离子交换树脂PPT幻灯片课件
合集下载
离子交换树脂PPT幻灯片课件
K
M H
/
n
[M ]1/ n [H ] [M ]1/ n [H ]
阴离子交换树脂对离子的选择性系数可以用同样的方法讨论。 阴离子树脂的选择性系数常用OH-或Cl-作为参考离子。
5
离子与树脂亲和能力的差别,与离子电荷多少及其半径 的大小有关。 不同价的离子,亲和力大小顺序一般是: Na+<Ca2+<Al3+<Th4+
吸附性强的离子,选用弱酸性或弱碱性树脂。
这是因为,若用强碱或强酸树脂吸附,洗脱和再生就比较困难。 弱酸和弱碱性树脂对H+和OH-有较大亲和力,洗脱方便。
吸附性弱的离子,选用强酸或强碱性树脂。
弱碱性阴离子树脂不能除去水中的碳酸和硅酸,因为它们的离 解常数小,弱碱性树脂在碱性环境中几乎不解离,不能用碳酸 根或硅酸根交换。为了有效的吸附,这时应选用强碱性阴离子15 树脂。
如果离子交换反应属于中性盐分解反应,应选用强酸强碱 树脂。
用盐型树脂,流出液的PH较稳定;用H+型或OH-型树脂, 由于交换析出H+或OH-,流出液PH值会改变。 对于大分子物质,宜选用大孔树脂或交联度低的树脂。
树脂的粒度、形状、密度、容量、稳定性都要依过程的具体 情况而定。
6.3.2柱上操作 1.树脂的处理
2. 装柱
较大型的离子交换床或交换柱比较容易装匀。小型柱的手工 装填必须十分注意。
装柱时要防止’节”和气泡的产生。
“节”是指柱内产生明显的分界线。这是由于装柱不均造成 树脂时松时紧。
气泡的发生往往是在装柱时没有一定量的液体覆盖而混入
气体造成的。
18
要做到均匀装柱,柱内要有一定高度的水面,树脂要与水 混合倾入,借助水的浮力使树脂自然沉积,操作尽可能均 匀连续。
离子交换树脂及原理课件ppt
RCOOHNa + H2O → RCOONa+NaOH RNH2Cl + H2O → RNH2OH+HCl
化学性能
对各种离子的交换能力是不同的。 易被交换的离子,解析就困难。 交换顺序:优先高化合价的,其次原子序数大的。
强酸性阳离子交换树脂: Fe2+>Al3+>Ca2+>Mg2+>K+>Na+>H+
树脂的命名 (GB1631-1979)
代号 0 1 2
3 4 5 6
分类名称 强酸性 弱酸性 强碱性
弱碱性 螯合性 两性 氧化还原性
代号 0 1 2
骨架名称 苯乙烯系 丙烯酸系 酚醛系
3
环氧系
4 乙烯吡啶系
5
脲醛系
6 氯乙烯系
二、离子交换树脂的性能
物理性能 外观(颜色、形状)、粒度、密度、 含水率、转型膨胀率、耐磨性
第二节 离子交换基本原理
1. 离子交换反应 可逆性 强型树脂的交换反应 弱型树脂的交换反应 2. 离子交换平衡和选择性系数 3. 离子交换速度 控制步骤 表达式 影响因素
物理性能
密度:单位体积树脂的质量。 1. 湿真密度:单位真体积(不包括树脂颗粒间空隙的体积)内湿态
离子交换树脂的质量,g/mL。 湿真密度=湿态树脂质量/湿态树脂的真体积 一般在1.04-1.30。阳离子大于阴离子的。 离子交换树脂的反洗强度、分层特性与其有关。 2. 湿视密度:单位体积内紧密无规律排列的湿态离子交换树脂的质
用寿命。 耐磨性 由于相互摩擦和胀缩作用,产生破裂现象。 一般年损耗应小于3-7%。
化学性能
酸碱性 不溶性的高分子电解质,可电离,使得水溶液具有酸碱性。 强型树脂不受溶液pH影响。 弱型树脂电离能力小。弱酸性树脂在碱性溶液中电离能力大,弱
化学性能
对各种离子的交换能力是不同的。 易被交换的离子,解析就困难。 交换顺序:优先高化合价的,其次原子序数大的。
强酸性阳离子交换树脂: Fe2+>Al3+>Ca2+>Mg2+>K+>Na+>H+
树脂的命名 (GB1631-1979)
代号 0 1 2
3 4 5 6
分类名称 强酸性 弱酸性 强碱性
弱碱性 螯合性 两性 氧化还原性
代号 0 1 2
骨架名称 苯乙烯系 丙烯酸系 酚醛系
3
环氧系
4 乙烯吡啶系
5
脲醛系
6 氯乙烯系
二、离子交换树脂的性能
物理性能 外观(颜色、形状)、粒度、密度、 含水率、转型膨胀率、耐磨性
第二节 离子交换基本原理
1. 离子交换反应 可逆性 强型树脂的交换反应 弱型树脂的交换反应 2. 离子交换平衡和选择性系数 3. 离子交换速度 控制步骤 表达式 影响因素
物理性能
密度:单位体积树脂的质量。 1. 湿真密度:单位真体积(不包括树脂颗粒间空隙的体积)内湿态
离子交换树脂的质量,g/mL。 湿真密度=湿态树脂质量/湿态树脂的真体积 一般在1.04-1.30。阳离子大于阴离子的。 离子交换树脂的反洗强度、分层特性与其有关。 2. 湿视密度:单位体积内紧密无规律排列的湿态离子交换树脂的质
用寿命。 耐磨性 由于相互摩擦和胀缩作用,产生破裂现象。 一般年损耗应小于3-7%。
化学性能
酸碱性 不溶性的高分子电解质,可电离,使得水溶液具有酸碱性。 强型树脂不受溶液pH影响。 弱型树脂电离能力小。弱酸性树脂在碱性溶液中电离能力大,弱
离子交换树脂 ppt课件
43
将经干燥的树脂置于2 L浓度为 l mol/L 的氢氧化钠乙醇溶液中,加热回流约10 h, 然后冷却过滤,用水和稀盐酸洗涤,再用水 洗涤数次,最后在100℃下干燥,即得成品。
44
(3)强碱型阴离子交换树脂的制备
强碱型阴离子交换树脂主要以季胺基作为离子 交换基团,以聚苯乙烯作骨架。
制备方法是:将聚苯乙烯系白球进行氯甲基化, 然后利用苯环对位上的氯甲基的活泼氯,定量地与 各种胺进行胺基化反应。
37
强酸型阳离子交换树脂的制备实例: 将1 g BPO(过氧化二苯甲酰)溶于80 g苯乙
烯与20 g二乙烯基苯(纯度50%)的混合单体中。 搅拌下加入含有5 g明胶的500 mL去离子水中, 分散至所预计的粒度。从70℃逐步升温至95℃, 反应8~10 h,得球状共聚物。过滤、水洗后于 100~120℃下烘干。即成“白球”。
CH2 CH
NH2(C2H4NH)nH 二乙苯
CH2 CH CH2 CH CONH(C2H4NH)nH
CH2 CH
CH2O
CH2
CH CH2
CH CONH(C2H4N)n
CH3
CH2 CH
CH3
50
2、大孔型离子交换树脂
大孔型树脂的制备方法与凝胶型离子交换树脂基本相同。 重要的大孔型树脂仍以苯乙烯类为主。与离子交换树脂相比, 制备中有两个最大的不同之处:一是二乙烯基苯含量大大增 加,一般达85%以上;二是在制备中加入致孔剂。
1
一、发展概述
1935年英国的Adams和Holmes发表了关于酚 醛树脂和苯胺甲醛树脂的离子交换性能的工作报告, 开创了离子交换树脂领域,同时也开创了功能高分 子领域。
离子交换树脂是最早出现的功能高分子材料。
将经干燥的树脂置于2 L浓度为 l mol/L 的氢氧化钠乙醇溶液中,加热回流约10 h, 然后冷却过滤,用水和稀盐酸洗涤,再用水 洗涤数次,最后在100℃下干燥,即得成品。
44
(3)强碱型阴离子交换树脂的制备
强碱型阴离子交换树脂主要以季胺基作为离子 交换基团,以聚苯乙烯作骨架。
制备方法是:将聚苯乙烯系白球进行氯甲基化, 然后利用苯环对位上的氯甲基的活泼氯,定量地与 各种胺进行胺基化反应。
37
强酸型阳离子交换树脂的制备实例: 将1 g BPO(过氧化二苯甲酰)溶于80 g苯乙
烯与20 g二乙烯基苯(纯度50%)的混合单体中。 搅拌下加入含有5 g明胶的500 mL去离子水中, 分散至所预计的粒度。从70℃逐步升温至95℃, 反应8~10 h,得球状共聚物。过滤、水洗后于 100~120℃下烘干。即成“白球”。
CH2 CH
NH2(C2H4NH)nH 二乙苯
CH2 CH CH2 CH CONH(C2H4NH)nH
CH2 CH
CH2O
CH2
CH CH2
CH CONH(C2H4N)n
CH3
CH2 CH
CH3
50
2、大孔型离子交换树脂
大孔型树脂的制备方法与凝胶型离子交换树脂基本相同。 重要的大孔型树脂仍以苯乙烯类为主。与离子交换树脂相比, 制备中有两个最大的不同之处:一是二乙烯基苯含量大大增 加,一般达85%以上;二是在制备中加入致孔剂。
1
一、发展概述
1935年英国的Adams和Holmes发表了关于酚 醛树脂和苯胺甲醛树脂的离子交换性能的工作报告, 开创了离子交换树脂领域,同时也开创了功能高分 子领域。
离子交换树脂是最早出现的功能高分子材料。
离子交换树脂课件
离子交换树脂的再生
离子交换树脂在使用一定时间后,其交换容量会逐渐降低, 需要进行再生以恢复其交换能力。
再生过程通常包括用酸、碱或盐溶液对树脂进行浸泡、洗涤 和再生剂的再生等步骤,以去除树脂中的杂质和失效的交换 离子,恢复其交换能力。
离子交换树脂的应用
03
水处理
01
去离子水制备
离子交换树脂可用于去除水中溶解的离子,制备高纯度 的去离子水,满足工业和实验室的用水需求。
03
随着环境保护意识的提高和工业生产的不断升级,离子 交换树脂的需求量将会持续增长,其在工业生产和人类 生活中的地位将更加重要。
离子交换树脂的发展趋势
随着科技的不断发展,离子交换树脂的制备技术和性能将得到进一步提升,以满足 更广泛的应用需求。
新型离子交换树脂的开发和应用将更加注重环保和可持续发展,减少对环境的负面 影响。
食品工业
离子交换树脂在食品工业 中可用于脱盐、脱色、除 味等方面,提高食品质量 和安全性。
医药领域
离子交换树脂在医药领域 中可用于药物分离、纯化 及制备等方面,具有高效、 环保的优势。
离子交换树脂的回收与再利用
再生技术
研究和发展高效的再生技术,使离子交换树 脂能够多次重复使用,降低使用成本。
废弃树脂的处理
制备
制备离子交换树脂的关键是选择合适的单体、引发剂、交联 剂等,以及控制聚合反应的条件,以保证树脂的结构和性能 符合要求。
离子交换树脂原理
02
离子交换过程
离子交换过程是可逆的,通过离子交 换反应,溶液中的阳离子或阴离子与 离子交换树脂中的可交换离子进行交 换,从而实现离子的分离和纯化。
离子交换过程通常在特定的pH值和温 度条件下进行,以获得最佳的交换效果。
离子交换树脂应用PPT课件
15大孔吸附树脂在植物提取方面应用目前大孔吸附树脂广泛应用于制药及天然植物中活性成分如皂苷黄酮内脂生物碱等大分子化合物癿提取分菊糖甙甘草甜素银杏黄酮内脂山楂黄酮沙棘黄酮葛根素竹叶黄酮黄芪皂苷橙皮甙淫羊藿黄酮大豆异黄酮茶多酚洋地黄强心甙麻黄精粉柚甙毛冬青黄酮甙红豆杉生物碱多种天然色素中药复方药物提取等以及生物化学制品癿冷化分离回收都有良好癿效果
成破碎或交换容量下降,所以必须区别 污染中毒的原因区别处理。
.
5
大孔吸附树脂特性
• 大孔吸附树脂具有多孔骨架,其性质与天然吸附 剂活性炭相似,但具有下列优点,弥补了天然吸 附剂-活性炭之不足。 1)物理、化学稳定性高,机械强度好,经久 耐用。 2)再生容易,一般用水、稀酸、碱或有机溶 剂,如低碳醇,丙酮即可,而且 分离出来的物 质灰分低。 3)品种多,可根据不同要求,改变树脂孔结 构、极性等表面性能适用于吸附多种有机化合物。 4)树脂一般为小球状,直径为0.2-0.8毫米之 间,因此流体阻力不像粉状活性使用时不便。
.
15
• 大孔树脂吸附分离工艺是对中药提取工艺 影响大、带动面最广的技术之一。该工艺 操作简便,成本较低,树脂可反复使用, 适合工业生产。有文献报道,按日投产3吨 生药计算,增加固定资产的投资15万元, 应用吸附树脂提取分离技术而每年因此节 约的能耗、辅料、包装材料、储藏、运输 费用至少在百万以上。因此,它具有很强 的推广应用价值,将对中药提取技术的跳跃 式进步起到促进作用。
.
12
• 大孔吸附树脂的吸附能力,不但与树脂的化学结 构和物理性能有关,而且与溶质及溶液的性质有 关。非极性树脂从极性溶液中吸附时,溶质分子 的疏水部分优先被吸附,而亲水部分在水相中定 向排列。相反,极性树脂从非极性溶液中吸附时, 则可同时吸附溶质分子的极性部分和非极性部分。 当从水溶液中吸附时,对同时吸附溶质分子和非 极性部分,当从水溶液中吸附时,对同族化合物,
成破碎或交换容量下降,所以必须区别 污染中毒的原因区别处理。
.
5
大孔吸附树脂特性
• 大孔吸附树脂具有多孔骨架,其性质与天然吸附 剂活性炭相似,但具有下列优点,弥补了天然吸 附剂-活性炭之不足。 1)物理、化学稳定性高,机械强度好,经久 耐用。 2)再生容易,一般用水、稀酸、碱或有机溶 剂,如低碳醇,丙酮即可,而且 分离出来的物 质灰分低。 3)品种多,可根据不同要求,改变树脂孔结 构、极性等表面性能适用于吸附多种有机化合物。 4)树脂一般为小球状,直径为0.2-0.8毫米之 间,因此流体阻力不像粉状活性使用时不便。
.
15
• 大孔树脂吸附分离工艺是对中药提取工艺 影响大、带动面最广的技术之一。该工艺 操作简便,成本较低,树脂可反复使用, 适合工业生产。有文献报道,按日投产3吨 生药计算,增加固定资产的投资15万元, 应用吸附树脂提取分离技术而每年因此节 约的能耗、辅料、包装材料、储藏、运输 费用至少在百万以上。因此,它具有很强 的推广应用价值,将对中药提取技术的跳跃 式进步起到促进作用。
.
12
• 大孔吸附树脂的吸附能力,不但与树脂的化学结 构和物理性能有关,而且与溶质及溶液的性质有 关。非极性树脂从极性溶液中吸附时,溶质分子 的疏水部分优先被吸附,而亲水部分在水相中定 向排列。相反,极性树脂从非极性溶液中吸附时, 则可同时吸附溶质分子的极性部分和非极性部分。 当从水溶液中吸附时,对同时吸附溶质分子和非 极性部分,当从水溶液中吸附时,对同族化合物,
离子交换操作步骤(共15张PPT)
静态交换:是将树脂与交换溶液混合置于一定的容器中搅拌
进行。静态交换操作方法简单、设备要求低,需分批进行, 交换不完全,效率低。
柱上操作:先在柱中充以水,下端铺玻璃毛,在装柱和整个 交换洗脱过程中,树脂层要浸在液面下,防止混入气泡形 成沟流,柱中树脂层高度是柱内径的10~20倍
实验室中:交换柱
(1)中间树脂局部被交换,称为“交界层〞 (3)此时,被交换到柱上的离子量称为始漏 ②酸碱处理:除去与官能团结合的杂质。 阳离子树脂采用HCl作洗脱液3~4 M,易洗脱的可用稀酸2 M洗Ca2+ , 选择离子交换树脂的原那么 别离用细些均匀性好,80~100目或100~120目; (2)随着试液的流入,交界层下移,当流出 常量组分一般在100~200目,微量组分一般在200~400目。 换新盐酸再浸一段时间,再去离子洗至中性得到H+型阳或Clˉ型阴离子交换树脂。 换新盐酸再浸一段时间,再去离子洗至中性得到H+型阳或Clˉ型阴离子交换树脂。 洗脱作用也是由上而下地依次进行的。 量。 洗脱剂浓度:太小效率低,太大树脂脱水收缩,树脂内离子不易洗脱。 洗脱作用也是由上而下地依次进行的。 阳离子树脂采用HCl作洗脱液3~4 M,易洗脱的可用稀酸2 M洗Ca2+ ,
能力。 ③转型:即树脂去杂后,赋予平子交换:将待别离的溶液倾入交换柱,使其按某一
定的适当的速度流经树脂层,
2R—SO3H+Ca2+→(RSO3)2Ca+2H+
树脂颗粒的大小:树脂愈粗,曲线向右移动,达相同洗脱率,洗脱剂量增加。
(1)中间树脂局部被交换,称为“交界 柱上操作:先在柱中充以水,下端铺玻璃毛,在装柱和整个交换洗脱过程中,树脂层要浸在液面下,防止混入气泡形成沟流,柱中树脂层高
进行。静态交换操作方法简单、设备要求低,需分批进行, 交换不完全,效率低。
柱上操作:先在柱中充以水,下端铺玻璃毛,在装柱和整个 交换洗脱过程中,树脂层要浸在液面下,防止混入气泡形 成沟流,柱中树脂层高度是柱内径的10~20倍
实验室中:交换柱
(1)中间树脂局部被交换,称为“交界层〞 (3)此时,被交换到柱上的离子量称为始漏 ②酸碱处理:除去与官能团结合的杂质。 阳离子树脂采用HCl作洗脱液3~4 M,易洗脱的可用稀酸2 M洗Ca2+ , 选择离子交换树脂的原那么 别离用细些均匀性好,80~100目或100~120目; (2)随着试液的流入,交界层下移,当流出 常量组分一般在100~200目,微量组分一般在200~400目。 换新盐酸再浸一段时间,再去离子洗至中性得到H+型阳或Clˉ型阴离子交换树脂。 换新盐酸再浸一段时间,再去离子洗至中性得到H+型阳或Clˉ型阴离子交换树脂。 洗脱作用也是由上而下地依次进行的。 量。 洗脱剂浓度:太小效率低,太大树脂脱水收缩,树脂内离子不易洗脱。 洗脱作用也是由上而下地依次进行的。 阳离子树脂采用HCl作洗脱液3~4 M,易洗脱的可用稀酸2 M洗Ca2+ ,
能力。 ③转型:即树脂去杂后,赋予平子交换:将待别离的溶液倾入交换柱,使其按某一
定的适当的速度流经树脂层,
2R—SO3H+Ca2+→(RSO3)2Ca+2H+
树脂颗粒的大小:树脂愈粗,曲线向右移动,达相同洗脱率,洗脱剂量增加。
(1)中间树脂局部被交换,称为“交界 柱上操作:先在柱中充以水,下端铺玻璃毛,在装柱和整个交换洗脱过程中,树脂层要浸在液面下,防止混入气泡形成沟流,柱中树脂层高
离子交换树脂演示幻灯片
为骨架。 ❖ 二乙烯苯为交联剂,可以把两个苯乙烯聚合成的线性高分子交
联起来,使之成为体型高分子化合物。在聚合物中起交联作用 的二乙烯苯的质量百分率称为树脂的交联度,常用DVB表示。
(2)第二阶段:引入活性基团,可以制得阳离子交换树脂, 也可以制得阴离子交换树脂。
❖ 1)磺酸型苯乙烯系阳离子交换树脂
三、离子交换树脂的分类
1、按活性基团的性质分类 ❖ 阳离子交换树脂:能与水中阳离子进行交换反应的称为阳离
子交换树脂;根据H离子电离的强弱程度分为:强酸性和弱 酸性阳离子交换树脂 ❖ 阴离子交换树脂:能与水中阴离子进行交换反应的称为阴离 子交换树脂。根据OH根离子电离的强弱程度分为:强碱性和 弱碱性阴离子交换树脂 ❖ 另外,按活性基团性质还可以分为螯合、两性和氧化还原等 树脂。 2、按树脂单体的种类分类 ❖ 有苯乙烯系、丙烯酸系和酚醛系等
3)密度
❖ 离子交换树脂的密度是水处理工艺中的实用数据。离子交换 树脂的密度有以下几种表示法:
❖ (1)干真密度。干真密度即在干燥状态下树脂本身的密度:
干 真 密 度 树 干 脂 树 的 脂 真 质 体 量 积 g/ml
❖ 真体积是指树脂的排液体积,不包括颗粒内的孔隙和颗粒间 的空隙。求真体积时,用不会使树脂溶胀的溶剂,如甲苯。
❖ 当反应进行到失效后,为了恢复离子交换树脂交换能力, 就可以利用离子交换反应的可逆性,用硫酸或盐酸溶液通 过此失效的离子交换树脂,以恢复其交换能力,其反应如 下式: R2Ca+2H+ →2RH+Ca2+
❖ 离子交换反应的可逆性,是离子交换树脂可以反复使用的 重要性质。
2)酸、碱性
❖ H型阳离子交换树脂和OH型阴离子交换树脂的性能与电解质 酸、碱相同。在水中有电离出H+和OH-的能力。因此,根据此 能力的大小可以有强弱之分。例如:
联起来,使之成为体型高分子化合物。在聚合物中起交联作用 的二乙烯苯的质量百分率称为树脂的交联度,常用DVB表示。
(2)第二阶段:引入活性基团,可以制得阳离子交换树脂, 也可以制得阴离子交换树脂。
❖ 1)磺酸型苯乙烯系阳离子交换树脂
三、离子交换树脂的分类
1、按活性基团的性质分类 ❖ 阳离子交换树脂:能与水中阳离子进行交换反应的称为阳离
子交换树脂;根据H离子电离的强弱程度分为:强酸性和弱 酸性阳离子交换树脂 ❖ 阴离子交换树脂:能与水中阴离子进行交换反应的称为阴离 子交换树脂。根据OH根离子电离的强弱程度分为:强碱性和 弱碱性阴离子交换树脂 ❖ 另外,按活性基团性质还可以分为螯合、两性和氧化还原等 树脂。 2、按树脂单体的种类分类 ❖ 有苯乙烯系、丙烯酸系和酚醛系等
3)密度
❖ 离子交换树脂的密度是水处理工艺中的实用数据。离子交换 树脂的密度有以下几种表示法:
❖ (1)干真密度。干真密度即在干燥状态下树脂本身的密度:
干 真 密 度 树 干 脂 树 的 脂 真 质 体 量 积 g/ml
❖ 真体积是指树脂的排液体积,不包括颗粒内的孔隙和颗粒间 的空隙。求真体积时,用不会使树脂溶胀的溶剂,如甲苯。
❖ 当反应进行到失效后,为了恢复离子交换树脂交换能力, 就可以利用离子交换反应的可逆性,用硫酸或盐酸溶液通 过此失效的离子交换树脂,以恢复其交换能力,其反应如 下式: R2Ca+2H+ →2RH+Ca2+
❖ 离子交换反应的可逆性,是离子交换树脂可以反复使用的 重要性质。
2)酸、碱性
❖ H型阳离子交换树脂和OH型阴离子交换树脂的性能与电解质 酸、碱相同。在水中有电离出H+和OH-的能力。因此,根据此 能力的大小可以有强弱之分。例如:
离子交换-树脂部分(共68张PPT)
• 同类树脂001×7、001×10、 001×14.5的干基交换容量随交联度 增大而减少。D001×16大孔树脂磺 化反响温度较其它树脂高,其产生 弱酸基的量也较大。
阴离子交换树脂交换容量
• 阴离子交换树脂交换容量测定包括对强碱性和弱碱性 两种阴树脂的全交换容量、强碱基团及弱碱基团容量 的测定。
第一节 离子交换树脂根本概念
国产离子交换树脂的分类 国产离子交换树脂命名法那么及型号
国产离子交换树脂的分类
离子交换树脂品种很多,因其原料、制法和用途不同,分类方 法各异。主要分类方法下:
1.按功能基类别分:
a. 强酸性阳离子交换树脂,其功能基为:磺酸基R-SO3H
b. 弱酸性阳离子交换树脂,其功能基为:羧酸基R-COOH, 磷酸基 R-CHPO(OH)2
• 湿态离子交换树脂:是指吸收了平衡水量并除 去外部游离水分后的树脂。
粒度和粒度分布
• 一般用悬浮法制得的球状颗粒的粒径并不一致,大体 上处在0.2mm~1.5mm范围内〔经筛分取0.3mm~ 1.2mm的颗粒用于制造树脂〕,其中0.3mm~ 0.6mm的占60%左右,0.6mm~1.0mm的占30%左 右。经过筛分的树脂,应该用4个指标:范围粒度、 有效粒度和均一系数、下限粒度〔或上限粒度〕。
• M = c×V×d
(2-8)
• 式中:d——再生剂溶液密度,kg/m3。
再生剂耗的公式为:
R=M/(QI× VR)
(2-9)
式中:R——再生剂耗,g/mol;
M——周期再生剂用量,g;
Q工——工作交换容量,mol/m3
• 平衡交换容量 :用于表示到达平衡状态时单位质量或单位体积 的树脂中参于反响的交换基团的量。它表示在给定条件下,该 树脂可能发挥的最大交换容量,是离子交换体系的重要参数。
阴离子交换树脂交换容量
• 阴离子交换树脂交换容量测定包括对强碱性和弱碱性 两种阴树脂的全交换容量、强碱基团及弱碱基团容量 的测定。
第一节 离子交换树脂根本概念
国产离子交换树脂的分类 国产离子交换树脂命名法那么及型号
国产离子交换树脂的分类
离子交换树脂品种很多,因其原料、制法和用途不同,分类方 法各异。主要分类方法下:
1.按功能基类别分:
a. 强酸性阳离子交换树脂,其功能基为:磺酸基R-SO3H
b. 弱酸性阳离子交换树脂,其功能基为:羧酸基R-COOH, 磷酸基 R-CHPO(OH)2
• 湿态离子交换树脂:是指吸收了平衡水量并除 去外部游离水分后的树脂。
粒度和粒度分布
• 一般用悬浮法制得的球状颗粒的粒径并不一致,大体 上处在0.2mm~1.5mm范围内〔经筛分取0.3mm~ 1.2mm的颗粒用于制造树脂〕,其中0.3mm~ 0.6mm的占60%左右,0.6mm~1.0mm的占30%左 右。经过筛分的树脂,应该用4个指标:范围粒度、 有效粒度和均一系数、下限粒度〔或上限粒度〕。
• M = c×V×d
(2-8)
• 式中:d——再生剂溶液密度,kg/m3。
再生剂耗的公式为:
R=M/(QI× VR)
(2-9)
式中:R——再生剂耗,g/mol;
M——周期再生剂用量,g;
Q工——工作交换容量,mol/m3
• 平衡交换容量 :用于表示到达平衡状态时单位质量或单位体积 的树脂中参于反响的交换基团的量。它表示在给定条件下,该 树脂可能发挥的最大交换容量,是离子交换体系的重要参数。
离子交换树脂教学课件
原料选择
选择高质量的原料是生产离子交 换树脂的关键,包括苯乙烯、交 联剂、催化剂等。
原料处理
对原料进行纯化、干燥等预处理 ,以确保生产出的离子交换树脂 质量稳定。
合成方法与工艺
01
02
03
悬浮聚合
将苯乙烯、交联剂等原料 分散在水中,通过引发剂 引发聚合反应,生成离子 交换树脂的颗粒。
乳液聚合
将苯乙烯、交联剂等原料 溶于有机溶剂中,通过引 发剂引发聚合反应,生成 离子交换树脂的乳液。
、废水处理和回收利用。
离子交换树脂的优势
03
具有较高的交换容量和再生效率,使用寿命长,操作简便,对
环境友好等优点。
离子交换树脂处理工业水的效果与优势
离子交换树脂对工业水质的改善
可以有效去除水中的硬度、氯离子、硫酸根离子等杂质,提高水质,满足各种工业用水需 求。
离子交换树脂在废水处理中的应用
可以实现废水的减量、减毒和减污,为工业废水的处理和资源化利用提供有效手段。
复合离子交换树脂的研发
将不同性质的离子交换树脂复合在一起,实现多功能化和高效化,满足不同应用 需求。
拓展离子交换树脂的应用领域
新能源领域的应用
探索离子交换树脂在新能源领域的应用,如电池、燃料电池 、太阳能电池等,实现能源的高效利用和环境保护。
生物医学领域的应用
拓展离子交换树脂在生物医学领域的应用,如药物分离、血 液透析、生物传感器等,为生物医学技术的发展提供支持。
利用新材料技术,开发具有优异性能的离子交换树脂,如高交联度、高选择性 、耐高温、抗污染等。
纳米技术的应用
将纳米技术应用于离子交换树脂的制备,实现纳米尺度的孔径和粒径控制,提 高离子交换树脂的吸附和分离性能。
离子交换树脂详解ppt课件
阴树脂预处理:
将树脂装柱后,先用饱和食盐水浸泡,用去离子水冲洗至出 水清澈,检测PH值为7。
再用2%~4%的HCl溶液进行处理,再用2%~4%NaOH进 行处理,,全部通入后,浸泡,排去碱液,用去离子水冲洗至26 出水呈中性。
4.1.2静态预处理
阳树脂的处理:
将树脂用水洗至清水后,用2%~4%NaOH浸泡4-8小时, 再用水洗至中性,再用5%的HCl浸泡4-8小时后,用水洗 至中性,待用。
2.2.2弱酸性阳离子树脂
这类树脂含弱酸性基团,能在水中离解出H+ 而呈
酸性。 树脂离解后余下的负电基团,能与溶液中的其他阳离子
吸附结合,从而产生阳离子交换作用。 这种树脂的酸性即离解性较弱,在低pH下难以离解和
进行离子交换,只能在碱性、中性或微酸性溶液中(如
pH5~14)起作用。
16
2.2.3强碱性阴离子树脂
H+
Na+
阳离子交换树脂
阳离子交换树脂
NaCl换树脂
阴离子交换树脂
23
4 离子交换树脂的清洗
4.1离子交换树脂的预处理 4.2离子交换树脂的再生
24
4 离子交换树脂的清洗
4.1离子交换树脂的预处理
在离子交换树脂的工业产品中,常含有少量的有机低 聚物及一些无机杂质。在使用初期会逐渐溶解释放,影响
铁中毒后的离子交换树脂
35
5.2 铁中毒的处理及预防
处理:常用的清洗方法是用10%HCl溶液,在进行此方
法前,必须检查交换器设备的耐腐蚀性能,否则须用加抑制 剂的盐酸。
防止树脂发生铁污染的措施有:
1、减少阳离子进水的含铁量。对含铁量高的地下
水应先经过曝气处理及锰砂过滤除铁。对含铁量高的地表水 或使用铁盐作为凝聚剂时,应添加碱性药剂,如NaOH,提 高水的pH值,防止铁离子带入阳床。
将树脂装柱后,先用饱和食盐水浸泡,用去离子水冲洗至出 水清澈,检测PH值为7。
再用2%~4%的HCl溶液进行处理,再用2%~4%NaOH进 行处理,,全部通入后,浸泡,排去碱液,用去离子水冲洗至26 出水呈中性。
4.1.2静态预处理
阳树脂的处理:
将树脂用水洗至清水后,用2%~4%NaOH浸泡4-8小时, 再用水洗至中性,再用5%的HCl浸泡4-8小时后,用水洗 至中性,待用。
2.2.2弱酸性阳离子树脂
这类树脂含弱酸性基团,能在水中离解出H+ 而呈
酸性。 树脂离解后余下的负电基团,能与溶液中的其他阳离子
吸附结合,从而产生阳离子交换作用。 这种树脂的酸性即离解性较弱,在低pH下难以离解和
进行离子交换,只能在碱性、中性或微酸性溶液中(如
pH5~14)起作用。
16
2.2.3强碱性阴离子树脂
H+
Na+
阳离子交换树脂
阳离子交换树脂
NaCl换树脂
阴离子交换树脂
23
4 离子交换树脂的清洗
4.1离子交换树脂的预处理 4.2离子交换树脂的再生
24
4 离子交换树脂的清洗
4.1离子交换树脂的预处理
在离子交换树脂的工业产品中,常含有少量的有机低 聚物及一些无机杂质。在使用初期会逐渐溶解释放,影响
铁中毒后的离子交换树脂
35
5.2 铁中毒的处理及预防
处理:常用的清洗方法是用10%HCl溶液,在进行此方
法前,必须检查交换器设备的耐腐蚀性能,否则须用加抑制 剂的盐酸。
防止树脂发生铁污染的措施有:
1、减少阳离子进水的含铁量。对含铁量高的地下
水应先经过曝气处理及锰砂过滤除铁。对含铁量高的地表水 或使用铁盐作为凝聚剂时,应添加碱性药剂,如NaOH,提 高水的pH值,防止铁离子带入阳床。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
树脂交联度越大,树脂的溶胀性越差,从而影响了离子在 树脂颗粒内的扩散速度。交联度很大时,树脂内扩散速度 可能会成为整个过程的控制步骤。 (3)温度
提高温度既提高了扩散速度,又提高了交换反应速度,从 而加快了整个交换速度。 (4)溶液浓度
一般情况下,在溶液浓度小于0.01mol/L时,总的交换速度 可由膜扩散决定。
扩散速度:表示为单位时间内通过单位面积的离子量。
式中C1,C2分别表示扩散界面两侧的离子浓度,C1>C2; δ 是界面层厚度;D是总扩散系数,单位是cm2/s
10
影响离子交换速度的因素有以下几种
(1)树脂粒度
树脂颗粒大小对交换速度有很大影响。不管哪一步是控 制步骤,小颗粒树脂总是相应于大的交换速度。
除上述各种因素外,在非水介质中,尤其在非极性溶剂 中,交换速度要慢得多,有时只有水溶液中的千分之一。
其原因之一是树脂在非水溶剂中的溶胀要小得多。同时也 因为在非水溶剂中离解得少,只能提供较少的可交换离子。
基于同样原因,弱酸和弱碱型树脂的溶胀也较小,只能提
供较低的交换速度。
13
§6.3离子交换分离实践
当浓度增加时,膜扩散速度上升,浓度达到1.0 mol/L以上时, 树脂内扩散常变成控制步骤。
此时我们可看到,继续提高浓度对提高反应速度就 不再有 12
效了。
(5)搅拌速度
加大搅拌速度可以减小膜厚度从而提高扩散速度。但搅 拌强度达到一定值后,交换速度便不会在上升。
(6)交换离子的性质
主要是离子的价态和水化离子的大小。在树脂内扩散的离 子是由于树脂的固定离子库仑力的吸引而扩散进入的,故 离子价态越高,吸引力越大,扩散速度越快。水化离子越 大则越难扩散。
对于1价离子
K
A B
K
A C
K
C B
对于n价离子Mn+与H+交换的选择性系数表示为:
K
M H
/
n
[M ]1/ n [H ] [M ]1/ n [H ]
阴离子交换树脂对离子的选择性系数可以用同样的方法讨论。 阴离子树脂的选择性系数常用OH-或Cl-作为参考离子。
5
离子与树脂亲和能力的差别,与离子电荷多少及其半径 的大小有关。 不同价的离子,亲和力大小顺序一般是: Na+<Ca2+<Al3+<Th4+
实践中使用最多的是固定床柱式操作。它的效率比较高,操 作简便,实用价值很大。下面介绍柱式操作过程的一些主要 方面。
6.3.1树脂的选择
选用哪一种离子交换树脂,必须考虑被分离物质带何种电 荷及其电性强弱、分子的大小与数量,同时还要考虑环境 中存在哪些其他离子和他们的性质。 ①如果交换对象是无机阳离子或有机碱阳离子,则选用阳 离子交换树脂;
如果是膜扩散控制,小颗粒增大了树脂的比表面,单位时 间内可以有更多的离子达到单位质量树脂的表面,从而增 大总的膜扩散速度。
如果是颗粒内扩散控制,则小颗粒使离子通过的路程缩 短,从而加快了过程的速度。
应该注意的是:颗粒均匀的树脂比不均匀的树脂交换速 度高,因为其中大的颗粒数目少。
11
(2)树脂交联度
第六章 离子交换与吸附
§6.2离子交换平衡及交换动力学 §6.3离子交换分离实践
1
§6.2离子交换平衡及交换动力学
6.2.1离子交换平衡和选择性
各种离子交换树脂相当于各种酸和碱,螯合树脂与氧化还原 树脂相当于一般螯合试剂与氧化还原剂。
各种树脂的离子交换反应是一种两相间的可逆反应。为了表 示这种反应中树脂对各种离子亲和力的差别,引入选择性系 数的概念。
即亲和力随电荷增多而增大。
对于同价离子,则通常是: Li+<Na+<K+<Rb+<Cs+, Mg2+<Ca2+<Sr2+<Ba2+
即亲和力随水合离子半径的减小而增大。
以上顺序是指稀溶液而言的。溶液较浓时,选择性系数与顺 序可能变化。酸的存在及浓度大小对选择性也有影响。
树脂的交联度提高,一般会增加离子选择性,即增加筛分能力。
6
6.2.2 分配系数和分离系数 离子交换平衡中的分配系数D表示某一离子在树脂相和液相 的分配:
D [M ] [M ]
通常定义为:
7
8
6.2.3离子交换的动力学
离子交换反应发生在固、液相之间,反应速度一般较慢, 所以反应速率对于分离情况影响较大。
当溶液中离子A与树脂上离子B发生交换反应时,整个过程 可以分为以下五步:
我们可以把上式改写为:
K
M H
[M ] /[M ] [H ] /[H ]
它是离子在树脂相与溶液相浓度之比和氢在树脂相与溶液相之
比的比值。
若此值大于1,则
[M ]/[M ] > [H ]/[H ]
表明M更倾向于留在树脂相,其亲和力更强,树脂倾向于选
择性地将它吸附。反之,树脂对氢地亲和性更大些。
4
选择性系数往往以H+或Li+作参考离子,参考离子不同, 选择性系数的值也不同。
以一种氢型的阳离子树脂同一价离子M+的交换反应为例:
RH M RM H
其中 RH 和 RM 表示在树脂相。为简便略写为 H 和 M
也略去水相中离子电荷,则
H M M H
2
反应的平衡常数是
_
K f1[M ] f2[H ] _ f3[H ] f4[M ]
②如果交换对象是无机阴离子或有机酸的阴离子,则用阴离 子交换树脂;
f 为相应组分的活度系数
要测定计算这些活度系数是相当困难的。为使用方便,引 入选择性系数,它是平衡常数略去活度系数后的值:
K
M H
K
f3 f4 f1 f 2
[M ][H ] [H ][M ]
Байду номын сангаас
3
这个值是可以实际测定的,但是都随溶液的浓度变化,也随温 度而变化。
它的意义在于:可以比较相同条件下树脂对不同离子的亲和力。
(1)离子A到达树脂表面。溶液的搅拌或在树脂柱中的流 动有利于此过程。
(2)离子A在树脂内扩散到交换位置。
(3)A和B在交换位置上发生交换反应。
(4)反应后释放出的B从交换位置扩散到树脂表面。
(5)离子B从树脂表面通过液膜扩散到溶液中。
9
为了保持电中性条件,(1)和(5)必须同时以同样的速度 发生,(2)和(4)也是同时发生的。 这样实际上就是三个步骤:膜扩散、树脂颗粒内的扩散和 化学交换。 三个步骤中最慢的一步是整个离子交换反应的控制步骤, 它决定了交换反应速度。这一步骤往往是两扩散步骤之一。
提高温度既提高了扩散速度,又提高了交换反应速度,从 而加快了整个交换速度。 (4)溶液浓度
一般情况下,在溶液浓度小于0.01mol/L时,总的交换速度 可由膜扩散决定。
扩散速度:表示为单位时间内通过单位面积的离子量。
式中C1,C2分别表示扩散界面两侧的离子浓度,C1>C2; δ 是界面层厚度;D是总扩散系数,单位是cm2/s
10
影响离子交换速度的因素有以下几种
(1)树脂粒度
树脂颗粒大小对交换速度有很大影响。不管哪一步是控 制步骤,小颗粒树脂总是相应于大的交换速度。
除上述各种因素外,在非水介质中,尤其在非极性溶剂 中,交换速度要慢得多,有时只有水溶液中的千分之一。
其原因之一是树脂在非水溶剂中的溶胀要小得多。同时也 因为在非水溶剂中离解得少,只能提供较少的可交换离子。
基于同样原因,弱酸和弱碱型树脂的溶胀也较小,只能提
供较低的交换速度。
13
§6.3离子交换分离实践
当浓度增加时,膜扩散速度上升,浓度达到1.0 mol/L以上时, 树脂内扩散常变成控制步骤。
此时我们可看到,继续提高浓度对提高反应速度就 不再有 12
效了。
(5)搅拌速度
加大搅拌速度可以减小膜厚度从而提高扩散速度。但搅 拌强度达到一定值后,交换速度便不会在上升。
(6)交换离子的性质
主要是离子的价态和水化离子的大小。在树脂内扩散的离 子是由于树脂的固定离子库仑力的吸引而扩散进入的,故 离子价态越高,吸引力越大,扩散速度越快。水化离子越 大则越难扩散。
对于1价离子
K
A B
K
A C
K
C B
对于n价离子Mn+与H+交换的选择性系数表示为:
K
M H
/
n
[M ]1/ n [H ] [M ]1/ n [H ]
阴离子交换树脂对离子的选择性系数可以用同样的方法讨论。 阴离子树脂的选择性系数常用OH-或Cl-作为参考离子。
5
离子与树脂亲和能力的差别,与离子电荷多少及其半径 的大小有关。 不同价的离子,亲和力大小顺序一般是: Na+<Ca2+<Al3+<Th4+
实践中使用最多的是固定床柱式操作。它的效率比较高,操 作简便,实用价值很大。下面介绍柱式操作过程的一些主要 方面。
6.3.1树脂的选择
选用哪一种离子交换树脂,必须考虑被分离物质带何种电 荷及其电性强弱、分子的大小与数量,同时还要考虑环境 中存在哪些其他离子和他们的性质。 ①如果交换对象是无机阳离子或有机碱阳离子,则选用阳 离子交换树脂;
如果是膜扩散控制,小颗粒增大了树脂的比表面,单位时 间内可以有更多的离子达到单位质量树脂的表面,从而增 大总的膜扩散速度。
如果是颗粒内扩散控制,则小颗粒使离子通过的路程缩 短,从而加快了过程的速度。
应该注意的是:颗粒均匀的树脂比不均匀的树脂交换速 度高,因为其中大的颗粒数目少。
11
(2)树脂交联度
第六章 离子交换与吸附
§6.2离子交换平衡及交换动力学 §6.3离子交换分离实践
1
§6.2离子交换平衡及交换动力学
6.2.1离子交换平衡和选择性
各种离子交换树脂相当于各种酸和碱,螯合树脂与氧化还原 树脂相当于一般螯合试剂与氧化还原剂。
各种树脂的离子交换反应是一种两相间的可逆反应。为了表 示这种反应中树脂对各种离子亲和力的差别,引入选择性系 数的概念。
即亲和力随电荷增多而增大。
对于同价离子,则通常是: Li+<Na+<K+<Rb+<Cs+, Mg2+<Ca2+<Sr2+<Ba2+
即亲和力随水合离子半径的减小而增大。
以上顺序是指稀溶液而言的。溶液较浓时,选择性系数与顺 序可能变化。酸的存在及浓度大小对选择性也有影响。
树脂的交联度提高,一般会增加离子选择性,即增加筛分能力。
6
6.2.2 分配系数和分离系数 离子交换平衡中的分配系数D表示某一离子在树脂相和液相 的分配:
D [M ] [M ]
通常定义为:
7
8
6.2.3离子交换的动力学
离子交换反应发生在固、液相之间,反应速度一般较慢, 所以反应速率对于分离情况影响较大。
当溶液中离子A与树脂上离子B发生交换反应时,整个过程 可以分为以下五步:
我们可以把上式改写为:
K
M H
[M ] /[M ] [H ] /[H ]
它是离子在树脂相与溶液相浓度之比和氢在树脂相与溶液相之
比的比值。
若此值大于1,则
[M ]/[M ] > [H ]/[H ]
表明M更倾向于留在树脂相,其亲和力更强,树脂倾向于选
择性地将它吸附。反之,树脂对氢地亲和性更大些。
4
选择性系数往往以H+或Li+作参考离子,参考离子不同, 选择性系数的值也不同。
以一种氢型的阳离子树脂同一价离子M+的交换反应为例:
RH M RM H
其中 RH 和 RM 表示在树脂相。为简便略写为 H 和 M
也略去水相中离子电荷,则
H M M H
2
反应的平衡常数是
_
K f1[M ] f2[H ] _ f3[H ] f4[M ]
②如果交换对象是无机阴离子或有机酸的阴离子,则用阴离 子交换树脂;
f 为相应组分的活度系数
要测定计算这些活度系数是相当困难的。为使用方便,引 入选择性系数,它是平衡常数略去活度系数后的值:
K
M H
K
f3 f4 f1 f 2
[M ][H ] [H ][M ]
Байду номын сангаас
3
这个值是可以实际测定的,但是都随溶液的浓度变化,也随温 度而变化。
它的意义在于:可以比较相同条件下树脂对不同离子的亲和力。
(1)离子A到达树脂表面。溶液的搅拌或在树脂柱中的流 动有利于此过程。
(2)离子A在树脂内扩散到交换位置。
(3)A和B在交换位置上发生交换反应。
(4)反应后释放出的B从交换位置扩散到树脂表面。
(5)离子B从树脂表面通过液膜扩散到溶液中。
9
为了保持电中性条件,(1)和(5)必须同时以同样的速度 发生,(2)和(4)也是同时发生的。 这样实际上就是三个步骤:膜扩散、树脂颗粒内的扩散和 化学交换。 三个步骤中最慢的一步是整个离子交换反应的控制步骤, 它决定了交换反应速度。这一步骤往往是两扩散步骤之一。