高分子论文
小论文 我心目中的高分子
![小论文 我心目中的高分子](https://img.taocdn.com/s3/m/c6d5086aaf1ffc4ffe47aceb.png)
我心目中的高分子江南大学化学与材料工程学院指导老师:XXX高分子材料与工程XXXX班 XSF 学号XXXXXXXXX摘要:在听了专业课后,对高分子有了初步的认识:什么是高分子;高分子的应用领域;前景。
学习了高分子专业的历史,发展,对人类社会的进步做出的贡献。
并且了解了本校高分子专业的教学及研究方向,对日后的学习和就业有了方向。
并对本专业产生了兴趣。
关键词:高分子发展史贡献兴趣高分子与低分子的区别高分子与低分子的区别在于前者分子量很高,通常将分子量高于约1万的称为高分子(polymer),分子量低于约1000的称为低分子。
分子量介于高分子和低分子之间的称为低聚物(oligomer,又称齐聚物)。
一般高聚物的分子量为104-106,分子量大于这个范围的又称为超高分子量聚合物。
高分子材料的发展史高分子材料与工程单单从这门学科上看,它是一门非常年轻的学科。
但对这些高分子材料的使用,国内,可以追溯到中国东汉蔡伦发明的纸张,就是利用了纤维素。
最早的涂料可以追溯到中国古代对漆的使用。
最早的黏合剂的利用是韦诞(公元179-253)通过烟灰+明胶(粘合剂)制作形成。
国外,15世纪美洲玛雅人用天然橡胶做容器,雨具等生活用品。
到了近代,1839年美国人Charles Goodyear发现天然橡胶与硫磺共热后明显地改变了性能,使它从硬度较低、遇热发粘软化、遇冷发脆断裂的不实用的性质,变为富有弹性、可塑性的材料。
1869年制造出了第一种人工合成塑料“赛璐珞”。
1887年制得了第一种人造丝。
1909年用苯酚与甲醛反应制造出第一种完全人工合成的塑料——酚醛树酯。
前期的发展基本上属于摸索阶段,直到1920年德国人Staudinger(1953获诺贝尔奖)提出了“高分子”、“长链大分子”的概念,从而确立了高分子学说。
以大量先驱性工作为高分子化学奠基,开创了高分子科。
P.J.Flory(1974 获诺贝尔奖)则在理论上对高分子进行了深入的研究,其著作“Principles of polymer chemistry”(1953)具有高分子学科中的Bible之说。
高分子材料毕业论文
![高分子材料毕业论文](https://img.taocdn.com/s3/m/cd0995896aec0975f46527d3240c844769eaa039.png)
高分子材料毕业论文高分子材料是指以高分子化合物为基体组分的材料,我国的高分子材料成型技术在工业上取得了飞速的发展。
下文是店铺为大家整理的关于高分子材料毕业论文的范文,欢迎大家阅读参考!高分子材料毕业论文篇1浅析高分子材料老化性能摘要:高分子材料性能优异,应用领域广泛,在户外工程中市场占有率很高。
但由于使用过程中高分子材料受光、湿度和温度等环境因素作用,导致力学性能和外观发生变化。
为改善高分子材料的抗老化性能,必须充分认识其老化机理和老化进程,进而有目的地进行防老化改性。
关键词:高分子材料;降解;老化;进展高分子材料在加工、贮存和使用过程中,由于内外因素的综合影响,逐步发生物理化学性质变化,物理机械性能变坏,以致最后丧失使用价值,这一过程称为“老化”。
老化现象有如下几种:外观变化,材料发粘、变硬、变形、变色等;物理性质变化,溶解、溶胀和流变性能改变;机械性能变化和电性能变化等。
引起高分子材料老化的内在因素有:材料本身化学结构、聚集态结构及配方条件等;外在因素有:物理因素,包括热、光、高能辐射和机械应力等;化学因素,包括氧、臭氧、水、酸、碱等的作用;生物因素,如微生物、昆虫的作用。
老化往往是内外因素综合作用的极为复杂的过程。
高分子材料的老化缩短了制品的使用寿命,并影响制品使用的经济性和环保性,限制了制品的应用范围。
因此,研究引发高分子材料老化的原因及其微观机理具有非常重要的意义。
近年来,高分子老化研究主要集中在探讨高分子材料老化的规律、机理,以及环境因素对材料老化的影响等方面,这些工作对于发展新的实验技术和测试方法,改善材料的生产技术、研制特种材料、逐步达到按指定性能设计新材料等具有重大的指导作用。
1 户外因素对高分子材料老化行为的影响为的影响高分子材料在户外曝露于太阳光和含氧大气中,分子链发生种种物理和化学变化,导致链断裂或交联,且伴随着生成含氧基团如酮、羧酸、过氧化物和醇,导致材料韧性和强度急剧下降。
高分子材料发展情况及趋势论文
![高分子材料发展情况及趋势论文](https://img.taocdn.com/s3/m/9f04d41d86c24028915f804d2b160b4e767f81f8.png)
高分子材料发展情况及趋势论文第一篇:高分子材料发展情况及趋势论文有机高分子材料发展情况及趋势摘要:高分子材料与金属材料、无机非金属材料成为科学技术、经济建设中的重要材料。
而高分子材料包括塑料、橡胶、纤维、薄膜、胶粘剂和涂料等。
其中,被称为现代高分子三大合成材料的塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。
合成高分子材料按使用性质划分,有塑料、橡胶、纤维、涂料等,按用途划分有结构型和功能型,同一用途不同层次则有通用型和高性能型之分,功能型细分则有光、电、磁功能和生物相容功能等。
高分子材料要继续发展,必须走与环境相协调的道路, 提高高新技术含量,开辟新型材料产业。
关键词:高分子材料研究概述进展医用高分子材料的发展导电塑料高分子碳纤维正文:一、有机高分子材料概述有机高分子材料是指区别于通用的、具有高性能或特殊功能等特点的有机高分子材料,表现为性能优异,价格高,产量低。
其特点覆盖面广、产品种类多;投资与技术高度密集,技术含量高;高风险、高收益。
按使用性质划分,有塑料、橡胶、合成纤维、专用及精细化学品等;按用途划分有结构型和功能型;按功能型细分则有光、电、磁功能和生物相容功能;以生物质为原料生产的高分子材料也被划入了新型有机高分子材料。
新型有机高分子材料应用广泛,工程塑料、复合材料、功能高分子材料、有机硅及氟系材料、液晶材料、特种橡胶、高性能密封材料等新型高分子材料被广泛应用于电子电器、交通运输、机械、建筑、生物、医疗及农业生产资料等领域。
二、有机高分子材料国内现状国内有机高分子材料的研究不断取得新的进展:国家重点科技攻关项目“聚醚砜、聚醚醚酮、双马型聚酰亚胺等类树脂专用材料及其加工技术”,通过了国家有关部门的验收;一种用于家电产品的新型紫外光固化涂料——JD-1紫外光固化树脂已开发成功;超高分子量聚丙烯酰胺合成技术在大庆油田化工总厂研制成功;“PTC智能恒温电缆”、“多功能超强吸水保水剂”、“粉煤灰高效活化剂”等等,都是我国在高分子材料领域取得的不俗成果。
高分子合成材料范文
![高分子合成材料范文](https://img.taocdn.com/s3/m/68ac319e32d4b14e852458fb770bf78a65293a20.png)
高分子合成材料范文高分子合成材料是一种由化学合成而成的大分子化合物,通常具有高分子量、高强度和高导电性等特点。
高分子合成材料广泛应用于各个领域,如塑料、橡胶、纤维、涂料、胶黏剂等。
在本篇文章中,将会探讨高分子合成材料的特点、分类以及应用领域。
1.高分子量:高分子合成材料的分子量通常在10^4-10^6之间,因此具有较高的物理强度和化学稳定性。
2.可塑性:高分子合成材料具有较好的塑性,可以通过热加工、注塑等方法加工成不同形状的制品。
3.耐磨性:高分子合成材料通常具有较好的耐磨性能,可以用于制造耐磨部件,如轮胎、刷子等。
4.耐化学性:高分子合成材料通常具有较好的耐化学性,不易受到化学药品的侵蚀。
1.聚合物:聚合物是一种由同种或不同种化学单体通过聚合反应合成的高分子化合物,可以进一步分为塑料和橡胶。
塑料是一种具有可塑性的高分子合成材料,可以根据聚合单体的不同特性,如聚乙烯、聚丙烯、聚氯乙烯等分类。
橡胶是一种具有高弹性的高分子合成材料,可以根据其硬度和化学结构的不同,如天然橡胶、丁苯橡胶等。
2.高分子复合材料:高分子复合材料由高分子基质和增强材料组成,可以提高材料的力学性能。
常见的高分子复合材料包括聚合物基复合材料、纳米复合材料和纤维增强复合材料等。
3.高分子溶液:高分子溶液是指高分子化合物在溶剂中形成的溶液。
通过调整高分子溶液的浓度、溶剂的种类和温度等条件,可以使其具有不同的性质和应用前景。
1.医疗领域:高分子合成材料被广泛用于医疗器械的制造,如医用塑料制品、人工骨骼和人工器官等。
此外,高分子合成材料还被用于制造药物缓释系统和生物医学材料。
2.电子领域:高分子合成材料被广泛应用于电子器件的制造,如电子电缆、绝缘材料和电子芯片等。
3.环保领域:高分子合成材料被广泛应用于环保材料的研发和生产,如可降解塑料和水处理材料等。
4.能源领域:高分子合成材料被应用于太阳能电池板、燃料电池和锂离子电池等能源领域。
总之,高分子合成材料具有高分子量、可塑性、耐磨性和耐化学性等特点,广泛应用于医疗、电子、环保和能源等领域。
高分子材料与工程论文
![高分子材料与工程论文](https://img.taocdn.com/s3/m/bb4ee23230b765ce0508763231126edb6f1a76fb.png)
高分子材料与工程论文
高分子材料是一种具有高分子化学结构的材料,具有独特的物理性能和化学性质。
在工程领域中,高分子材料的应用日益广泛,涉及到塑料、橡胶、纤维等多个领域。
本文将就高分子材料的特性、应用及未来发展方向进行探讨。
首先,高分子材料具有良好的加工性能,可以通过热塑性或热固性工艺进行成型。
其次,高分子材料具有较高的强度和韧性,可以用于制造各种结构件和零部件。
此外,高分子材料还具有良好的耐腐蚀性能和绝缘性能,适用于化工、电气等领域。
另外,高分子材料还具有较好的可塑性和可回收性,有利于环保和资源循环利用。
在工程领域中,高分子材料被广泛应用于汽车制造、航空航天、建筑材料、电
子产品等多个领域。
例如,汽车制造中的塑料零部件、航空航天中的复合材料结构件、建筑材料中的隔热材料、电子产品中的绝缘材料等,都离不开高分子材料的应用。
高分子材料的应用不仅可以降低产品成本,提高产品性能,还可以减轻产品重量,节约能源,有利于推动工程技术的发展。
未来,随着科学技术的不断进步,高分子材料的研究和应用将迎来新的发展机遇。
例如,纳米材料、生物可降解材料、功能性高分子材料等将成为研究热点,为工程领域提供更多的新材料和新技术。
同时,高分子材料的再生利用和循环利用将成为未来发展的趋势,有助于推动工程领域的可持续发展。
综上所述,高分子材料在工程领域中具有重要的地位和作用,其特性和应用对
工程技术的发展起着重要的推动作用。
未来,高分子材料的研究和应用将继续深入,为工程领域带来更多的创新和发展机遇。
希望本文能够对高分子材料及工程领域的相关研究和应用提供一定的参考和借鉴。
高分子材料论文3000字
![高分子材料论文3000字](https://img.taocdn.com/s3/m/5dad1d4968eae009581b6bd97f1922791688bee1.png)
高分子材料论文3000字近年来,高分子材料处于不断变化发展中,并且随着它的不断发展,已经渗透到人类生活中的方方面面。
因此,高分子材料在日常生活中的生产和生活活动中发挥着重要作用。
高分子材料又称之为聚合物材料,主要是由无数个小分子化合物通过化学键,进而形成的大分子化合物,称之为聚合物材料。
在日常的生产生活中常见的高分子材料主要有合成橡胶、合成纤维、合成塑料等,并且在新中国成立之后,上述高分子材料在日常生活中得到了广泛应用,例如服装业、日用品,以及各种工业材料中,满足了各行业对高分子材料的需求。
此外,在未来高分子材料将会运用于纳米高分子材料复合应用、生物可降解高分子材料、高分子材料功能化,以及航空航天领域。
二、高分子材料的发展高分子材料是一种聚合物大分子化学品,其组成主要是由半人工和人工合成的高分子材料,与其他化合物的主要区别是高分子材料在化学性质和物理性质上均能发生较大变化,可以有一些特殊功能,例如光学、电学等功能。
此外,随着科学技术的不断进步,新能源开发、微电子和生物医药的不断发展,高分子材料得到了更广泛的应用,其作用主要表现在以下结果方面。
其一,使用高分子材料设计合成新能物质,并且具有新功能,例如研制出的新型非晶质光盘,具有较好的耐腐蚀性,几乎不会被腐蚀,这一特性主要是来自于非晶质合金表面生成的耐腐性保护膜。
其二,高分子材料利用特别的加工方式来增加磁疗的特殊功能,如利用高分子膜和塑料光纤使高分子材料更加容易加工成型,并且降低其加工成本。
其三,使用两种或者两种以上性能不同的高分子材料,经过复合化学反应形成新的高分子材料,如屏蔽导电、塑料以及复合层的复合填料。
当前,随着高分子材料在生产生活中的应用日益加深,其与众不同之处逐渐凸显出来,它可以代替日常生产生活中的许多材料,并且可以通过高分子材料来改善其他材料的功能和性能,使他们成为一种全新材料,进而更好的发挥他们的功能。
进而,我国也对高分子材料这一领域的研究较为重视,在自我研发的基础上,不断加强了国际研究领域的沟通交流。
2021高分子材料成型论文(最新10篇)范文3
![2021高分子材料成型论文(最新10篇)范文3](https://img.taocdn.com/s3/m/ac86a5f3e2bd960591c6774c.png)
2021高分子材料成型论文(最新10篇)范文 随着我国科学技术的不断发展,高分子材料作为一项新型技术得到了广泛的应用,高分子材料成型的工艺技术也在不断进步,为制造业、工业等相关行业的生产活动提供了有力的技术支持。
本文整理了10篇“高分子材料成型论文”,供该专业的学者阅读参考。
高分子材料成型论文(最新10篇)之第一篇:高分子材料成型加工技术的进展 摘要:现阶段随着我国经济与科技不断快速的发展,促使对材料的需求量每年都在增加, 而且因为材料属于技术进步的基础, 所以业界的相关人员都十分认可高分子材料的出现。
同时高分子材料具有十分良好的性能, 促使对其进行广泛的应用, 例如医学、建筑、生物、计算机等。
所以本文主要研究高分子的几种成型技术, 促使我国在成型的技术研究中对技术前沿进行掌握, 从而确保大力的推动我国高分子材料成型加工技术的发展。
关键词:高分子材料,成型加工,技术,发展 1引言 因为我国社会不断快速的发展,促使我国大部分特殊的领域对高分子材料的性能要求越来越高, 例如国防尖端工业、航空工业等领域。
而且高分子材料属于通过对各种制品进行制造, 不断对其具有的价值进行实现, 所以结合高分子材料的应用角度, 高分子材料成型加工技术的发展具有极其重要的作用与意义。
同时我国需要对技术的前沿进行把握, 不断对自主知识产权进行培育, 从而确保实现我国高分子材料成型技术的可持续性发展。
2高分子材料成型加工技术的发展趋势 因为随着我国科技不断快速的发展,促使人们对制造技术的要求与质量越来越高, 而且聚合物反应加工技术有传统的双螺杆轴剂出成型的技术所演化, 以及美国的Aerstart公司已经对更加稳定、高效的连续性与混炼挤出机进行研究, 能够对确保对其他同类型挤出机成型过程中存在的问题进行有效的解决。
但是我国这项技术正处于起步的阶段, 高分子才的成型加工技术主要针对塑料的缩聚反应的机械设备。
同时随着我国不断增加的需求与生产力度, 需要对合金材料的生产效率进行有效的增强, 但是我国传统的加工设备与技术无论是在混炼的过程中, 还是在传热技术的环节中都存在大量的问题, 以及设备也具有较大的投资费用、较高的能耗、较大的噪音等缺陷[1]。
高分子材料论文:高分子材料相关研究.doc
![高分子材料论文:高分子材料相关研究.doc](https://img.taocdn.com/s3/m/261892fdb04e852458fb770bf78a6529647d35a5.png)
高分子材料论文:高分子材料相关研究.doc高分子材料论文:高分子材料相关研究摘要:包括塑料、橡胶、纤维、薄膜、胶粘剂和涂料等。
其中,被称为现代高分子三大合成材料的塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。
关键词:高分子材料化学分子高分子材料:macromolecular material,以高分子化合物为基础的材料。
高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。
所有的生命体都可以看作是高分子的集合。
一、按特性分析高分子材料高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。
①橡胶是一类线型柔性高分子聚合物。
其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。
有天然橡胶和合成橡胶两种。
②高分子纤维分为天然纤维和化学纤维。
前者指蚕丝、棉、麻、毛等。
后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。
纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。
③塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。
其分子间次价力、模量和形变量等介于橡胶和纤维之间。
通常按合成树脂的特性分为热固性塑料和热塑性塑料;按用途又分为通用塑料和工程塑料。
④高分子胶粘剂是以合成天然高分子化合物为主体制成的胶粘材料。
分为天然和合成胶粘剂两种。
应用较多的是合成胶粘剂。
⑤高分子涂料是以聚合物为主要成膜物质,添加溶剂和各种添加剂制得。
根据成膜物质不同,分为油脂涂料、天然树脂涂料和合成树脂涂料。
⑥高分子基复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。
它综合了原有材料的性能特点,并可根据需要进行材料设计。
二、现代新型高分子材料高分子材料包括塑料,尽管高分子材料因普遍具有许多金属和无机材料所无法取代的优点而获得迅速的发展,但目前业已大规模生产的还是只能寻常条件下使用的高分子物质,即所谓的通用高分子,它们存在着机械强度和刚性差、耐热性低等缺点。
生活中的高分子论文
![生活中的高分子论文](https://img.taocdn.com/s3/m/0f2ab11966ec102de2bd960590c69ec3d5bbdbf2.png)
生活中的高分子论文第一篇:生活中的高分子论文生活中的高分子材料塑料对我们生活的影响(10环境1W XXX)考核成绩一、塑料的简介(1)塑料的定义:塑料是以合成(或天然)树脂为基础,再加入各种添加剂(如填料、增塑剂、稳定剂、润滑剂、交联剂等),在一定温度和压力下加工成形的各种材料的总称。
它是一种合成高分子材料,又可称为高分子或巨分子,也是一般所俗称的塑料或树脂,可以自由改变形体样式。
(2)塑料的特征及优缺点:塑料主要有以下特性:①大多数塑料质轻,化学性稳定,不会锈蚀;②耐冲击性好;③具有较好的透明性和耐磨耗性;④绝缘性好,导热性低;⑤一般成型性、着色性好,加工成本低;⑥大部分塑料耐热性差,热膨胀率大,易燃烧;⑦尺寸稳定性差,容易变形;⑧多数塑料耐低温性差,低温下变脆;⑨容易老化;⑩某些塑料易溶于溶剂。
塑料的优点:①大部分塑料的抗腐蚀能力强,不与酸、碱反应。
②塑料制造成本低。
③耐用、防水、质轻。
④容易被塑制成不同形状。
⑤是良好的绝缘体。
⑥塑料可以用于制备燃料油和燃料气,这样可以降低原油消耗。
塑料的缺点:①回收利用废弃塑料时,分类十分困难,而且经济上不合算。
②塑料容易燃烧,燃烧时产生有毒气体。
③塑料是由石油炼制的产品制成的,石油资源是有限的。
(3)塑料的类型与分类:塑料的结构基本有两种类型:生活中的高分子材料1、线型结构(包括支链结构):高聚物由于有独立的分子存在,故有弹性、可塑性,在溶剂中能溶解,加热能熔融,硬度和脆性较小的特点。
2、体型结构:高聚物由于没有独立的大分子存在,故没有弹性和可塑性,不能溶解和熔融,只能溶胀,硬度和脆性较大。
(4)塑料的加工方法:塑料的成型加工是指由合成树脂制造厂制造的聚合物制成最终塑料制品的过程。
加工方法(通常称为塑料的一次加工)包括压塑(模压成型)、挤塑(挤出成型)、注塑(注射成型)、吹塑(中空成型)、压延等。
吸塑:用吸塑机将片材加热到一定温度后,通过真空泵产生负压将塑料片材吸附到模型表面上,经冷却定型而转变成不同形状的泡罩或泡壳。
高分子专业前沿论文1
![高分子专业前沿论文1](https://img.taocdn.com/s3/m/e5eded0790c69ec3d5bb7557.png)
功能高分子材料的发展现状和趋势随着科学技术和国民经济的发展 ,高分子材料已经渗透到各个领域。
各种塑料制品、薄膜、人造皮革、合成橡胶、合成纤维等已成为人们生活中不可缺少的材料。
但对于功能高分子材料人们一般还不太了解,它是上世纪 60 年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。
近年来,功能高分子材料的年增长率一般都在10%以上 ,其中高分子分离膜和生物医用高分子的增长率高达50%。
近30年来,高分子化学与高分子材料工业发展迅猛,功能高分子材料也得到了蓬勃发展。
所谓“功能”是指这类高分子除了机械特性外,另有其他功能。
例如: 光、电、磁性能, 对特定金属离子的选择螯合性,以及生物活性等,这些都与高分子材料中具有特殊结构的官能团密切相关。
功能高分子的独特性使其在诸多领域得到了广泛应用并具有巨大的发展潜力,引起了人们的广泛关注。
国内外功能高分子材料发展现状功能高分子在新材料领域中占有重要的地位,据日本通产省产业结构研究会估计,到本世到本世纪末,日本功能高分子材料的市场将达到2万亿日元,占整个新材料市场的五分之一,比1987年增长2 . 6倍,比1981年增长10倍。
功能高分子近20年的年均增长率达到10%以上。
自1935年合成离子交换树脂以来,高分子的各种特殊性能不断被发现,50年代初美国开发的感光树脂印刷板,1957年发现聚乙烯基咔唑的光电导性,1966年塑料光导纤维问世,同年L it t le 提出了超导高分子模型,随后1975年发现聚氮化硫的超导性,80年代,高分子传感器,人工脏器,分离膜技术得到快速发展, 1991年发现尼龙11的铁电性,1994年塑料柔性太阳能电池在美国阿尔贡实验室后院启用。
这一切反映了功能高分子发展的日新月异。
在世界各国功能高分子的发展中,日本处于领先地位,形成了“官产学”的联合体制,从规划、立题到应用开发都作了周密的部署。
日本高分子学会进行了21世纪高分子科学和技术的咨询调查,对50个重要课题进行了评价,其中涉及生物高分子和功能高分子的26个课题预计将在本世纪末至下世纪初完成。
药用高分子材料论文
![药用高分子材料论文](https://img.taocdn.com/s3/m/710629860d22590102020740be1e650e52eacf1d.png)
药用高分子材料论文药用高分子材料是一类在医学领域中具有广泛应用前景的新型材料。
它们具有良好的生物相容性、可降解性和可控释放性,因此被广泛应用于药物传递、组织工程、医用器械等领域。
本文将从药用高分子材料的特点、应用、研究现状和发展趋势等方面进行论述。
首先,药用高分子材料具有良好的生物相容性。
生物相容性是衡量材料在生物体内是否引起免疫排斥和毒性反应的重要指标。
药用高分子材料可以与生物体组织良好地相容,不会引起明显的免疫排斥反应,因此在医学领域中得到了广泛应用。
例如,可降解聚乳酸材料被用于制备缝合线、修复骨折等医疗器械,其生物相容性得到了充分验证。
其次,药用高分子材料具有可降解性。
可降解性是指材料在生物体内可以被自然降解为无害的物质,不会对生物体造成持久的影响。
这种特性使得药用高分子材料在药物传递领域具有独特优势。
例如,可降解的聚乙烯醇-聚乳酸共聚物被广泛用于制备药物缓释微球,可以实现药物的持续释放,提高药物的疗效和降低毒副作用。
另外,药用高分子材料具有可控释放性。
可控释放性是指药物可以在一定时间内以可控的速率从材料中释放出来。
这种特性使得药用高分子材料在药物传递系统中可以实现精确的药物释放,提高药物的生物利用度。
例如,通过改变材料的孔隙结构和表面性质,可以实现对药物释放速率的调控,从而实现药物的持续释放和定向释放。
在当前的研究中,药用高分子材料的应用领域不断拓展,研究重点逐渐从材料本身向材料与药物的相互作用、材料的结构与性能之间的关系等方面转移。
同时,随着生物医学工程和组织工程等新兴领域的发展,对药用高分子材料的需求不断增加,这也催生了一大批新型药用高分子材料的研究和开发。
未来,随着医学技术和材料科学的不断发展,药用高分子材料必将迎来更广阔的应用前景。
我们相信,在不久的将来,药用高分子材料将会在医学领域发挥越来越重要的作用,为人类健康事业做出更大的贡献。
综上所述,药用高分子材料具有良好的生物相容性、可降解性和可控释放性等特点,在医学领域具有广泛的应用前景。
高分子材料毕业论文
![高分子材料毕业论文](https://img.taocdn.com/s3/m/b2ce3839aeaad1f346933ff1.png)
毕业论文碳纤维/NR/CR复合材料结构性能的研究学生姓名:孙峻航学号:092074238系部:材料工程系专业:高分子材料与工程指导教师:张保卫二零一三年六月诚信声明本人郑重声明:本论文及其研究工作是本人在指导教师的指导下独立完成的,在完成论文时所利用的一切资料均已在参考文献中列出。
本人签名:年月日毕业论文任务书论文题目:碳纤维/NR/CR复合材料结构性能的研究系部:材料工程系专业:高分子材料与工程学号:092074238学生:孙峻航指导老师:张保卫(副教授)专业负责人:李歆1.设计论文的主要任务及目标主要任务:设计采用不同含量的碳纤维来改性NR/CR,对比研究没加碳纤维时NR/CR复合材料的力学性能。
实现目标:改性后获得的NR/CR复合材料的各个力学性能较纯NR/CR复合材料的力学性能明显提高。
2.设计(论文)的基本要求和内容(1)基本要求1)撰写格式规范、工整,章节内容明确,字数1~2万;2)文献综述包括国内外的前沿动态以及本课题的创新点;3)数据真实可信、图表准确,分析合理;4)结论具有代表性及再现性;5)外文翻译准确,且与课题有关。
(2)主要内容1) 碳纤维的表面处理和烘干;2)处理好的碳纤维加入NR/CR时混炼的程序;3)比较改性后的NR/CR和纯NR/CR的力学性能3.参考文献[1]谢富霞,李拥军,李吉宏,等.偶联剂改性炭黑对橡胶性能的影响[J].橡胶工业业,1996,43(6):335-338.[2]杨清芝.现代橡胶工艺学[M].北京:中国石化出版社,1997:194.[3]卫建军,宋进仁,刘郎.碳纤维表面处理对短炭纤维增强炭基复合材料强度的影响[J].炭素技术,1999(2):24一27.[4]王作龄编译. 海绵橡胶. 世界橡胶工业,2000,27(2):22.[5]许嘉敏.碳纤维表面改性及其表征的研究[J].高分子材料科学与工程,1990,(1):66.[6]李润民,贺福.碳纤维的表面处理研究一碳纤维表面自由能及其退化浅析[J].纤维复合材料,1993,(1):17一20.4.进度安排论文各阶段名称起止日期1 分析题目,查阅资料,开题报告。
高分子材料与工程论文(五篇范例)
![高分子材料与工程论文(五篇范例)](https://img.taocdn.com/s3/m/674066dbafaad1f34693daef5ef7ba0d4a736d99.png)
高分子材料与工程论文(五篇范例)第一篇:高分子材料与工程论文浅谈高分子材料与工程专业摘要:在世界范围内, 高分子材料的制品属于新一代的材料。
它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势,将是21世纪最活跃的材料支柱。
高分子材料在我们身边随处可见。
在我们的认识中,高分子材料是以高分子化合物为基础的材料。
高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料。
关键词:高分子材料、高分子材料定义、高分子材料结构特征、高分子材料分类、生活中的高分子材料、高分子材料的发展前景。
专业定义高分子材料是以高分子化合物为基础的材料,它是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。
高分子材料认识高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。
高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。
天然高分子是生命起源和进化的基础。
人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。
如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。
高分子材料的结构决定其性能,对结构的控制和改性,可获得不同特性的高分子材料。
高分子材料独特的结构和易改性、易加工特点,使其具有其他材料不可比拟、不可取代的优异性能,从而广泛用于科学技术、国防建设和国民经济各个领域,并已成为现代社会生活中衣食住行用各个方面不可缺少的材料。
很多天然材料通常是高分子材料组成的,如天然橡胶、棉花、人体器官等。
高分子材料的高分子链通常是由103~105个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。
因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特征。
高分子结构通常分为链结构和聚集态结构两个部分。
高分子材料论文(丝素蛋白)
![高分子材料论文(丝素蛋白)](https://img.taocdn.com/s3/m/f34d2d1b59eef8c75fbfb330.png)
丝素蛋白的相关性质与用途丝素蛋白,是从蚕丝中提取的天然高分子纤维蛋白,由蚕茧缫丝脱胶而得到,来源丰富,是一种无生理活性的天然结构性蛋白。
而蚕丝是由70%~30%的丝胶蛋白和70%~80%的丝素蛋白以及极少量的色素、碳水化合物等构成的。
其中,丝胶蛋白是一种高分子量的球蛋白,其分子结构的支链上亲水基含量较高,链排列不紧密,故易溶于水、稀酸和稀碱,并能被蛋白酶等水解,还具有与明胶类似的凝胶、粘着等特性。
丝素蛋白由分子量为5万左右的小肽链和分子量为3O万左右的大肽链组成。
其蛋白质的氨基酸组成以甘氨酸、丙氨酸和丝氨酸为主,与人体的皮肤和头发的角朊极为接近,这成为一些研究中,将丝素用于人造皮肤制造的原因之一。
丝素蛋白的结晶部分为较为紧密的B折叠结构,在水中仅发生膨胀而不能溶解,亦不溶于乙醇等有机溶剂,但可在一些特殊的中性盐溶液中发生无限膨胀形成粘稠的液体,透析除盐即可得到丝素的纯溶液。
然后通过喷丝、喷雾或延展、干燥等处理,可得到再生丝、凝胶、薄膜或微孔材料等产品。
对丝素蛋白的研究发现,与明胶、清蛋白等普通蛋白相比,其固化结晶方式具有多样化的特点:既可沿用一般天然蛋白的传统固化工艺,采用戊二醛做交联剂;也可以通过一些独特的处理方式来达到目的,如冷冻、热蒸、拉伸及低毒性有机溶剂浸泡等⋯。
特别是采用冷冻干燥,短时高温与乙醇浸泡的协同处理方式,可以很好地保持天然蛋白的高度生物亲和性,并适应药物载体应用中,一些对高温或某种固化剂敏感的负载药物的特殊要求,在应用方面体现出更大的灵活性。
在丝素蛋白的特性研究中,其良好的成膜性是最受人们关注的热点之一。
与传统应用较多的天然高分子材料——壳聚糖与胶原等相比,丝素蛋白膜成膜方便性更好,还可以保持高达98%以上的透明性,在高湿状态下的柔韧性与形态保持性能也较为突出,有利于制造一些在临床或实验中要求透明性,以便观测提取生物信息或体内高湿环境使用的生物医学产品。
另外,在成膜条件适当的情况下,丝素膜可以表现出优良的透氧透气性能,如lmm厚的丝素膜,其透氧率每平方米可高达33 mL/h ,不亚于甚至超过目前一般认为在这方面性能卓越的合成材料,如聚-L-亮氨酸膜或聚羟乙基丙烯酸膜。
高分子物理课程论文
![高分子物理课程论文](https://img.taocdn.com/s3/m/8b32e8edc8d376eeaeaa3112.png)
高分子物理课程论文(针对分子结构)摘要人类的生存与进步始终同高分子相联系。
最早可追溯到人类对谷物、肉类、毛皮、棉和麻等今天我们称之为淀粉、蛋白质和纤维素等这些天然高分子的利用。
但是,高分子被赋予真正正确的含义并为人们所接受则是20世纪30年代的事。
至20世纪40年代,基本上奠定了现代高分子科学的基础,其研究对象主要集中于人工合成的高分子化合物。
高分子科学是研究高分子化合物的合成、结构、性能、加工与应用的一门学科。
它既是一门基础科学,同时又是一门应用科学。
从一种合成材料的形成与应用的过程来看:首先,要选择合适的单体和适当的聚合手段使之聚合成高分子化合物,或者把已有的天然的或合成的高分子进行适当的化学修饰,为此要进行有关聚合反应机理、聚合方法、高分子的化学反应、反应动力学以及热力学等问题的研究,这是“高分子化学”的研究领域。
关键字:高分子,结构,性能一、高分子科学的建立与发展早在19世纪,人们对高分子领域的某些物质的特性已经有了一定的认识并进行了许多有益的探索。
1826年Faraday就指出天然橡胶的化学实验式为C5H8,并明确了每一个单元含有一个双键。
1839年Simon发现苯乙烯加热可由液体转变为固体等人使环氧乙烷开环聚合成低分子量的聚合物6的物质,并设想该物质为链状结构。
Graham等发现了粘乌酸等物质的极缓慢的扩散速率及具有半透性等特性。
在1877年,Kekulé曾提出了蛋白质、淀粉和纤维素等与生命有关的天然有机物的长链结构,认为这种特殊结构乃是造成其特殊性质的根源。
1920年,Staudinger发表了“论聚合作用”的著名论文,论述了聚合过程是小分子彼此之间以共价键结合而成为长链分子的过程。
指出高分子溶液的“胶体”性质其根源在于单体以共价键结合而成的“分子胶体”,这在结构上同小分子缔合形成的胶体状态着本质区别。
他提出了聚苯乙烯、聚甲醛和天然橡胶等聚合物的链式结构并说明了它们的分子链长短各异、有一定的分布的概念。
高分子材料论文
![高分子材料论文](https://img.taocdn.com/s3/m/3c0d80c1bb0d4a7302768e9951e79b8969026848.png)
高分子材料论文高分子材料已成为现代材料科学中的重要组成部分,并具有广泛的应用范围,如电子、医学、汽车制造、航空航天等领域。
因此,高分子材料研究的学术论文也非常重要。
本文将介绍高分子材料论文的写作流程和一些常见的论文类型。
一、高分子材料论文的写作流程1. 研究主题确定确定研究主题是高分子材料论文写作的第一步。
在选择主题时,需要考虑以下几个因素:领域的局限性、目标读者、研究可行性、已有文献、新颖性等因素。
2. 文献综述文献综述通常是高分子材料论文的第二步。
这一步通常包括以下几个方面:背景、目标、对已有文献的评论、研究方法、预期结果等。
3. 研究方法高分子材料论文的研究方法包括实验室研究、理论分析和数值模拟。
实验室研究是高分子材料研究的核心,因此重视实验室研究的合理设计和实验方法的正确操作至关重要。
理论分析是指对高分子材料基本性质进行研究,从而揭示其性能机理。
数值模拟通常用于探索高分子材料的物理过程,特别是那些很难在实验中测量的物理量。
4. 实验结果实验结果是高分子材料论文的重要组成部分。
它应该具有完整性、可预测性和准确性,因此实验前需要制定详细的实验方案,以避免无效的实验结果和浪费的研究资源。
5. 写作论文高分子材料论文的写作应该紧贴主题、简明扼要。
要避免过多的技术细节,以确保目标读者清楚地理解高分子材料的研究成果。
二、高分子材料论文的类型1. 研究论文这种类型的论文着重介绍一个新兴领域或一个特定的高分子材料的研究成果。
这种类型的论文通常具有创新性和实际价值。
研究论文应该包括以下几个方面:研究思路、实验设计、数据分析、结论和建议等。
2. 综述论文综述论文总结和分析已发表的文献,阐述高分子材料领域的最新进展。
这种类型的论文不仅是一个情报工具,而且可以帮助研究者在新的高分子材料研究领域中找到适当的研究方向。
3. 评论论文评论论文通过对高分子材料领域最新研究的评论,提供一种看法或议题。
这种类型的论文应该讨论该领域内争议的问题,并就具有争议性的结论提出建议。
高分子论文
![高分子论文](https://img.taocdn.com/s3/m/bfa5dfce6137ee06eff918b7.png)
高分子材料—塑料的合成、发展及其应用摘要:塑料为合成的高分子化合物{聚合物(polymer)},又可称为高分子或巨分子(macromolecules),也是一般所俗称的塑料(plastics)或树脂(resin),可以自由改变形体样式。
是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、润滑剂、色料等添加剂组成的。
五大合成高分子材料中以塑料的产量最大,占约总量的70%—75%,增长速度最快,广泛地应用于制造工业、农业和生活用品。
关键词:高分子塑料塑料的合成塑料的发展正文高分子的发展历史:1934年库恩、E.古思、H.F.马克各自提出了柔性链高分子形态的无规行走模型,形成了高分子理论的出发点。
1935和1936年G.V.舒尔茨和P.J.弗洛里分别用统计理论导出了加聚和缩聚产物的分子量分布函数的形式(见高聚物的分子量分布)。
1942年M.L.哈金斯和弗洛里各自独立地从晶格模型出发,提出了高分子溶液理论,从而奠定了高分子溶液的热力学基础。
1951年M.B.沃尔肯斯坦提出高分子链构象的内旋转异构体理论,大大地推进了链构象统计对具体高分子链的应用;模拟高分子链。
1944年发展起来的共聚合理论奠定了高分子链序列结构研究的基础。
近代实验技术(如红外光谱、高分辨率核磁共振谱、裂解色谱等)的进步,也使人们对合成高分子链的化学结构的了解达到了相当详尽、细致的程度。
1955年G.纳塔合成了有规立构聚合物,也大大地推动了高分子链结构的研究;1956年M.施瓦茨合成了分子量接近均一的活性聚合物,使精确研究高分子的各种性能对分子量的依赖性成为可能。
1975年P.G.德·热纳提出的标度理论可以处理整个浓度区间的高分子溶液,使这方面的研究有了新的理论指引高分子的基本概念:高分子(高分子化合物,大分子,聚合物)是由大量一种或几种较简单结构单元组成的大型分子,其中每一结构单元都包含几个连结在一起的原子,整个高分子所含原子数目一般在几万以上,而且这些原子是通过共价键连接起来的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要
本实验是合成水溶性的聚乙烯醇缩甲醛,即红旗牌胶水。
胶的质量取决于两者的配比,而控制缩醛度是把握产品质量的关键。
本文从聚乙烯醇缩甲醛胶的原理出发,通过实验着重讨论了催化剂用量、反应温度、反应时间及反应物比例等因素对聚乙烯醇缩甲醛胶的粘接性能能和水溶性等方面的影响,提供了制备高粘度水溶性的聚乙烯醇缩甲醛胶的较佳的工艺条件,合成了性能较为优良的胶粘剂.该产品在耐水性、稳定性、毒性等方面都有显著改善。
关键词:聚乙烯醇聚乙烯醇缩甲醛工艺阻聚剂
Abstract
This experiment is the synthesis of water soluble polyvinyl formal glue, is red card. Glue quality depends on both ratio, and control the acetal degree is the key to grasp the quality of products. This article from the polyvinyl formal adhesive principle, through the experiment discussed the amount of catalyst, reaction temperature, reaction time, reactant ratio and other factors on the properties of polyvinyl formal adhesive and water soluble and so on, provide the preparation of high viscosity of water-soluble polyvinyl formal adhesive better conditions, synthetic performance more excellent adhesive. The product in water resistance, stability, toxicity and so on have significantly improved.
Key word: Polyvinyl alcohol Polyvinyl formal Technology Polymerization inhibitor
目录
1.前言 4 2.实验方法及仪器10
2.1 实验方法及步骤10 2.2 实验仪器10 2.3 实验试剂11 2.4 实验装置图11 2.5 附图12
3.结果与讨论13
3.1 实验现象及解释13 3.2 影响实验的因素14
3.2.1 酸的种类对缩合反应的影响14
3.2.2 酸的浓度对缩合反应的影响15
3.2.3 缩合温度对缩合反应的影响15
3.2.4 甲醛用量对缩合反应的影响16 3.3 实验结果讨论17 3.4 注意事项18 3.5 产品质量指标19
4.结论20 4.1 实验结论20
4.2 问题讨论21
5.参考文献23
6.致谢23
1.前言
聚乙烯醇缩醛是聚乙烯醇和醛类化合物的缩合产物,是一类十分重要的高分子材料,目前作为商品化的聚乙烯醇缩醛产品主要有聚乙烯醇缩丁醛、缩甲醛、缩甲乙醛等,由于其价格低廉、性能良好、生产工艺简单,在涂料、粘合剂、薄膜等日常生活和生产中被大量广泛的应用。
聚乙烯醇缩甲醛的软化温度较高于其它缩醛,同时具有很高的机械强度、高耐磨性及良好的粘接性、卓越的电性能,是生产高韧性、耐热性、耐磨性及高介电强度漆包线的重要材料;与酚醛树脂配伍还可制成适用于各种铝合金与钢、黄铜、紫铜、铝合金、聚酯树脂玻璃布基层粘联,木材、橡皮之间的粘合的“黑迪哈粘合剂”。
此外,也是制成冲击强度高、压缩弹性模量值大的泡沫塑料的主要原料。
具体性能如下:【1】
性能数值
密度/(g/cm3) 1.24
折射率 1.5
玻璃化温度/℃85~95
维卡软化点/℃115~120
马丁耐热/℃90~95
吸水率/% 0.5~3.0
拉伸强度/Mpa 61~71
伸长率/% 5~11
弯曲强度/Mpa 98~127
弯曲模量/Mpa 4.01
冲击强度/(KJ/m2)15~30
介电常数(103Hz) 3.3
介电损耗角正切(106Hz)0.02
由聚乙烯醇缩甲醛制得的泡沫塑料具有轻质、隔热、隔音、高比强度和绝缘等优点,能成为一种新型的过滤材料。
聚乙烯醇缩甲醛材料的应用研究主要集中在胶粘剂和纤维方面。
使用聚乙烯醇缩甲醛作为胶粘剂的研究比较多,工艺也比较成熟,而将聚乙烯醇缩甲醛用于纤维材料,即维纶纤维,是目前工业上聚乙烯醇缩甲醛最主要的用途。
另外,聚乙烯醇缩甲醛也可用于研磨材料、绝缘材料等方面,而将其用作过滤材料的报道不多。
目前,聚乙烯醇缩甲醛作为过滤材料,已在水质净化等方面有所应用。
但是,聚乙烯醇缩甲醛因在溶解性能、工艺条件控制与处理等方面与其他缩醛类产品存在较大差异,且该产品在耐水性、粘度和毒性等方面尚不能满足要求,使其应用范围受到限制。
目前,国内生产的厂家为数不多,主要依靠进口。
近年来,为了适应市场需求人们对聚乙烯醇缩甲醛胶粘剂进行了大量的改性研究,无论在合成工艺上还是在胶液的性能方面都有显著的提高。
甲醛是脂肪醛化合物中最简单的的脂肪醛,分子式是HCHO,相对分子质量30.03,熔点―92℃,沸点―19.4℃。
液体甲醛相对密度0.82,气体甲醛相对密度1,07。
在通常条件下,纯甲醛是一种具有窒息作用的的无色气体,有强烈刺激性气味,特别对眼睛和粘膜有刺激作用,能溶于水。
纯甲醛气体是可燃性气体,闪点50℃,自燃点430℃,其蒸气与空气混合物爆炸极限为7.0%~73.0%(体积分数)。
甲醛能溶于水,溶解时放热,其热量大小不取决于溶液的浓度。
甲醛是一种重要的化工原料和试剂,主要用作合成树脂、染料、香料以及杀菌剂、防腐剂等,其商品形式通常为含量35%~50%的水溶液,广泛用于化工,医药等领域。
【2】
纯甲醛气体在―19℃时能形成液体甲醛,它在较低的温度下能与非极性溶剂(如甲苯、醚、氯仿、乙酸乙酯等)以任何比例混溶,其溶解度随温度的升高而减小。
纯甲醛气体可由多聚甲醛或相对分子质量较低的聚氧甲烯单体气化而得到,其纯度达到99%~100%。
在常压下,含甲醛55%(质量分数)以下的甲醛水溶液的沸点为99~100℃,其沸点基本上不随溶液浓度的改变而变化。
甲醛一般以水溶液的形式存贮和运输,浓度一般在37%~55%之间,市售。