函数图象教学设计与反思
高一数学 《函数图像及其应用》公开课教案(含教学反思、点评)
函数图象及其应用一.教学内容分析:本堂课旨在对所学常见函数模型及其图像进行归纳总结,使学生对函数图像有个系统的认识,在此基础上,一方面加强学生的看图识图能力,探究函数模型的广泛应用,另一方面,着重探讨函数图像与方程的联系,渗透函数与方程的思想及数形结合思想,为第三章作了很好的铺垫,承上启下,衔接自然,水到渠成。
学生对函数与方程的关系有一个逐步认识的过程,应遵循由浅入深、循序渐进的原则.从学生认为较简单的问题入手,由具体到一般,建立方程的根与函数图像的联系。
另外,函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”,用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。
二.学生学习情况分析:学生在学完了第一章《集合与函数概念》、第二章《基本初等函数》后,对函数的性质和基本初等函数及其图像有了一定的了解和把握,但学生素质参差不齐,又存在能力差异,导致不同学生对知识的领悟与掌握能力的差距很大。
因此进行本堂课的教学,应首先有意识地让学生归纳总结旧知识,提高综合能力,对新知识的传授,即如何利用函数图像解决方程的根的问题,则应给足学生思考的空间和时间,充分化解学生的认知冲突,化难为易,化繁为简,突破难点。
高中数学与初中数学相比,数学语言在抽象程度上突变,思维方法向理性层次跃迁,知识内容的整体数量剧增,以上这三点在函数这一章中得到了充分的体现,本章的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。
因此,在教学中应多考虑初高中的衔接,更好地帮助学生借由形象的手段理解抽象的概念,在函数这一章,函数的图像就显得尤其重要而且直观。
三.设计思想:1.尽管我们的教材为学生提供了精心选择的课程资源,但教材仅是教师在教学设计时所思考的依据,在具体实施中,我们需要根据自己学生数学学习的特点,联系学生的学习实际,对教材内容进行灵活处理,比如调整教学进度、整合教学内容等,本节课是必修1第二章与第三章的过渡课,既巩固了第二章所学知识,又为第三章学习埋下伏笔,对教材做了一次成功的加工整合,正所谓磨刀不误砍材功。
人教版八年级数学下册19 第1课时 函数的图象教案与反思
19.1.2 函数的图象工欲善其事,必先利其器。
《论语·卫灵公》原创不容易,【关注】,不迷路!工欲善其事,必先利其器。
《论语·卫灵公》原创不容易,【关注】,不迷路!第1课时函数的图象1.理解函数图象的意义;(重点)2.能够结合实际情境,从函数图象中获取信息并处理信息.(难点)一、情境导入在太阳和月球引力的影响下,海水定时涨落的现象称为潮汐.如图是我国某港某天0时到24时的实时潮汐图.图中的平滑曲线,如实记录了当天每一时刻的潮位,揭示了这一天里潮位y(m)与时间t(h)之间的函数关系.本节课我们就研究函数图象.二、合作探究探究点一:函数的图象【类型一】函数图象的意义下列各图给出了变量x与y之间的对应关系,其中y是x的函数的是( )解析:∵对于x的每一个取值,y都有唯一确定的值,选项A对于x的每一个取值,y都有两个值,故A错误;选项B对于x的每一个取值,y都有两个值,故B错误;选项C对于x的每一个取值,y都有两个值,故C错误;选项D对于x的每一个取值,y都有唯一确定的值,故D正确.故选D.方法总结:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.【类型二】判断函数的大致图象3月20日,小彬全家开车前往铜梁看油菜花,车刚离开家时,由于车流量大,行进非常缓慢,十几分钟后,汽车终于行驶在高速公路上,大约三十分钟后,汽车顺利到达铜梁收费站,停车交费后,汽车驶入通畅的城市道路,二十多分钟后顺利到达了油菜花基地,在以上描述中,汽车行驶的路程s(千米)与所经历的时间t(分钟)之间的大致函数图象是( )解析:行进缓慢,路程增加较慢;在高速路上行驶,路程迅速增加;停车交费,路程不变;驶入通畅的城市道路,路程增加但增加的比高速路上慢,故B符合题意.故选B.方法总结:此类题目,理解题意是解题关键,据题干中提供的信息,及生活实际判断图象各阶段的变化情况和特征.【类型三由函数图象判断容器的形状下雨时在室外放置一个无盖的容器,如果雨水均匀地落入容器,容器水面高度h与时间t的函数图象如图所示,那么这个容器的形状可能是( )解析:根据图象可以得到,杯中水的高度h随注水时间t的增大而增大,而增加的速度越来越小.则杯子应该是越向上开口越大.故杯子的形状可能是B.故选B.方法总结:解决此类问题,要在读懂题意的前提下,结合图象分析问题并注意一些细节的描述,如在某段时间内的函数值的增减情况、变化趋势等.究点二:函数图象的应用【类型一】从函数图象上获取信息小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多米?一共用了多少分钟?(4)我们认为骑单车的度超过300米/分就超越了安全限度.问:在整个上学的途中哪个时间段明骑车速度最快,速度在安全限度内吗?解析:根据图象进行分析即可.解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米;(2)根据题意,小明在书店停的时间为从8分钟到1分钟,故小明在书店停留了4分钟;(3)一行驶的总路程为120+(1200-600)+(1500-600)=1200+600+900=2700(米);共用了14分钟;(4)由图象可知:0~6分钟时,平均速度为12006=200(米/分);6~8分钟时,平均速度为1200-6008-6=300(米/分);12~14钟时,平均速度为=450(米/分).所以,12~14分钟时小明骑车速度最快,不在安全限度内.方法总结:解读图象反映的信息,关键是理解横轴和纵轴表示的实际意义,解决问题的过程中体现了数形结合思想.【类型二】动点问题的函数图象如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →B →C →D →A ,设P 点经过的路程为x ,以点A ,P ,B 为顶点的三角形的面积是y ,则下列图象能大致反应y 与x 的函数关系的是( )解析:当点P 由点A 向点B 运动,即0≤x ≤4时,y 的值为0;当点P 在BC 上运动,即4<x ≤8时,y 随着x 的增大而增大;当点P 在CD 上运动,即8<x ≤12时,y 不变;当点P 在DA 上运动,即12<x ≤16时,y 随x 的增大而减小.故选B.方法总结:解决动点问题的函数图象问题关键是发现y 随x 的变化而变化的趋势.三、板书设计1.函数图象的意义2.函数图象的应用本课设计的学习内容都是学生所熟知的事情,情景导入是由实例入手,这些内容有利于学生联系实际,主动进行观察、实验、猜测、验证、推理与交流等数学活动.通过一些现实生活中用图象来反映的问题实例,让学生经历将实际问题抽象为数学问题的过程.教学生如何观察分析图象,学会观察图象的一般步骤,利用问题串的形式引导学生逐步深入获得图象所传达的信息,逐步熟悉图象语言.【素材积累】每个人对未来都有所希望和计划,立志是成功的起点,有了壮志和不懈的努力,就能向成功迈进。
函数的图像教学反思5篇
函数的图像教学反思5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作报告、军训心得、学习心得、培训心得、条据文书、读后感、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work reports, military training experiences, learning experiences, training experiences, doctrinal documents, post reading feedback, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!函数的图像教学反思5篇通过教学反思的书写,很多人都可以增强自我指导,作为教师通过教学反思来快速提升我们的教学能力,以下是本店铺精心为您推荐的函数的图像教学反思5篇,供大家参考。
《三角函数的图像和性质》教学设计与反思
《三角函数的图像和性质》教学设计与反
思
一、教学设计
1. 教学目标
- 理解正弦函数、余弦函数和正切函数的图像和性质
- 掌握三角函数的周期性和对称性
- 能够利用图像和性质解决三角函数相关问题
2. 教学步骤
步骤一:引入概念
- 通过示意图介绍正弦函数、余弦函数和正切函数的定义
- 强调函数的周期性和对称性
步骤二:讲解图像和性质
- 展示正弦函数、余弦函数和正切函数的图像
- 分析图像特征,如振幅、周期、对称轴等
- 阐述三角函数的性质,如奇偶性、界值等
步骤三:解决问题
- 提供一些典型问题,引导学生运用图像和性质求解
- 示范解题方法,包括利用性质、缩放变换等
3. 教学资源
- 投影仪和电脑
- 教学PPT
- 相关练题和答案
4. 教学评估
- 设计小组练题,测试学生对三角函数图像和性质的理解程度
- 实时观察学生解题过程,评估其解题方法和思维能力
- 结合学生回答问题和总结教学效果
二、教学反思
本次教学设计在引入概念、讲解图像和性质以及解决问题等环
节上都能够使学生参与,从而提高学生的主动研究能力。
通过图像
的展示和性质的阐述,学生可以直观地理解三角函数的规律和特点。
而解决问题的训练则有助于学生运用所学知识解决实际问题。
值得改进的地方是在评估方面,可以加入更多的互动环节和个别评价,以更准确地评估学生的掌握情况。
此外,教学资源可以进一步扩充,包括实物展示和多媒体辅助工具,以提升教学效果。
总体而言,本次教学设计能够满足教学目标并促进学生的参与和思维能力培养,但仍需在实施过程中加以优化和改进。
三角函数的图像与变换教学设计与反思
三角函数的图像与变换教学设计与反思一、引言本文旨在设计一种有效的教学方法,帮助学生理解和应用三角函数的图像与变换。
三角函数是高中数学课程中的重要内容,理解其图像与变换对学生建立数学模型和解决实际问题具有重要意义。
二、教学设计1. 目标设定教学目标是帮助学生掌握正弦函数、余弦函数和正切函数的图像与变换特点,能够准确地绘制和描述它们的变化规律。
同时,培养学生分析和解决实际问题的能力。
2. 教学方法借助图像和实例,引导学生感性认识三角函数的图像特点,并通过实际问题的应用,激发学生的兴趣和思维能力。
结合数学软件或绘图工具,让学生探索和发现图像与变换的规律。
3. 教学内容与步骤(1)引入三角函数的概念和定义。
通过讲解三角函数的定义和性质,引导学生建立起对三角函数的初步认识和了解。
(2)介绍正弦函数、余弦函数和正切函数的图像特征。
通过绘制函数图像,让学生直观感受三角函数图像的周期性、对称性和变化范围。
(3)探究三角函数的变换规律。
引导学生根据函数的公式进行变换,并绘制变换后的图像,从而发现图像与变换之间的联系。
(4)通过实例分析,让学生理解三角函数图像与实际问题的关联。
以周期性变化的物理现象、振动和波动等为例,让学生应用三角函数解决实际问题。
(5)进行综合练习和巩固。
设计一定数量的练习题,让学生巩固所学的知识和技能,并培养他们的解决问题的能力。
4. 教学评价通过课堂作业、小组讨论和个人表现等方式进行教学评价。
注重学生的应用能力和分析能力,关注学生在解决实际问题时的思维过程和方法。
三、教学反思本教学设计将三角函数的图像与变换纳入具体的实例和问题中,更加贴近学生的生活和实际应用。
通过探索和实践,学生不仅能够理解和运用三角函数的图像与变换,还能够在实际问题中灵活运用所学的知识。
然而,在实施过程中,仍然存在一些问题需要解决。
首先,学生的数学基础和计算能力不同,可能导致在图像绘制和变换计算中的差异。
因此,在教学过程中要注重巩固基础并提供个别辅导,确保每个学生的学习效果。
初中函数图像优质课教案
初中函数图像优质课教案知识与技能:1. 了解一次函数、正比例函数、反比例函数的定义和性质。
2. 学会用描点法、解析法画出一次函数、正比例函数、反比例函数的图像。
3. 能够分析实际问题,选择合适的函数模型。
过程与方法:1. 通过观察、实验、探究等方法,发现一次函数、正比例函数、反比例函数的图像特点。
2. 学会用数形结合的思想方法分析函数问题。
情感态度价值观:1. 培养学生的团队合作精神,提高学生解决实际问题的能力。
2. 培养学生对数学的兴趣,激发学生学习函数的积极性。
二、教学内容:1. 一次函数的定义和性质。
2. 正比例函数的定义和性质。
3. 反比例函数的定义和性质。
4. 用描点法、解析法画一次函数、正比例函数、反比例函数的图像。
5. 实际问题中的函数模型选择。
三、教学过程:1. 引入:通过生活中的实例,引导学生思考函数的概念和作用。
2. 讲解:讲解一次函数、正比例函数、反比例函数的定义和性质,引导学生通过实验、观察发现函数图像的特点。
3. 实践:让学生动手用描点法、解析法画出一次函数、正比例函数、反比例函数的图像,培养学生的动手能力。
4. 应用:分析实际问题,让学生选择合适的函数模型,培养学生的应用能力。
5. 总结:通过总结,使学生对一次函数、正比例函数、反比例函数的概念、性质和图像有更深刻的理解。
四、教学策略:1. 采用问题驱动的教学方法,引导学生主动探究。
2. 利用现代教育技术,如多媒体、网络等资源,提高教学效果。
3. 注重个体差异,因材施教,让每个学生都能在课堂上得到锻炼和发展。
4. 创设生动活泼的课堂氛围,鼓励学生积极参与,培养学生的创新精神。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、思维品质和合作能力。
2. 作业完成情况:检查学生对函数概念、性质和图像的理解和应用能力。
3. 实践报告:评估学生在实际问题中选择合适的函数模型的能力。
4. 学生自评、互评和他评:了解学生的学习情况,提高学生的自我认知和评价能力。
一次函数的图象教案及反思
一次函数的图象教案及反思一次函数的图象教案及反思一、教材的地位和作用本节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会两点法的简便,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。
培养学生主动学习、主动探索、合作学习的能力。
本节课为探索一次函数性质作准备。
(一)教学目标的确定教学目标是教学的出发点和归宿。
因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。
1、知识目标(1)能用两点法画出一次函数的图象。
(2)结合图象,理解直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响。
2、能力目标(1)通过操作、观察,培养学生动手和归纳的能力。
(2)结合具体情境向学生渗透数形结合的数学思想。
3、情感目标(1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。
(2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。
(二)教学重点、难点用两点法画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。
直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响,是本节课的难点。
关键是通过学生的直观感知、动手操作、合作交流归纳其规律。
二、学情分析1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合两点确定一条直线,学生能画出一次函数图象。
2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响有难度。
所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。
3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。
初中识别函数图像教案反思
一、教学目标1. 知识与技能:让学生掌握识别函数图像的基本方法,能够分析函数的性质与图像之间的关系,提高学生分析问题和解决问题的能力。
2. 过程与方法:通过观察、实验、分析等方法,培养学生探究函数图像的特征,提高学生的动手操作能力和抽象思维能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的观察能力、创新意识和合作精神,使学生在探究过程中体验成功的喜悦。
二、教学内容1. 教学内容:本节课主要教授学生如何识别函数图像,包括了解函数图像的基本形状、掌握识别函数图像的方法和技巧。
2. 教学重难点:让学生能够独立识别各种函数图像,理解函数图像与函数性质之间的关系。
三、教学过程1. 导入:通过复习之前学过的函数图像,如正比例函数、一次函数、二次函数等,引导学生回顾函数图像的特点,为新课的学习做好铺垫。
2. 新课讲解:讲解识别函数图像的方法和技巧,如观察函数图像的开口方向、对称轴、顶点、与坐标轴的交点等特征。
同时,通过示例分析,让学生了解如何根据函数图像判断函数的性质。
3. 动手实践:让学生分组进行实验,利用计算器或软件绘制函数图像,观察并分析函数图像的特点,巩固所学知识。
4. 课堂讨论:组织学生进行课堂讨论,分享各自在实验过程中发现的问题和解决问题的方法,加深学生对函数图像特征的理解。
5. 总结提升:对本节课的内容进行总结,强调识别函数图像的方法和技巧,引导学生思考如何将这些方法应用到实际问题中。
四、教学反思1. 教学效果:通过本节课的学习,学生掌握了识别函数图像的基本方法,能够分析函数的性质与图像之间的关系。
但在实际操作中,部分学生对函数图像的把握仍有一定难度,需要在课后加强练习。
2. 教学方法:在教学过程中,采用了观察、实验、讨论等多种教学方法,激发了学生的学习兴趣,培养了学生的动手操作能力和抽象思维能力。
但课堂时间有限,无法让每个学生都充分参与到讨论中,今后可以考虑增加课外实践活动,让学生有更多的机会动手操作。
正比例函数的图像和性质教学设计及教学反思
THANKS FOR WATCHING
感谢您的观看
向右下方倾斜。 • 正比例函数的图像与 x 轴和 y 轴分别交于原点,即 (0,0) 点。 • 通过以上内容,学生可以更深入地理解正比例函数的概念、性质以及与
直线的关系。同时,教师在教学过程中应注重引导学生自主思考和探索 ,培养学生的数学思维和解决问题的能力。在教学反思中,教师应关注 学生的学习效果和问题反馈,及时调整教学策略和方法,以提高教学质 量和效果。
当 x 的值增加时,y 的值也以 相同的比例增加;反之亦然。
正比例函数性质
正比例函数的图像是一条通过原点的 直线。
正比例函数具有线性性质,即满足叠 加原理。
比例常数 k 决定了直线的斜率,即直 线的倾斜程度。
正比例函数与直线关系
• 正比例函数的图像是一条直线,其斜率为比例常数 k。 • 当 k > 0 时,直线从左下方向右上方倾斜;当 k < 0 时,直线从左上方
组织学生进行小组讨论,探讨正 比例函数的性质和应用,培养学
生的合作精神和探究能力。
动手实践
安排学生动手绘制正比例函数的 图像,并观察图像的变化规律, 提高学生的实践能力和观察能力
。ห้องสมุดไป่ตู้
问题解决
设计一些实际问题让学生解决, 如利用正比例关系计算购物总价 、速度等,培养学生的应用意识
和问题解决能力。
课堂小结与作业布置
图像变换法绘制正比例函数图像
利用图像变换的方法,通过对基本函 数图像进行平移、伸缩等变换,得到 正比例函数的图像。
例如,将y=x的图像沿x轴方向拉伸或 压缩k倍(k>0),即可得到正比例函数 y=kx的图像。
04 正比例函数性质应用举例
八年级数学一次函数的图像和性质教学反思
一次函数的图像
01
一次函数的图像是一条直线。当 $k > 0$时,直线从左向右上升; 当$k < 0$时,直线从左向右下降 。
02
一次函数图像上的点都满足一次 函数的解析式。通过描点法可以 画出一次函数的图像。
一次函数的性质
增减性
当$k > 0$时,函数值随自变量的增 大而增大;当$k < 0$时,函数值随 自变量的增大而减小。
REPORTING
教学内容的优化
强化一次函数基本概念
在后续教学中,应进一步强调一次函数的基本概念,包括 定义、表达式、斜率和截距等,确保学生能够准确理解和 运用。
增加实际应用案例
为了提高学生对一次函数图像和性质的理解,可以增加更 多与现实生活相关的应用案例,如行程问题、价格问题等 ,让学生感受到数学的实际应用价值。
注重实践与应用
在教学中,应注重实践与应用环节的设计,让学生通过实际操作和问 题解决来巩固所学知识,提高解决问题的能力。
对未来教学的展望
01
深化对一次函数图像和性质的理解
在未来的教学中,可以进一步深化学生对一次函数图像和性质的理解,
通过更多的探究活动和案例分析,提高学生的思维能力和创新能力。
02
拓展与其他学科的联系
XXX
八年级数学一次函数
的图像和性质教学反
思
汇报人:XXX
2024-01-27
REPORTING
• 引言 • 教学目标与要求 • 教学内容与过程 • 教学效果与反思 • 学生学习情况分析 • 教学改进与展望
目录
XXX
PART 01
引言
REPORTING
反思目的和背景
反思目的
函数的图像教学设计与反思
《函数图象》教学设计与反思教学目标1.通过画图象,理解并感知函数图象的定义。
2.会观察、分析函数图象信息,解决实际问题。
3.提高识图能力、分析函数图象信息能力。
教学重点:把实际问题转化为函数图象,再根据函数图象来研究实际问题。
教学难点:通过观察实际问题的函数图象,使学生感受到解析法和图象法表示函数关系的相互转换这一数形结合的思想.教学过程设计:1.自主探究,获得新知活动一:正方形的边长x与面积S问题1.面积S与边长x的函数关系是什么?2.计算并填写下表:归纳总结:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的_________.上图中的曲线即为函数S=x2(x>0)的图象.活动二:下图是自动测温仪记录的图象,•它反映了北京的春季某天气温T如何随时间t的变化而变化.你从图象中得到了哪些信息?思路导引:找出函数的图象所要表达的数字信息.【规律总结】读取图象所表达的信息应注意:(1)弄清坐标轴和图象上的点所表示的意义.(2)图象上的最高点和最低点往往有特殊意义.(3)上升(下降)线表示函数值随自变量的增大而增大(减小),水平线表示函数值不随自变量的变化而变化.(在本次活动中教师应重点关注:(1)有些问题中的函数关系很难列式子表示,但是可以用图像直观地来反映。
(2)看图象时应注意的问题。
)活动三:分析图象解决实际问题如图所示,小明家、食堂、图书馆在同一条直线上。
小明从食堂吃早餐,接着去图书馆读报,然后回家。
下图反映了这个过程中,小明离家的距离y与时间x之间的对应关系。
根据图象,回答以下问题:(1)食堂离小明家多远?小明从家到食堂用了多少时间?(2)小明吃早餐用了多少时间?(3)食堂离图书馆多远?小明从食堂到图书馆用了多少时间?(4)小明读报用了多少时间?(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少?(以课本例题中的实际生活问题为素材,使学生感受到数学来源于生活,激发学生学数学的兴趣,师生共同参与合作,完成几个问题的探讨,体现了以学生为主体,教师成为问题解决的组织者,引导者与合作者这一新课程教学理念。
一次函数的图像和性质教学反思(2篇)
一次函数的图像和性质教学反思我今天讲课的课题是一次函数的图像和性质,我们是集体备课后形成的教案,我把目标定位为:1、理解正比例函数和一次函数的意义。
2、会画一次函数的图像,并结合图像和表达式理解一次函数的性质。
3、能根据已知条件确定一次函数的表达式。
下面对这节课反思如下:1、上课仍然改不了以前的好多习惯,不放心学生,总想包办代替,自己讲的多,留给学生的时间和空间少。
2、学生展示的少,老师没有放手给学生,没有让学生去经历知识的获取过程。
3、起点过高,把学生的基础估计过高,不能面对的多数学生。
没有本着低起点,小步伐,慢节奏的方式方法进行教学。
4、数形结合不够,应该从图像入手让学生经历画图像和观察图像的过程,并且根据图像去解决一些问题。
5、用展台展示不太清晰,没有让学生画在黑板上效果好。
6、教师应该把课堂还给学生,让学生多做多讲。
不可以有老师太多的讲解。
7、中考备课要讲究实效,不可以走过场,作秀,那只能是事倍功半。
8、要仔细钻研教材和课标,以及考试说明,备好课。
这是上好课的前提。
9、没有注重方法的总结。
总之,还有诸多地方需要改进,我会在今后的教学中加以注意。
一次函数的图像和性质教学反思(2)一次函数是高中数学中的重要内容之一,也是学生接触的第一种函数。
它是一种简单且容易理解的函数,因此在教学过程中,老师和学生往往容易忽视其中蕴含的深层次的数学思想和性质。
本文将从教学反思的角度,探讨一次函数的图像和性质的教学内容,并结合具体的教学案例,分析教学中容易出现的问题和解决方法。
一、教学内容的选择和设计在教学一次函数的图像和性质之前,首先需要学生具备对一次函数的定义和基本性质的理解。
然后,可以引入一次函数的图像,并让学生通过观察图像来总结一次函数的性质。
最后,引入一次函数的一些特殊情况和应用,扩展学生的数学视野。
1. 引入一次函数的定义和基本性质在引入一次函数的定义和基本性质时,应该注重启发学生的思维,培养学生的数学思维能力。
一次函数的图象教案及反思
一、教学目标:1. 让学生理解一次函数的概念,掌握一次函数的图象特征。
2. 培养学生利用图象解决实际问题的能力。
3. 引导学生通过观察、分析、归纳等方法,探索一次函数图象的性质。
二、教学内容:1. 一次函数的定义及表示方法。
2. 一次函数图象的性质及特点。
3. 利用一次函数图象解决实际问题。
三、教学重点与难点:1. 重点:一次函数的图象特征,一次函数图象与实际问题的结合。
2. 难点:一次函数图象在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生探究一次函数图象的性质。
2. 利用数形结合法,让学生直观地感受一次函数图象的特点。
3. 结合实际例子,培养学生解决实际问题的能力。
五、教学过程:1. 导入:通过生活中的实例,引导学生认识一次函数,并激发学生学习兴趣。
2. 新课:讲解一次函数的定义、表示方法,并通过示例让学生理解一次函数图象的概念。
3. 探究:让学生分小组探究一次函数图象的性质,如:斜率、截距等,并归纳总结。
4. 应用:结合实际问题,让学生运用一次函数图象解决问题,如:线性规划等。
5. 巩固:出示一些练习题,让学生巩固所学知识,提高解题能力。
6. 总结:对本节课内容进行总结,强调一次函数图象在实际问题中的应用。
7. 作业:布置一些有关一次函数图象的练习题,让学生课后巩固。
教案反思:在授课过程中,要注意让学生通过观察、分析、归纳等方法,自主地探索一次函数图象的性质,培养他们的动手操作能力和独立思考能力。
结合实际例子,让学生感受一次函数图象在解决实际问题中的重要性,提高他们的学习兴趣。
在教学过程中,要关注学生的学习情况,及时解答他们的疑问,确保他们能够掌握一次函数图象的知识。
六、教学评价:1. 通过课堂提问、练习题和小组讨论,评估学生对一次函数概念和图象性质的理解程度。
2. 观察学生在解决实际问题时的表现,评估他们应用一次函数图象解决实际问题的能力。
3. 收集学生作业和课后练习,评估他们的巩固程度和独立解题能力。
初中数学_10.1 函数的图像教学设计学情分析教材分析课后反思
函数的图像教学设计【教学目标】知识与技能:通过具体实例感受函数图象的意义,能从图象中获取信息,并能进行简单的分析.过程与方法:1.通过具体操作,培养动手能力,体会“数形结合”的思想2、通过分析图像了解函数图像的特点,发展合情推理能力和演绎推理能力。
3、通过用函数图像解决问题,提高处理图像信息的能力。
情感态度价值观:通过动手操作,让学生体验“数”与“形”的转化过程,感受函数图像的简洁美,同时,让学生体验成功建立学习的自信心。
【重点、难点】根据函数图像分析函数变化规律,由函数图像读取信息并解决问题。
一、课前预习1.在事物的变化过程中,我们称数值发生变化的量为(变量),而数值始终保持不变的量称为(常量).常量与变量必须存在于一个变化过程中.2.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有(唯一确定的值)与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值.3.汽车以60千米/时的速度匀速行驶,行驶里程为s千米,行驶时间为t 小时,则( s)是(t)的函数,s与t的函数关系式是( s=60t ) 设计意图:让学生回忆函数的有关概念;用学过的知识引导学生判断事例是否为函数,为后面函数的图像学习埋下伏笔。
二、导入新课将数学课本一本一本摞在一起,让学生观察并思考在这个变化过程中,这摞书的高度h与书本的数量x之间是不是函数关系。
引导学生学生回答“是”,然后说明为进一步研究函数的变化关系引入本节课讲授的课题——函数的图像。
三、学习目标知识与技能:通过具体实例感受函数图象的意义,能从图象中获取信息,并能进行简单的分析.过程与方法:1.通过具体操作,培养动手能力,体会“数形结合”的思想2、通过分析图像了解函数图像的特点,发展合情推理能力和演绎推理能力。
3、通过用函数图像解决问题,提高处理图像信息的能力。
情感态度价值观:通过动手操作,体验“数”与“形”的转化过程,感受函数图像的简洁美,体验成功建立学习的自信心。
函数的图像的教案
函数的图像教案一、教学目标1. 了解什么是函数的图像。
2. 学习如何绘制函数的图像。
3. 掌握函数图像在数轴上的显示。
4. 理解函数图像与函数的关系。
二、教学准备1. 黑板、白板或投影仪2. 教学笔、粉笔或白板笔3. 教学用纸、尺子和画笔4. 函数图像的练习题三、教学步骤1. 引入函数图像的概念(5分钟)教师可以通过例子来引入函数图像的概念。
例如,让学生想象一个简单的函数,比如y = x,然后通过替换x的值来绘制对应的点。
这样学生就可以理解函数图像是由多个点构成的。
2. 解释如何绘制函数图像(10分钟)教师可以从绘制简单函数图像开始,如y = x、y = x^2等。
解释每个点的坐标表示函数的值。
教师可以使用数轴来帮助学生理解函数图像在数轴上的显示。
3. 学生实践绘制函数图像(20分钟)让学生用纸和铅笔练习绘制函数图像。
教师可以在黑板上展示一个函数,然后让学生在纸上模仿绘制。
教师要定期检查学生的进展,并提供指导和帮助。
4. 讨论函数图像与函数的关系(10分钟)教师可以与学生讨论函数图像与函数的关系。
例如,学生可以观察到函数图像的形状如何随着函数的不同而变化。
教师可以向学生提供一些函数曲线的例子,并让学生观察它们的特点和规律。
5. 练习题和作业(15分钟)教师可以提供一些练习题,让学生在课堂上完成。
这些练习题可以包括绘制函数图像、写出函数图像的方程等。
教师可以选取一些具有挑战性的问题,以鼓励学生思考和探索。
6. 总结与反馈(10分钟)教师可以对课堂内容进行总结,并回顾学生所学的知识和技能。
同时,教师可以向学生征求反馈,了解课堂教学的效果和学生的进展。
四、教学评估教师可以通过学生的练习题和作业来评估学生对函数图像的理解和掌握程度。
此外,教师也可以通过课堂表现和参与度来评估学生对相关概念的理解和运用能力。
五、拓展延伸教师可以引导学生进一步学习函数图像的概念和绘制技巧。
学生可以自主选择更复杂的函数,如三次函数、指数函数等,并学习如何绘制它们的图像。
函数的图像教案初中
教案:函数的图像教学目标:1. 理解函数的概念,掌握函数的表示方法。
2. 学会绘制简单的函数图像,并能分析图像的性质。
3. 能够运用函数图像解决实际问题。
教学重点:1. 函数的概念和表示方法。
2. 函数图像的绘制和分析。
教学难点:1. 函数图像的绘制和分析。
教学准备:1. 教学课件或黑板。
2. 函数图像的示例。
教学过程:一、导入(5分钟)1. 引入函数的概念,引导学生思考生活中的函数例子,如温度随时间的变化等。
2. 介绍函数的表示方法,如函数表格、解析式等。
二、新课(20分钟)1. 讲解函数图像的概念,引导学生理解函数图像是对函数值与自变量之间关系的直观表示。
2. 演示如何绘制一些简单的函数图像,如线性函数、二次函数等。
3. 引导学生通过观察函数图像,分析函数的性质,如单调性、奇偶性等。
三、练习(15分钟)1. 让学生独立完成一些函数图像的绘制,并分析其性质。
2. 引导学生运用函数图像解决实际问题,如找出函数的零点、最大值等。
四、总结(5分钟)1. 回顾本节课所学的内容,让学生总结函数图像的概念和性质。
2. 强调函数图像在实际问题中的应用价值。
教学延伸:1. 引导学生进一步学习复杂函数的图像,如三角函数、指数函数等。
2. 让学生尝试运用计算机软件绘制函数图像,提高作图能力。
教学反思:本节课通过讲解和练习,让学生掌握了函数的概念和表示方法,学会了绘制和分析函数图像。
在教学过程中,要注意引导学生观察和思考函数图像的性质,培养学生的空间想象能力。
同时,结合实际问题,让学生体验函数图像在解决问题中的作用,提高学生的数学应用能力。
初中数学_函数的图像教学设计学情分析教材分析课后反思
19.1.2函数的图像(一)教学目标1、理解函数图像的意义,会对实际生活中的例子用变量之间关系的图像进行描述表达,初步认识函数与图像的对应关系。
2、学会观察图像,能从图像中获得所需要的信息,理解图像所表示的含义及其与实际轨道之间的关系和区别。
3、渗透数形结合思想,体会到数学来源于生活,又应用于生活。
培养学生的团结协作精神、探索精神和合作交流的能力。
教学重点与难点从函数图像中获取所需要的信息。
教学过程一、创设情境。
乌龟与兔子赛跑。
领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。
当它醒来时,发现乌龟快到终点了,于是急忙追赶,但已经来不及了,乌龟先到达了终点………师:同学们,上一节课,我们学习了函数的定义,并初步掌握了函数关系式的确立方法.但有些函数问题很难用函数关系式表示出来,然而可以通过图来直观反映.例如用心电图直观的表示了心脏的生物电流与时间的关系.因此,即使对于能列式表示的函数关系,如果也能画图表示则会使函数关系更直观.我们这节课就首先来如何如何解读函数图象信息.二、探究新知活动一:自学课本,回答下列问题:1、什么叫函数图像?函数图像上点的横坐标和纵坐标与函数的关系是什么?2、如何判断图像是否是函数图像?3、下列图象中,表示y是x的函数的是()A B C D活动二:自学课本,回答下列问题1、例1中函数图像的最高点和最低点分别表什么实际意义?从函数图像的变化趋势中你获得了哪些信息?你是怎样分析的?2、例2中各“拐”点的坐标的实际意义是什么?图像中两段与X轴平行的线段的实际意义是什么?三、课堂练习:试一试1、(1)在___点和___点的时候,两地气温相同;(2)在___点到___点和___点到___点之间,(3)上海的气温比北京的气温要高.(4)在__点到__点之间,上海的气温比北京的气温要低.2、小芳今天到学校参加初中毕业会考,从家里出发走10分到离家500米的地方吃早餐,吃早餐用了20分;再用10分赶到离家1 000米的学校参加考试.下列图象中,能反映这一过程的是().3、下图为世界总人口数的变化图.根据该图回答:(1)从1830年到1998年,世界总人口数呈怎样的变化趋势?(2)在图中,显示哪一段时间中世界总人口数变化最快?4、周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离开家后的距离S(千米)与时间t(时)的关系可以用图中的曲线表示.根据这个图象回答下列问题:(1)小李到达离家最远的地方是什么时间?(2)小李何时第一次休息?(3)10时到13时,小骑了多少千米?(4)返回时,小李的平均车速是多少?y/15001010 20/AO Oy/B1510 20y/CO10 2015y/15001010 20 30DO四、中考实战(2016宜宾)如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《函数图象》教学设计与反思
教学目标
1.通过画图象,理解并感知函数图象的定义。
2.会观察、分析函数图象信息,解决实际问题。
3.提高识图能力、分析函数图象信息能力。
教学重点:
把实际问题转化为函数图象,再根据函数图象来研究实际
问题。
教学难点:
通过观察实际问题的函数图象,使学生感受到解析法和图象法
表示函数关系的相互转换这一数形结合的思想.
教学过程设计:
1.自主探究,获得新知
活动一:正方形的边长x与面积S
问题1.面积S与边长x的函数关系是什么?
2.计算并填写下表:
归纳总结:一般地,对于一个函数,如果把自变量与函数的每对对应
值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就
是这个函数的_________.
上图中的曲线即为函数S=x2(x>0)的图象.
活动二:下图是自动测温仪记录的图象,•它反映了北京的春季某天气温T如何随时间t的变化而变化.你从图象中得到了哪些信息?
思路导引:找出函数的图象所要表达的数字信息.
【规律总结】读取图象所表达的信息应注意:(1)弄清坐标
轴和图象上的点所表示的意义.(2)图象上的最高点和最低点往往有
特殊意义.(3)上升(下降)线表示函数值随自变量的增大而增大(减
小),水平线表示函数值不随自变量的变化而变化.(在本次活动中教
师应重点关注:(1)有些问题中的函数关系很难列式子表示,但是可
以用图像直观地来反映。
(2)看图象时应注意的问题。
)
活动三:分析图象解决实际问题
如图所示,小明家、食堂、图书馆在同一条直线上。
小明从食堂吃早
餐,接着去图书馆读报,然后回家。
下图反映了这个过程中,小明离家的距离y与时间x之间的对应关系。
根据图象,回答以下问题:
(1)食堂离小明家多远?小明从家到食堂用了多少时间?
(2)小明吃早餐用了多少时间?
(3)食堂离图书馆多远?小明从食堂到图书馆用了多少时间?
(4)小明读报用了多少时间?
(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少?
(以课本例题中的实际生活问题为素材,使学生感受到数学来源于生活,激发学生学数学的兴趣,师生共同参与合作,完成几个问题的探讨,体现了以学生为主体,教师成为问题解决的组织者,引导者与合作者这一新课程教学理念。
)
活动四.练习反馈,感受应用
一、选择题
1.如图是某市一天的气温随时间变化的图象,
那么这天()
(第1题)
A.最高气温是10℃,最低气温是2℃;
B.最高气温是6℃,最低气温是2℃
C.最高气温是10℃,最低气温是-2℃;
D.最高气温是6℃,最低气温是-2℃
2.甲、乙二人在一次赛跑中,路程s与时间t的关系如图所示,•从图中可以看出,下列结论错误的是()
A.这是一次100米赛跑; B .甲比乙先到达终点C.乙跑完全程需12.5秒; D.甲的速度是8米/秒
3.课本P79练习第2题
活动五.总结归纳:
如何根据从函数图像中获得的信息来研究实际问题呢?
六.布置作业:
(1)必做题:教材习题19.1第6题
(2)选做题:教材习题19.1第9题
教学反思:
本课设计的学生的数学学习内容都是他们熟悉的或发生在身边的事实,是现实而有意义并富有挑战性的。
这些内容有利于学生联系实际,主动进行观察、实验、猜测、验证、推理与交流等数学活动。
通过一些现实生活中用图像来反映的问题实例,让学生经历将实际问题抽象为数学问题的过程,引导学生逐步获得图像所传达的信息。
通过创设问题情境,以生活中的温度的变化向学生提供形成函数思想的充分的活动机会,激发学生的学习积极性,帮助他们在自主探索与合作交流的过程中真正理解函数图像并形成函数思想。
另外,在设计中还注意了问题的层次性,由浅入深,逐层递进,从基本问题到简单的开发性问题,让不同的学生都能有所收获,有所成功,这也体现了新课程教学面向全体学生,让不同的学生在学习上都能得到发展的目的。