多晶硅的用途与生产工艺简介
多晶硅工艺生产技术概述
多晶硅工艺生产技术概述摘要多晶硅是一种重要的材料,广泛用于半导体工业和太阳能电池等领域。
本文对多晶硅的工艺生产技术进行了概述,包括多晶硅材料的制备、熔炼和晶体生长等关键步骤。
同时介绍了多晶硅晶体的质量评估和后续加工工艺。
通过对多晶硅工艺生产技术的了解,可帮助读者更好地理解多晶硅的生产过程和相关技术。
引言多晶硅是由高纯度硅原料制备而成的硅单质,具有晶体结构的特点。
多晶硅作为一种重要的材料,在半导体工业和太阳能电池等领域有广泛应用。
多晶硅的制备过程包含多个关键步骤,包括材料制备、熔炼和晶体生长等。
多晶硅材料的制备多晶硅的制备主要通过化学气相沉积(CVD)法或者物理气相沉积(PVD)法来实现。
CVD法是指通过化学反应在基片表面沉积硅原子,形成多晶硅材料。
PVD 法则是指通过物理手段,如蒸发或溅射,将高纯度硅材料沉积在基片表面。
在材料制备的过程中,首先需要选择高纯度的硅原料。
通常使用的硅原料有气相、硅石和冶炼石英等。
其中气相硅原料的纯度最高,能够保证制备出高品质的多晶硅材料。
多晶硅的熔炼多晶硅的熔炼是制备多晶硅的关键步骤之一。
常用的熔炼方法有梯级熔炼法和等离子熔炼法。
梯级熔炼法是指将高纯度硅原料放入一系列熔炼炉中进行熔炼。
在炉中,硅原料逐渐熔化,并逐步减小杂质含量。
最后得到高纯度的多晶硅。
等离子熔炼法是指通过等离子体技术将硅原料加热至高温,使其熔化。
等离子熔炼法具有熔化速度快和杂质去除效果好的特点,是目前多晶硅熔炼的常用方法。
多晶硅的晶体生长多晶硅晶体生长是多晶硅制备的最后一步。
在晶体生长过程中,需要通过控制温度和各种气体流动来控制晶体的生长速率和晶格结构。
多晶硅晶体生长的方法有凝固生长法和气相损失生长法。
凝固生长法是指通过在熔融硅上方降温使其凝固成晶体。
气相损失生长法是指通过化学气相沉积法在晶体基片上沉积硅原子,形成多晶硅晶体。
多晶硅晶体的质量评估多晶硅晶体的质量评估是非常重要的。
常用的评估方法有晶体结构分析、杂质测量和电学性质测试等。
多晶硅
多晶硅一.多晶硅简介及用途1、多晶硅简介多晶硅:晶体硅的一种,当熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。
单晶硅:晶体硅的一种,具有基本完整的点阵结构的晶体,不同的方向具有不同的性质,是一种良好的半导材料。
纯度要求达到99.9999%,甚至达到99.9999999%以上。
用于制造半导体器件、太阳能电池等。
用高纯度的多晶硅在单晶炉内拉制而成。
多晶硅与单晶硅的差别:当熔融的单质硅凝固时,硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则形成单晶硅。
如果这些晶核长成晶面取向不同的晶粒,则形成多晶硅。
2、多晶硅的分类多晶硅按纯度分类可以分为冶金级(工业硅)、太阳能级、电子级。
2.1冶金级硅(MG):是硅的氧化物在电弧炉中被碳还原而成。
一般含Si 为90-95%以上,高达99.8%以上。
2.2太阳级硅(SG) :纯度介于冶金级硅与电子级硅之间,至今未有明确界定。
一般认为含Si 在99.99%–99.9999%(4~6个9)。
2.3电子级硅(EG):一般要求含Si>99.9999%以上,超高纯达到99.9999999%~99.999999999%(9~11个9)。
3.多晶硅的主要用途3.1 制作单晶硅,一般需要用高纯度的电子级硅(EG )。
单晶硅是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。
3.2 制作太阳能电池,一般使用太阳能级硅(SG )二.多晶硅生产工艺多晶硅的生产技术主要有:改良西门子法、硅烷法和流化床法。
正在研发的还有冶金法、气液沉积法、重掺硅废料法等制造低成本多晶硅的新工艺。
世界上85%的多晶硅是采用改良西门子法生产的,国内上市生产企业100%采用此法,其余方法生产的多晶硅仅占15%。
1、改良西门子法该法是以HCl (或Cl 2、H 2)和冶金级工业硅为原料,将粗硅(工业硅)粉与HCl 在高温下合成为SiHCl 3,然后对SiHCl 3进行化学精制提纯,接着对SiHCL 3进行多级精馏,使其纯度达到9个9以上,其中金属杂质总含量应降到0.1ppba 以下,最后在还原炉中在1050℃的硅芯上用超高纯的氢气对SiHCL 3进行还原而长成高纯多晶硅棒。
多晶硅的应用及生产技术
多晶硅的应用及生产技术多晶硅是一种重要的材料,具有广泛的应用领域和多样的生产技术。
下面将分别介绍多晶硅的应用和生产技术。
一、多晶硅的应用多晶硅广泛应用于光伏行业和半导体行业。
1. 光伏行业:多晶硅是太阳能光伏电池的主要材料。
在光伏电池中,多晶硅通过一系列工艺处理,如切割、刻蚀、钝化等,制成具有正负结的片状硅片。
这些硅片通过组装和连接,形成太阳能电池组件,用于太阳能发电。
多晶硅的应用使得太阳能光伏发电成为可持续发展的清洁能源,有助于减少对传统化石能源的依赖。
2. 半导体行业:多晶硅也被广泛用于半导体制造。
半导体是电子器件的基本材料,它具有导电性能介于导体和绝缘体之间。
多晶硅被用作半导体的基础材料,通过控制多晶硅中杂质元素的含量和分布,可以制备出具有特定电学性质的半导体材料,用于制造各种电子器件,如集成电路芯片、电子器件封装等。
多晶硅在半导体行业的应用推动了现代电子技术的发展,广泛应用于计算机、通信、消费电子等领域。
二、多晶硅的生产技术多晶硅的生产技术主要包括潜在载氧体法、克劳修斯法和Siemens法。
1. 潜在载氧体法:潜在载氧体法是一种通过化学反应来制备多晶硅的方法。
该方法首先将硅含氧化物与氢气或碳氢化合物在高温下反应,生成硅气体,然后将硅气体在低温下快速冷凝成多晶硅。
这种方法可以在大规模生产中获得高纯度的多晶硅,适用于太阳能光伏晶圆片的制备。
2. 克劳修斯法:克劳修斯法是一种进一步提高多晶硅纯度的方法。
该方法是通过控制硅气体中氧和杂质的含量,在低温下将硅气体再次凝结成固体硅。
克劳修斯法生产的多晶硅具有更高的晶格质量和更低的杂质含量,适用于半导体行业的生产。
3. Siemens法:Siemens法是一种通过炉管法制备多晶硅的方法。
该方法将氯化硅和氢气在炉管中进行反应,生成硅气体,然后在适当的条件下,将硅气体沉积在内壁上并快速凝结成多晶硅。
这种方法可以实现连续生产,适用于大规模工业化生产。
此外,随着科技进步和工艺改进,还出现了一些新的多晶硅生产技术,如溶液法、喷雾法等。
多晶硅的原理和应用
多晶硅的原理和应用1. 多晶硅的概述多晶硅(Polycrystalline Silicon)是一种具有多个晶体结构的硅材料,通常由多个小晶体组成。
它在半导体工业中有着广泛的应用,并且是太阳能电池的主要材料之一。
2. 多晶硅的制备方法多晶硅的制备方法主要有以下几种: - 气相法:通过将高纯度硅源气体在高温下进行热解,生成多晶硅。
- 溶液法:将硅源与溶剂混合,在适当的条件下控制温度和浓度,形成多晶硅。
- 化学气相沉积法(CVD法):在合适的反应器中,通过气相反应在基片上沉积多晶硅。
- 转盘工艺:将硅源液滴滴在旋转的基片上,形成多晶硅的薄膜。
3. 多晶硅的特性多晶硅具有以下一些特性:- 晶体结构不规则:由于多晶硅由多个小晶体组成,其晶体结构不规则,导致一些物理性质的差异。
- 导电性能良好:多晶硅具有较高的导电性能,是半导体材料中常用的材料之一。
- 光吸收性能强:多晶硅对光的吸收率较高,使其在太阳能电池领域有着重要的应用。
- 热导性能较好:多晶硅具有较好的热导性能,可用于制造散热器件等。
4. 多晶硅的应用领域多晶硅在各个领域都有着广泛的应用,主要包括以下几个方面:4.1 太阳能电池多晶硅是太阳能电池的主要材料之一,由于其光吸收性能强,可以将光转化为电能。
在太阳能电池中,多晶硅通常被用作基础材料,通过光的照射,产生光生电效应,将光能转化为电能。
4.2 半导体行业多晶硅在半导体行业中有着广泛的应用。
它可以用作制造晶体管、光电器件、传感器等器件的基础材料。
多晶硅具有良好的导电性能和热导性能,可以有效地传导电流和热量。
4.3 光学材料多晶硅在光学材料中也有一定的应用。
由于其对光的吸收性能强,在一些光学器件中可以作为光吸收层使用。
此外,多晶硅还可以通过控制晶体结构来调节其光学性能,满足不同光学应用的需求。
4.4 散热器件由于多晶硅具有良好的热导性能,可以有效地传导热量,因此在散热器件中有着一定的应用。
多晶硅生产工艺
多晶硅生产工艺多晶硅是一种高纯度的硅材料,广泛应用于电子、光电和太阳能等领域。
多晶硅的制备工艺主要包括净化硅材料、化学气相沉积和熔融法等。
本文将从多晶硅生产的三个关键步骤入手,详细介绍多晶硅的生产工艺。
一、净化硅材料多晶硅的生产基础是高纯度硅材料,一般采用电石法或硅锭法生产。
在电石法中,石油焦、白炭黑等原料经高温炉处理生成硅单质,再通过进一步的加热处理和气相冷却得到高纯度的硅粉末。
硅锭法是利用单晶硅作为原料,通过高温熔化并在特殊条件下生长出大型晶体锭。
这两种方法都需要对产生的硅材料进行净化处理,以获得较高的纯度。
在净化过程中,首先需要通过化学方法除去硅杂质,例如氧化物、碳和氮等。
一般采用氢氧化钠或氢氧化铝作为碱性还原剂,使硅材料与还原剂反应生成挥发性化合物的气体,通过气体与净化剂的反应使杂质得到去除。
其次,通过热处理和气相冷却等方法去除非金属杂质,例如碳、氧、氮、铁、铝等。
最后,通过电石法或硅锭法制备出较高纯度的硅粉或硅锭,成为制备多晶硅的基础原料。
二、化学气相沉积法化学气相沉积法是多晶硅生产的主要方法之一。
其基本原理是利用硅化合物热分解生成硅单质并在沉积基底上生长晶体。
一般采用氯硅烷、氯化硅、三氯硅烷等硅化合物作为原料气体,通过加热至高温(1000-1400℃)使硅化合物分解,生成氯离子和硅单质原子。
硅单质原子进一步在沉积基底上生长成为多晶硅晶体。
在化学气相沉积法中,氯化氢和二氧化硅等气体通入反应器内,使反应器内维持一定的反应压力(约5-10kPa),并保证反应器内气氛处于还原条件下。
在材料沉积过程中,需要控制反应器的温度、反应气压和气体流量等参数,以使沉积层的粗细、取向和晶界质量达到理想状态。
三、熔融法熔融法是多晶硅生产的另一种常用方法。
其主要流程是将高纯度硅材料加热至熔化状态,然后在特定条件下进行成型和冷却。
其中的关键步骤包括炼铝电池法、湖式法和化学熔融法等。
炼铝电池法是将硅粉末加入熔融的铝中,在高温高压下反应生成硅铝合金,然后通过冷却、破碎等过程,得到晶粒尺寸较小的多晶硅。
多晶硅生产工艺流程(3篇)
第1篇一、引言多晶硅是光伏产业和半导体产业的重要原材料,广泛应用于太阳能电池、太阳能热利用、半导体器件等领域。
随着新能源产业的快速发展,对多晶硅的需求量日益增加。
本文将详细介绍多晶硅的生产工艺流程,旨在为相关企业和研究人员提供参考。
二、多晶硅生产工艺流程概述多晶硅的生产工艺流程主要包括以下几个阶段:原料处理、还原反应、熔融提纯、铸造、切割、清洗、包装等。
三、多晶硅生产工艺流程详解1. 原料处理多晶硅的生产原料主要是冶金级硅(Si),其含量在98%以上。
首先,将冶金级硅进行破碎、研磨等处理,使其达到一定的粒度要求。
2. 还原反应还原反应是多晶硅生产的关键环节,其主要目的是将冶金级硅中的杂质去除,得到高纯度的多晶硅。
还原反应分为以下几个步骤:(1)将处理后的冶金级硅加入还原炉中。
(2)在还原炉中通入还原剂,如碳、氢气等,与冶金级硅发生还原反应。
(3)在还原过程中,炉内温度保持在约1100℃左右,反应时间为几小时至几十小时。
(4)反应结束后,将还原炉内的物料进行冷却、破碎、研磨等处理。
3. 熔融提纯还原反应得到的粗多晶硅中仍含有一定的杂质,需要通过熔融提纯的方法进一步去除。
熔融提纯主要包括以下几个步骤:(1)将粗多晶硅加入熔融炉中。
(2)在熔融炉中通入提纯剂,如氢气、氯气等,与粗多晶硅发生反应,生成挥发性杂质。
(3)将挥发性杂质通过炉顶排气系统排出,实现提纯。
(4)提纯结束后,将熔融炉内的物料进行冷却、破碎、研磨等处理。
4. 铸造将提纯后的多晶硅熔体倒入铸造炉中,进行铸造。
铸造过程主要包括以下几个步骤:(1)将熔融的多晶硅倒入铸锭模具中。
(2)在铸锭模具中通入冷却水,使多晶硅迅速凝固。
(3)待多晶硅凝固后,将铸锭模具从熔融炉中取出,得到多晶硅铸锭。
5. 切割将多晶硅铸锭切割成所需尺寸的硅片。
切割过程主要包括以下几个步骤:(1)将多晶硅铸锭放置在切割机上。
(2)在切割机上安装切割刀片,将多晶硅铸锭切割成硅片。
多晶硅的原理及应用
多晶硅的原理及应用原理介绍多晶硅是一种由结晶方法制备的硅材料,具有多晶结构特征。
它的制备过程主要包括炼熔、分散和长大三个步骤。
炼熔多晶硅的制备首先需要将硅矿石加热到高温,形成硅的熔体。
通过添加掺杂剂,可以调节硅的电子性质,使其具备半导体的特性。
分散将熔融的硅材料混合悬浊剂,用搅拌方法将硅材料分散成颗粒状。
在分散的过程中,掺杂剂会均匀分布在硅颗粒中。
长大将分散的硅颗粒放入高温高压的容器中,通过控制温度和压力,硅颗粒会逐渐结晶并长大。
这个过程需要精确的控制参数,以保证硅材料的晶体质量。
应用领域多晶硅具有优异的电子特性,因此被广泛应用于半导体行业和太阳能电池制造领域。
半导体行业多晶硅是目前最常用的半导体材料之一。
半导体芯片中的晶体管和电阻器等元件都需要使用多晶硅来制造。
多晶硅可通过控制温度和压力来调控其导电性和半导体特性,使其适用于各种电子器件。
太阳能电池太阳能电池是一种将太阳能转化为电能的装置。
多晶硅被广泛应用于太阳能电池的制造中。
制作太阳能电池的过程中,多晶硅被制成薄片,然后通过掺杂和涂覆等步骤,形成电池的正负极,以将光能转化为电能。
研究领域除了半导体行业和太阳能电池制造,多晶硅还被广泛应用于各种研究领域。
由于其良好的电学性能和机械性能,多晶硅被用作传感器、微机电系统(MEMS)和纳米器件等的材料基础。
优势与展望多晶硅具有以下几个优势,决定了其在电子行业的广泛应用:1.价格低廉:多晶硅的制备成本相对较低,使其在大规模生产中更具竞争力。
2.电学性能优异:多晶硅具备良好的半导体特性和导电性能,适用于各种电子器件。
3.可控性强:通过控制制备过程中的温度和压力等参数,可以对多晶硅的晶体质量和电学性能进行精确调控。
未来,随着科技的发展,多晶硅在电子行业的应用前景依然广阔。
人们对于便携式电子产品的需求不断增加,而多晶硅作为半导体的重要材料,将在新一代电子产品中扮演着重要的角色。
同时,太阳能电池作为一种可再生能源的转化装置,多晶硅的需求量也将会持续增加。
多晶硅生产工艺
多晶硅生产工艺多晶硅是一种重要的半导体材料,广泛应用于电子、光伏等领域。
它具有良好的导电性和光学性能,成为了现代科技领域的重要材料之一。
多晶硅的生产工艺是多段复杂的过程,下面将对其生产工艺进行详细介绍。
多晶硅的生产工艺可以分为熔炼、提纯和生长三个主要步骤。
首先是熔炼阶段,也被称为硅材料制备阶段。
在该阶段,将高纯度的硅原料与一定比例的草酸和氯化氢溶解在相应的溶剂中,经过混合、搅拌和过滤等工艺处理后,得到硅原料混合液。
然后将混合液加热至高温,使其熔融成为硅液。
硅液通过特殊的冷却方式,形成固态硅块,即硅锭。
接下来是提纯阶段。
硅锭虽然已经形成,但其中仍然包含着杂质元素,必须进行进一步的提纯。
提纯是为了降低杂质含量,提高硅材料的纯度。
提纯工艺主要包括气相法、液相法和固相法等。
其中,气相法是最常用的提纯方法。
在气相法中,通过将硅锭放入反应炉中,利用氢气将硅锭表面的氧化硅还原为气态氧化硅,然后再通过冷凝和净化等工艺,将气态氧化硅转化为高纯度的气态硅。
这样就可以获得高纯度的硅材料。
最后是生长阶段。
生长是将高纯度的硅材料制备成多晶硅晶体的过程。
生长工艺主要有Czochralski法和漂移法两种方法。
Czochralski法是较为常用的生长方法。
在Czochralski法中,通过将高纯度的硅材料放入石英坩埚中,加热后形成熔融的硅液。
然后将从石英坩埚中拉出的单晶硅丝与旋转的种子晶体接触,通过旋转与拉扯的方式,将硅液逐渐凝固成为多晶硅晶体。
漂移法则是通过控制熔融硅液中的温度梯度和控制气氛中的杂质浓度来实现多晶硅的生长。
综上所述,多晶硅的生产工艺是一个复杂而严谨的过程。
通过熔炼、提纯和生长三个主要步骤,将原材料转化为高纯度的多晶硅晶体。
这些高纯度的多晶硅晶体能够广泛应用于电子、光伏等领域,推动了现代科技的发展。
多晶硅的生产工艺在不断改进和创新,为提高多晶硅质量和产量起到了重要作用。
多晶硅生产工艺和反应原理
多晶硅生产工艺和反应原理多晶硅是一种用于制造太阳能电池板的关键材料。
其制备工艺涉及多个步骤和反应原理。
多晶硅的生产工艺可以概括为以下几个主要步骤:1. 原料准备:多晶硅的主要原料是冶炼硅、矽酸钠和氢氯酸等。
这些原料在制备过程中需要进行精确的配比,以确保最终产品的质量和效能。
2. 冶炼硅的制备:首先,将原料中的冶炼硅与氢氧化钠进行反应,生成硅酸钠溶液。
然后,在高温下将溶液与电解质反应,从中析出粗硅。
这个过程主要是通过液相冶炼和电解两个步骤来完成的。
3. 精炼多晶硅:将粗硅放入电炉中,并在控制温度和环境的条件下进行加热。
通过向炉内加入能与杂质反应的物质(如氯化氢),可以将杂质从硅中去除。
这个过程被称为精炼,其目的是提高多晶硅的纯度。
4. 抽拉和切割:经过精炼的多晶硅会以一定的比例被抽拉成圆柱形的晶棒。
这个晶棒通常被切割成薄片,用于制造太阳能电池板。
切割过程需要高精确度的设备和操作,以确保最终产品的品质。
在多晶硅生产过程中,存在多个反应原理的作用:1. 溶液反应:冶炼硅与氢氧化钠反应形成硅酸钠溶液,这个反应产生了大量的热量。
同时,在高温下进行的电解质反应中,硅酸钠溶液被分解为纯硅和氢氧化钠,从而促使多晶硅的形成。
2. 杂质去除反应:在精炼多晶硅的过程中,通过向电炉中加入氯化氢等物质,可以与多晶硅中的杂质发生反应。
这些杂质会以气体或液体的形式被移出,从而提高多晶硅的纯度。
3. 抽拉和切割反应:在多晶硅被抽拉和切割的过程中,需要使用高精确度的设备和工艺控制,以确保晶棒和切片的质量。
这个过程主要是机械物理反应,通过切割工具对多晶硅进行切割和加工。
总而言之,多晶硅的生产工艺涉及多个步骤和反应原理。
从原料准备、冶炼、精炼到抽拉和切割,每一步骤都是为了提高多晶硅的纯度和形状,以满足太阳能电池板制造的要求。
通过控制反应条件和使用精确的设备,可以实现高质量的多晶硅生产。
多晶硅是一种非常重要的材料,广泛应用于太阳能电池板的制造。
多晶硅的性质、用途、冶炼方法以及工艺流程图
检测与包装
检测
对多晶硅产品进行质量检测,如纯度、晶体质量、表面质量等。
包装
根据客户需求对多晶硅产品进行包装,以确保其在运输和存储过程中的安全和稳定性。
THANKS FOR WATCHING
感谢您的观看
多晶硅的性质、用途、冶炼方法以 及工艺流程图
目录
• 多晶硅的性质 • 多晶硅的用途 • 多晶硅的用途 • 多晶硅的用途 • 多晶硅的冶炼方法 • 多晶硅的工艺流程图
01 多晶硅的性质
物理性质
硬度
多晶硅的硬度较高,属于硬质材料。
导热性
多晶硅的导热性能良好,热膨胀系数较小。
密度
多晶硅的密度为2.32-2.34g/cm³,比单晶 硅略低。
详细描述
化学气相沉积法利用化学反应将原料气体转化为多晶硅。该方法可以在较低温度下进行,结晶质量较好,但生产 成本较高,且对设备要求较高。
04 多晶硅的工艺流程图
原料准备
原料准备
多晶硅的生产需要高纯度 的硅材料作为原料,通常 采用冶金级硅或工业硅作 为起始原料。
硅材料的纯化
为了获得高纯度的硅材料, 需要进行一系列的提纯和 除杂过程,如破碎、酸洗、 碱洗等。
杂质去除
通过精馏过程,可以去除硅原料中 的大部分杂质,如铁、铝、钙等, 从而提高硅的纯度。
化学气相沉积
化学气相沉积原理
化学气相沉积是一种利用化学反应在硅表面形成固态薄膜的方法, 通过控制反应条件,可以在硅表面形成多晶硅层。
反应气体
化学气相沉积过程中需要使用不同的反应气体,如硅烷、氢气等, 这些气体在高温下发生化学反应,形成固态的多晶硅层。
铸锭和切片
将提纯后的多晶硅铸造成锭, 并进行切片加工成所需的规格 和形状。
多晶硅制备及其应用
多晶硅制备及其应用多晶硅是一种重要的半导体材料,广泛应用于现代电子、光电、太阳能等领域。
本文将介绍多晶硅的制备方法和其应用领域。
一、多晶硅制备方法目前,主要的多晶硅制备方法有两种:一种是通过氯化硅还原法制备,另一种是通过硅烷热分解法制备。
1.氯化硅还原法氯化硅还原法是目前应用最广泛的多晶硅制备方法。
这种方法需要使用高纯度的硅、氯气和氢气作为原料,通过氯化硅还原反应来制备多晶硅。
反应的化学方程式为:SiCl4 + 2H2 → Si + 4HCl其中,氯化硅和氢气在还原反应中发生反应,生成多晶硅和氯化氢。
这种方法比较简单、成本较低,同时产生的多晶硅质量也比较高,因此被广泛应用于半导体、光电、太阳能等领域。
2.硅烷热分解法硅烷热分解法是通过将硅烷气体分解而制备多晶硅的方法。
当硅烷气体加热到一定温度时,会发生热分解反应,生成多晶硅和氢气。
反应的化学方程式为:SiH4 → Si + 2H2这种方法很少用于多晶硅的制备,因为硅烷气体很难制备得到,并且造价较高。
二、多晶硅的应用领域多晶硅作为一种重要的半导体材料,其应用领域非常广泛,下面将介绍其在电子、光电、太阳能等领域的应用。
1.电子领域多晶硅被广泛应用于电子领域,如集成电路、电池、传感器等。
多晶硅具有高硬度、高稳定性、低损耗等优点,能够提高电子元器件的稳定性和可靠性,同时还能提高电子元器件的工作效率和性能。
2.光电领域多晶硅在光电领域中也有着广泛的应用,如太阳能电池、光电传感器、LED等。
多晶硅具有优异的光电性能,能够将太阳能等光能转化为电能,同时还能够提高LED等光电器件的功率和效率。
3.太阳能领域多晶硅在太阳能领域中应用最为广泛。
多晶硅太阳能电池具有高能量转换效率、稳定性好、可靠性高等特点,是目前太阳能电池领域中应用最广泛的材料之一。
同时,多晶硅还被广泛应用于太阳能热利用、太阳能光伏等领域。
总结多晶硅是一种重要的半导体材料,具有广泛的应用领域。
其制备方法主要包括氯化硅还原法和硅烷热分解法两种。
多晶硅生产工艺和反应原理
多晶硅生产工艺和反应原理多晶硅是一种重要的太阳能电池材料,具有高纯度、高晶片质量和较低成本的优点。
多晶硅的生产工艺主要包括硅矿炼制、硅粉冶炼、硅粉还原和硅熔炼等步骤。
其反应原理主要涉及硅矿的还原、氯化和还原等过程。
多晶硅的生产工艺可分为硅矿炼制和硅粉还原两个主要步骤。
硅矿炼制是指从硅矿中提取出硅和非硅物质的工艺。
目前常用的硅矿炼制方法包括硅石和冶金硅炉料两种。
硅石主要是指石英矿和长石矿,常用的炼制方法是先将硅矿进行磨碎和洗选,然后经高温石英石化处理,最后通过水热反应将石英石化为高纯度的硅酸盐溶液,再经过过滤、蒸发结晶等步骤得到硅酸盐固体产物。
冶金硅炉料主要是指含有较高硅含量的矿石,如金山矿、铜渣、废铁渣等,常用的冶炼工艺是将矿石进行焙烧、浸出和萃取等步骤,最终得到较高纯度的硅酸盐溶液。
硅粉还原是指将硅酸盐固体产物还原为硅粉末的工艺。
其主要反应原理是通过还原剂(如木炭、焦炭等)在高温下与硅酸盐反应,生成SiO气体和CO气体,然后进一步反应生成Si和CO2、反应可描述为:SiO2+2C→Si+2CO然而,仅通过硅粉还原很难获得高纯度的多晶硅材料,因为此过程中生成的Si粉末通常包含微量杂质和非晶硅。
为了提高晶片质量和纯度,通常需要进行硅熔炼步骤。
硅熔炼是将硅粉末在真空或惰性气氛下加热,使之熔化成液态硅的工艺。
硅熔炼反应原理是通过向硅粉末中加入硅体和其他掺杂剂,调整硅液中的杂质浓度和晶粒尺寸,以获得纯度较高的多晶硅材料。
硅熔炼通常分为两个阶段进行,首先是预熔阶段,即将硅粉末在较低温度下熔化,然后通过溶液清洁、滤渣等步骤去除杂质,然后再进行主熔阶段,即在高温下继续加热,使硅液达到合适的温度和纯度。
综上所述,多晶硅的生产工艺主要包括硅矿炼制、硅粉还原和硅熔炼等步骤。
反应原理涉及硅矿的还原、氯化和还原等过程。
随着太阳能电池市场的快速发展,多晶硅的生产工艺也在不断改进和优化,以提高生产效率和降低成本。
多晶硅的生产工艺
多晶硅的生产工艺多晶硅是一种重要的半导体材料,广泛应用于光伏电池和集成电路等领域。
多晶硅的生产工艺包括硅矿石提取、硅块制备、硅片切割和晶体生长,下面将对其详细进行介绍。
多晶硅的生产工艺首先是硅矿石提取。
硅矿石主要包括二氧化硅、二氧化硅含量高达99%以上的化合物。
硅矿石通常采用地下或露天矿石矿井开采,经过碾磨和浮选等过程提取出硅矿石。
然后进行硅块制备,硅矿石被送入冶炼炉进行高温还原,将硅矿石中的杂质去除,得到纯度较高的冶金硅。
然后将冶金硅通过电解炉进行电解,得到高纯度的多晶硅液体。
多晶硅液体被倒入棚式炉中,经过冷却形成硅块。
接下来是硅片切割,在硅块表面涂覆一层液态脱氧剂,并通过一系列工艺处理,使硅块的形状变得更加规则。
然后将硅块切割成薄片,切成所需的硅片尺寸。
最后是晶体生长,将切割好的硅片放入石英炉中,在特定的温度和气氛下进行晶体生长。
晶体生长的过程中,硅片逐渐形成多晶硅结晶体,晶体生长速度和温度、压力、气氛等参数有关。
晶体生长完成后,通过切割和打磨等工艺得到所需的多晶硅片。
多晶硅的生产工艺需要高温、高压和专业设备进行。
其具体工艺参数和流程可以根据不同的生产要求进行调整。
多晶硅的质量和纯度对于后续的制造工艺和产品性能有着重要影响,因此在生产过程中需要严格控制工艺参数和质量检测。
总结起来,多晶硅的生产工艺包括硅矿石提取、硅块制备、硅片切割和晶体生长等步骤。
这些步骤需要高温、高压和专业设备进行,并且需要严格控制工艺参数和质量检测。
多晶硅的生产工艺对于多晶硅的质量和纯度有着重要影响,对于提高多晶硅的制造工艺和产品性能至关重要。
多晶硅生产工艺和反应原理
多晶硅生产工艺和反应原理多晶硅是一种非常纯净的硅材料,广泛应用于半导体和太阳能产业中。
多晶硅的生产过程涉及到一系列的工艺和反应原理。
多晶硅的生产工艺主要包括硅矿石的提取、冶炼和精炼。
首先,从硅矿石中提取硅石,经过破碎和筛分等处理,得到纯度较低的硅石。
然后,通过高温还原反应,将硅石与石油焦(或木炭)在电炉中进行反应,产生硅和一些杂质物质(如Fe、Al等)。
最后,通过多次的精炼处理,将硅中的杂质去除,得到较高纯度的多晶硅。
反应原理中,最主要的是硅石的还原反应和精炼过程中的净化反应。
硅石的还原反应可由下式表示:SiO2+2C→Si+2CO在高温下,硅石与石油焦(或木炭)反应,硅石被还原成硅,同时生成一氧化碳气体。
这一反应通常在电炉中进行,温度可达到1500-1800°C。
还原反应具有放热和放烟雾的特点,因此需要采取措施来控制温度和排放烟雾。
精炼过程中的净化反应是指对多晶硅中的杂质进行去除。
净化通常采用的方法是通过冶金程序或固相反应。
冶金程序通常包括氧化、蒸汽还原和酸洗等步骤,以去除多晶硅中的金属杂质。
固相反应则是通过与其他金属形成化合物或形成气体物质,将杂质从多晶硅中分离出来。
在多晶硅的生产过程中,还有其他一些重要的工艺和反应原理。
例如,硅杂质的控制和添加物的选择对多晶硅质量有着重要的影响。
此外,还有相关工艺,如晶体生长、切片和还原二氧化硅等工艺,以获得具有特定形状和尺寸的多晶硅。
总结起来,多晶硅的生产过程涉及到硅矿石的提取、冶炼和精炼等工艺。
其中,硅石的还原反应和净化反应是两个重要的反应原理。
通过这些工艺和反应原理,可以获得高纯度、高质量的多晶硅材料,为半导体和太阳能等产业提供关键的材料基础。
多晶硅生产工艺 (3)
多晶硅生产工艺简介多晶硅(Polycrystalline Silicon)是一种重要的半导体材料,广泛用于太阳能电池、集成电路等领域。
多晶硅的生产工艺对于材料的质量和性能具有重要影响。
本文将介绍多晶硅的生产工艺,包括原料制备、熔炼、晶体生长、切片和清洗等环节。
原料制备多晶硅的原料主要是高纯度的硅源材料,通常采用二氧化硅(SiO2)作为硅源。
原料制备的主要步骤包括原料选矿、研磨和粉碎等过程。
在原料选矿过程中,通过采用化学分析和物理分选等方法,从矿石中提取出高纯度的二氧化硅。
然后将二氧化硅进行研磨和粉碎,使其颗粒大小适合后续工艺的要求,同时去除杂质。
经过原料制备后,得到了适合用于多晶硅生产的高纯度硅源。
熔炼多晶硅的熔炼是整个生产工艺中的关键步骤,其目的是将高纯度硅源熔化成液态,并去除其中的杂质。
常用的熔炼方法有电熔和气相熔炼两种。
电熔熔炼电熔熔炼是通过电阻加热的方式将硅源材料熔化。
硅源材料放置在熔炉中的靶位(电极)上,通入高纯度氢气,并施加电流。
电流通过硅源材料,产生Joule 加热,使硅源材料熔化。
这种熔炼方法可以快速熔化硅源,并且熔炼温度和时间可以精确控制。
然而,电熔熔炼的缺点是生成的硅块质量不稳定,晶粒大小和杂质含量较高。
气相熔炼气相熔炼是通过将硅源材料与氧化剂反应,在高温下生成硅砂和气体的方法进行熔炼。
气相熔炼常用的方法有气相氧化、化学气相沉积等。
其中,气相氧化法是将硅源材料与氧化剂(如氧气)在高温下反应,生成 SiO2 和 CO2。
然后将生成的SiO2 再与还原剂(如氢气)反应,生成硅砂和 H2O。
气相熔炼可以得到较高纯度和较稳定的硅块,但熔炼过程比较复杂,熔炼时间较长。
晶体生长多晶硅的晶体生长是将熔化的硅源材料重新凝固成晶体的过程。
常用的晶体生长方法有凝固法、浮区法和气相传递法等。
凝固法凝固法是将熔化的硅源材料放置在高纯度石英坩埚中,然后缓慢降温,使硅源材料逐渐凝固成晶体。
在凝固过程中需要控制温度梯度,以确保晶体的纯度和结晶度。
多晶硅生产工艺流程
多晶硅生产工艺流程多晶硅是一种产业用途广泛的材料,主要用于光伏太阳能电池板和半导体器件的制造。
多晶硅生产工艺流程包括硅矿选矿、冶炼、提纯和铸锭过程。
以下是多晶硅的生产工艺流程的详细介绍。
1.硅矿选矿多晶硅的原材料主要是含有二氧化硅的硅矿石,如石英砂、硅石等。
在硅矿选矿过程中,会先分离出含有高纯度二氧化硅的石英砂和硅石。
选矿过程主要包括二次破碎、筛分和重选等步骤,以提高硅矿的纯度。
2.冶炼选矿后的硅矿石通过冶炼过程将硅矿石中的杂质去除,并得到多晶硅的粗锭。
冶炼过程一般采用电弧炉进行,首先将硅矿石与焦炭按一定比例混合,然后通过电极放电产生高温、高电弧强度的等离子体,在高温下将硅矿石还原为金属硅。
3.提纯冶炼得到的粗锭中含有大量的杂质,需要通过提纯过程将杂质去除,提高硅的纯度。
提纯过程主要包括溶解、晶体化和冷凝等步骤。
首先将粗锭切割成小块,然后将小块放入高温炉中进行溶解,使杂质在溶液中被分离出来。
接着,将溶液在低温条件下快速冷却和晶体化,从而使纯净硅晶体在溶液中析出。
最后,通过连续冷凝和提拉的方法将硅晶体逐渐拉长,形成高纯度多晶硅棒。
4.铸锭提纯后的硅棒是多晶硅的基础材料,但其直径较细,不能满足工业生产的需求。
因此,需要通过铸锭过程将硅棒拉制成直径较大的硅棒,以便后续加工制造太阳能电池板和半导体器件。
铸锭过程是在真空下进行的,将硅棒浸入熔融的硅池中,然后缓慢提拉和旋转,使硅棒逐渐变长,并且保持直径一致。
以上就是多晶硅生产的工艺流程的详细介绍。
通过选矿、冶炼、提纯和铸锭等步骤,可以生产出高纯度的多晶硅,为太阳能电池板和半导体器件的制造提供了重要的原材料。
随着科技的不断发展,多晶硅的生产工艺也在不断创新和改进,以提高生产效率和降低成本。
多晶硅生产工艺和反应原理讲解
多晶硅生产工艺和反应原理讲解引言多晶硅是一种重要的半导体材料,广泛应用于太阳能电池、集成电路和光纤等领域。
本文将介绍多晶硅的生产工艺和反应原理。
多晶硅生产工艺多晶硅的生产主要分为三个步骤:原料制备、硅棒生长和切割加工。
1. 原料制备多晶硅的原料主要是硅石和木炭。
硅石是一种含有大量二氧化硅的矿石,木炭则是一种含有高纯度碳的炭素材料。
首先,将硅石粉碎成细粉,并经过砂浆研磨得到均匀的硅石粉末。
然后,将硅石粉末与木炭混合,并加入一定比例的助剂,如食盐和气相稳定剂。
最后,将混合物放入熔炉中进行高温煅烧,使其发生化学反应,生成多晶硅的初级产物。
2. 硅棒生长硅棒生长是将原料中的多晶硅转化为单晶硅的过程。
主要有两种方法:单辊法和气相沉积法。
在单辊法中,将原料加热至高温,然后通过传导、对流和辐射等方式进行能量传递,使原料逐渐熔化。
在熔融状态下,通过辊子的旋转和拉伸,将熔融的硅悬挂在空中,逐渐形成硅棒。
气相沉积法是将原料转化为气态硅化物,再通过化学反应沉积在硅棒上。
首先,通过加热原料将其转化为气态,然后将气态硅化物送入沉积室中,在高温和高压条件下,硅化物与硅棒表面发生反应,并沉积在硅棒上形成单晶硅。
3. 切割加工生长好的单晶硅棒需要进行切割加工,以得到多个硅片。
切割通常使用钻石刀破坏硅棒的晶格结构,形成切口,然后通过应力作用使其断裂。
多晶硅生产反应原理多晶硅的生产过程中涉及到了多种反应。
主要有以下几个反应原理:1. 硅石煅烧反应硅石煅烧反应是原料制备中的关键步骤之一。
在高温下,硅石和木炭发生化学反应,生成初级产物。
反应方程式如下所示:SiO2 + 2C → Si + 2CO2. 硅棒生长反应硅棒生长过程中涉及到了两种主要反应:熔融和沉积。
在单辊法中,熔融过程通过能量传递使原料逐渐熔化,生成熔融的硅。
该过程主要包括传导、对流和辐射等方式的能量传递。
在气相沉积法中,硅化物与硅棒表面发生化学反应,并沉积在硅棒上形成单晶硅。
多晶硅技术介绍范文
多晶硅技术介绍范文多晶硅技术是一种将高纯度硅矿石经过精细处理和高温熔化,然后通过控制冷却速度、材料浇注等工艺,将熔融硅逐渐晶化为多个晶籽共生的晶体。
这种技术可以用于生产太阳能电池等高纯硅材料,具有高效、低成本、可持续发展等优势。
首先,选取高纯度的硅矿石,经过碎石、洗选、磁选等处理,去除杂质及金属元素,提高硅矿石的纯度。
这一步是多晶硅技术的基础,确保后续工艺的高效进行。
然后,将高纯度的硅矿石与碳素(通常是木炭)按一定比例混合,放入电阻炉中进行高温煅烧。
通过电流的通入,使木炭燃烧,生成一定的CO气体,而碳石混合物中的硅矿石则被还原成纯净的硅。
这一步骤称为还原。
接下来,将还原后的硅进行加热熔化,通常使用电炉进行熔化。
熔化的高温条件下,硅原子之间的键断裂,使硅原子重新排列并结合成为晶体。
这一步骤称为熔化。
在熔化的过程中,需要控制熔融硅的温度、浇注速度等参数,以获得合适的晶体质量。
熔融硅在合适的温度下逐渐晶化为多个晶籽共生的多晶硅晶体。
这些多晶晶体可以用于制作太阳能电池等高效能材料。
最后,多晶硅晶体经过加工和切割等工序,得到所需的多晶硅片。
这些多晶硅片可以用于制作太阳能电池,用于太阳能发电。
首先,多晶硅技术可以利用丰富的硅矿资源进行生产,具有很高的可持续性。
硅是地壳中含量最丰富的元素之一,多晶硅技术可以充分利用这一资源。
其次,多晶硅技术的成本相对较低,生产效率较高。
通过控制熔融硅的温度、浇注速度等参数,可以较快地获得高质量的多晶硅晶体。
这种高效的生产方式可以降低生产成本,提高效益。
此外,多晶硅技术可以用于制作太阳能电池等高效能材料,为推动可再生能源的发展作出贡献。
太阳能电池是未来发展的重点领域,多晶硅技术的应用可以提高太阳能电池的效率和除尘能力,为可再生能源的利用做出贡献。
总之,多晶硅技术是一种高效、低成本、可持续发展的生产高纯硅材料的技术。
通过控制熔融硅的温度、浇注速度等工艺参数,可以获得高质量的多晶硅晶体,用于制作太阳能电池等高效能材料。
多晶硅的性质、用途、冶炼方法以及工艺流程图
活性炭吸附纯化氢气
从吸收塔顶部出来的氢气被送到活性炭吸附柱进行吸附,以除 去其中含有的极少量氯硅烷和氯化氢,获得纯净的氢气。纯氢 气可以直接返回相应的原工序中使用。
尾气回收装置
改良西门子法产生的废气物
• 反应产生的三氯氢硅,氯化硅,氯化氢均为主要空气污染 物的卤化物。 • 四氯化硅是最改良西门子法生产时产生的主要的污染物。
4
直接电耗可降到60— 70 kW· h/kg
硅烷法
硅 烷 法 工 艺 流 程 图
H2 Na Al NaAlH4合成 SiH4生成 (在溶剂中) SiF4制取 浆状 NaAlF4 SiH4提纯 细硅粉 H2 溶剂 SiF4 H2
ห้องสมุดไป่ตู้
SiH4分解制取多晶硅
硅烷化
溶剂
溶液回收与 NaAlF4分离 NaAlF4(干燥) NaAlF4
硅烷不但制造成本高,而且是有毒、易燃、易爆、 安全性差,因此,工业生产中,硅烷热分解法的 应用不及西门子法。
流化床反应法
流态床反应法以 四氯化硅、氢气、 氯化氢和工业硅 为原料在流化床 内高温高压下生 成三氯氢硅,将 三氯氢硅再进一 步歧化加氢反应 生成二氯二氢硅, 继而生成硅烷气。 制得的硅烷气通 入加有小颗粒硅 粉的流化床反应 炉内进行连续热 分解反应,生成 粒状多晶硅。
改良西门子法主要包括五个环节
SiHCl3的合成 精馏提纯SiHCl3 SiHCl3的氢还原 尾气回收 SiCl4的氢化分离
反应原理
三氯氢硅的合成
Si+HCl 三氯氢硅的还原 4SiHCl3 SiHCl3 +H2 SiCl4+2H2 Si +3SiCl4 +2H2 Si+3HCl Si+4HCl SiHCl3+H2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多晶硅产品的用途与生产工艺简介黎展荣编写2008-03-15多晶硅产品的用途与生产工艺简介讲课提纲:一、多晶硅产品的用途二、国内外多晶硅生产情况与市场分析三、多晶硅生产方法四、多晶硅生产的主要特点五、多晶硅生产的主要工艺过程讲课想要达到的目的:通过介绍,希望达到以下几点目的:1,了解半导体多晶硅有关基本概念与有关名词,为今后进一步学习、交流与提高打下基础;2,了解多晶硅的主要用途与国内外多晶硅的生产和市场情况,热爱多晶硅事业与行业;3,了解多晶硅生产方法和多晶硅生产的主要特点,加深对多晶硅生产工艺流程的初步认识;4,了解公司3000吨/年多晶硅项目的主要工艺过程、工厂的概况、规模、车间工序的相互关联,有利于今后工作的开展。
一、多晶硅产品的用途在讲多晶硅的用途前,我们先讲一讲半导体多晶硅的有关概念和有关名词。
1,什么是多晶硅?我们所说的多晶硅是半导体级多晶硅,或太阳能级多晶硅,它主要是用工业硅或称冶金硅(纯度98-99%)经氯化合成生产硅氯化物,将硅氯化物精制提纯后得到纯三氯氢硅,再将三氯氢硅用氢进行还原生成有金属光泽的、银灰色的、具有半导体特性产品,称为半导体级多晶硅。
2,什么是半导体?所谓半导体是界于导体与绝缘体性质之间的一类物质,导体、半导体与绝缘体的大概分别是以电阻率来划分的,见表1。
3,纯度表示法半导体的纯度表示与一般产品的纯度表示是不一样的,一般产品的纯度是以主体物质的含量多少来表示,半导体的纯度是以杂质含量与主体物质含量之比来表示的。
见表2。
表2 纯度表示法外购的工业硅纯度是百分比,1个九,“1N”,98%,两个九,“2N”,99%,是指扣除测定的杂质元素重量后,其余作为硅的含量(纯度)。
如工业硅中Fe≤0.4%,AL≤0.3%,Ca≤0.3%,共≤1%, 则工业硅的纯度是:(100-1)X100%=99% 。
2),半导体纯度工业硅中的B含量是0.002%(W),则工业硅纯度对硼来说被视为99.998%,即4N(对B来说)。
半导体硅中的B含量,如P型电阻率是3000Ω.Cm时,查曲线图得B的原子数为4.3X1012原子/Cm3,则半导体的纯度是:4.3X1012 /4.99X1022=0.86X10-10=8.6X10-11(~11N,0.086PPba),或(4.3X1012 X10.81) /(4.99X1022X28)=0.33X10-10=0.033PPbw=3.3X10-11(~11N)。
对B来说,从工业硅的4N提高到11N,纯度提高7个数量级(,千万倍)即B杂质含量要降低6个数量级(1000000,百万倍),因此生产半导体级多晶硅是比较困难的。
3),集成电路的元件数集成电路的元件数的比较,列于表3。
集成电路的集成度越高,则对硅材料纯度的要求越高。
表3 集成电路的元件数比较据报导:日本在6.1X5.8 mm的硅芯片上制出的VLSI有15万6千多个元件4),硅片(单晶硅)发展迅速硅片(单晶硅)发展迅速,见表4。
大规模生产中多晶硅直径一般公认为是120-150 mm比较合适,也研发过200-250 mm。
5),多晶硅、单晶硅、硅片与硅外延片多晶硅:内部硅原子的排列是不规则的杂乱无章的。
单晶硅:内部硅原子的排列是有规则的(生产用原料是多晶硅)。
硅片:单晶硅经滚磨、定向后切成硅片,分磨片与抛光片。
硅外延片:抛光片经清洗处理后用CVD方法在其上再生长一层具有需求电阻率的单晶硅层,目前超大规模集成电路正趋向于采用硅外延片来生产。
4, 多晶硅产品的用途半导体多晶硅本身用途并不大,必须要将多晶硅培育成单晶硅,经切、磨、抛制成硅片(又称硅圆片),在硅片上制成电子元件(分立元件、太阳能能基片、集成电路或超大规模集成电路),才能有用。
硅由于它的一些良好的半导体性能和丰富的原料,自1953年硅作为整流二极管元件问世以来,随着工艺技术的改革,硅的纯度不断的提高,目前已发展成为电子工业中应用最广泛的一种半导体材料,有关硅的基础理论也发展得较为完善。
起初由于制造硅材料的技术问题,半导体多晶硅纯度不高,只能作晶体检波器(矿石收音机,相当于二极管).随着材料制造工艺技术的不断改进与完善,材料纯度不断提高,制造成功各种半导体器件,从晶体管、整流元件、太阳能电池片到集成电路到大规模集成电路和超大规模集成电路,才使硅材料得到广泛的用途。
半导体多晶硅是单晶硅的关键原材料,多晶硅培育成单晶硅的方法是:有坩埚(CZ)与无坩埚(FZ),即直拉与区熔之分。
制成单晶硅后通过切、磨、抛工序制成硅片,在硅片上进行半导体器件的制造,(通过扩散、光刻、掺杂、离子注入------等许多工序)即集成电路(管芯或称为芯片、基片)。
由于大规模集成电路和超大规模集成电路技术的突破,半导体器件得到飞速发展,在各行各业得到广泛的应用。
所有这些应用都是在有半导体多晶硅材料的基础上才能实现的。
——在军事工业上:海湾战争、伊拉克战争的电子战都是用了大量的电子装备,探测器、导弹制导,火箭发射,电子控制设备,军事装备等;——在航天工业上:航天飞机,宇宙飞船(神1~神6)人造卫星,气象卫星,星球探测(登月与登火星)等;——在航空上:机场监控,飞机全天候监控,空军装备等;——在航海上:核潜艇,航空母舰,海上巡逻,海上运输,南北极探险等;——在信息技术上:通信技术(手机电话),广播电视,电子商务,电子购物,银行管理,电子眼监控,电脑网络,——在科学技术、工业技术,交通运输、铁路运输、能源工业、汽车工业、卫生医药等;——还有在人们生活中,家用电器,工资卡等都与电子打交道,所谓“无所不在,无所不有,到处可见”。
这都是得益于半导体多晶硅的基础材料。
当今,在人们的日常生活上、文化娱乐上得到充分的改善与享受,都离不开半导体材料与器件。
因此我们从事的半导体多晶硅材料的生产与研发,对我们国家的经济建设、国防建设、工业建设、生活改善都是很重要的事业,希望大家热爱多晶硅行业,钻研多晶硅行业,发展多晶硅行业,为国家的经济发展,国防发展,社会发展,人民生活的提高与改善作出应有的贡献。
二、国内外多晶硅生产情况与市场分析1,国外多晶硅生产情况国外多晶硅生产,主要集中在美、日、德、意四国的十大公司,多晶硅的生产量占世界的90%以上,见表5。
半导体多晶硅的生产是一个跨化工、冶金、机械、电子与自动控制多学科综合技术集成一体的系统工程。
目前国外有报导已发展到高效率低能耗48-50对棒的还原炉。
2,国内多晶硅生产情况1)目前国内能生产多晶硅的厂家只有五家:(1)739厂(200t/a),(2)洛阳中硅(300+700t/a),(3)新光硅业1000 t/a,(4)江苏中能1500 t/a t/a,(5)无锡金大中200 t/a。
2)据报导在建与筹建的有20多家(见附件){(1)新津天威四川硅业(3000t/a),(2)乐电天威硅业3000t/a,)、(3)中德合资江西新时代高新能源公司(1000-3000 t/a)2005年4月开建,计划2008年投产,(4)云南曲靖爱信硅科技公司(一期投资25亿元,建多晶硅生产线3000 t/a ,三年后建成10000t/a),2006年4月7日开工(奠基)。
(5)宁夏石嘴山投资70亿元,建设世界级硅基地,多晶硅计划建成5000 t/a的规模,(6)辽宁凌海多晶硅之城(1000t/a),(7)扬州太阳能产业基地3000 t/a多晶硅分两期建设,一期投资12亿元07年上半年投产,二期08年上半年建成,(8)江苏高邮(江苏顺大半导体发展有限公司领头)投资25亿元分两期到位,07年6月投产一条线1500 t/a,08年初再上一条生产线,生产能力达3000 t/a。
}多晶硅国内计划建设项目2008-2-10563,多晶硅市场需求分析1),世界半导体市场上在持续增长,因此带动了硅片和多晶硅的迅速发展,见表6。
2000-2005年我国多晶硅市场需求也十分旺盛,多晶硅供需矛盾突出,表8。
地带动了多晶硅产业的发展。
由此可见,我国多晶硅尚存在大量的缺口,急需大力推进多晶硅规模化生产,建立多个年产1000-3000 t级规模化的多晶硅工厂,才能满足我国集成电路和太阳能电池生产对多晶硅的需求。
[注]:生产1MW的太阳能电池需用12-14吨多晶硅。
图一2002-2010年全球及中国太阳能级多晶硅需求量统计及预测我国多晶硅2006年总产量仅480吨,国内市场的需求超过4000吨,其中太阳能产业需求接近3000吨,因此绝大部分多晶硅必须依赖进口。
硅原料供给不足和成本过高已成为制约我国光伏产业发展的瓶颈。
世界光伏电池产量快速增长,全球太阳能电池产业在1995-2005年增长了17倍。
2005年世界太阳能电池产量达到了1650兆瓦,累计装机发电容量已超过5GW。
日本光伏电池产量再次领先增长到762兆瓦,增长率为27%;欧洲产量增加48%,达到了464兆瓦;美国增加12%,达到了156兆瓦;世界其他地区增加96%,达到了274兆瓦。
图二2005-2010年全球太阳能电池产量统计与预测按照从硅料(多晶硅材料)到太阳能电池的产业划分,太阳能光伏发电的产业结构呈现明显的金字塔结构(最上游小,最下游大)。
图三太阳能光伏发电金字塔产业结构产业链最上游是7家太阳能多晶硅(Silicon )厂商:Hemlock、Wacker、Tokuyama、REC、MEMC、Misubishi和Sumitomo,他们对全球的多晶硅供应造成了严重的垄断,全球7大多晶硅企业的总产量占到全球太阳能多晶硅总产量的95%以上。
由于技术门槛,几乎没有企业可以很快进入多晶硅生产制造领域,而且产能也远不是全球7巨头的对手。
第二层是22家硅片(Wafer)厂商,包括RWE Schott Solar、Sharp、Q-cells、BP Solar、Deutsche Solar、Kyocera等,在这一环节主要的技术流程包括铸锭(或单晶生长)、切方滚磨、用多线切割机切片、化学腐蚀抛光,其中铸锭(或单晶生长)环节属于高能耗,切割机等投资规模亦相对较大,设备投资约占初期总投资的60%以上;中国保定天威英利是这个领域的中国代表,具备生产单晶硅片的制造能力。
技术难度仅次于多晶硅的制造难度。
第三层是太阳能电池(Cell)制造,全球电池厂商有40余家;中国的代表企业是无锡尚德和天威英利,产能产量都属于全球主流的太阳能电池制造商。
最下面是组件,将制作好的电池封装,技术含量相对较低,进入门槛亦低,属于劳动力密集型产业,全球厂商数量超过200 家,国内也有相当多企业进行封装作业。
近年,上游硅片制造工厂、下游的电池片及电池组件公司都在扩大产能。
2007年、2008年将是这些企业的黄金扩产年。
生产太阳能全线产品的德国太阳能巨头SolarWorld在2006年12月底宣布,将大幅扩产其硅片领域的产能,预计在未来的28个月时间内,产能将由现阶段的250兆瓦增至500兆瓦。