kN.m 20 10 15kN.m 0
整理可得
FAy 160kN
2、取AC为分离体
m (F ) 0
0
合理拱轴线
合理拱轴线:拱在给定荷载作用下只产生
轴力的拱轴线被称为 与该荷载对应的合理 拱轴线,当拱轴线为合理拱轴线时,拱截面 上只受压力(弯矩和剪力均为零)
作业:
3-7;3-9
小结:
以结点作为平衡对象,结点承受汇交力系 作用。
按与“组成顺序相反”的原则,逐次建立 各结点的平衡方程,则桁架各结点未知内 力数目一定不超过独立平衡方程数。
由结点平衡方程可求得桁架各杆内力。
在用结点法进行计算时,注意以下三点,可 使计算过程得到简化。
1. 对称性的利用 如果结构的杆件轴线对某轴(空间桁架为某 面)对称,结构的支座也对同一条轴对称的静 定结构,则该结构称为对称结构 (symmetrical structure)。 对称结构在对称或反对称的荷载作用下,结 构的内力和变形(也称为反应)必然对称或反 对称,这称为对称性(symmetry)。
n m 1 3 A 2.5FP FP 4 n2m FP FP B FP FP 6m
6 5m
2.5FP
截面单杆
FN1 =-3.75FP FN2 =3.33FP FN4=0.65FP
截面法取出的隔离体,不管其 上有几个轴力,如果某杆的轴力可以通过列一 个平衡方程求得,则此杆称为截面单杆。可能 的截面单杆通常有相交型和平行型两种形式。
结构力学(李廉锟第五版)_图文
§4-3 三铰拱的合理拱轴线
在均匀静水压力作用下,q=常数,因而
三铰拱在均匀静水压力作用下,其合理轴线的曲 率半径为一常数, 就是一段圆弧。
因此,拱坝的水平截面常是圆弧形,高压隧洞 常采用圆形截面。
拱桥实例介绍
5)刚架拱桥
1989江苏无锡100米下甸桥
变截面,四分点附近截面高度最大,分别向拱脚、跨中减小 。取消斜撑,拱上建筑采用23m预应力混凝土简支梁以过渡 。
§4-3 三铰拱的合理拱轴线
例4-3 设三铰拱上作用有沿拱轴均匀分布的竖向 荷载(如自重),试求其合理拱轴线。
解:当拱轴线改变时,荷载也随之改变。 令p(x)为沿拱轴线每单位长的自重,荷载沿水平
方向的集度为q(x) 由 有
§4-3 三铰拱的合理拱轴线
将
代入方程(4-5),得
由于规定y 向上为正, x 向右为正,q 向下为 正,故上式右边为正号。
§4-3 三铰拱的合理拱轴线
或
积分后,得 如p(x)=常数=p ,则
即 式中A为积分常数。
§4-3 三铰拱的合理拱轴线
由于当x =0时,
,故常数A等于零,即
再积分一次,得 由于当x=0时,y=0, 故
最后得 等截面拱在自重荷载作用下,合理轴线为一悬链线。
§4-3 三铰拱的合理拱轴线
在一般荷载作用下,为了寻求相应的合理轴线,可假 定拱处于无弯矩状态并写出相应的平衡微分方程。
§4-1 概 述
拱与其同跨度同荷载的简支梁相比其弯矩要小 得多,所以拱结构适用于大跨度的建筑物。它广泛 地应用房屋桥梁和水工建筑物中。由于推力的存在 它要求拱的支座必须设计得足够的牢固,这是采用 拱的结构形式时必须注意的。
§4-2 三铰拱的数值解 一、三铰拱的反力和内力计算。
结构力学——组合结构-三铰拱ppt课件
(A,B,C三铰在一直线上,成为几何瞬变体。)
.
②拱内力计算:
QM
P1
N
D
HA
VA
弯矩:受拉侧做弯矩图; 剪力:垂直于拱轴线的切线(顺时针为正); 轴力:平行于拱轴线的切线(拉为正)。
.
a1
M
P1 D
y HA x
VA
•弯矩:
由 MD0
M V A x P 1 ( x a 1 ) H y 0 M M oH y
C
Mc0q2l /8
l
Mc0 / 6
Mc0 / 6
B
A
C
B
Mc0 / 6
0.207 l 0.586 l 0.207 l
优点:方便,简单; 缺点:截面仍有弯矩。
.
②三铰曲拱:
f MM0Hy (HM c0/ f)
优点:截面弯矩很小或无弯矩; 缺点:曲线杆件施工复杂。
.
③桁架: 上弦、下弦承受弯矩;腹杆承受剪力。
其中:M o V A x P 1 (x a 1 )— 对应点的简支梁弯矩
.
Qo
Q
M
P1
φ
DH
HA
VA
•剪力:
其中:
QQ oco sH sin
Q VAP 1–– 对应点的简支梁剪力
— 切线与水平线所成锐角
(由水平向逆时针为正)
+φ -φ
左右
.
Qo M N
P1
φ
DH
y
HA x
•轴力:
VA
N Q s i n H c os
q M
qr
C
d θ
A
r
任意截面内力:
M q2r(1co )so qrdrsin () q2r(1co )sq2r(1co )s0
.
②拱内力计算:
QM
P1
N
D
HA
VA
弯矩:受拉侧做弯矩图; 剪力:垂直于拱轴线的切线(顺时针为正); 轴力:平行于拱轴线的切线(拉为正)。
.
a1
M
P1 D
y HA x
VA
•弯矩:
由 MD0
M V A x P 1 ( x a 1 ) H y 0 M M oH y
C
Mc0q2l /8
l
Mc0 / 6
Mc0 / 6
B
A
C
B
Mc0 / 6
0.207 l 0.586 l 0.207 l
优点:方便,简单; 缺点:截面仍有弯矩。
.
②三铰曲拱:
f MM0Hy (HM c0/ f)
优点:截面弯矩很小或无弯矩; 缺点:曲线杆件施工复杂。
.
③桁架: 上弦、下弦承受弯矩;腹杆承受剪力。
其中:M o V A x P 1 (x a 1 )— 对应点的简支梁弯矩
.
Qo
Q
M
P1
φ
DH
HA
VA
•剪力:
其中:
QQ oco sH sin
Q VAP 1–– 对应点的简支梁剪力
— 切线与水平线所成锐角
(由水平向逆时针为正)
+φ -φ
左右
.
Qo M N
P1
φ
DH
y
HA x
•轴力:
VA
N Q s i n H c os
q M
qr
C
d θ
A
r
任意截面内力:
M q2r(1co )so qrdrsin () q2r(1co )sq2r(1co )s0
结构力学(第二章)-三铰拱课件
稳定性分析对于结构的整体稳定性和安全性具有 重要意义。
03
三铰拱的设计与优化
设计原则与步骤
确定设计要求
明确三铰拱的设计目标,如承载能力、稳定性、 经济性等。
截面设计
根据计算出的内力和弯矩,设计三铰拱的截面尺 寸和形状。
结构分析
对三铰拱进行受力分析,计算出各截面的内力和 弯矩。
稳定性分析
对三铰拱进行稳定性分析,确保其在承载过程中 不会发生失稳。
3D打印技术
3D打印技术能够实现复杂结构的快速 、精确制造,为三铰拱的原型制作和 试验提供便利。
未来发展方向与趋势
跨学科融合
结构力学与材料科学、计算机科 学、人工智能等学科的交叉融合,
将推动三铰拱在理论和实践上的 创新。
绿色与可持续发展
在未来的发展中,三铰拱的设计和 建造将更加注重环保和可持续发展, 如采用可再生材料和节能技术。
智能化与自动化
随着智能化和自动化技术的发展, 三铰拱的设计、建造和监测将趋向 于智能化和自动化,提高效率和安 全性。
THANK YOU
感谢聆听
案例分析与实践
案例一
某桥梁的三铰拱设计,通过优 化设计,提高了桥梁的承载能 力和稳定性。
案例二
某工业厂房的三铰拱设计,采 用轻量化设计,降低了结构的 自重。
案例三
某大型场馆的三铰拱设计,通 过参数优化,实现了结构的优 化和美观。
04
三铰拱的施工与维护
施工工艺与要点
01
02
03
04
施工准备
确保施工场地安全,检查施工 材料质量,制定施工计划和安
100%
建筑工程
在建筑工程中,三铰拱可用于大 型工业厂房、仓库、展览馆等建 筑的屋盖结构。
03
三铰拱的设计与优化
设计原则与步骤
确定设计要求
明确三铰拱的设计目标,如承载能力、稳定性、 经济性等。
截面设计
根据计算出的内力和弯矩,设计三铰拱的截面尺 寸和形状。
结构分析
对三铰拱进行受力分析,计算出各截面的内力和 弯矩。
稳定性分析
对三铰拱进行稳定性分析,确保其在承载过程中 不会发生失稳。
3D打印技术
3D打印技术能够实现复杂结构的快速 、精确制造,为三铰拱的原型制作和 试验提供便利。
未来发展方向与趋势
跨学科融合
结构力学与材料科学、计算机科 学、人工智能等学科的交叉融合,
将推动三铰拱在理论和实践上的 创新。
绿色与可持续发展
在未来的发展中,三铰拱的设计和 建造将更加注重环保和可持续发展, 如采用可再生材料和节能技术。
智能化与自动化
随着智能化和自动化技术的发展, 三铰拱的设计、建造和监测将趋向 于智能化和自动化,提高效率和安 全性。
THANK YOU
感谢聆听
案例分析与实践
案例一
某桥梁的三铰拱设计,通过优 化设计,提高了桥梁的承载能 力和稳定性。
案例二
某工业厂房的三铰拱设计,采 用轻量化设计,降低了结构的 自重。
案例三
某大型场馆的三铰拱设计,通 过参数优化,实现了结构的优 化和美观。
04
三铰拱的施工与维护
施工工艺与要点
01
02
03
04
施工准备
确保施工场地安全,检查施工 材料质量,制定施工计划和安
100%
建筑工程
在建筑工程中,三铰拱可用于大 型工业厂房、仓库、展览馆等建 筑的屋盖结构。
结构力学之三铰拱课件
桥梁工程
三铰拱广泛应用于桥梁工程中, 如公路桥、铁路桥和立交桥等。
100%
工业建筑
三铰拱适用于工业建筑中的大型 厂房、仓库等结构,能够承受较 大的竖向荷载和水平荷载。
80%
公共建筑
三铰拱也适用于公共建筑中,如 体育馆、会展中心等大型建筑, 能够提供大跨度和高承载能力的 结构体系。
02
三铰拱的力学分析
定位与调整
在吊装完成后,对三铰拱的位 置和角度进行调整,确保其符 合设计要求三铰拱的各个部件连接牢 固、可靠。
防腐与涂装
在施工完成后,对三铰拱进行 防锈蚀处理和涂装,提高其耐 久性和美观度。
施工安全
安全措施
在施工过程中,采取一系列安全措施,如设置安全警示标志、配 备安全带和安全帽等,确保施工人员的安全。
在基础上按照设计要求拼装三铰拱的各个部件,确保 拱体的几何尺寸和位置准确。
04
固定与调整
通过焊接或螺栓连接等方式将拱体固定在基础上,并 进行必要的调整,确保拱体的稳定性和承载能力。
05
施工监测
在施工过程中,对三铰拱的各项参数进行监测,确保 施工质量和安全。
安装技术
01
02
03
04
吊装方法
根据三铰拱的重量和尺寸,选 择合适的吊装机械和吊装方法 ,确保吊装过程中的安全和质 量。
三铰拱的特点
稳定性好
由于三铰拱具有静定结构的特点,因此其稳定性较 好,不易发生侧向失稳或扭转失稳。
承载能力强
三铰拱的承载能力较强,能够承受较大的竖向荷载 和水平荷载。
适用范围广
三铰拱适用于各种类型的建筑结构,如桥梁、厂房 、仓库等,尤其适用于需要承受较大荷载和跨度的 结构。
三铰拱的应用场景
三铰拱广泛应用于桥梁工程中, 如公路桥、铁路桥和立交桥等。
100%
工业建筑
三铰拱适用于工业建筑中的大型 厂房、仓库等结构,能够承受较 大的竖向荷载和水平荷载。
80%
公共建筑
三铰拱也适用于公共建筑中,如 体育馆、会展中心等大型建筑, 能够提供大跨度和高承载能力的 结构体系。
02
三铰拱的力学分析
定位与调整
在吊装完成后,对三铰拱的位 置和角度进行调整,确保其符 合设计要求三铰拱的各个部件连接牢 固、可靠。
防腐与涂装
在施工完成后,对三铰拱进行 防锈蚀处理和涂装,提高其耐 久性和美观度。
施工安全
安全措施
在施工过程中,采取一系列安全措施,如设置安全警示标志、配 备安全带和安全帽等,确保施工人员的安全。
在基础上按照设计要求拼装三铰拱的各个部件,确保 拱体的几何尺寸和位置准确。
04
固定与调整
通过焊接或螺栓连接等方式将拱体固定在基础上,并 进行必要的调整,确保拱体的稳定性和承载能力。
05
施工监测
在施工过程中,对三铰拱的各项参数进行监测,确保 施工质量和安全。
安装技术
01
02
03
04
吊装方法
根据三铰拱的重量和尺寸,选 择合适的吊装机械和吊装方法 ,确保吊装过程中的安全和质 量。
三铰拱的特点
稳定性好
由于三铰拱具有静定结构的特点,因此其稳定性较 好,不易发生侧向失稳或扭转失稳。
承载能力强
三铰拱的承载能力较强,能够承受较大的竖向荷载 和水平荷载。
适用范围广
三铰拱适用于各种类型的建筑结构,如桥梁、厂房 、仓库等,尤其适用于需要承受较大荷载和跨度的 结构。
三铰拱的应用场景
结构力学之三铰拱概要课件
请注意,以上扩展内容仅为概要性的课件提纲,如需详细讲解,还需进一步细化和 补充具体内容。
03
三铰拱的动力学分析
动力学基础
动力学定义
动力学是研究物体运动与受力之间关系的学科,是结构力学的重 要基础。
牛顿运动定律
牛顿运动定律是动力学的基础,包括惯性定律、动量定律和作用反 作用定律,用于描述物体运动的基本规律。
体平衡,确保结构安全稳定。
02
三铰拱的静力学分析
静力学基础
静力学基本概念
静力学是研究物体在静止状态下的平 衡条件的力学分支,涉及力的平衡、 力矩的平衡等概念。
力的分解与合成
介绍如何将力分解为分力,以及如何 将分力合成为合力,以实现力的平衡 。
三铰拱的静力学模型
三铰拱的定义与构成
解释三铰拱的结构组成,包括三个铰链和构成的拱形结构。
能的同时,可以通过优化形状、比例和细节处理等方式提高三铰拱的视
觉效果。
三铰拱的施工方法
常规施工方法
常规的三铰拱施工采用搭设支架、安装模板、绑扎钢筋、浇筑混凝土等步骤进 行。在施工过程中,需要严格控制施工质量,确保各个施工环节的精度和稳定 性。
新型施工方法
随着技术的发展,一些新型施工方法如预制装配式施工、3D打印技术等也逐渐 应用于三铰拱的施工中。这些新型施工方法具有效率高、质量好等优点,但在 应用过程中也需要考虑到成本、技术成熟度等因素。
结构力学之三铰拱概要课件
目录
• 三铰拱的概述和特性 • 三铰拱的静力学分析 • 三铰拱的动力学分析 • 三铰拱的设计和施工 • 三铰拱在结构工程中的应用 • 三铰拱的发展和前景
01
三铰拱的概和特性
三铰拱的定义
定义
三铰拱是一种由三个铰链连接的 弧形结构,主要用于承受荷载并 将其传递给支座。
03
三铰拱的动力学分析
动力学基础
动力学定义
动力学是研究物体运动与受力之间关系的学科,是结构力学的重 要基础。
牛顿运动定律
牛顿运动定律是动力学的基础,包括惯性定律、动量定律和作用反 作用定律,用于描述物体运动的基本规律。
体平衡,确保结构安全稳定。
02
三铰拱的静力学分析
静力学基础
静力学基本概念
静力学是研究物体在静止状态下的平 衡条件的力学分支,涉及力的平衡、 力矩的平衡等概念。
力的分解与合成
介绍如何将力分解为分力,以及如何 将分力合成为合力,以实现力的平衡 。
三铰拱的静力学模型
三铰拱的定义与构成
解释三铰拱的结构组成,包括三个铰链和构成的拱形结构。
能的同时,可以通过优化形状、比例和细节处理等方式提高三铰拱的视
觉效果。
三铰拱的施工方法
常规施工方法
常规的三铰拱施工采用搭设支架、安装模板、绑扎钢筋、浇筑混凝土等步骤进 行。在施工过程中,需要严格控制施工质量,确保各个施工环节的精度和稳定 性。
新型施工方法
随着技术的发展,一些新型施工方法如预制装配式施工、3D打印技术等也逐渐 应用于三铰拱的施工中。这些新型施工方法具有效率高、质量好等优点,但在 应用过程中也需要考虑到成本、技术成熟度等因素。
结构力学之三铰拱概要课件
目录
• 三铰拱的概述和特性 • 三铰拱的静力学分析 • 三铰拱的动力学分析 • 三铰拱的设计和施工 • 三铰拱在结构工程中的应用 • 三铰拱的发展和前景
01
三铰拱的概和特性
三铰拱的定义
定义
三铰拱是一种由三个铰链连接的 弧形结构,主要用于承受荷载并 将其传递给支座。
2-3 三铰拱图文课件
YB
平推力与矢高成反比.
等代梁 A
P1
C
P2
请问:有水平荷载,或铰C不
B
再顶部a1,或
不b1是平拱,
YA右0 边的结论还a2 是正确的吗b?2 YB0
YB=YB0 XA=XB =H
YA=YA0
YA0
H
1 f
[YA
l 2
P1
(
l 2
a1)]
M
0 c
[YA0
l 2
l P1( 2
a1)]
H= MC0 / f
3.拱的分类 静定拱
三铰拱 拉杆
超静定拱
拉杆拱
超静定拱
两铰拱
无铰拱 斜拱
高差h
拱 (arch) 一、概述
4.拱的有关名称
顶铰
拱肋 拱趾铰
拱肋 拱趾铰 跨度
矢高
二、三铰拱的数解法 ----支反力计算
P1
C
P2
A XA
YA
f
l/2
l/2
l
B
XB
三铰拱的竖向反力与其 等代H梁的反力相等;水平
反荷力载Y与A与拱跨轴度线一形定状时无,关M水c0.
二、三铰拱的数解法 ----内力计算
y P1
K
C
P2
QK M K P1
载及A三个铰x的三位铰y 置拱有的关内f ,力而不但与荷 B
且与拱轴线的形状有关。 XA
x
XB X A YA
NK
P1
M
0 K
l/2
l/2
YA
由于推力的l 存在,拱的 YB
YA0
QK0
弯矩比相应简支梁的弯矩要
小。 P1 A
结构力学-曲杆和三铰拱-PPT
(5)构造复杂,施工费用高。
三、拱的种类:
三铰拱
两铰拱
无铰拱
吊杆 拉杆
花篮螺丝
带拉杆的三铰拱
带吊杆的三铰拱
四、拱各部分的名称:
§4-1概述
一.三铰拱的基本形式
(一)无拉杆的三铰拱
1.平拱- 两个拱脚铰在同一水平线 2.斜拱-两个拱脚铰不在同一水平线上
(二)有拉杆的三铰拱(弓弦拱)
二. 三铰拱的组成
(4-17)
D
3、剪力计算 VD VAcosφ D P1cosφ D Hsin φD
(VA P1 )cosφ D Hsin φD
0 0 VD VA P1 VA P1
0 VA VD cosφD Hsin φD
HA A VA P1 A VA0 xD D C P2 B
三铰拱计算简图
P1 A VA0
X 0 :
H A HB H
M
B VB0
C
VAl1 P1 (l1 a1 ) Hf 0
1 [VA l1 P1 (l1 a 1 )] f
0 MC H f
HA0 = 0
D
C
P2
H
xK
0 MC VAl1 P1 (l1 a1 )
P C HA
P HB B VB HA=0
A
VA
A VA
B VA
拱结构
曲梁结构
例题4-1 求图4-5a所示圆弧形曲杆任意截面的内力M、V、N。 解:以极坐标φ表示B截面的位置,取图4-5c所示BC部分隔离体, 设B截面的内力分别为Mφ、Vφ、Nφ, 参照图4-5b并考虑到ds=Rdα, 由平衡条件得 ∑MB=0 Mφ=∫S qdsRsin(φ-α) =qR2∫0φsin(φ-α)dα=qR2(1-cosφ) 式 (4-1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)其他截面内力 可列表进行计算(表4-1)。 3.绘制内力图
第 4章 例4-1 试作图示三铰拱的内力图。拱轴方程为
q= 20kN/m 2 3 4 5 C 4m x 8×1.5=12m
。
y
4f (l x)x 2 l
P=100kN 6
y
1
7
B H=82.5kN VB=105kN
H=82.5kN
VA0
QD
0
连接A、B,先将A和B处的支座 反力分别沿竖向和起拱线方向分解 为两个相互斜交的分力V ’A和 H’A和 V ’B 和H ’B 。 根据上述平衡条件可得: V ’A=V 0A, V ’B =V 0B H’A=H ’B=H’=M 0C/ f ’ 然后再沿水平和竖向分解, 从而得到斜拱支座的水平支座反力 和竖向支座反力: H=HA=HB=H’cosθ =M 0C/ f 式(4-20) VA =V OA + H tanθ 式 (4-21) VB =VBO – H tanθ 式(4-22) 任意截面D的弯矩为: MD= MD0 - H .yD 式(4-23) VD=V 0Dcos φD – H sinφD (1- tanθ/ tanφD ) 式(4-24)
第 4章 截面1
2 1.5ql2 1.5ql cos φ1
x1 1.5m
N1
82.5cosφ 1
1.5ql2sin φ1 82.5sin φ1
1 Q1
M1
82.5kN
115sin φ1
0
115cos φ1
。 115kN
4f (l x1 )x1 2 l 44 (12 1.5) 1.5 1.75m 2 12 dy tanφ1 dx x 1.5m 1 x 4f 44 12 2 1.5 1 2 l 2x1 l 12 12 φ1 45 , sinφ1 0.707 , cosφ1 0.707 y1
简支梁计算简图
(4-16)
a1 y
HA A xD VA P1 P1 a2 D φD yDD [VA x D P1 (xD a1 )] Hy D
0 M0 V D AxD P 1 (xD a1 )
B
HB
x
MD N D VD VB
M D M0 D Hy D
A 0
8
VA=115kN
解: (1)计算支座反力
20 6 9 100 3 115kN 12 20 6 3 100 9 0 V B VB 105kN 12
0 VA VA
0 MC 105 6 100 3 H 82.5kN f 4
(2)计算各截面内力
拱轴线--抛物线、圆弧线和悬链线等 起拱线--拱脚铰A、B之间的连线 拉杆--AB(代替B支座的水平支撑链杆的作用) 拱脚铰(拱趾)--A、B 拱顶铰--C 拱高(矢高)--f 拱跨度--L
高跨比(矢跨比)-f/L
三. 三铰拱受力的基本特点
1. 无拉杆的三铰拱 在竖向荷载作用下,除产生竖向支座反力VA、VB外,还 产生水平支座反力(推力)HA、HB。水平支座反力对拱截面 产生负弯矩(上侧受拉),从而使得三铰拱截面上的内力弯矩 小于荷载和跨度相同的相应简支梁上各对应截面上的弯矩值, 省材料,空间跨度大,但比梁需要更为坚固的基础或支承结构。
2. 有拉杆的三铰拱(弓弦拱) 有拉杆的三铰拱能使基础不受水平推力作用, 但影响建筑空间,故常采取提高拉杆的位置或采取别 的形式(图4-2)。
四. 拱与曲梁的区别
左图所示的曲梁在竖向荷载作用向下,只产生竖向 支座反力VA、VB , 水平支座反力HA=0 而右图所示的有拉杆的三铰拱在竖向荷载作用下,除了产生 竖向支座反力VA、VB外,还会产生水平支座反力(推力)HA、HB。
4.3三铰拱的支座反力和内力计算
一、拱的内力计算原理仍然是截面法。 二、拱通常受压力,所以计算拱时,规定轴力以受压为正。 三、实际计算时常将拱与相应简支梁对比,通过公式完成计 算。这些公式为绘制拱的影响线提供了方便。
四、三铰拱计算公式的建立
a1 b1
a2
y HA A P1 xD
b2
φD
D yD
C
(4-18)
HA0 = 0
4、轴力计算
VB0 P1
0 MD
N D VAsinφ D P1sinφ D Hcosφ D (VA P1 )sin φ D Hcosφ D 0 0 VD VA P1 VA P1
0 N D VD sinφ D Hcosφ D (4-19)
(5)构造复杂,施工费用高。
三、拱的种类:
三铰拱
两铰拱
无铰拱
吊杆 拉杆
花篮螺丝
带拉杆的三铰拱
带吊杆的三铰拱
四、拱各部分的名称:
§4-1概述
一.三铰拱的基本形式
(一)无拉杆的三铰拱
1.平拱- 两个拱脚铰在同一水平线 2.斜拱-两个拱脚铰不在同一水平线上
(二)有拉杆的三铰拱(弓弦拱)
二. 三铰拱的组成
三铰拱计算简图
P1 A VA0
X 0 :
H A HB H
M
B VB0
C
VAl1 P1 (l1 a1 ) Hf 0
1 [VA l1 P1 (l1 a 1 )] f
0 MC H f
HA0 = 0
D
C
P2
H
xK
0 MC VAl1 P1 (l1 a1 )
第 4章
一、拱定义:
曲杆和三铰拱
通常杆轴线为曲线,在竖向荷载作用下,支座产生水 平反力的结构。 二、特点: (1)在竖向荷载作用下,产生支座水平反力。 (2)由于水平支座推力的存在,拱截面上的弯矩远比代 梁上相应截面的弯矩小。 (3)在拱内产生代梁所不存在的轴力(对截面产生压应 力),使得拱截面上的应力分布比梁截面要均匀些,故节 省材料。 (4)由于拱内主要产生轴向压力,所以拱可以采用抗压 性能良好、而抗拉性能较差的材料来建造。
例题4-2 求图4-7a所示圆弧曲杆任意截面的内力M、V、N。 解:以极坐标φ表示B截面的位置,设B截面的内力分别为Mφ、Vφ、Nφ 取图4-7c所示隔离体,参照图4-7b并考虑到ds=Rdα, 由平衡条件得 ∑MB=0 Mφ=∫S qds(Rsinφ-Rsinα)=qR2∫0φ(sinφ-sinα)dα =qR2(φsinφ- 1+cosφ) 式 (4-4) ∑Y’=0 Vφ=∫S qds cosφ=qRcosφ∫0φ dα= qRφcosφ 式(4-5) ∑X’=0 Nφ=-∫S qds sinφ=-qR sinφ∫0φdα= -qRφsinφ 式(4-6)
五. 斜拱的支座反力和内力计算
ND=V0Dsin φD + H cosφD (1+tanθtanφD )
式(4-25)
例题4-4: 求图示三铰拱的支座反力, 并绘制弯矩图、剪力和轴力图。 已知拱轴方程为 y = (4f / L2 ) x(L-x) 解:1.求支座反力 由式(4-13)及(4-14), 可得 VA = ∑Pibi/L = 〔4×8×12÷16〕+〔16×4÷16〕 = 28kN VB=∑Piai/L = 〔4×8×4÷16〕+〔16×12÷16〕 = 20kN HA = HB = H = MOC/ f = (28×8 - 4×8×4)÷4 = 24kN
§ 4-2 曲杆的内力计算
∑Y’=0
所示的径向均布荷载q分解成图4-6b所示的沿水平方向及竖向作用的 均布荷载q。 由此计算B截面所得Mφ、Vφ、Nφ结果同式(4-1)、(4-2)(4-3)。
Vφ=∫S qds cos(φ-α) =qR∫0φcos(φ-α)dα=qRsinφ 式(4-2) ∑X’=0 Nφ=-∫S qds sin(φ-α) =-qR∫0φsin(φ-α)dα= - qR(1-cosα) 式(4-3) 因为qds sinφ=qdy,qds cosφ=qdx(图4-6a),故可将图4-5a
P2
f x
1、支座反力计算 1 V (P b P2 b2 ) M B 0 A l 1 1 M 0 V 1 (P a P a ) A B 1 1 2 2 l
B
HB
VA
l1 l
l2
VB
0 V A V A 0 VB VB
(4-17)
D
3、剪力计算 VD VAcosφ D P1cosφ D Hsin φD
(VA P1 )cosφ D Hsin φD
0 0 VD VA P1 VA P1
0 VA VD cosφD Hsin φD
HA A VA P1 A VA0 xD D C P2 B
(2) 求X = 12m时截面6的内力。由拱轴方程,可得: y6=(4f /L2 ) x(L-x) = (4×4÷162 ) × 12(16-12) = 3m tanφ6 = dy/dx = 4f / L2(L-2x) = (4×4÷162 ) (16 - 2×12) = - 0.5 所以 φ6 = - 26034’,sinφ6 = - 0.447, cos φ6 = 0.894〃 M6 = M06-H.y6 = 20×4 - 24×3 = 8kN.m 因截面6处有集中荷载P = 16KN, 该截面左右两侧的剪力和轴力会发生 变化。根据(4-18)(4-19)可得: V6左= V06左cosφ6-Hsinφ6 = - 4×0.894-24(-0.447) = 7.15kN N6左= V06左sinφ6+Hcosφ6 = - 4×(-0.447)+24×0.894=23.24kN V6右= V06右cosφ6-Hsinφ6 = -20×0.894-24(-0.447) = -7.15kN N6右= V06右sinφ6+Hcosφ6 = (-20)(-0.447)+24×0.894=30.4kN